Science.gov

Sample records for zebrafish embryonic cells

  1. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis.

    PubMed

    Wolf, Anja; Aggio, Julian; Campbell, Clyde; Wright, Francis; Marquez, Gabriel; Traver, David; Stachura, David L

    2017-03-16

    Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system.

  2. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  3. Effects and possible mechanisms of simulated-microgravity on zebrafish embryonic cell

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Cellular level studies are helpful for revealing the underlying mechanisms of microgravity effects on living organisms. Many cell types, ranging from bacteria to mammalian cells, are sensitive to the microgravity environment. In this study, zebrafish embryonic cells (ZF4) were exposed to simulated-microgravity (SMG) for different times to investigate the effects and possible mechanisms of microgravity on fibroblasts. A significant arrest in G2/M phase was detected in ZF4 cells after 24 or 48 hour of SMG exposure, respectively. The mRNA levels of G2/M phase regulators cyclinB1 and cdc2 were significantly decreased, while wee1 was significantly increased. Additionally, CEP135, a core centrosome protein throughout the cell cycle, seems to play a key role in modulating this effect. Quantitative analysis showed that cep135 expression was significantly increased, while CEP135 protein expression level was significantly decreased two times after SMG. Further investigation demonstrated the transfection of dre-miR-22a, a miRNA for targeting cep135, also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells may due to the regulation of dre-miR-22a and its target cep135. Key Words: Simulated-microgravity; zebrafish embryonic cell; G2/M arrest; molecular mechanism

  4. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

    PubMed

    Yu, Kaimin; Li, Guochao; Feng, Weimin; Liu, Lili; Zhang, Jiayu; Wu, Wei; Xu, Lei; Yan, Yanchun

    2015-09-05

    The potential interference of endocrine disrupting chemicals (EDCs) on aquatic animals and humans has drawn wide attention in recent years. Reports have shown that some organophosphorus pesticides were a kind of EDCs, but their effects on fish species are still under research. In present study, flow cytometry data of HEC-1B cell line showed that chlorpyrifos (CPF) could increase cell proliferation index like 17β-estradiol (E2), but the effect of CPF was weaker than of E2 in the same concentration. Moreover, CPF altered the expression pattern of estrogen-responsive gene VTG and ERα in zebrafish embryos. When exposed to CPF at various concentrations (0, 0.10, 0.25, 0.50, 0.75 and 1.00mg/L) for 48h during the embryo stage, compared with controls, the hatching rate of treated groups significantly increased at the same time and the hatching rate of embryos was proportional to CPF concentration. The mRNA expression levels of c-myc, cyclin D1, Bax and Bcl-2, which are closely related to cell proliferation and cell apoptosis, were disturbed by CPF in zebrafish embryos after exposure treated for 48h. In addition, acridine orange (AO) staining of zebrafish embryos showed that cell apoptosis was appeared in the 0.75, 1.00mg/L CPF treated groups. Taken together, the results obtained in the present study indicated that chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development.

    PubMed

    van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan

    2017-05-12

    The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.

  6. Quantitative analysis of mechanical force required for cell extrusion in zebrafish embryonic epithelia.

    PubMed

    Yamada, Sohei; Iino, Takanori; Bessho, Yasumasa; Hosokawa, Yoichiroh; Matsui, Takaaki

    2017-10-15

    When cells in epithelial sheets are damaged by intrinsic or extrinsic causes, they are eliminated by extrusion from the sheet. Cell extrusion, which is required for maintenance of tissue integrity, is the consequence of contraction of actomyosin rings, as demonstrated by both molecular/cellular biological experimentation and numerical simulation. However, quantitative evaluation of actomyosin contraction has not been performed because of the lack of a suitable direct measurement system. In this study, we developed a new method using a femtosecond laser to quantify the contraction force of the actomyosin ring during cell extrusion in zebrafish embryonic epithelia. In this system, an epithelial cell in zebrafish embryo is first damaged by direct femtosecond laser irradiation. Next, a femtosecond laser-induced impulsive force is loaded onto the actomyosin ring, and the contraction force is quantified to be on the order of kPa as a unit of pressure. We found that cell extrusion was delayed when the contraction force was slightly attenuated, suggesting that a relatively small force is sufficient to drive cell extrusion. Thus, our method is suitable for the relative quantitative evaluation of mechanical dynamics in the process of cell extrusion, and in principle the method is applicable to similar phenomena in different tissues and organs of various species. © 2017. Published by The Company of Biologists Ltd.

  7. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development

    PubMed Central

    van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan

    2017-01-01

    The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain. DOI: http://dx.doi.org/10.7554/eLife.25932.001 PMID:28498105

  8. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    SciTech Connect

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  9. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  10. Immunostaining of dissected zebrafish embryonic heart.

    PubMed

    Yang, Jingchun; Xu, Xiaolei

    2012-01-10

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments

  11. Cardiac Development in Zebrafish and Human Embryonic Stem Cells Is Inhibited by Exposure to Tobacco Cigarettes and E-Cigarettes

    PubMed Central

    Palpant, Nathan J.; Hofsteen, Peter; Pabon, Lil; Reinecke, Hans; Murry, Charles E.

    2015-01-01

    Background Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes. Objective We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Methods Zebrafish (Danio rerio) were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs) was used as a model for in vitro cardiac development. Results In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin. Conclusion These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects. PMID:25978043

  12. Embryonic senescence and laminopathies in a progeroid zebrafish model.

    PubMed

    Koshimizu, Eriko; Imamura, Shintaro; Qi, Jie; Toure, Jamal; Valdez, Delgado M; Carr, Christopher E; Hanai, Jun-ichi; Kishi, Shuji

    2011-03-30

    Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with

  13. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  14. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    SciTech Connect

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  15. Simulated-microgravity induced G2/M arrest in zebrafish embryonic cell is regulated by dre-miR-22a and its target cep135

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Microgravity has been recognized as a major environmental factor that can induce a number of adverse effects such as bone loss, skeletal muscle atrophy, cardiovascular problems and immune system dysregulation, etc. The underlying mechanisms are not absolutely identified yet. Our previous study demonstrated centrosomal protein of 135 kDa (CEP135) might be a microgravity sensitive molecule. In this study, the expression and regulation of CEP135 and its possible roles in cell cycle regulation under simulated microgravity (SMG) condition were investigated. SMG can induce significant increasing of cep135 in zebrafish embryos, detected by both in situ hybridization and RT-qPCR, while CEP135 protein level was significantly decreased, tested by western blot. The similar results were also obtained in zebrafish embryonic cells (ZF4) exposed to SMG. Accordingly, the expression level of dre-miR-22a, which might be the potential miRNA for targeting cep135, was significantly increased in SMG exposed ZF4 cells. By combining the results obtained from transfection and dual luciferase reporter assay, we firstly confirmed that dre-miR-22a regulated the expression of cep135 in ZF4 cells. Further investigation on cell cycle demonstrated SMG induced a significant arrest in G2/M phase. Transfection of dre-miR-22a also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells is via cep135, while dre-miR-22a plays a key role in modulating this effect. Key Words: Simulated-microgravity; cep135; dre-miR-22a; G2/M arrest; zebrafish embryonic cell

  16. Smoc2 modulates embryonic myelopoiesis during zebrafish development.

    PubMed

    Mommaerts, Hendrik; Esguerra, Camila V; Hartmann, Ursula; Luyten, Frank P; Tylzanowski, Przemko

    2014-11-01

    SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development. Copyright © 2014 Wiley Periodicals, Inc.

  17. The primary role of zebrafish nanog is in extra-embryonic tissue.

    PubMed

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  18. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  19. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  20. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development

    PubMed Central

    Ciarlo, Christie; Kaufman, Charles K; Kinikoglu, Beste; Michael, Jonathan; Yang, Song; D′Amato, Christopher; Blokzijl-Franke, Sasja; den Hertog, Jeroen; Schlaeger, Thorsten M; Zhou, Yi; Liao, Eric

    2017-01-01

    The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation. PMID:28832322

  1. Egr1 gene knockdown affects embryonic ocular development in zebrafish.

    PubMed

    Hu, Chao-Yu; Yang, Chang-Hao; Chen, Wei-Yu; Huang, Chiu-Ju; Huang, Hsing-Yen; Chen, Muh-Shy; Tsai, Huai-Jen

    2006-10-26

    To identify the changes in zebrafish embryonic ocular development after early growth response factor 1 (Egr1) gene knockdown by Egr1-specific translation inhibitor, morpholino oligonucleotides (MO). Two kinds of Egr1-MO were microinjected separately with various dosages into one to four celled zebrafish embryos to find an optimal dose generating an acceptable mortality rate and high frequency of specific phenotype. Chordin-MO served as the positive control; a 5 mismatch MO of Egr1-MO1 and a nonspecific MO served as negative controls. We graded the Egr1 morphants according to their gross abnormalities, and measured their ocular dimensions accordingly. Western blot analysis and synthetic Egr1 mRNA rescue experiments confirmed whether the deformities were caused by Egr1 gene knockdown. Histological examination and three kinds of immunohistochemical staining were applied to identify glutamate receptor one expression in retinal ganglion cells and amacrine cells, to recognize acetylated alpha-tubulin expression which indicated axonogenesis, and to label photoreceptor cells with zpr-1 antibody. After microinjection of 8 ng Egr1-MO1 or 2 ng Egr1-MO2, 81.8% and 97.3% of larvae at 72 h postfertilization had specific defects, respectively. The gross phenotype included string-like heart, flat head, and deformed tail. The more severely deformed larvae had smaller eyes and pupils. Co-injection of 8 ng Egr1-MO1 and supplementary 12 pg synthetic Egr1 mRNA reduced the gross abnormality rate from 84.4% to 29.7%, and decreased the severity of deformities. Egr1 protein appeared in the wildtype and rescued morphants, but was lacking in the Egr1 morphants with specific deformities. Lenses of Egr1 morphants were smaller and had some residual nucleated lens fiber cells. Morphants' retinal cells arranged disorderly and compactly with thin plexiform layers. Immunohistochemical studies showed that morphants had a markedly decreased number of mature retinal ganglion cells, amacrine cells, and

  2. Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart

    NASA Astrophysics Data System (ADS)

    Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi

    2010-11-01

    Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.

  3. Identification and expression analysis of zebrafish glypicans during embryonic development.

    PubMed

    Gupta, Mansi; Brand, Michael

    2013-01-01

    Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  4. Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish

    SciTech Connect

    Raldua, Demetrio; Andre, Michele; Babin, Patrick J.

    2008-05-01

    Nutrient availability is one of the major non-genetic factors determining embryonic growth and larval or fetal size. Due to the high human consumption of blood lipid regulators, fibrates have recently been reported as pollutants in rivers. Our study investigated the developmental toxicity of fibrates in zebrafish. Treatment with micromolar concentrations of clofibrate or gemfibrozil induced an embryonic malabsorption syndrome (EMS) with very little yolk consumption, resulting in small-sized larvae. This effect was reversible on removing the drug from the water. Clofibrate delayed hatching time and decreased the amount of oil red O lipid staining in the vasculature. It also inducedmore » higher density, round-shaped neuromuscular junctions associated with disorganization and less striation of muscular fibers, and pericardial edema, as well as impairing thyroid gland morphogenesis. acox1, apoa1 and mtp hybridization transcript signals were not affected in the yolk syncytial layer (YSL) after clofibrate exposure. Di-(2-ethylhexyl)-phthalate did not slow down yolk resorption, whereas brefeldin A induced EMS. These findings suggest that the inhibition of yolk sac resorption on exposure to fibrate is not at a pre-translational level or peroxisome proliferator-activated receptor alpha dependent and may be due to an inhibition of the YSL constitutive cell secretion. The effects of fibrates and the potential bioconcentration in eggs as well as the additive action of structurally related toxicants warrant an evaluation of the developmental impact of these compounds after long-term exposure at environmentally relevant concentrations. Fibrate-induced EMS in zebrafish seems useful for studying the morphogenetic consequences of impaired nutrient availability during the early stages of vertebrate development.« less

  5. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  6. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    PubMed Central

    2011-01-01

    Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588

  7. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  8. Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.

    PubMed

    Dougherty, Max; Kamel, George; Shubinets, Valeriy; Hickey, Graham; Grimaldi, Michael; Liao, Eric C

    2012-09-01

    Cranial neural crest cells follow stereotypic patterns of migration to form craniofacial structures. The zebrafish is a powerful vertebrate genetic model where transgenics with reporter proteins under the transcriptional regulation of lineage-specific promoters can be generated. Numerous studies demonstrate that the zebrafish ethmoid plate is embryologically analogous to the mammalian palate. A fate map correlating embryonic cranial neural crest to defined jaw structures would provide a useful context for the morphogenetic analysis of craniofacial development. To that end, the sox10:kaede transgenic was generated, where sox10 provides lineage restriction to the neural crest. Specific regions of neural crest were labeled at the 10-somite stage by photoconversion of the kaede reporter protein. Lineage analysis was carried out during pharyngeal development in wild-type animals, after miR140 injection, and after estradiol treatment. At the 10-somite stage, cranial neural crest cells anterior of the eye contributed to the median ethmoid plate, whereas cells medial to the eye formed the lateral ethmoid plate and trabeculae and a posterior population formed the mandible. miR-140 overexpression and estradiol inhibition of Hedgehog signaling resulted in cleft development, with failed migration of the anterior cell population to form the median ethmoid plate. The sox10:kaede transgenic line provides a useful tool for neural crest lineage analysis. These studies illustrate the advantages of the zebrafish model for application in morphogenetic studies of vertebrate craniofacial development.

  9. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens.

    PubMed

    Zou, Ping; Wu, Shu-Yu; Koteiche, Hanane A; Mishra, Sanjay; Levic, Daniel S; Knapik, Ela; Chen, Wenbiao; Mchaourab, Hassane S

    2015-09-01

    αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    PubMed

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  11. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    PubMed Central

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to

  12. Brief Embryonic Strychnine Exposure in Zebrafish Causes Long-Term Adult Behavioral Impairment with Indications of Embryonic Synaptic Changes

    PubMed Central

    Roy, Nicole M.; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D.; Cerutti, Daniel

    2015-01-01

    Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5 mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. PMID:23022260

  13. Brief embryonic strychnine exposure in zebrafish causes long-term adult behavioral impairment with indications of embryonic synaptic changes.

    PubMed

    Roy, Nicole M; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D; Cerutti, Daniel

    2012-01-01

    Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish

    PubMed Central

    Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.

    2017-01-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151

  15. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.

    PubMed

    Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A

    2017-10-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.

  16. Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish

    PubMed Central

    Bisgrove, Brent W; Su, Yi-Chu

    2017-01-01

    Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. PMID:29140249

  17. Time dependent effect of chronic embryonic exposure to ethanol on zebrafish: Morphology, biochemical and anxiety alterations.

    PubMed

    Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan

    2017-08-14

    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017

  18. Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.

    PubMed

    Hen Chow, Elly Suk; Cheng, Shuk Han

    2003-05-01

    We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.

  19. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish.

    PubMed

    Jeffery, Jessie; Neyt, Christine; Moore, Wade; Paterson, Scott; Bower, Neil I; Chenevix-Trench, Georgia; Verkade, Heather; Hogan, Benjamin M; Khanna, Kum Kum

    2015-05-01

    CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability. © FASEB.

  20. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development.

    PubMed

    Edeling, Melissa A; Sanker, Subramaniam; Shima, Takaki; Umasankar, P K; Höning, Stefan; Kim, Hye Y; Davidson, Lance A; Watkins, Simon C; Tsang, Michael; Owen, David J; Traub, Linton M

    2009-12-03

    PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.

  1. Expression pattern of zebrafish rxfp2 homologue genes during embryonic development.

    PubMed

    Donizetti, Aldo; Fiengo, Marcella; Del Gaudio, Rosanna; Iazzetti, Giovanni; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-11-01

    RXFP2 is one of the 4 receptors for relaxin insulin-like peptides, in particular it binds with high affinity the INSL3 peptide. INSL3/RXFP2 pair is essential for testicular descent during placental mammalian development. The evolutionary history of this ligand/receptor pair has received much attention, since its function in vertebrate species lacking testicular descent, such as the fishes, remains elusive. Herein, we analyzed the expression pattern of three rxfp2 homologue genes in zebrafish embryonic development. For all the three rxfp2 genes (rxfp2a, rxfp2b, and rxfp2-like) we showed the presence of maternally derived transcripts. Later in the development, rxfp2a is only expressed at larval stage, whereas rxfp2b is expressed in all the analyzed stage with highest level in the larvae. The rxfp2-like gene is expressed in all the analyzed stage with a transcript level that increased starting at early pharyngula stage. The spatial localization analysis of rxfp2-like gene showed that it is expressed in many cell clusters in the developing brain. In addition, other rxfp2-like-expressing cells were identified in the retina and oral epithelium. This analysis provides new insights to elucidate the evolution of rxfp2 genes in vertebrate lineage and lays the foundations to study their role in vertebrate embryonic development. © 2015 Wiley Periodicals, Inc.

  2. Embryonic Alcohol Exposure Impairs the Dopaminergic System and Social Behavioral Responses in Adult Zebrafish

    PubMed Central

    Fernandes, Yohaan; Rampersad, Mindy

    2015-01-01

    Background: The zebrafish is a powerful neurobehavioral genetics tool with which complex human brain disorders including alcohol abuse and fetal alcohol spectrum disorders may be modeled and investigated. Zebrafish innately form social groups called shoals. Previously, it has been demonstrated that a single bath exposure (24 hours postfertilization) to low doses of alcohol (0, 0.25, 0.50, 0.75, and 1% vol/vol) for a short duration (2 hours) leads to impaired group forming, or shoaling, in adult zebrafish. Methods: In the current study, we immersed zebrafish eggs in a low concentration of alcohol (0.5% or 1% vol/vol) for 2 hours at 24 hours postfertilization and let the fish grow and reach adulthood. In addition to quantifying the behavioral response of the adult fish to an animated shoal, we also measured the amount of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid from whole brain extracts of these fish using high-pressure liquid chromatograph. Results: Here we confirm that embryonic alcohol exposure makes adult zebrafish increase their distance from the shoal stimulus in a dose-dependent manner. We also show that the shoal stimulus increases the amount of dopamine and 3,4-dihydroxyphenylacetic acid in the brain of control zebrafish but not in fish previously exposed to alcohol during their embryonic development. Conclusions: We speculate that one of the mechanisms that may explain the embryonic alcohol-induced impaired shoaling response in zebrafish is dysfunction of reward mechanisms subserved by the dopaminergic system. PMID:25568285

  3. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    PubMed

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles

    SciTech Connect

    Jong, Esther de, E-mail: Esther.de.Jong@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Barenys, Marta

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known inmore » vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.« less

  5. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles.

    PubMed

    de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  7. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine

    PubMed Central

    Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana

    2010-01-01

    We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518

  8. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    PubMed

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  9. Interordinal Chimera Formation Between Medaka and Zebrafish for Analyzing Stem Cell Differentiation

    PubMed Central

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing

    2012-01-01

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos. PMID:22204449

  10. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    PubMed

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  12. Elevated nitrate alters the metabolic activity of embryonic zebrafish.

    PubMed

    Conlin, Sarah M; Tudor, M Scarlett; Shim, Juyoung; Gosse, Julie A; Neilson, Andrew; Hamlin, Heather J

    2018-04-01

    Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO 3 -N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XF e 96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO 3 -N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO 3 -N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other

  13. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio).

    PubMed

    Abozaid, H; Wessels, S; Hörstgen-Schwark, G

    2011-01-01

    In zebrafish, Danio rerio, a polygenic pattern of sex determination or a female heterogamety with possible influences of environmental factors is assumed. The present study focuses on the effects of an elevated water temperature (35° C) during the embryonic development on sex determination in zebrafish. Eggs derived from 3 golden females were fertilized by the same mitotic gynogenetic male and exposed to a water temperature of 35° C, applied from 5 to 10 h post fertilization (hpf), from 5 to 24 hpf, and from 5 to 48 hpf, which correspond to the following developmental stages: gastrula, gastrula to segmentation, and gastrula to pharyngula stage, respectively. Hatching and survival rates decreased with increasing exposure to high water temperatures. Reductions in the hatching and survival rates were not responsible for differences in sex ratios. Accordingly, exposition of the fertilized eggs to a high temperature (35° C) leads to an increase of the male proportion from 22.0% in the controls to a balanced sex ratio (48.3, 47.5, and 52.6%) in the gastrula, segmentation, and pharyngula groups, respectively. These results prove the possibility to change the pathway of sexual determination during early embryonic stages in zebrafish by exposure to a high water temperature. Copyright © 2011 S. Karger AG, Basel.

  14. [Embryonic stem cells. Future perspectives].

    PubMed

    Groebner, M; David, R; Franz, W M

    2006-05-01

    Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.

  15. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.

  16. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs

    PubMed Central

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty

    2016-01-01

    Objectives: Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio). Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used

  17. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish

    PubMed Central

    Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.

    2017-01-01

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710

  18. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish

    PubMed Central

    Sarmah, Swapnalee; Muralidharan, Pooja

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  19. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    PubMed

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.

  20. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish

    PubMed Central

    Scott, Graham R.; Johnston, Ian A.

    2012-01-01

    Global warming is intensifying interest in the mechanisms enabling ectothermic animals to adjust physiological performance and cope with temperature change. Here we show that embryonic temperature can have dramatic and persistent effects on thermal acclimation capacity at multiple levels of biological organization. Zebrafish embryos were incubated until hatching at control temperature (TE = 27 °C) or near the extremes for normal development (TE = 22 °C or 32 °C) and were then raised to adulthood under common conditions at 27 °C. Short-term temperature challenge affected aerobic exercise performance (Ucrit), but each TE group had reduced thermal sensitivity at its respective TE. In contrast, unexpected differences arose after long-term acclimation to 16 °C, when performance in the cold was ∼20% higher in both 32 °C and 22 °C TE groups compared with 27 °C TE controls. Differences in performance after acclimation to cold or warm (34 °C) temperatures were partially explained by variation in fiber type composition in the swimming muscle. Cold acclimation changed the abundance of 3,452 of 19,712 unique and unambiguously identified transcripts detected in the fast muscle using RNA-Seq. Principal components analysis differentiated the general transcriptional responses to cold of the 27 °C and 32 °C TE groups. Differences in expression were observed for individual genes involved in energy metabolism, angiogenesis, cell stress, muscle contraction and remodeling, and apoptosis. Therefore, thermal acclimation capacity is not fixed and can be modified by temperature during early development. Developmental plasticity may thus help some ectothermic organisms cope with the more variable temperatures that are expected under future climate-change scenarios. PMID:22891320

  1. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

    PubMed Central

    Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L

    2014-01-01

    Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436

  2. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.

    PubMed

    Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy

    2013-12-07

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target

  3. Embryonic death and the creation of human embryonic stem cells.

    PubMed

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  4. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  5. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    NASA Astrophysics Data System (ADS)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  6. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4 days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Live imaging of apoptotic cells in zebrafish

    PubMed Central

    van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.

    2010-01-01

    Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526

  8. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target

  9. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio).

    PubMed

    Sulukan, Ekrem; Köktürk, Mine; Ceylan, Hamid; Beydemir, Şükrü; Işik, Mesut; Atamanalp, Muhammed; Ceyhun, Saltuk Buğrahan

    2017-08-01

    In this study, it has been investigated that the effects of glyphosate, which is a herbicide within organophosphate and unselective widely used in agriculture on enzyme activity of carbonic anhydrase, production of reactive oxygen species, cell apoptosis and body morphology during the embryonic development of zebrafish. To this end, it has been treated embryo with 1, 5, 10 and 100 mg/L gyphosate at 96 h. The embryos treated with glyphosate from 4 hpf were evaluated by considering the survival rates, hatching rates, body malformations under the stereo microscope in 24, 48, 72 and 96th hours. In order to clarify the mechanism of the abnormalities ROS, enzyme activity of carbonic anhydrase and cellular death were detected end of the 96th hour. The data obtained in the present study have shown that glyphosate treatment inhibited CA activity, caused production of ROS especially branchial regions, triggered cellular apoptosis and caused several types of malformations including pericardial edema, yolk sac edema, spinal curvature and body malformation in a dose-dependent manner. As a conclusion, in light of present and previous studies, we can deduce that (1) the probable reason of ROS production was CA inhibition via decreasing of CO 2 extraction and developing respiratory acidosis (however, one needs to clarify), (2) abundance of ROS triggered cellular apoptosis and (3) as a result of cellular apoptosis malformations increased. These data will enable us to further understand potential toxic mechanism of glyphosate on embryonic development stage of zebrafish and may be useful for assessment in the toxicology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cell Migration During Heart Regeneration in Zebrafish

    PubMed Central

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2018-01-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, preexisting cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. PMID:27085002

  11. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. [Embryonic stem cells and therapeutic cloning].

    PubMed

    Sunde, A; Eftedal, I

    2001-08-30

    Increased interest in the therapeutic use of human stem cells has emerged following significant progress in ongoing research. The cloning of a sheep, the isolation of human embryonic stem cells, and the discovery that adult stem cells may be reprogrammed taken together give substance to hopes that novel principles of treatment may be developed for a variety of serious conditions. Embryonic stem cells are derived from pre-embryos at the blastocyst stage and may give rise to all bodily tissues and cells. Animal models have demonstrated that embryonic stem cells when transplanted into adult hosts may differentiate and develop into cells and tissues applicable for treatment of a variety of conditions, including Parkinson's disease, multiple sclerosis, spinal injuries, cardiac stroke and cancer. Transplanted embryonic stem cells are exposed to immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient's own cells by means of therapeutic cloning techniques. The nucleus from a somatic cell is transferred into an egg after removal of the egg's own genetic material. Under specific condition the egg will use genetic information from the somatic cell in organising the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of the patient and are suitable for stem cell therapy.

  13. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    PubMed

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain.

    PubMed

    Hauptmann, G; Gerster, T

    2000-03-01

    To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and share expression boundaries at stereotypic positions within the fore- and midbrain. Some of these shared expression boundaries coincide with morphological landmarks like the pathways of primary axon tracts. We identified a series of eight transverse diencephalic domains suggestive of neuromeric subdivisions within the rostral brain. In addition, we identified four molecularly distinct longitudinal subdivisions and provide evidence for a strong bending of the longitudinal rostral brain axis at the cephalic flexure. Our data suggest a strong conservation of early forebrain organization between lower and higher vertebrates.

  15. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    PubMed

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  16. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  17. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish

    PubMed Central

    Pan, Y. Albert; Freundlich, Tom; Weissman, Tamily A.; Schoppik, David; Wang, X. Cindy; Zimmerman, Steve; Ciruna, Brian; Sanes, Joshua R.; Lichtman, Jeff W.; Schier, Alexander F.

    2013-01-01

    Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a ‘Brainbow’ of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish. PMID:23757414

  18. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development.

    PubMed

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D; Yaniv, Karina

    2015-12-15

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. © 2015. Published by The Company of Biologists Ltd.

  19. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.

    PubMed

    Wang, Yanbo; Zhou, Jinru; Liu, Lin; Huang, Changjiang; Zhou, Deqing; Fu, Linglin

    2016-05-05

    In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (P<0.01) at 300 and 400mg/L than those of the corresponding control groups, respectively. However, there were no significant differences between the groups treated with chitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The effect of silver nanoparticles on zebrafish embryonic development and toxicology.

    PubMed

    Xia, Guangqing; Liu, Tiantian; Wang, Zhenwei; Hou, Yi; Dong, Lihong; Zhu, Junyi; Qi, Jie

    2016-06-01

    The unique physical and chemical characteristics of nanomaterials, such as the effects of their small size, surface effects, very high rates of reaction, and quantum tunnel effect, have aroused great interest among scholars. However, improper usage has led to an increasing number of nanomaterials entering the environment through various channels, greatly threatening the security of the ecological environment and human health. The urgent need for a scientific assessment of their biosafety can enable nanomaterials to truly benefit humanity. However, the current research in this field is extremely limited with regard to safety standards and waste disposal. In this study, we used silver nanoparticles (nano-Ag) and zebrafish embryos as experimental subjects, and we have reported the deleterious effect on zebrafish embryos treated with different concentrations of nano-Ag, with respect to morphological features (mortality, deformity rate, and heartbeat) and the analysis of expression of relevant genes (sox17, gsc, ntl, otx2); we found a dose-dependent increase in mortality and hatching delay. The results of in situ hybridization indicated that nano-Ag causes a dose-dependent toxicity in embryonic development, and would affect their development and lead to deformity, delayed development, and even death. The safety limit for the concentration of nano-Ag was found to be less than 5 mg/L.

  1. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  2. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  3. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  4. Fullerene C{sub 60} exposure elicits an oxidative stress response in embryonic zebrafish

    SciTech Connect

    Usenko, Crystal Y.; Harper, Stacey L.; Tanguay, Robert L.

    2008-05-15

    Due to its unique physicochemical and optical properties, C{sub 60} has raised interest in commercialization for a variety of products. While several reports have determined this nanomaterial to act as a powerful antioxidant, many other studies have demonstrated a strong oxidative potential through photoactivation. To directly address the oxidative potential of C{sub 60}, the effects of light and chemical supplementation and depletion of glutathione (GSH) on C{sub 60}-induced toxicity were evaluated. Embryonic zebrafish were used as a model organism to examine the potential of C{sub 60} to elicit oxidative stress responses. Reduced light during C{sub 60} exposure significantly decreased mortalitymore » and the incidence of fin malformations and pericardial edema at 200 and 300 ppb C{sub 60}. Embryos co-exposed to the glutathione precursor, N-acetylcysteine (NAC), also showed reduced mortality and pericardial edema; however, fin malformations were not reduced. Conversely, co-exposure to the GSH synthesis inhibitors, buthionine sulfoximine (BSO) and diethyl maleate (DEM), increased the sensitivity of zebrafish to C{sub 60} exposure. Co-exposure of C{sub 60} or its hydroxylated derivative, C{sub 60}(OH){sub 24}, with H{sub 2}O{sub 2} resulted in increased mortality along the concentration gradient of H{sub 2}O{sub 2} for both materials. Microarrays were used to examine the effects of C{sub 60} on the global gene expression at two time points, 36 and 48 h post fertilization (hpf). At both life stages there were alterations in the expression of several key stress response genes including glutathione-S-transferase, glutamate cysteine ligase, ferritin, {alpha}-tocopherol transport protein and heat shock protein 70. These results support the hypothesis that C{sub 60} induces oxidative stress in this model system.« less

  5. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  6. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs: - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model.

    PubMed

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty; Thakur, Mansee

    2016-12-01

    Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos ( Danio rerio ). Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used in this study. The embryonic zebrafish

  7. Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA.

    PubMed

    Jantzen, Carrie E; Annunziato, Kate M; Cooper, Keith R

    2016-11-01

    Perfluoroalkylated substances (PFAS) are a class of persistent anthropogenic chemicals that have been detected worldwide. PFASs consist of fluorinated carbon chains of varying length, terminal groups, and have a number of industrial uses. A previous zebrafish study from our laboratory showed that acute (3-120h post fertilization, 0.02-2.0μM), waterborne embryonic exposure to these chemicals resulted in chemical specific alterations at 5days post fertilization (dpf), and some effects persisted up to 14 dpf. Using a gene battery consisting of 100 transcripts identified several genes that were up or down regulated. This current study looks at the long-term impacts of PFASs in adult zebrafish using the same exposure regimen. It was hypothesized that sub-lethal exposure of perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), or perfluorooctane sulfonate (PFOA) in embryonic zebrafish (3-120 hpf) would result in permanent morphometric, gene expression, and behavioral changes in adult fish similar to those observed at 5 and 14 dpf. Zebrafish were exposed to PFOS, PFOA, and PFNA (Control 0μM, 2.0μM) for the first five days post fertilization. At six months post fertilization, no PFAS treatment resulted in a significant change in total body length or weight. In terms of behavior, PFNA males showed a reduction in total distance traveled and time of immobility, and an increase in thigmotaxis behavior, aggressive attacks, and preference for the bright section of the tank. PFOS treated males had a reduced aggression behavior, and PFOA females preferred the dark section of the tank. Gene expression of slco2b1, slco1d1, and tgfb1a were analyzed because these transcripts were previously found to be affected by PFAS exposure in 5dpf and 14 dpf zebrafish and resulted in: significant decrease in expression of slco2b1 for both sexes in PFNA and PFOS treated groups, significant decrease of slco1d1 in all treatment groups for females and PFOS and PFOA exposed males

  8. Assessment of diclofenac LC50 reference values in juvenile and embryonic stages of the zebrafish (Danio rerio).

    PubMed

    Praskova, E; Voslarova, E; Siroka, Z; Plhalova, L; Macova, S; Marsalek, P; Pistekova, V; Svobodova, Z

    2011-01-01

    The aim of the study was to compare the acute toxicity of diclofenac to juvenile and embryonic stages of the zebrafish (Danio rerio). Acute toxicity tests were performed on the aquarium fish Danio rerio, which is one of the model organisms most commonly used in toxicity testing. The tests were performed using a semi-static method according to OECD guideline No. 203 (Fish, acute toxicity test). Embryo toxicity tests were performed in zebrafish embryos (Danio rerio) in compliance with OECD No. 212 methodology (Fish, short-term toxicity test on embryo and sac-fry stages). The results were subjected to a probit analysis using the EKO-TOX 5.2 programme to determine 96hLC50 and 144hLC50 (median lethal concentration, 50% mortality after a 96 h or 144 h interval, respectively) values of diclofenac. The statistical significance of the difference between LC50 values in juvenile and embryonic stages of Danio rerio was tested using the Mann-Whitney non-parametric test implemented in the Unistat 5.1 programme. The LC50 mean value of diclofenac was 166.6 +/- 9.8 mg/L in juvenile Danio rerio, and 6.11 +/- 2.48 mg/L in embryonic stages of Danio rerio. The study demonstrated a statistically higher sensitivity to diclofenac (P < 0.05) in embryonic stages compared to the juvenile fish.

  9. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  10. Chromatin in embryonic stem cell neuronal differentiation.

    PubMed

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  11. Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells.

    PubMed

    Divac Rankov, Aleksandra; Ljujić, Mila; Petrić, Marija; Radojković, Dragica; Pešić, Milica; Dinić, Jelena

    2017-11-01

    Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.

  12. Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth.

    PubMed

    Christiansen, Helena E; Lang, Michael R; Pace, James M; Parichy, David M

    2009-12-29

    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development. We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically. Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype.

  13. Black carp vasa identifies embryonic and gonadal germ cells.

    PubMed

    Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng

    2017-07-01

    Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.

  14. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation.

    PubMed

    Gao, Dongxu; Lin, Jing; Ou, Kunlin; Chen, Ying; Li, Hongbin; Dai, Qinhua; Yu, Zhenni; Zuo, Zhenghong; Wang, Chonggang

    2018-05-09

    This study was conducted to investigate the effects of embryonic short-term exposure to benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, on ovarian development and reproductive capability in adult female zebrafish. In 1-year-old fish after embryonic exposure to BaP for 96 h, the gonadosomatic indices and the percentage of mature oocytes were significantly decreased in the 0.5, 5 and 50 nmol/L treatments. The spawned egg number, the fertilization rate and the hatching success were significantly reduced, while the malformation rate of the F1 unexposed larvae were increased. The mRNA levels of follicle-stimulating hormone, luteinizing hormone, ovarian cytochrome P450 aromatase cyp19a1a and cyp19b, estrogen receptor esr1 and esr2, and hepatic vitellogenin vtg1 and vtg2 genes, were down-regulated in adult female zebrafish that were exposed to BaP during embryonic stage. Both 17β-estradiol and testosterone levels were reduced in the ovary of adult females. The methylation levels of the gonadotropin releasing hormone (GnRH) gene gnrh3 were significantly increased in the adult zebrafish brain, and those of the GnRH receptor gene gnrhr3 were elevated both in the larvae exposed to BaP and in the adult brain, which might cause the down-regulation of the mRNA levels of gnrh3 and gnrhr3. This epigenetic change caused by embryonic exposure to BaP might be a reason for physiological changes along the brain-pituitary-gonad axis. These results suggest that short-term exposure in early life should be included and evaluated in any risk assessment of pollutant exposure to the reproductive health of fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    PubMed

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  17. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  18. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  19. Large-scale production of embryonic red blood cells from human embryonic stem cells.

    PubMed

    Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E

    2006-12-01

    To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.

  20. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  1. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    PubMed Central

    Shin, Jimann; Padmanabhan, Arun; de Groh, Eric D.; Lee, Jeong-Soo; Haidar, Sam; Dahlberg, Suzanne; Guo, Feng; He, Shuning; Wolman, Marc A.; Granato, Michael; Lawson, Nathan D.; Wolfe, Scot A.; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Kanki, John P.; Ligon, Keith L.; Epstein, Jonathan A.; Look, A. Thomas

    2012-01-01

    SUMMARY Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish. PMID:22773753

  2. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish

    SciTech Connect

    Haggard, Derik E.

    Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120 hours post-fertilization (hpf) and the concentration where 80%more » of the animals had mortality or morbidity at 120 hpf (EC{sub 80}) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC{sub 80} (7.37 μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value ≤ 0.05; fold change ≥ 2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies. - Highlights: • Triclosan is a common antimicrobial agent with widespread human exposure. • Exposure to the triclosan EC{sub 80} causes robust gene expression changes in zebrafish. • The liver may be a target organ of triclosan toxicity in embryonic zebrafish. • Triclosan disrupts normal liver functioning and

  3. Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments

    PubMed Central

    Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy

    2010-01-01

    We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in

  4. Human embryonic stem cells and therapeutic cloning.

    PubMed

    Hwang, Woo Suk; Lee, Byeong Chun; Lee, Chang Kyu; Kang, Sung Keun

    2005-06-01

    The remarkable potential of embryonic stem (ES) cells is their ability to develop into many different cell types. ES cells make it possible to treat patients by transplanting specialized healthy cells derived from them to repair damaged and diseased cells or tissues, known as "stem cell therapy". However, the issue of immunocompatibility is one of considerable significance in ES cell transplantation. One approach to overcome transplant rejection of human ES (hES) cells is to derive hES cells from nuclear transfer of the patient's own cells. This concept is known as "therapeutic cloning". In this review, we describe the derivations of ES cells and cloned ES cells by somatic cell nuclear transfer, and their potential applications in transplantation medicine.

  5. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    PubMed Central

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  6. Using Transgenic Zebrafish to Study Muscle Stem/Progenitor Cells.

    PubMed

    Nguyen, Phong D; Currie, Peter D

    2017-01-01

    Understanding muscle stem cell behaviors can potentially provide insights into how these cells act and respond during normal growth and diseased contexts. The zebrafish is an ideal model organism to examine these behaviors in vivo where it would normally be technically challenging in other mammalian models. This chapter will describe the procedures required to successfully conduct live imaging of zebrafish transgenics that has specifically been adapted for skeletal muscle.

  7. Embryonic and somatic cell cloning.

    PubMed

    Wilmut, I; Young, L; Campbell, K H

    1998-01-01

    Revolutionary opportunities in biology, medicine and agriculture arise from the observation that offspring are obtained after nuclear transfer if somatic donor cells are induced to become quiescent. Exploitation of many of these opportunities will depend upon optimizing procedures for nuclear transfer. This may come about through an understanding of the means by which factors in the oocyte cytoplasm act upon the DNA of the transferred nucleus to regulate gene expression. Similarly, research will extend the procedure to other species. This technology may be used for embryo production, the introduction of genetic change and the derivation of cells needed to treat human diseases. Groups of genetically identical animals will be used in research to control genetic variation and to allow transfer of cells between individuals. In agriculture, production of a small number of clones will separate genetic and environmental effects, whereas production of larger numbers of offspring will disseminate genetic improvement from nucleus herds. Precise genetic modification will be achieved by site specific recombination in the donor cells before nuclear transfer. In all mammals it will become possible to define the role of any gene product and to analyse the mechanisms that regulate gene expression. Medical uses of these techniques will include the production of proteins needed to treat disease and the supply of organs such as hearts, livers and kidneys from pigs. As genome mapping projects identify loci associated with traits of commercial importance in agriculture then gene targeting will be used to study this effect. Finally, cells capable of differentiation into any of the tissues of a patient will provide treatment for diseases reflecting damage to a specific cell population that neither repairs nor replaces itself.

  8. Method for somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  10. A novel perivascular cell population in the zebrafish brain.

    PubMed

    Venero Galanternik, Marina; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M

    2017-04-11

    The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or 'Mato Cells' in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium.

  11. Microbiota colonization status influences developmental toxicity of bisphenol A in embryonic zebrafish

    EPA Science Inventory

    There is growing evidence that microbiota can modify the toxicokinetics and/or toxicodynamics of environmental chemicals. Commonly used mammalian systems have limited ability to link phenotypic effects in exposed animals to colonization status. Here, we used gnotobiotic zebrafish...

  12. Behavioural responses to novelty or to a predator stimulus are not altered in adult zebrafish by early embryonic alcohol exposure

    PubMed Central

    Seguin, Diane; Shams, Soaleha; Gerlai, Robert

    2016-01-01

    Background Fetal Alcohol Spectrum Disorders (FASD) may vary in symptoms and severity. In the milder and more prevalent forms of the disease, behavioural abnormalities may include impaired social behaviour, e.g. difficulty interpreting social cues. FASD patients remain often undiagnosed due to lack of biomarkers, and treatment is unavailable because the mechanisms of the disease are not yet understood. Animal models have been proposed to facilitate addressing these problems. More recently, short exposure of the zebrafish embryo to low concentrations of alcohol was shown to lead to significant and lasting impairment of behaviour in response to social stimuli. The impairment may be the result of abnormal social behaviour or altered fear/anxiety. The goal of the current study was to investigate the latter. Methods Here, we employed the alcohol exposure regimen used previously (exposure of 24th hour post-fertilization embryos to 0.00, 0.25, 0.50, 0.75 or 1.00 vol/vol % alcohol for 2 hours), allowed the fish to reach adulthood, and measured the behavioural responses of these adults to a novel tank (anxiety related behaviours) as well as to an animated image of a sympatric predator of zebrafish (fear related behaviours). Results We found behavioural responses of embryonic alcohol exposed adult fish to remain statistically indistinguishable from those of controls, suggesting unaltered anxiety and fear in the embryonic alcohol treated fish. Conclusions Given that motor and perceptual function was previously shown to be also unaltered in the adults after embryonic alcohol exposure, our current results suggest that the impaired response of these fish to social stimuli may be the result of abnormal social behaviour. PMID:27790739

  13. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).

    PubMed

    Jia, Wei; Mao, Liangang; Zhang, Lan; Zhang, Yanning; Jiang, Hongyun

    2018-09-01

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC 50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L -1 , respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Insights from zebrafish on human pigment cell disease and treatment.

    PubMed

    Cooper, Cynthia D

    2017-11-01

    Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics 246:889-896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  16. Challenges of primate embryonic stem cell research.

    PubMed

    Bavister, Barry D; Wolf, Don P; Brenner, Carol A

    2005-01-01

    Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.

  17. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  18. Will embryonic stem cells change health policy?

    PubMed

    Sage, William M

    2010-01-01

    Embryonic stem cells are actively debated in political and public policy arenas. However, the connections between stem cell innovation and overall health care policy are seldom elucidated. As with many controversial aspects of medical care, the stem cell debate bridges to a variety of social conversations beyond abortion. Some issues, such as translational medicine, commercialization, patient and public safety, health care spending, physician practice, and access to insurance and health care services, are core health policy concerns. Other issues, such as economic development, technologic progress, fiscal politics, and tort reform, are only indirectly related to the health care system but are frequently seen through a health care lens. These connections will help determine whether the stem cell debate reaches a resolution, and what that resolution might be.

  19. Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos.

    PubMed

    Esain, Virginie; Cortes, Mauricio; North, Trista E

    2016-01-01

    Over the past 20 years, zebrafish have proven to be a valuable model to dissect the signaling pathways involved in hematopoiesis, including Hematopoietic Stem and Progenitor Cell (HSPC) formation and homeostasis. Despite tremendous efforts to generate the tools necessary to characterize HSPCs in vitro and in vivo the zebrafish community still lacks standardized methods to quantify HSPCs across laboratories. Here, we describe three methods used routinely in our lab, and in others, to reliably enumerate HSPCs in zebrafish embryos: large-scale live imaging of transgenic reporter lines, Fluorescence-Activated Cell Sorting (FACS), and in vitro cell culture. While live imaging and FACS analysis allows enumeration of total or site-specific HSPCs, the cell culture assay provides the unique opportunity to test the functional potential of isolated HSPCs, similar to those employed in mammals.

  20. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  1. Generation of chondrocytes from embryonic stem cells.

    PubMed

    Khillan, Jaspal Singh

    2006-01-01

    Pluripotent embryonic stem (ES) cells have complete potential for all the primary germ layers, such as ectoderm, mesoderm, and endoderm. However, the cellular and molecular mechanisms that control their lineage-restricted differentiation are not understood. Although embryoid bodies, which are formed because of the spontaneous differentiation of ES cells, have been used to study the differentiation into different cell types, including neurons, chondrocytes, insulin-producing cells, bone-forming cells, hematopoietic cells, and so on, this system has limitations for investigating the upstream events that lead to commitment of cells that occur during the inaccessible period of development. Recent developments in human ES cells have offered a challenge to develop strategies for understanding the basic mechanisms that play a key role in differentiation of stem cell into specific cell types for their applications in regenerative medicine and cell-based therapies. A micromass culture system was developed to induce the differentiation of ES cells into chondrocytes, the cartilage-producing cells, as a model to investigate the upstream events of stem cell differentiation. ES cells were co-cultured with limb bud progenitor cells. A high percentage of differentiated cells exhibit typical morphological characteristics of chondrocytes and express cartilage matrix genes such as collagen type II and proteoglycans, suggesting that signals from the progenitor cells are sufficient to induce ES cells into the chondrogenic lineage. Degeneration of cartilage in the joints is associated with osteoarthritis, which affects the quality of life of human patients. Therefore, the quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients.

  2. In vivo loss of function study reveals the short stature homeobox-containing (shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish.

    PubMed

    Sawada, Rie; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shimizu, Toshiaki

    2015-02-01

    Congenital loss of the SHOX gene is considered to be a genetic cause of short stature phenotype in Turner syndrome and Leri-Weill dyschondrosteosis patients. Though SHOX expression initiates during early fetal development, little is known about the embryonic roles of SHOX. The evolutionary conservation of the zebrafish shox gene and the convenience of the early developmental stages for analyses make zebrafish a preferred model. Here, we characterized structure, expression, and developmental roles of zebrafish shox through a loss-of-function approach. We found a previously undiscovered Shox protein that has both a homeodomain and an OAR-domain in zebrafish. The shox transcript emerged during the segmentation period and it increased in later stages. The predominant domains of shox expression were mandibular arch, pectoral fin, anterior notochord, rhombencephalon, and mesencephalon, suggesting that Shox is involved in bone and neural development. Translational blockade of Shox mRNA by an antisense morpholino oligo delayed embryonic growth, which was restored by the co-overexpression of morpholino-resistant Shox mRNA. At later stages, impaired Shox expression markedly delayed the calcification process in the anterior vertebral column and craniofacial bones. Our data demonstrate evolutionarily conserved Shox plays roles in early embryonic growth and in later bone formation. © 2014 Wiley Periodicals, Inc.

  3. The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.

    PubMed

    Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-12-22

    Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Notochord alters the permissiveness of myotome for pathfinding by an identified motoneuron in embryonic zebrafish.

    PubMed

    Beattie, C E; Eisen, J S

    1997-02-01

    During zebrafish development, identified motoneurons innervate cell-specific regions of each trunk myotome. One motoneuron, CaP, extends an axon along the medial surface of the ventral myotome. To learn how this pathway is established during development, the CaP axon was used as an assay to ask whether other regions of the myotome were permissive for normal CaP pathfinding. Native myotomes were replaced with donor myotomes in normal or reversed dorsoventral orientations and CaP pathfinding was assayed. Ventral myotomes were permissive for CaP axons, even when they were taken from older embryos, suggesting that the CaP pathway remained present on ventral myotome throughout development. Dorsal myotomes from young embryos were also permissive for CaP axons, however, older dorsal myotomes were non-permissive, showing that permissiveness of dorsal myotome for normal CaP pathfinding diminished over time. This process appears to depend on signals from the embryo, since dorsal myotomes matured in vitro remained permissive for CaP axons. Genetic mosaics between wild-type and floating head mutant embryos revealed notochord involvement in dorsal myotome change of permissiveness. Dorsal and ventral myotomes from both younger and older floating head mutant embryos were permissive for CaP axons. These data suggest that initially both dorsal and ventral myotomes are permissive for CaP axons but as development proceeds, there is a notochord-dependent decrease in permissiveness of dorsal myotome for CaP axonal outgrowth. This change participates in restricting the CaP pathway to the ventral myotome and thus to neuromuscular specificity.

  5. Toxic effects of indoxacarb enantiomers on the embryonic development and induction of apoptosis in zebrafish larvae (Danio rerio).

    PubMed

    Fan, Yongmei; Feng, Qing; Lai, Kehua; Huang, Weikang; Zhang, Chenghui; Li, Qing X

    2017-01-01

    Indoxacarb is a highly potent insecticide widely used to control Lepidoptera insects in vegetable, tea, cotton, and rice fields. It can run off into aquatic environments. It is consisted of two enantiomers. Environmental risks and aquatic toxicity of indoxacarb enantiomers have not been fully investigated. In this study, zebrafish (Danio rerio) embryos were exposed to varying concentrations of (-)-R-indoxacarb and (+)-S-indoxacarb until 96-h post-fertilization (hpf) to assess the embryonic toxicity. (-)-R-indoxacarb was 1.3-fold more toxic than (+)-S-isomer to zebrafish embryos at 96 hpf. (-)-R-indoxacarb exhibited reduction in body length and pericardial edema compared with (+)-S-indoxacarb. (-)-R-indoxacarb decreased the hatching rate sixfold greater than (+)-S-indoxacarb. The rate of pericardial edema induced by (-)-R-indoxacarb was 2.5 times greater than that by (+)-S-indoxacarb. The heart rate of the larvae exposed to (-)-R-indoxacarb was 30% lower than that to (+)-S-indoxacarb. In addition, exposure to the chiral isomers resulted in significant increases in apoptosis; interestingly (-)-R-indoxacarb induced apoptosis in the heart area, whereas (+)-S-indoxacarb induced apoptosis in the head area. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 7-16, 2017. © 2015 Wiley Periodicals, Inc.

  6. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Chang, G.-Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F.

    2016-01-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24 h post-fertilization, zebrafish embryos were exposed for 2 h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  7. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  9. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes.

    PubMed

    Bader, Hannah L; Keene, Douglas R; Charvet, Benjamin; Veit, Guido; Driever, Wolfgang; Koch, Manuel; Ruggiero, Florence

    2009-01-01

    Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.

  10. Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly

    PubMed Central

    Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.

    2012-01-01

    Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853

  11. Debating restrictions on embryonic stem cell research.

    PubMed

    McClain, Colleen

    2009-09-01

    This study investigates the emotional and behavioral effects of interpersonal online communication, focusing on the controversy surrounding the loosening of restrictions on human embryonic stem cell research. The issue, central to national and statewide elections in 2008, generated heated debate among candidates and voters and evoked strong emotional sentiments among partisans. Using the theory of affective intelligence, this study proposes a predictive model connecting levels of enthusiasm and anxiety with behavioral and information-seeking outcomes. Cognitive appraisal theory is also employed to provide a role for political emotion in accounting for interactive media effects. To investigate the ways that online deliberation may influence discussions surrounding stem cell research, a between-subjects experimental study was conducted that systematically varied the tone of feedback received (reinforcing or challenging) and type of interaction (synchronous or asynchronous) experienced by users. Results indicate that emotional responses play a significant role in predicting behavioral intentions arising from the user-to-user interactive experience.

  12. spadetail-dependent cell compaction of the dorsal zebrafish blastula.

    PubMed

    Warga, R M; Nüsslein-volhard, C

    1998-11-01

    The dorsal marginal zone of the zebrafish blastula, equivalent to the amphibian Spemann organizer, is destined to become the tissues of the notochord and prechordal plate. Preceding gastrulation in the zebrafish, we find that these future mesendodermal cells acquire a cohesive cell behavior characterized by flattening and maximization of intercellular contacts, somewhat resembling cell compaction in mouse blastocysts. This behavior may suppress cell intermingling. Surprisingly, this blastula cell compaction requires normal function of spadetail, a gene known to be necessary for the dorsal convergent cell movement of paraxial mesoderm later in the gastrula. We propose that spadetail-dependent cell compaction subtly controls the early mixing and dispersal of dorsal cells that coalesce into the prospective organizer region. This early process may be necessary for the correct location of the boundary separating axial and paraxial cells. Copyright 1998 Academic Press.

  13. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells

    PubMed Central

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  14. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures.

    PubMed

    Fekany, K; Yamanaka, Y; Leung, T; Sirotkin, H I; Topczewski, J; Gates, M A; Hibi, M; Renucci, A; Stemple, D; Radbill, A; Schier, A F; Driever, W; Hirano, T; Talbot, W S; Solnica-Krezel, L

    1999-04-01

    The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.

  15. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells.

    PubMed

    Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E

    1999-12-01

    In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in

  16. A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

    PubMed Central

    Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.

    2012-01-01

    Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225

  17. Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.

    PubMed

    Durcova-Hills, Gabriela; Surani, Azim

    2008-04-01

    In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.

  18. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    PubMed

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p < 0.05) and reduced neomycin-induced apoptosis in the TUNEL assay. In ultrastructural analysis, hair cells within the neuromasts in zebrafish were preserved exposed to 125 μM neomycin and 100 μM melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  19. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    NASA Astrophysics Data System (ADS)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  1. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio)

    PubMed Central

    Park, Kwangsik; Tuttle, George; Sinche, Federico; Harper, Stace L.

    2014-01-01

    The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10%. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development. PMID:23325492

  2. Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish.

    PubMed

    Palevitch, Ori; Abraham, Eytan; Borodovsky, Natalya; Levkowitz, Gil; Zohar, Yonathan; Gothilf, Yoav

    2009-01-01

    The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons. The zebrafish nelf cDNA was cloned and characterized. During embryonic development, nelf is expressed in GnRH3 neurons and in target sites of GnRH3 projections and perikarya, before the initiation of their migration. Nelf knockdown resulted in a disruption of the GnRH3 system which included absence or misguiding of GnRH3 axonal outgrowth and incorrect or arrested migration of GnRH3 perikarya. These results suggest that Nelf is an important factor in the developmental migration and projection of GnRH3 neurons in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  3. Programmed cell senescence during mammalian embryonic development.

    PubMed

    Muñoz-Espín, Daniel; Cañamero, Marta; Maraver, Antonio; Gómez-López, Gonzalo; Contreras, Julio; Murillo-Cuesta, Silvia; Rodríguez-Baeza, Alfonso; Varela-Nieto, Isabel; Ruberte, Jesús; Collado, Manuel; Serrano, Manuel

    2013-11-21

    Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  5. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio)

    PubMed Central

    Wilson, K S; Matrone, G; Livingstone, D E W; Al-Dujaili, E A S; Mullins, J J; Tucker, C S; Hadoke, P W F; Kenyon, C J; Denvir, M A

    2013-01-01

    While glucocorticoids (GCs) are known to be present in the zebrafish embryo, little is known about their physiological roles at this stage. We hypothesised that GCs play key roles in stress response, hatching and swim activity during early development. To test this, whole embryo cortisol (WEC) and corticosteroid-related genes were measured in embryos from 6 to 120 h post fertilisation (hpf) by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Stress response was assessed by change in WEC following stirring, hypoxia or brief electrical impulses applied to the bathing water. The impact of pharmacological and molecular GC manipulation on the stress response, spontaneous hatching and swim activity at different stages of development was also assessed. WEC levels demonstrated a biphasic pattern during development with a decrease from 0 to 36 hpf followed by a progressive increase towards 120 hpf. This was accompanied by a significant and sustained increase in the expression of genes encoding cyp11b1 (GC biosynthesis), hsd11b2 (GC metabolism) and gr (GC receptor) from 48 to 120 hpf. Metyrapone (Met), an inhibitor of 11β-hydroxylase (encoded by cyp11b1), and cyp11b1 morpholino (Mo) knockdown significantly reduced basal and stress-induced WEC levels at 72 and 120 hpf but not at 24 hpf. Spontaneous hatching and swim activity were significantly affected by manipulation of GC action from approximately 48 hpf onwards. We have identified a number of key roles of GCs in zebrafish embryos contributing to adaptive physiological responses under adverse conditions. The ability to alter GC action in the zebrafish embryo also highlights its potential value for GC research. PMID:24167225

  6. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  7. The Influence of Hydroxyapatite Nanoparticle Morphology on Embryonic Development in a Zebrafish Exposure Model

    PubMed Central

    Pujari-Palmer, Shiuli; Lu, Xi; Karlsson Ott, Marjam

    2017-01-01

    Nanomaterials are used in many different industries such as cosmetics, food, clothing, and electronics. There is increasing concern that exposure to nanoparticles (NPs) during pregnancy can adversely affect fetal development. It is well known that the size, charge, and chemistry of a nanoparticle can modulate embryological development. The role that particle morphology plays on early development, however, is still widely unknown. The present study aims to investigate the effect of hydroxyapatite nanoparticle (HANP) morphology on embryological development in a zebrafish exposure model. Four distinct HANP morphologies (dots, long rods, sheets, and fibers) were fabricated and characterized. Zebrafish embryos were exposed to HANPs (0–100 mg/L), and viability and developmental deformities were evaluated for up to 5 days post-fertilization (dpf). Malformations such as pericardial edema and axial curvature were apparent in embryos as early as 1 dpf, following exposure to the dot and fiber particles, and developed in embryos by 3 dpf in the sheet and long rod particle groups. Minimal death was observed in response to dot, long rod, and sheet particles (≤25%), while fiber particles induced overwhelming toxicity (≤60%) after 1 dpf, and complete toxicity during all subsequent time points. Collectively, these results suggest that nanoparticle morphology can significantly impact embryological development and should be a required consideration when designing nanomaterials for commercial use. PMID:28441729

  8. Adverse morphological development in embryonic zebrafish exposed to environmental concentrations of contaminants individually and in mixture.

    PubMed

    Kinch, Cassandra D; Kurrasch, Deborah M; Habibi, Hamid R

    2016-06-01

    Exposure to environmental contaminants has been linked to developmental and reproductive abnormalities leading to infertility, spontaneous abortion, reduced number of offspring, and metabolic disorders. In addition, there is evidence linking environmental contaminants and endocrine disruption to abnormal developmental rate, defects in heart and eye morphology, and alterations in behavior. Notably, these effects could not be explained by interaction with a single hormone receptor. Here, using a whole-organism approach, we investigated morphological changes to developing zebrafish caused by exposure to a number of environmental contaminants, including bisphenol A (BPA), di(2-ethylhexyl)phthalate (DEHP), nonylphenol, and fucosterol at concentrations measured in a local water body (Oldman River, AB), individually and in mixture. Exposure to nanomolar contaminant concentrations resulted in abnormal morphological development, including changes to body length, pericardia (heart), and the head. We also characterize the spatiotemporal expression profiles of estrogen, androgen, and thyroid hormone receptors to demonstrate that localization of these receptors might be mediating contaminant effects on development. Finally, we examined the effects of contaminants singly and in mixture. Combined, our results support the hypothesis that adverse effects of contaminants are not mediated by single hormone receptor signaling, and adversity of contaminants in mixture could not be predicted by simple additive effect of contaminants. The findings provide a framework for better understanding of developmental toxicity of environmental contaminants in zebrafish and other vertebrate species. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In Vivo Assessment of Drug Efficacy against Mycobacterium abscessus Using the Embryonic Zebrafish Test System

    PubMed Central

    Bernut, Audrey; Le Moigne, Vincent; Lesne, Tiffany; Lutfalla, Georges; Herrmann, Jean-Louis

    2014-01-01

    Mycobacterium abscessus is responsible for a wide spectrum of clinical syndromes and is one of the most intrinsically drug-resistant mycobacterial species. Recent evaluation of the in vivo therapeutic efficacy of the few potentially active antibiotics against M. abscessus was essentially performed using immunocompromised mice. Herein, we assessed the feasibility and sensitivity of fluorescence imaging for monitoring the in vivo activity of drugs against acute M. abscessus infection using zebrafish embryos. A protocol was developed where clarithromycin and imipenem were directly added to water containing fluorescent M. abscessus-infected embryos in a 96-well plate format. The status of the infection with increasing drug concentrations was visualized on a spatiotemporal level. Drug efficacy was assessed quantitatively by measuring the index of protection, the bacterial burden (CFU), and the number of abscesses through fluorescence measurements. Both drugs were active in infected embryos and were capable of significantly increasing embryo survival in a dose-dependent manner. Protection from bacterial killing correlated with restricted mycobacterial growth in the drug-treated larvae and with reduced pathophysiological symptoms, such as the number of abscesses within the brain. In conclusion, we present here a new and efficient method for testing and compare the in vivo activity of two clinically relevant drugs based on a fluorescent reporter strain in zebrafish embryos. This approach could be used for rapid determination of the in vivo drug susceptibility profile of clinical isolates and to assess the preclinical efficacy of new compounds against M. abscessus. PMID:24798271

  10. Sensory hair cell regeneration in the zebrafish lateral line.

    PubMed

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  11. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  12. A novel perivascular cell population in the zebrafish brain

    PubMed Central

    Galanternik, Marina Venero; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M

    2017-01-01

    The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or ‘Mato Cells’ in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium. DOI: http://dx.doi.org/10.7554/eLife.24369.001 PMID:28395729

  13. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework

    PubMed Central

    Ruiter, Sander; Sippel, Josefine; Bouwmeester, Manon C.; Lommelaars, Tobias; Beekhof, Piet; Hodemaekers, Hennie M.; Bakker, Frank; van den Brandhof, Evert-Jan; Pennings, Jeroen L. A.; van der Ven, Leo T. M.

    2016-01-01

    Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50–3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes. PMID:27827847

  14. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework.

    PubMed

    Ruiter, Sander; Sippel, Josefine; Bouwmeester, Manon C; Lommelaars, Tobias; Beekhof, Piet; Hodemaekers, Hennie M; Bakker, Frank; van den Brandhof, Evert-Jan; Pennings, Jeroen L A; van der Ven, Leo T M

    2016-11-02

    Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50-3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S -adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes.

  15. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  16. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    PubMed

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  17. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    SciTech Connect

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  18. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    DOE PAGES

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish; ...

    2015-06-04

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  19. Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1

    PubMed Central

    Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.

    2014-01-01

    The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176

  20. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    NASA Astrophysics Data System (ADS)

    Harper, Bryan; Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan; Tang, Kaizhi; Heredia-Langner, Alejandro; Lins, Roberto; Harper, Stacey

    2015-06-01

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure-activity relationships.

  1. Molecular aspect of silver nanoparticles regulated embryonic development in Zebrafish (Danio rerio) by Oct-4 expression.

    PubMed

    Sarkar, Biplab; Verma, Suresh K; Akhtar, Javed; Netam, Surya Prakash; Gupta, Sanjay Kr; Panda, Pritam Kumar; Mukherjee, Koel

    2018-09-01

    With the enhancement of commercial manifestation of silver nanoparticles, concerned has risen on their accumulation in aquatic system and consequent effects on fish development and metabolism. In this study, experiments were conducted to assess the impacts of silver nanoparticles on early life cycles of fish considering Zebrafish (Danio rerio) as experimental model. Silver nanoparticles were synthesized through chemical reduction method and characterized through UV-visible spectroscopy, dynamic light scattering (DLS), and HR-TEM. Different sub lethal doses of nanosilver were applied (13.6, 21.6, 42.4, 64, and 128 μgL -1 ) to post-fertilization phases of Zebrafish embryos and their interaction effects were monitored up to six days period. No significant morphological variations were observed at 13.6, 21.6, 42.4 μgL -1 dose of silver nanoparticles, whereas 64 and 128 μgL -1 exposure dose exhibited bending in myotome, deformity in tail region, somites, notochord and swelling in anterior and posterior region of embryos and larva. Hatching performances analysis elicited highest hatching success in 13.6 and 21.6 μgL -1 doses of silver nanoparticles followed by positive and negative control, whereas exposure dose of 64 and 128 μgL -1 exhibited comparatively lower success. Western blot analysis were conducted on developing hatchlings with Oct4 antibody and at 13.6 and 21.6 μgL -1 dose,it showed over expression elucidating stimulatory role of nanosilver in these mentioned doses. In silico analysis depicted a firm interaction of nanosilver with Oct4 revealing their key role in growth stimulation of developing embryos. The study demonstrates the function of nanosilver as a growth promoter rather only as a toxicant in fish metabolic system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. LSD1 is Required for Hair Cell Regeneration in Zebrafish.

    PubMed

    He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei

    2016-05-01

    Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.

  3. From zebrafish to mammal: functional evolution of prestin, the motor protein of cochlear outer hair cells.

    PubMed

    Tan, Xiaodong; Pecka, Jason L; Tang, Jie; Okoruwa, Oseremen E; Zhang, Qian; Beisel, Kirk W; He, David Z Z

    2011-01-01

    Prestin is the motor protein of cochlear outer hair cells. It belongs to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Members of this family serve two fundamentally distinct functions. Although most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is unique, functioning as a voltage-dependent motor protein. Recent evidence suggests that prestin orthologs from zebrafish and chicken are electrogenic divalent/chloride anion exchangers/transporters with no motor function. These studies appear to suggest that prestin was evolved from an anion transporter. We examined the motor and transport functions of prestin and its orthologs from four different species in the vertebrate lineage, to gain insights of how these two physiological functions became distinct. Somatic motility, voltage-dependent nonlinear capacitance (NLC), and transporter function were measured in transfected human embryonic kidney (HEK) cells using voltage-clamp and anion uptake techniques. Zebrafish and chicken prestins both exhibited weak NLC, with peaks significantly shifted in the depolarization (right) direction. This was contrasted by robust NLC with peaks left shifted in the platypus and gerbil. The platypus and gerbil prestins retained little transporter function compared with robust anion transport capacities in the zebrafish and chicken orthologs. Somatic motility was detected only in the platypus and gerbil prestins. There appears to be an inverse relationship between NLC and anion transport functions, whereas motor function appears to have emerged only in mammalian prestin. Our results suggest that motor function is an innovation of therian prestin and is concurrent with diminished transporter capabilities.

  4. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals.

    PubMed

    Richardson, Rebecca; Metzger, Manuel; Knyphausen, Philipp; Ramezani, Thomas; Slanchev, Krasimir; Kraus, Christopher; Schmelzer, Elmon; Hammerschmidt, Matthias

    2016-06-15

    Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-β- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells - processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization. © 2016. Published by The Company of Biologists Ltd.

  5. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells

    PubMed Central

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-01-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM. PMID:27252540

  6. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

    PubMed Central

    Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.

    2010-01-01

    Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162

  7. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  8. Comparative study of P19 EC stem cell differentiation in between conventional hanging drop and the zebrafish chorion as a bio-derived material.

    PubMed

    Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak

    2008-07-01

    Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.

  9. Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure.

    PubMed

    Félix, Luís M; Serafim, Cindy; Martins, Maria J; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-04-15

    Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24h-LC 50 was calculated from percent survival using probit analysis. Based on the 24h-LC 50 (94.4mgL -1 ), embryos (2hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24h to ketamine concentrations of 50, 70 or 90mgL -1 . Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056±0.020pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90mgL -1 . Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Osteosarcoma Models: From Cell Lines to Zebrafish

    PubMed Central

    Mohseny, Alexander B.; Hogendoorn, Pancras C. W.; Cleton-Jansen, Anne-Marie

    2012-01-01

    High-grade osteosarcoma is an aggressive tumor most commonly affecting adolescents. The early age of onset might suggest genetic predisposition; however, the vast majority of the tumors are sporadic. Early onset, most often lack of a predisposing condition or lesion, only infrequent (<2%) prevalence of inheritance, extensive genomic instability, and a wide histological heterogeneity are just few factors to mention that make osteosarcoma difficult to study. Therefore, it is sensible to design and use models representative of the human disease. Here we summarize multiple osteosarcoma models established in vitro and in vivo, comment on their utilities, and highlight newest achievements, such as the use of zebrafish embryos. We conclude that to gain a better understanding of osteosarcoma, simplification of this extremely complex tumor is needed. Therefore, we parse the osteosarcoma problem into parts and propose adequate models to study them each separately. A better understanding of osteosarcoma provides opportunities for discovering and assaying novel effective treatment strategies. “Sometimes the model is more interesting than the original disease” PJ Hoedemaeker (1937–2007). PMID:22566751

  11. A two-scale model for correlation between B cell VDJ usage in zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael

    2011-03-01

    The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

  12. Twenty years of embryonic stem cell research in farm animals

    USDA-ARS?s Scientific Manuscript database

    Notable distinctions between an embryonic stem cell (ESC) and somatic cell are that the ESC can maintain an undifferentiated state indefinitely, self renew, and is pluripotent, meaning that the ESC can potentially generate cells representing all the three primordial germ layers and contribute to the...

  13. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    PubMed

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  14. Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure

    SciTech Connect

    Félix, Luís M., E-mail: lfelix@utad.pt

    Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24 h-LC{sub 50} was calculated from percent survival using probit analysis. Based on the 24 h-LC{sub 50} (94.4 mg L{sup −1}), embryos (2 hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24 h to ketamine concentrations of 50, 70 or 90 mg L{supmore » −1}. Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144 hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056 ± 0.020 pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144 hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90 mg L{sup −1}. Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. - Highlights: • 24 h exposure to ketamine increases mortality. • Morphological changes were observed after exposure. • Exposure to ketamine leads to severe craniofacial anomalies. • Developmental gene

  15. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment

    PubMed Central

    Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Postovit, Lynne-Marie; Seftor, Elisabeth A.; Seftor, Richard E.B.; Hendrix, Mary J.C.; Kulesa, Paul M.

    2008-01-01

    The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumour cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay towards this important interface of developmental and cancer biology. PMID:18629870

  16. The genetics of hair-cell function in zebrafish.

    PubMed

    Nicolson, Teresa

    2017-09-01

    Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.

  17. Maintaining embryonic stem cell pluripotency with Wnt signaling.

    PubMed

    Sokol, Sergei Y

    2011-10-01

    Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression.

  18. Ethics and policy in embryonic stem cell research.

    PubMed

    Robertson, John A

    1999-06-01

    Embryonic stem cells, which have the potential to save many lives, must be recovered from aborted fetuses or live embyros. Although tissue from aborted fetuses can be used without moral complicity in the underlying abortion, obtaining stem cells from embryos necessarily kills them, thus raising difficult questions about the use of embryonic human material to save others. This article draws on previous controversies over embryo research and distinctions between intrinsic and symbolic moral status to analyze these issues. It argues that stem cell research with spare embryos produced during infertility treatment, or even embryos created specifically for research or therapeutic purposes, is ethically acceptable and should receive federal funding.

  19. Seven diverse human embryonic stem cell-derived chondrogenic clonal embryonic progenitor cell lines display site-specific cell fates.

    PubMed

    Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D

    2013-03-01

    The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.

  20. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model.

    PubMed

    Beaver, Laura M; Nkrumah-Elie, Yasmeen M; Truong, Lisa; Barton, Carrie L; Knecht, Andrea L; Gonnerman, Greg D; Wong, Carmen P; Tanguay, Robert L; Ho, Emily

    2017-05-01

    The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring's mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. Published by Elsevier Inc.

  1. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model

    PubMed Central

    Beaver, Laura M.; Nkrumah-Elie, Yasmeen M.; Truong, Lisa; Barton, Carrie L.; Knecht, Andrea L.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily

    2017-01-01

    The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring’s mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. PMID:28268202

  2. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  3. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  4. The ethics of patenting human embryonic stem cells.

    PubMed

    Chapman, Audrey R

    2009-09-01

    Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.

  5. Human embryonic stem cell research: an intercultural perspective.

    PubMed

    Walters, LeRoy

    2004-03-01

    In 1998, researchers discovered that embryonic stem cells could be derived from early human embryos. This discovery has raised a series of ethical and public-policy questions that are now being confronted by multiple international organizations, nations, cultures, and religious traditions. This essay surveys policies for human embryonic stem cell research in four regions of the world, reports on the recent debate at the United Nations about one type of such research, and reviews the positions that various religious traditions have adopted regarding this novel type of research. In several instances the religious traditions seem to have influenced the public-policy debates.

  6. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  7. PFOS, PFNA, and PFOA Sub-Lethal Exposure to Embryonic Zebrafish Have Different Toxicity Profiles in Terms of Morphometrics, Behavior and Gene Expression

    PubMed Central

    Jantzen, Carrie E.; Annunziato, Kate A.; Bugel, Sean M.; Cooper, Keith R.

    2016-01-01

    Polyfluorinated compounds (PFC) are a class of anthropogenic, persistent and toxic chemicals. PFCs are detected worldwide and consist of fluorinated carbon chains of varying length, terminal groups, and industrial uses. Previous zebrafish studies in the literature as well as our own studies have shown that exposure to these chemicals at a low range of concentrations (0.02 µM – 2.0 µM; 20–2000 ppb) resulted in chemical specific developmental defects and reduced post hatch survival. It was hypothesized that sub-lethal embryonic exposure to perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), or perfluorooctanoic acid (PFOA) would result in different responses with regard to morphometric, behavior, and gene expression in both yolk sac fry and larval zebrafish. Zebrafish were exposed to PFOS, PFOA, and PFNA (0.02, 0.2, 2.0 µM) for the first five days post fertilization (dpf) and analyzed for morphometrics (5 dpf, 14 dpf), targeted gene expression (5 dpf, 14 dpf), and locomotive behavior (14 dpf). All three PFCs commonly resulted in a decrease in total body length, increased tfc3a (muscle development) expression and decreased ap1s (protein transport) expression at 5dpf, and hyperactive locomotor activity 14 dpf. All other endpoints measured at both life-stage time points varied between each of the PFCs. PFOS, PFNA, and PFOA exposure resulted in significantly altered responses in terms of morphometric, locomotion, and gene expression endpoints, which could be manifested in field exposed teleosts. PMID:27058923

  8. Optical micromanipulation of nanoparticles and cells inside living zebrafish.

    PubMed

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-03-21

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology.

  9. Stochastic Cell Fate Progression in Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  10. Crypt cells are involved in kin recognition in larval zebrafish

    PubMed Central

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  11. Crypt cells are involved in kin recognition in larval zebrafish.

    PubMed

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F

    2016-04-18

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal.

  12. The zebrafish dorsal axis is apparent at the four-cell stage.

    PubMed

    Gore, Aniket V; Maegawa, Shingo; Cheong, Albert; Gilligan, Patrick C; Weinberg, Eric S; Sampath, Karuna

    2005-12-15

    A central question in the development of multicellular organisms pertains to the timing and mechanisms of specification of the embryonic axes. In many organisms, specification of the dorsoventral axis requires signalling by proteins of the Transforming growth factor-beta and Wnt families. Here we show that maternal transcripts of the zebrafish Nodal-related morphogen, Squint (Sqt), can localize to two blastomeres at the four-cell stage and predict the dorsal axis. Removal of cells containing sqt transcripts from four-to-eight-cell embryos or injection of antisense morpholino oligonucleotides targeting sqt into oocytes can cause a loss of dorsal structures. Localization of sqt transcripts is independent of maternal Wnt pathway function and requires a highly conserved sequence in the 3' untranslated region. Thus, the dorsoventral axis is apparent by early cleavage stages and may require the maternally encoded morphogen Sqt and its associated factors. Because the 3' untranslated region of the human nodal gene can also localize exogenous sequences to dorsal cells, this mechanism may be evolutionarily conserved.

  13. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  14. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  15. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line.

    PubMed

    Ou, Henry; Simon, Julian A; Rubel, Edwin W; Raible, David W

    2012-06-01

    The zebrafish lateral line is an efficient model system for the evaluation of chemicals that protect and damage hair cells. Located on the surface of the body, lateral line hair cells are accessible for manipulation and visualization. The zebrafish lateral line system allows rapid screens of large chemical libraries, as well as subsequent thorough evaluation of interesting compounds. In this review, we focus on the results of our previous screens and the evolving methodology of our screens for chemicals that protect hair cells, and chemicals that damage hair cells using the zebrafish lateral line. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Avian germplasm preservation: embryonic stem cells or primordial germ cells?

    PubMed

    Petitte, J N

    2006-02-01

    Presently, avian genetic resources are best maintained as living collections of birds. Unfortunately, these stocks have been under constant pressure to be destroyed because of the decline in the number of Poultry Science Departments and pressures to cut costs at land grant institutions. Cryopreservation of semen is often suggested as a means to bank avian germplasm. However, this is only applicable for single-gene traits and does not allow for full reconstitution of the genetics of the original line. Over the last 15 yr, advances in the manipulation of the early chick embryo, manipulation of primordial germ cells (PGC), and the culture of embryonic stem cells (ESC) suggests that cryopreservation of blastodermal cells, ESC, or PGC might offer a means to preserve the entire genome of highly selected, specialized stocks of poultry. Freezing each of these cell types is possible with varying degrees of efficiency. Similarly, the effectiveness of generating germ line chimeras using blastodermal cells, ESC, or PGC also varies greatly. Other factors that must be considered include the choice of the recipient lines to develop the germ line chimeras and the number of individuals needed to reconstitute the line. Finally, the low efficiency rate of reconstitution and the high cost associated with current technologies makes these approaches prohibitive. Significant challenges remain to be overcome before the entire genome of poultry stocks can be routinely cryoperserved and reconstituted.

  17. Increased cell proliferation and neural activity by physostigmine in the telencephalon of adult zebrafish.

    PubMed

    Lee, Yunkyoung; Lee, Bongkyu; Jeong, Sumin; Park, Ji-Won; Han, Inn-Oc; Lee, Chang-Joong

    2016-08-26

    Physostigmine, an acetylcholinesterase inhibitor, is known to affect the brain function in various aspects. This study was conducted to test whether physostigmine affects cell proliferation in the telencephalon of zebrafish. BrdU-labeled cells was prominently observed in the ventral zone of the ventral telencephalon of zebrafish. The increased number of BrdU- and proliferating cell nuclear antigen-labeled cells were shown in zebrafish treated with 200μM physostigmine, which was inhibited by pretreatment with 200μM scopolamine. iNOS mRNA expression was increased in the brain of zebrafish treated with 200μM physostigmine. Consistently, aminoguanidine, an iNOS inhibitor, attenuated the increase in the number of BrdU-labeled cells by physostigmine treatment. Zebrafish also showed seizure-like locomotor activity characterized by a rapid and abrupt movement during a 30min treatment with 200μM physostigmine. Neural activity in response to an electrical stimulus was increased in the isolated telencephalon of zebrafish continuously perfused with 200μM physostigmine. None of the number of BrdU-labeled cells, neural activity, or locomotor activity was affected by treatment with 20μM physostigmine. These results suggest that 200μM physostigmine increased neural activity and induced cell proliferation via nitric oxide production in zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine.

    PubMed

    Félix, Luís M; Antunes, Luís M; Coimbra, Ana M; Valentim, Ana M

    2017-02-01

    Ketamine has been associated with pediatric risks that include neurocognitive impairment and long-term behavioral disorders. However, the neurobehavioral effects of ketamine exposure in early development remain uncertain. This study aimed to test stage- and dose-dependent effects of ketamine exposure on certain brain functions by evaluating alterations in locomotion, anxiety-like and avoidance behaviors, as well as socialization. Embryos were exposed to different concentrations of ketamine (0, 0.2, 0.4, and 0.8 mg mL -1 ) for 20 min during the 256-cell (2.5 h post fertilization-hpf), 50% epiboly (5.5 hpf), and 1-4 somites (10.5 hpf) stages. General exploratory activities, natural escape-like responses, and social interactions were analyzed under continuous light or under a moving light stimulus. A dose-dependent decrease in the overall mean speed was perceived in the embryos exposed during the 256-cell stage. These results were related to previously observed head and eye malformations, following ketamine exposure at this stage and may indicate possible neurobehavioral disorders when ketamine exposure is performed at this stage. Results also showed that ketamine exposure during the 50% epiboly and 1-4 somites stages induced a significant increment of the anxiety-like behavior and a decrease in avoidance behavior in all exposed groups. Overall, the results validate the neurodevelopmental risks of early-life exposure to ketamine.

  19. Gene targeting in embryonic stem cells, II: conditional technologies

    USDA-ARS?s Scientific Manuscript database

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  20. Alterations to Juvenile Zebrafish (Danio rerio) Swim Performance after Acute Embryonic Exposure to Sub-lethal Exposures of Hydraulic Fracturing Flowback and Produced Water.

    PubMed

    Folkerts, Erik J; Blewett, Tamzin A; He, Yuhe; Goss, Greg G

    2017-12-01

    Hydraulic fracturing flowback and produced water (FPW) is a wastewater produced during fracturing activities in an operating well which is hyper saline and chemically heterogeneous in nature, containing both anthropogenic and petrogenic chemicals. Determination of FPW associated toxicity to embryonic fish is limited, while investigation into how embryonic exposures may affect later life stages is not yet studied. Zebrafish embryos (24hrs post fertilization) were acutely exposed to 2.5% and 5% FPW fractions for either 24 or 48hrs and returned to freshwater. After either 24 or 48h exposures, embryos were examined for expression of 3 hypoxia related genes. Erythropoietin (epoa) but not hypoxia inducible factor (hif1aa) nor hemoglobin -ß chain (hbbe1.1) was up-regulated after either 24 or 48h FPW exposure. Surviving embryos were placed in freshwater and grown to a juvenile stage (60days post fertilization). Previously exposed zebrafish were analyzed for both swim performance (U crit and U max ) and aerobic capacity. Fish exposed to both sediment containing (FPW-S) or sediment free (FPW-SF) FPW displayed significantly reduced aerobic scope and U crit /U max values compared to control conditions. Our results collectively suggest that organics present in our FPW sample may be responsible for sub-lethal fitness and metabolic responses. We provide evidence supporting the theory that the cardio-respiratory system is impacted by FPW exposure. This is the first known research associating embryonic FPW exposures to sub-lethal performance related responses in later life fish stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Towards a global human embryonic stem cell bank.

    PubMed

    Lott, Jason P; Savulescu, Julian

    2007-08-01

    An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.

  2. Maternal dazap2 Regulates Germ Granules by Counteracting Dynein in Zebrafish Primordial Germ Cells.

    PubMed

    Forbes, Meredyth M; Rothhämel, Sophie; Jenny, Andreas; Marlow, Florence L

    2015-07-07

    Primordial germ cells (PGCs) are the stem cells of the germline. Generally, germline induction occurs via zygotic factors or the inheritance of maternal determinants called germ plasm (GP). GP is packaged into ribonucleoprotein complexes within oocytes and later promotes the germline fate in embryos. Once PGCs are specified by either mechanism, GP components localize to perinuclear granular-like structures. Although components of zebrafish PGC germ granules have been studied, the maternal factors regulating their assembly and contribution to germ cell development are unknown. Here, we show that the scaffold protein Dazap2 binds to Bucky ball, an essential regulator of oocyte polarity and GP assembly, and colocalizes with the GP in oocytes and in PGCs. Mutational analysis revealed a requirement for maternal Dazap2 (MDazap2) in germ-granule maintenance. Through molecular epistasis analyses, we show that MDazap2 is epistatic to Tdrd7 and maintains germ granules in the embryonic germline by counteracting Dynein activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Generation of mouse chimeras with high contribution of tetraploid embryonic stem cells and embryonic stem cell-fibroblast hybrid cells.

    PubMed

    Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L

    2015-01-01

    The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.

  4. Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways.

    PubMed

    Oren, Ohad; Smith, B Douglas

    2017-02-01

    Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.

  5. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    PubMed

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  6. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  7. [Expression of embryonic markers in pterygium derived mesenchymal cells].

    PubMed

    Pascual, G; Montes, M A; Pérez-Rico, C; Pérez-Kohler, B; Bellón, J M; Buján, J

    2010-12-01

    Destruction of the limbal epithelium barrier is the most important mechanism of pterygium formation (conjunctiva proliferation, encroaching onto the cornea). It is thought to arise from activated and proliferating limbal epithelial stem cells. The objective of this study is to evaluate the presence of undifferentiated mesenchymal cells (stem cells) in cultured cells extracted from human pterygium. Cells from 6 human pterygium were isolated by explantation and placed in cultures with amniomax medium. Once the monolayer was reached the cells were seeded onto 24 well microplates. The cells were studied in the second sub-culture. The immunohistochemical expression of different embryonic stem cell markers, OCT3/4 and CD9, was analysed. The differentiated phenotypes were characterised with the monoclonal antibodies anti-CD31, α-actin and vimentin. All the cell populations obtained from pterygium showed vimentin expression. Less than 1% of the cells were positive for CD31 and α-actin markers. The majority of the cell population was positive for OCT3/4 and CD9. The cell population obtained from pterygium expressed mesenchymal cell phenotype and embryonic markers, such us OCT3/4 and CD9. This undifferentiated population could be involved in the large recurrence rate of this type of tissue after surgery. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  8. Optimisation of Embryonic and Larval ECG Measurement in Zebrafish for Quantifying the Effect of QT Prolonging Drugs

    PubMed Central

    Dhillon, Sundeep Singh; Dóró, Éva; Magyary, István; Egginton, Stuart; Sík, Attila; Müller, Ferenc

    2013-01-01

    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation. PMID:23579446

  9. Early embryonic sensitivity to cyclophosphamide in cardiac differentiation from human embryonic stem cells.

    PubMed

    Zhu, Ming-Xia; Zhao, Jin-Yuan; Chen, Gui-An; Guan, Li

    2011-09-01

    hESCs (human embryonic stem cells) can differentiate into tissue derivatives of all three germ layers in vitro and mimic the development of the embryo in vivo. In this study, we have investigated the potential of an hESC-based assay for the detection of toxicity to cardiac differentiation in embryonic development. First of all, we developed the protocol of cardiac induction from hESCs according to our previous work and distinguished cardiac precursor cells and late mature cardiomyocytes from differentiated cells, demonstrated by the Q-PCR (quantitative real-time PCR), immunocytochemistry and flow cytometry analysis. In order to test whether CPA (cyclophosphamide) induces developmental and cellular toxicity in the human embryo, we exposed the differentiating cells from hESCs to CPA (a well-known proteratogen) at different stages. We have found that a high concentration of CPA could inhibit cardiac differentiation of hESCs. Two separate exposure intervals were used to determine the effects of CPA on cardiac precursor cells and late mature cardiomyocytes respectively. The cardiac precursor cells were sensitive to CPA in non-cytotoxic concentrations for the expression of the cardiac-specific mRNA markers Nkx2.5 (NK2 transcription factor related, locus 5), GATA-4 (GATA binding protein 4 transcription factor) and TNNT2 (troponin T type 2). Non-cytotoxic CPA concentrations did not affect the mRNA markers' expression in late mature cardiomyocytes, indicating that cardiac precursors were more sensitive to CPA than late cardiomyocytes in cardiogenesis. We set up the in vitro developmental toxicity test model so as to reduce the number of test animals and expenses without compromising the safety of consumers and patients. Furthermore, such in vitro methods may be possibly suited to test a large number of chemicals than the classical employed in vivo tests.

  10. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  11. Production of zebrafish cardiospheres and cardiac progenitor cells in vitro and three-dimensional culture of adult zebrafish cardiac tissue in scaffolds.

    PubMed

    Zeng, Wendy R; Beh, Siew-Joo; Bryson-Richardson, Robert J; Doran, Pauline M

    2017-09-01

    The hearts of adult zebrafish (Danio rerio) are capable of complete regeneration in vivo even after major injury, making this species of particular interest for understanding the growth and differentiation processes required for cardiac tissue engineering. To date, little research has been carried out on in vitro culture of adult zebrafish cardiac cells. In this work, progenitor-rich cardiospheres suitable for cardiomyocyte differentiation and myocardial regeneration were produced from adult zebrafish hearts. The cardiospheres contained a mixed population of c-kit + and Mef2c + cells; proliferative peripheral cells of possible mesenchymal lineage were also observed. Cellular outgrowth from cardiac explants and cardiospheres was enhanced significantly using conditioned medium harvested from cultures of a rainbow trout cell line, suggesting that fish-specific trophic factors are required for zebrafish cardiac cell expansion. Three-dimensional culture of zebrafish heart cells in fibrous polyglycolic acid (PGA) scaffolds was carried out under dynamic fluid flow conditions. High levels of cell viability and cardiomyocyte differentiation were maintained within the scaffolds. Expression of cardiac troponin T, a marker of differentiated cardiomyocytes, increased during the first 7 days of scaffold culture; after 15 days, premature disintegration of the biodegradable scaffolds led to cell detachment and a decline in differentiation status. This work expands our technical capabilities for three-dimensional zebrafish cardiac cell culture with potential applications in tissue engineering, drug and toxicology screening, and ontogeny research. Biotechnol. Bioeng. 2017;114: 2142-2148. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Advanced Morphological — Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants

    PubMed Central

    Noyes, Pamela D.; Haggard, Derik E.; Gonnerman, Greg D.; Tanguay, Robert L.

    2015-01-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to

  13. MRG15 Regulates Embryonic Development and Cell Proliferation

    PubMed Central

    Tominaga, Kaoru; Kirtane, Bhakti; Jackson, James G.; Ikeno, Yuji; Ikeda, Takayoshi; Hawks, Christina; Smith, James R.; Matzuk, Martin M.; Pereira-Smith, Olivia M.

    2005-01-01

    MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15−/− embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15−/− mouse embryonic fibroblasts. The hearts of the Mrg15−/− embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15−/− embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation. PMID:15798182

  14. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  16. [Low expression of activin A in mouse and human embryonic teratocarcinoma cells].

    PubMed

    Gordeeva, O F

    2014-01-01

    TGFP3 family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFbeta family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGF@[beta] family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty 1, TGFbeta1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFbeta family (ACTIVINA, NODAL, LEFTY 1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells: Thus, in mouse and human nullipotent teratocarcinoma cells, theexpression of ActivinA is significantly reduced com- pared ivith embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.

  17. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis

    PubMed Central

    Kozol, Robert A.; Cukier, Holly N.; Zou, Bing; Mayo, Vera; De Rubeis, Silvia; Cai, Guiqing; Griswold, Anthony J.; Whitehead, Patrice L.; Haines, Jonathan L.; Gilbert, John R.; Cuccaro, Michael L.; Martin, Eden R.; Baker, James D.; Buxbaum, Joseph D.; Pericak-Vance, Margaret A.; Dallman, Julia E.

    2015-01-01

    Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1–2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes. PMID:25882707

  18. Isolation and culture of rabbit embryonic stem cells.

    PubMed

    Honda, Arata

    2013-01-01

    Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.

  19. Zscan4 restores the developmental potency of embryonic stem cells

    PubMed Central

    Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.

    2013-01-01

    The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662

  20. Abortion, embryonic stem cell research, and waste.

    PubMed

    Jensen, David A

    2008-01-01

    Can one consistently deny the permissibility of abortion while endorsing the killing of human embryos for the sake of stem cell research? The question is not trivial; for even if one accepts that abortion is prima facie wrong in all cases, there are significant differences with many of the embryos used for stem cell research from those involved in abortion--most prominently, many have been abandoned in vitro, and appear to have no reasonably likely meaningful future. On these grounds one might think to maintain a strong position against abortion but endorse killing human embryos for the sake of stem cell research and its promising benefits. I will argue, however, that these differences are not decisive. Thus, one who accepts a strong view against abortion is committed to the moral impermissibility of killing human embryos for the sake of stem cell research. I do not argue for the moral standing of either abortion or the killing of embryos for stem cell research; I only argue for the relation between the two. Thus the conclusion is relevant to those with a strong view in favor of the permissibility of killing embryos for the sake of research as much as for those who may strongly oppose abortion; neither can consider their position in isolation from the other.

  1. Generation of stomach tissue from mouse embryonic stem cells.

    PubMed

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  2. Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal

    PubMed Central

    Merrill, Bradley J.

    2012-01-01

    Embryonic stem cells (ESCs) can generate all of the cell types found in the adult organism. Remarkably, they retain this ability even after many cell divisions in vitro, as long as the culture conditions prevent differentiation of the cells. Wnt signaling and β-catenin have been shown to cause strong effects on ESCs both in terms of stimulating the expansion of stem cells and stimulating differentiation toward lineage committed cell types. The varied effects of Wnt signaling in ESCs, alongside the sometimes unconventional mechanisms underlying the effects, have generated a fair amount of controversy and intrigue regarding the role of Wnt signaling in pluripotent stem cells. Insights into the mechanisms of Wnt function in stem cells can be gained by examination of the causes for seemingly opposing effects of Wnt signaling on self-renewal versus differentiation. PMID:22952393

  3. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  4. Three-dimensional bioprinting of rat embryonic neural cells.

    PubMed

    Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik

    2009-05-27

    We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.

  5. Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy

    PubMed Central

    Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2009-01-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional KATP channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. PMID:18669912

  6. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    PubMed

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is

  7. Clonal analysis of human embryonic stem cell differentiation into teratomas.

    PubMed

    Blum, Barak; Benvenisty, Nissim

    2007-08-01

    Differentiation of human embryonic stem cells (HESCs) can be studied in vivo through the induction of teratomas in immune-deficient mice. Cells within the teratomas differentiate into all three embryonic germ layers. However, the exact nature of the proliferation and differentiation of HESCs within the teratoma is not fully characterized, and it is not clear whether the differentiation is cell autonomous or affected by neighboring cells. Here, we establish a genetic approach to study the clonality of differentiation in teratomas using a mixture of HESC lines. We first demonstrate, by means of 5-bromo-2'-deoxyuridine incorporation, that cell proliferation occurs throughout the teratoma, and that there are no clusters of undifferentiated-proliferating cells. Using a combination of laser capture microdissection and DNA fingerprinting analysis, we show that different cell lines contribute mutually to the same distinctive tissue structures. Further support for the nonclonal differentiation within the teratoma was achieved by fluorescence in situ hybridization analysis of sex chromosomes. We therefore suggest that in vivo differentiation of HESCs is polyclonal and, thus, may not be cell autonomous, stressing the need for a three-dimensional growth in order to achieve complex differentiation of HESCs. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    PubMed

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  9. [Ethical issues of treatment with embryonic steam cells].

    PubMed

    Siluianova, I V

    2007-01-01

    Review of ethical issues related to the application of embryonic steam cells (SC) for the treatment of different diseases is presented. On the background of ethical considerations, limits and possibilities as well as advantages and shortcomings of using steam cells in the clinical practice are discussed. On the basis of analysis of scientific reference data and ethical side of the given issue, it may be concluded that the principle "don't harm" must be applied also and especially for the use if this particular type of treatment in the clinical practice.

  10. Self-organization of human embryonic stem cells on micropatterns

    PubMed Central

    Deglincerti, Alessia; Etoc, Fred; Guerra, M. Cecilia; Martyn, Iain; Metzger, Jakob; Ruzo, Albert; Simunovic, Mijo; Yoney, Anna; Brivanlou, Ali H.; Siggia, Eric; Warmflash, Aryeh

    2018-01-01

    Fate allocation in the gastrulating embryo is spatially organized as cells differentiate to specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. While embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, these methods do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach where human embryonic stem cells are confined to disk-shaped, sub-millimeter colonies. After 42 hours of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 days; it uses commercial microfabricated slides (CYTOO), human laminin-521 (LN-521) as extra-cellular matrix coating, and either conditioned or chemically-defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation. PMID:27735934

  11. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  12. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    PubMed Central

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  13. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C

    2013-03-06

    Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.

  14. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    PubMed Central

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  15. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  16. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cerebellar Output in Zebrafish: An Analysis of Spatial Patterns and Topography in Eurydendroid Cell Projections

    PubMed Central

    Heap, Lucy A.; Goh, Chi Ching; Kassahn, Karin S.; Scott, Ethan K.

    2013-01-01

    The cerebellum is a brain region responsible for motor coordination and for refining motor programs. While a great deal is known about the structure and connectivity of the mammalian cerebellum, fundamental questions regarding its function in behavior remain unanswered. Recently, the zebrafish has emerged as a useful model organism for cerebellar studies, owing in part to the similarity in cerebellar circuits between zebrafish and mammals. While the cell types composing their cerebellar cortical circuits are generally conserved with mammals, zebrafish lack deep cerebellar nuclei, and instead a majority of cerebellar output comes from a single type of neuron: the eurydendroid cell. To describe spatial patterns of cerebellar output in zebrafish, we have used genetic techniques to label and trace eurydendroid cells individually and en masse. We have found that cerebellar output targets the thalamus and optic tectum, and have confirmed the presence of pre-synaptic terminals from eurydendroid cells in these structures using a synaptically targeted GFP. By observing individual eurydendroid cells, we have shown that different medial-lateral regions of the cerebellum have eurydendroid cells projecting to different targets. Finally, we found topographic organization in the connectivity between the cerebellum and the optic tectum, where more medial eurydendroid cells project to the rostral tectum while lateral cells project to the caudal tectum. These findings indicate that there is spatial logic underpinning cerebellar output in zebrafish with likely implications for cerebellar function. PMID:23554587

  18. Human embryonic stem cell therapies for neurodegenerative diseases.

    PubMed

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  19. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  20. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.

    PubMed

    Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M

    2016-05-30

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.

  1. In Vivo Imaging of Transgenic Gene Expression in Individual Retinal Progenitors in Chimeric Zebrafish Embryos to Study Cell Nonautonomous Influences.

    PubMed

    Dudczig, Stefanie; Currie, Peter D; Poggi, Lucia; Jusuf, Patricia R

    2017-03-22

    The genetic and technical strengths have made the zebrafish vertebrate a key model organism in which the consequences of gene manipulations can be traced in vivo throughout the rapid developmental period. Multiple processes can be studied including cell proliferation, gene expression, cell migration and morphogenesis. Importantly, the generation of chimeras through transplantations can be easily performed, allowing mosaic labeling and tracking of individual cells under the influence of the host environment. For example, by combining functional gene manipulations of the host embryo (e.g., through morpholino microinjection) and live imaging, the effects of extrinsic, cell nonautonomous signals (provided by the genetically modified environment) on individual transplanted donor cells can be assessed. Here we demonstrate how this approach is used to compare the onset of fluorescent transgene expression as a proxy for the timing of cell fate determination in different genetic host environments. In this article, we provide the protocol for microinjecting zebrafish embryos to mark donor cells and to cause gene knockdown in host embryos, a description of the transplantation technique used to generate chimeric embryos, and the protocol for preparing and running in vivo time-lapse confocal imaging of multiple embryos. In particular, performing multiposition imaging is crucial when comparing timing of events such as the onset of gene expression. This requires data collection from multiple control and experimental embryos processed simultaneously. Such an approach can easily be extended for studies of extrinsic influences in any organ or tissue of choice accessible to live imaging, provided that transplantations can be targeted easily according to established embryonic fate maps.

  2. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  3. A plasmid library of full-length zebrafish rab proteins for in vivo cell biology.

    PubMed

    Hall, Thomas E; Martel, Nick; Lo, Harriet P; Xiong, Zherui; Parton, Robert G

    2017-01-01

    The zebrafish is an emerging model for highly sophisticated medium-throughput experiments such as genetic and chemical screens. However, studies of entire protein families within this context are often hampered by poor genetic resources such as clone libraries. Here we describe a complete collection of 76 full-length open reading frame clones for the zebrafish rab protein family. While the mouse genome contains 60 rab genes and the human genome 63, we find that 18 zebrafish rab genes have 2, and in the case of rab38, 3 paralogues. In contrast, we were unable to identify zebrafish orthologues of the mammalian Rab2b, Rab17 or Rab29. We make this resource available through the Addgene repository to facilitate cell biologic approaches using this model.

  4. Specialized mouse embryonic stem cells for studying vascular development.

    PubMed

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  5. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    PubMed Central

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  6. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.

    PubMed

    Liao, W; Bisgrove, B W; Sawyer, H; Hug, B; Bell, B; Peters, K; Grunwald, D J; Stainier, D Y

    1997-01-01

    The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141-3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood

  7. Microengineered embryonic stem cells niche to induce neural differentiation.

    PubMed

    Joshi, Ramila; Tavana, Hossein

    2015-08-01

    A major challenge in therapeutic use of embryonic stem cells (ESCs) for treating neurodegenerative diseases is creating a niche in vitro for controlled neural-specific differentiation of ESCs. We employ a niche microengineering approach to derive neural cells from ESCs by mimicking embryonic development in terms of direct intercellular interactions. Using a polymeric aqueous two-phase system (ATPS) microprinting technology, murine ESCs (mESCs) are precisely localized over a monolayer of supporting stromal cells to allow formation of individual mESC colonies. Polyethylene glycol (PEG) and dextran (DEX) are dissolved in culture media to form two immiscible aqueous solutions. A robotic liquid handler is used to print a nanoliter-volume drop of the denser DEX phase solution containing mESCs onto a confluent layer of supporting PA6 stromal cells submerged in the aqueous PEG phase. mESCs proliferate into isolated colonies of uniform size. For the first time, a comprehensive protein expression analysis of individual mESC colonies is performed over a two-week culture period to track temporal progression of cells from a pluripotent stage to specific neural cells. Starting from day 4, the expression of nestin, neural cell adhesion molecule (NCAM), and beta-III tubulin shows a significant increase but then levels off after the first week of culture. The expression of specific neural cell markers glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and tyrosine hydroxylase (TH) is elevated during the second week of culture. This microengineering approach to control ESCs differentiation niche combined with the time-course protein expression analysis of individual differentiating colonies facilitates understanding of evolution of specific neural cells from ESCs and identifying underlying molecular markers.

  8. Planar Cell Polarity Pathway – Coordinating morphogenetic cell behaviors with embryonic polarity

    PubMed Central

    Gray, Ryan S.; Roszko, Isabelle; Solnica-Krezel, Lilianna

    2011-01-01

    Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved Planar Cell Polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer’s vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity. PMID:21763613

  9. Survival of priceless cells: active and passive protection of embryonic stem cells against immune destruction.

    PubMed

    Utermöhlen, Olaf; Krönke, Martin

    2007-06-15

    This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.

  10. Spermatogonial Stem Cell Niche and Spermatogonial Stem Cell Transplantation in Zebrafish

    PubMed Central

    Nóbrega, Rafael Henrique; Greebe, Caaj Douwe; van de Kant, Henk; Bogerd, Jan; de França, Luiz Renato; Schulz, Rüdiger W.

    2010-01-01

    Background Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate. Methodology/Principal Findings Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish. Conclusions/Significance We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs. PMID:20862221

  11. The problem of deception in embryonic stem cell research.

    PubMed

    Doerflinger, R M

    2008-02-01

    The field of embryonic stem cell research has been plagued by exaggeration and misrepresentation, as three major journals have had to retract significant claims about progress in this field. This problem is exacerbated by the politicized climate in which the research is conducted and defended; it may also lie deeper, in a utilitarian ethic that in principle could justify unethical actions for admittedly worthwhile long-term goals. Such an ethic risks undermining the credibility of science, which must show a commitment to the facts that is independent of social and political goals.

  12. Histone h1 depletion impairs embryonic stem cell differentiation.

    PubMed

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  13. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  14. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  15. Identification and expression analysis of zebrafish polypeptide α-N-acetylgalactosaminyltransferase Y-subfamily genes during embryonic development.

    PubMed

    Nakayama, Yoshiaki; Nakamura, Naosuke; Kawai, Tamiko; Kaneda, Eiichi; Takahashi, Yui; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira

    2014-09-01

    Mucin-type glycosylation is one of the most common posttranslational modifications of secretory and membrane proteins and has diverse physiological functions. The initial biosynthesis of mucin-type carbohydrates is catalyzed by UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) encoded by GALNT genes. Among these, GalNAc-T8, -T9, -T17, and -T18 form a characteristic subfamily called "Y-subfamily" and have no or very low in vitro transferase activities when assayed with typical mucin peptides as acceptor substrates. Although the Y-subfamily isozymes have been reported to be possibly involved in various diseases, their in vivo functions have not been reported. Here, we isolated zebrafish Y-subfamily galnt genes, and determined their spatial and temporal expressions during the early development of zebrafish. Our study demonstrated that all the Y-subfamily isozymes were well conserved in zebrafish with GalNAc-T18 having two orthologs, galnt18a and galnt18b, and with the other three isozymes each having a corresponding ortholog, galnt8, galnt9, and galnt17. The galnt8 was expressed in the cephalic mesoderm and hatching gland during early developmental stages, and differently expressed in the head, somatic muscles, and liver in the later stages. The other three orthologs also exhibited the characteristic expression patterns, although their expressions were generally strong in the nervous systems. In addition to the expression in the brain, galnt17 and galnt18a were expressed in the somitic muscles, and galnt18a and galnt18b in the notochord. These expression patterns may contribute to the functional analysis of the Y-subfamily, whose physiological roles still remain to be elucidated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions. Copyright © 2011 Wiley Periodicals, Inc.

  17. Enhanced Cell-Specific Ablation in Zebrafish Using a Triple Mutant of Escherichia Coli Nitroreductase

    PubMed Central

    Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.

    2014-01-01

    Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354

  18. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase.

    PubMed

    Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S

    2014-04-01

    Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.

  19. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. © 2016 Elsevier Inc. All rights reserved.

  20. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.

    PubMed

    Varas, Macarena; Fariña, Alonso; Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Marcoleta, Andrés E; Allende, Miguel L; Santiviago, Carlos A; Chávez, Francisco P

    2017-04-01

    The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Raman microscopy of individual living human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  2. Generation of an immortalized mouse embryonic palatal mesenchyme cell line

    PubMed Central

    Soriano, Philippe

    2017-01-01

    Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture. PMID:28582446

  3. Biobanking human embryonic stem cell lines: policy, ethics and efficiency.

    PubMed

    Holm, Søren

    2015-12-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy discussions relating to their establishment or maintenance. It is argued (1) that 'ethical arguments' are often more important in the establishment phase and 'efficiency arguments' more important in the maintenance phase, and (2) that arguments relating to the interests of embryo and gamete donors are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being ignored in the policy making process.

  4. Molecular cloning and functional analysis of ESGP, an embryonic stem cell and germ cell specific protein.

    PubMed

    Chen, Yan-Mei; Du, Zhong-Wei; Yao, Zhen

    2005-12-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic caoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  5. Using the mouse embryonic stem cell test (EST) to evaluate the embryotoxicity of haloacetic acids

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is used to predict the embryotoxic potential of a test compound by combining the data from cytotoxicity assays in undifferentiated mouse embryonic stem (mES) cells and differentiated mouse cells with the data from a differentiation assay in mES ...

  6. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  7. Cellular characteristics of primary and immortal canine embryonic fibroblast cells.

    PubMed

    You, Seungkwon; Moon, Jai-Hee; Kim, Tae-Kyung; Kim, Sung-Chan; Kim, Jai-Woo; Yoon, Du-Hak; Kwak, Sungwook; Hong, Ki-Chang; Choi, Yun-Jaie; Kim, Hyunggee

    2004-08-31

    Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.

  8. The New Federalism: State Policies Regarding Embryonic Stem Cell Research.

    PubMed

    Acosta, Nefi D; Golub, Sidney H

    2016-09-01

    Stem cell policy in the United States is an amalgam of federal and state policies. The scientific development of human pluripotent embryonic stem cells (ESCs) triggered a contentious national stem cell policy debate during the administration of President George W. Bush. The Bush "compromise" that allowed federal funding to study only a very limited number of ESC derived cell lines did not satisfy either the researchers or the patient advocates who saw great medical potential being stifled. Neither more restrictive legislation nor expansion of federal funding proved politically possible and the federal impasse opened the door for a variety of state-based experiments. In 2004, California became the largest and most influential state venture into stem cell research by passing "Prop 71," a voter initiative that created a new stem cell agency and funded it with $3 billion. Several states followed suit with similar programs to protect the right of investigators to do stem cell research and in some cases to invest state funding in such projects. Other states devised legislation to restrict stem cell research and in five states, criminal penalties were included. Thus, the US stem cell policy is a patchwork of multiple, often conflicting, state and federal policies. © 2016 American Society of Law, Medicine & Ethics.

  9. [Cell therapy for Parkinson's disease: III. Neonatal, fetal and embryonic stem cell-based applications].

    PubMed

    Anisimov, S V

    2009-01-01

    Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Numerous cell replacement therapy approaches have been developed and tested, including these based on donor cell transplantation (embryonic and adult tissue-derived), adult mesenchymal stem cells (hMSCs)-, neural stem cells (hNSCs)- and finally human embryonic stem cells (hESCs)-based. Despite the progress achieved, numerous difficulties prevent wider practical application of stem cell-based therapy approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety and technical issues stand out. Current series of reviews (Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications; II. Adult stem cell-based applications; III. Neonatal, fetal and embryonic stem cell-based applications; IV. Risks and future trends) aims providing a balanced and updated view on various issues associated with cell types (including stem cells) in regards to their potential in the treatment of Parkinson's disease. Essential features of the individual cell subtypes, principles of available cell handling protocols, transplantation, and safety issues are discussed extensively.

  10. Pou5f1-dependent EGF expression controls E-cad endocytosis, cell adhesion, and zebrafish epiboly movements

    PubMed Central

    Song, Sungmin; Eckerle, Stephanie; Onichtchouk, Daria; Marrs, James A.; Nitschke, Roland; Driever, Wolfgang

    2013-01-01

    Summary Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that in zebrafish MZspg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cad endosomal trafficking and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGFR may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other. PMID:23484854

  11. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae.

    PubMed

    Abu Bakar, Noraini; Mohd Sata, Nurul Syafida Asma'; Ramlan, Nurul Farhana; Wan Ibrahim, Wan Norhamidah; Zulkifli, Syaizwan Zahmir; Che Abdullah, Che Azurahanim; Ahmad, Syahida; Amal, Mohammad Noor Azmai

    Chronic exposure to mercury (Hg) can lead to cumulative impairments in motor and cognitive functions including alteration in anxiety responses. Although several risk factors have been identified in recent year, little is known about the environmental factors that either due exposure toward low level of inorganic mercury that may led to the developmental disorders. The present study investigated the effects of embryonic exposure of mercury chloride on motor function and anxiety-like behavior. The embryo exposed to 6 different concentrations of HgCl 2 (7.5, 15, 30, 100, 125, 250nM) at 5hpf until hatching (72hpf) in a semi-static condition. The mortality rate increased in a dose dependent manner where the chronic embryonic exposure to 100nM decreased the number of tail coiling, heartbeat, and swimming activity. Aversive stimulus was used to examine the effects of 100nM interferes with the development of anxiety-related behavior. No elevation in both thigmotaxis and avoidance response of 6dpf larvae exposed with 100nM were found. Biochemical analysis showed HgCl 2 exposure affects proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. These results showed that implication of HgCl 2 on locomotor and biochemical defects affects motor performance and anxiety-like responses. Yet, the potential underlying mechanisms these responses need to be further investigated which is crucial to prevent potential hazards on the developing organism due to neurotoxicant exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly

    PubMed Central

    Sun, Qingrui; Liu, Xingfeng; Gong, Bo; Wu, Di; Meng, Anming; Jia, Shunji

    2017-01-01

    During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly. PMID:28924386

  13. In situ electrochemical detection of embryonic stem cell differentiation.

    PubMed

    Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo

    2013-06-20

    Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and

  15. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

    PubMed

    Ghaye, Aurélie P; Bergemann, David; Tarifeño-Saldivia, Estefania; Flasse, Lydie C; Von Berg, Virginie; Peers, Bernard; Voz, Marianne L; Manfroid, Isabelle

    2015-09-02

    In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In

  16. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.

    PubMed

    Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C

    2014-02-01

    Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.

  17. In vivo cell biology in zebrafish – providing insights into vertebrate development and disease

    PubMed Central

    Vacaru, Ana M.; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W.; Sadler, Kirsten C.

    2014-01-01

    ABSTRACT Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease. PMID:24481493

  18. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  19. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    PubMed

    Gibert, Yann; Lattanzi, Victoria J; Zhen, Aileen W; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A; Babitt, Jodie L; Lin, Herbert Y; Hammerschmidt, Matthias; Fraenkel, Paula G

    2011-01-21

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  20. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways. (c) 2010 AACR.

  1. Extraction of Blebs in Human Embryonic Stem Cell Videos.

    PubMed

    Guan, Benjamin X; Bhanu, Bir; Talbot, Prue; Weng, Nikki Jo-Hao

    2016-01-01

    Blebbing is an important biological indicator in determining the health of human embryonic stem cells (hESC). Especially, areas of a bleb sequence in a video are often used to distinguish two cell blebbing behaviors in hESC: dynamic and apoptotic blebbings. This paper analyzes various segmentation methods for bleb extraction in hESC videos and introduces a bio-inspired score function to improve the performance in bleb extraction. Full bleb formation consists of bleb expansion and retraction. Blebs change their size and image properties dynamically in both processes and between frames. Therefore, adaptive parameters are needed for each segmentation method. A score function derived from the change of bleb area and orientation between consecutive frames is proposed which provides adaptive parameters for bleb extraction in videos. In comparison to manual analysis, the proposed method provides an automated fast and accurate approach for bleb sequence extraction.

  2. Genomic, cDNA and embryonic expression analysis of zebrafish IRF6, the gene mutated in the human oral clefting disorders Van der Woude and popliteal pterygium syndromes.

    PubMed

    Ben, Jin; Jabs, Ethylin Wang; Chong, Samuel S

    2005-06-01

    Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant clefting disorders recently discovered to be caused by mutations in the IRF6 (Interferon Regulatory Factor 6) gene. The IRF gene family consists of nine members encoding transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 remains unknown. We have isolated a full-length zebrafish irf6 cDNA, which encodes a 492 amino acid protein that contains a Smad-IRF interaction motif and a DNA-binding domain. The zebrafish irf6 gene consists of eight exons and maps to linkage group 22 closest to marker unp1375. By in situ hybridization analysis of embryo whole-mounts and cryosections, we demonstrate that irf6 is first expressed as a maternal transcript. During gastrulation, irf6 expression was concentrated in the forerunner cells. From the bud stage to the 3-somite stage, irf6 expression was observed in the Kupffer's vesicle. No expression could be detected at the 6-somite and 10-somite stages. At the 14-somite stage, expression was detected in the otic placode. At the 17-somite stage, strong expression was also observed in the cloaca. During the pharyngula, hatch and larva periods up to 5 days post-fertilization, irf6 was expressed in the pharyngeal arches, olfactory and otic placodes, and in the epithelial cells of endoderm derived tissues. The latter tissues include the mouth, pharynx, esophagus, endodermal lining of swim bladder, liver, exocrine pancreas, and associated ducts. Overall, the zebrafish expression data are consistent with the observations of lip pits in VWS patients, as well as more recent reports of alae nasi, otitis media and sensorineural hearing loss documented in some patients.

  3. Trends in the human embryonic stem cell patent field.

    PubMed

    Karlsson, Ulrika; Hyllner, Johan; Runeberg, Kristina

    2007-01-01

    The successful derivation of human embryonic stem (hES) cell lines in late 1990s marks the birth of a new era in biomedical research. In the USA, this landmark invention is protected by granted composition-of-matter patents. In addition to these patents, several others have been granted on further development of hES cell research, such as on differentiated cell types and in vitro and in vivo use aspects. In Europe, there is presently no consensus pertaining to the patentability of hES cells, and all patent applications pending at the European patent office are therefore awaiting a principal decision by the Enlarged Board of Appeal. The authors argue that it will be of importance to the stem cell industry that patents are granted on inventions downstream in the value chain, e.g on specialised cell types derived from hES cells and different drug discovery applications. Patents and patent applications on such inventions for the three germ layers ectoderm/neuro, endoderm/hepato and mesoderm/cardio have been examined. The number of patents increased in the period 2001 to 2006 for all three lineages with ectoderm/neuro as the most patent intensive field. There where 9-13 times more US patent applications filed related to the three lineages compared to in Europe.

  4. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-04-08

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.

  5. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    PubMed

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  6. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  7. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    PubMed Central

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  8. Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells.

    PubMed

    Li, Na; Du, Zhaoyu; Shen, Qiaoyan; Lei, Qijing; Zhang, Ying; Zhang, Mengfei; Hua, Jinlian

    2017-07-01

    Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Evolutionally dynamic L1 regulation in embryonic stem cells

    PubMed Central

    Castro-Diaz, Nathaly; Ecco, Gabriela; Coluccio, Andrea; Kapopoulou, Adamandia; Yazdanpanah, Benyamin; Friedli, Marc; Duc, Julien; Jang, Suk Min; Turelli, Priscilla; Trono, Didier

    2014-01-01

    Mobile elements are important evolutionary forces that challenge genomic integrity. Long interspersed element-1 (L1, also known as LINE-1) is the only autonomous transposon still active in the human genome. It displays an unusual pattern of evolution, with, at any given time, a single active L1 lineage amplifying to thousands of copies before getting replaced by a new lineage, likely under pressure of host restriction factors, which act notably by silencing L1 expression during early embryogenesis. Here, we demonstrate that in human embryonic stem (hES) cells, KAP1 (KRAB [Krüppel-associated box domain]-associated protein 1), the master cofactor of KRAB-containing zinc finger proteins (KRAB-ZFPs) previously implicated in the restriction of endogenous retroviruses, represses a discrete subset of L1 lineages predicted to have entered the ancestral genome between 26.8 million and 7.6 million years ago. In mice, we documented a similar chronologically conditioned pattern, albeit with a much contracted time scale. We could further identify an L1-binding KRAB-ZFP, suggesting that this rapidly evolving protein family is more globally responsible for L1 recognition. KAP1 knockdown in hES cells induced the expression of KAP1-bound L1 elements, but their younger, human-specific counterparts (L1Hs) were unaffected. Instead, they were stimulated by depleting DNA methyltransferases, consistent with recent evidence demonstrating that the PIWI–piRNA (PIWI-interacting RNA) pathway regulates L1Hs in hES cells. Altogether, these data indicate that the early embryonic control of L1 is an evolutionarily dynamic process and support a model in which newly emerged lineages are first suppressed by DNA methylation-inducing small RNA-based mechanisms before KAP1-recruiting protein repressors are selected. PMID:24939876

  10. Patently controversial: markets, morals, and the President's proposal for embryonic stem cell research.

    PubMed

    Fins, Joseph J; Schachter, Madeleine

    2002-09-01

    This essay considers the implications of President George W. Bush's proposal for human embryonic stem cell research. Through the perspective of patent law, privacy, and informed consent, we elucidate the ongoing controversy about the moral standing of human embryonic stem cells and their derivatives and consider how the inconsistencies in the president's proposal will affect clinical practice and research.

  11. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  12. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  13. Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion

    PubMed Central

    Kidder, Benjamin L.; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine

    2008-01-01

    Abstract Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras. PMID:18338954

  14. Efficient differentiation of mouse embryonic stem cells into motor neurons.

    PubMed

    Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan

    2012-06-09

    Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two

  15. Diversity and Complexity in Chromatin Recognition by TFII-I Transcription Factors in Pluripotent Embryonic Stem Cells and Embryonic Tissues

    PubMed Central

    Makeyev, Aleksandr V.; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells. PMID:22970219

  16. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues.

    PubMed

    Makeyev, Aleksandr V; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a "feed-forward model" of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.

  17. Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress.

    PubMed

    Roche, E; Sepulcre, M P; Enseñat-Waser, R; Maestre, I; Reig, J A; Soria, B

    2003-07-01

    According to the Edmonton protocol, human islet transplantation can result in insulin independency for periods longer than 3 years. However, this therapy for type 1 diabetes is limited by the scarcity of cadaveric donors. Owing to the ability of embryonic stem cells to expand in vitro and differentiate into a variety of cell types, research has focused on ways to manipulate these cells to overcome this problem. It has been demonstrated that mouse embryonic stem cells can differentiate into insulin-containing cells, restoring normoglycaemia in diabetic mice. To this end, mouse embryonic stem cells were transfected with a DNA construct that provides resistance to neomycin under the control of the regulatory regions of the human insulin gene. However, this protocol has a very low efficiency, needing improvements for this technology to be transferred to human stem cells. Optimum protocols will be instrumental in the production of an unlimited source of cells that synthesise, store and release insulin in a physiological manner. The review focuses on the alternative source of tissue offered by embryonic stem cells for regenerative medicine in diabetes and some key points that should be considered in order for a definitive protocol for in vitro differentiation to be established.

  18. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.

    PubMed

    Sánchez, Mario; Ceci, Maria Laura; Gutiérrez, Daniela; Anguita-Salinas, Consuelo; Allende, Miguel L

    2016-04-07

    Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. The potential

  19. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods

    PubMed Central

    González, Sheyla; Ibáñez, Elena

    2010-01-01

    Purpose The aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. Methods Three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. Results A total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. Conclusions Using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process. PMID:20862536

  20. Protective effects of edaravone against cisplatin-induced hair cell damage in zebrafish.

    PubMed

    Hong, Seok Jin; Im, Gi Jung; Chang, Jiwon; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon Young; Jung, Hak Hyun; Chung, Ah Young; Park, Hae Chul; Choi, June

    2013-06-01

    Edaravone is known to have a potent free radical scavenging effect. The objective of the present study was to evaluate the effects of edaravone on cisplatin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five day post-fertilization zebrafish larvae were exposed to 1000 μM cisplatin and 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, and 1000 μM concentrations of edaravone for 4h. Hair cells within neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed by fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of the hair cells in the control group that were not exposed to cisplatin. Ultrastructural changes were evaluated using scanning electron microscopy and transmission electron microscopy. Edaravone protected cisplatin-induced hair cell loss of neuromasts (edaravone 750 μM: 8.7 ± 1.5 cells, cisplatin 1000 μM only: 3.7 ± 0.9 cells; n=10, p<0.0001) and decreased the Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) reaction. Structures of mitochondria and hair cell within neuromasts in ultrastructural analysis were preserved in zebrafish exposed to 1000 μM cisplatin and 750 μM edaravone for 4h. Edaravone attenuated cisplatin-induced hair cell damage in zebrafish. The results of the current study suggest that cisplatin induces apoptosis, and the apoptotic cell death can be prevented by treatment with edaravone in zebrafish. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    PubMed

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    PubMed

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  3. The RNA-binding protein repertoire of embryonic stem cells.

    PubMed

    Kwon, S Chul; Yi, Hyerim; Eichelbaum, Katrin; Föhr, Sophia; Fischer, Bernd; You, Kwon Tae; Castello, Alfredo; Krijgsveld, Jeroen; Hentze, Matthias W; Kim, V Narry

    2013-09-01

    RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.

  4. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  5. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  6. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-05-01

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  7. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    NASA Astrophysics Data System (ADS)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  8. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    NASA Astrophysics Data System (ADS)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  9. Alterations of protein glycosylation in embryonic stem cells during adipogenesis

    PubMed Central

    Liu, Wei; Wang, Yangyang; Rao, Yang; Yu, Hanjie; Cui, Jihong; Xie, Xin; Sun, Mei; Yin, Lu; Li, Hongmin; Chen, Fulin

    2018-01-01

    The understanding of adipose tissue development is crucial for the treatment of obesity-related diseases. Adipogenesis has been extensively investigated at the gene and protein levels in recent years. However, the alterations in protein glycosylation during this process remains unknown, particularly that of parthenogenetic embryonic stem cells (pESCs), a type of ESCs with low immunogenicity and no ethical concerns regarding their use. Protein glycosylation markedly affects cell growth and development, cell-to-cell communication, tumour growth and metastasis. In the present study, the adipogenic potentials of J1 ESCs and pESCs were first compared and the results demonstrated that pESCs had lower adipogenic potential compared with J1 ESCs. Lectin microarray was then used to screen the alteration of protein glycosylation during adipogenesis. The results revealed that protein modification of GlcNAc and α-1-2-fucosylation increased, whereas α-1-6-fucosylation, α-2-6-sialylation and α-1-6-mannosylation decreased in J1 ESCs and pESCs during this process. In addition, α-1-3-mannosylation decreased only in pESCs. Lectin histochemistry and quantitative polymerase chain reaction of glycosyltransferase confirmed the results obtained by lectin microarray. Therefore, protein glycosylation of ESCs was significantly altered during adipogenesis, indicating that protein glycosylation analysis is not only helpful for studying the mechanism of adipogenesis, but may also be used as a marker to monitor adipogenic development. PMID:29115405

  10. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    PubMed

    Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E

    2011-01-01

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  11. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish.

    PubMed

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies.

  12. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    PubMed Central

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies. PMID:25551022

  13. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  14. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube

    PubMed Central

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Gole, Christophe; Barresi, Michael J.F.

    2014-01-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226x delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  15. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells.

    PubMed

    Mongera, Alessandro; Singh, Ajeet P; Levesque, Mitchell P; Chen, Yi-Yen; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2013-02-01

    At the protochordate-vertebrate transition, a new predatory lifestyle and increased body size coincided with the appearance of a true head. Characteristic innovations of this head are a skull protecting and accommodating a centralized nervous system, a jaw for prey capture and gills as respiratory organs. The neural crest (NC) is a major ontogenetic source for the 'new head' of vertebrates and its contribution to the cranial skeleton has been intensively studied in different model organisms. However, the role of NC in the expansion of the respiratory surface of the gills has been neglected. Here, we use genetic lineage labeling to address the contribution of NC to specific head structures, in particular to the gills of adult zebrafish. We generated a sox10:ER(T2)-Cre line and labeled NC cells by inducing Cre/loxP recombination with tamoxifen at embryonic stages. In juvenile and adult fish, we identified numerous established NC derivatives and, in the cranium, we precisely defined the crest/mesoderm interface of the skull roof. We show the NC origin of the opercular bones and of multiple cell types contributing to the barbels, chemosensory organs located in the mouth region. In the gills, we observed labeled primary and secondary lamellae. Clonal analysis reveals that pillar cells, a craniate innovation that mechanically supports the filaments and forms gill-specific capillaries, have a NC origin. Our data point to a crucial role for the NC in enabling more efficient gas exchange, thus uncovering a novel, direct involvement of this embryonic tissue in the evolution of respiratory systems at the protochordate-vertebrate transition.

  16. [Regulation of in vitro and in vivo differentiation of mouse embryonic stem cells, embryonic germ cells, and teratocarcinoma cells by TGFb family signaling factors].

    PubMed

    Gordeeva, O F; Nikonova, T M; Lifantseva, N V

    2009-01-01

    The activity of specific signaling and transcription factors determines the cell fate in normal development and in tumor transformation. The transcriptional profiles of gene-components of different branches of TGFbeta family signaling pathways were studied in experimental models of initial stages of three-dimensional in vitro differentiation of embryonic stem cells, embryonic germ cells and teratocarcinoma cells and in teratomas and teratocarcinomas developed after their transplantation into immunodeficient Nude mice. Gene profile analysis of studied cell systems have revealed that expression patterns of ActivinA, Nodal, Lefty1, Lefty2, TGF TGFbeta1, BMP4, and GDF were identical in pluripotent stem cells whereas the mRNAs of all examined genes with the exception of Inhibin betaA/ActivinA were detected in the teratocarcinoma cells. These results indicate that differential activity of signaling pathways of the TGFbeta family factors regulates pluripotent state maintenance and pluripotent stem cell differentiation into the progenitors of three germ layers and extraembryonic structures and that normal expression pattern of TGFbeta family factors is rearranged in embryonic teratocarcinoma cells during tumor growth in vitro and in vivo.

  17. 78 FR 25091 - Submission for OMB Review; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...

  18. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  19. Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine

    PubMed Central

    Peyric, Elodie; Moore, Helen A.; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905

  20. Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells.

    PubMed

    Lu, Qin; Liu, Yinan; Wang, Yang; Wang, Weiping; Yang, Zhe; Li, Tao; Tian, Yuyao; Chen, Ping; Ma, Kangtao; Jia, Zhuqing; Zhou, Chunyan

    2017-06-30

    To investigate the effects of rapamycin on cardiac differentiation, murine embryonic stem cells (ESCs) were induced into cardiomyocytes by 10 -4 M ascorbic acid (AA), 20 nM rapamycin alone or 0.01% solvent DMSO. We found that rapamycin alone was insufficient to initiate cardiomyogenesis. Then, the ESCs were treated with AA and rapamycin (20 nM) or AA and DMSO (0.01%) as a control. Compared with control, mouse ESCs (mESCs) treated with rapamycin (20 nM) and AA yielded a significantly higher percentage of cardiomyocytes, as confirmed by the percentage of beating embryonic bodies (EBs), the immunofluorescence and FACS analysis. Rapamycin significantly increased the expression of a panel of cardiac markers including Gata 4, α- Mhc , β- Mhc , and Tnnt 2. Additionally, rapamycin enhanced the expression of mesodermal and cardiac transcription factors such as Mesp 1, Brachyury T, Eomes, Isl 1 , Gata 4 , Nkx 2.5 , Tbx 5, and Mef2c. Mechanistic studies showed that rapamycin inhibits Wnt/β-catenin and Notch signaling but promotes the expression of fibroblast growth factor ( Fgf 8), Fgf 10, and Nodal at early stage, and bone morphogenetic protein 2 ( Bmp 2) at later stages. Sequential treatment of rapamycin showed that rapamycin promotes cardiac differentiation at the early and later stages. Interestingly, another mammalian target of rapamycin (mTOR) inhibitor Ku0063794 (1 µM) had similar effects on cardiomyogenesis. In conclusion, our results highlight a practical approach to generate cardiomyocytes from mESCs by rapamycin. © 2017 The Author(s).

  1. Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish.

    PubMed

    Pradel, G; Schachner, M; Schmidt, R

    1999-05-01

    Cell adhesion molecules are expected to play an important role in long-term storage of information in the central nervous system. Several of these glycoproteins, such as NCAM, L1, and the ependymins, express the HNK-1 carbohydrate structure, which is known to be involved in cell-cell and cell-matrix interactions. To investigate the contribution of the HNK-1 epitope and the secretory glycoproteins ependymins to memory formation in zebrafish (Brachydanio rerio), we developed an active avoidance conditioning paradigm. Zebrafish were trained in a shuttle-box to cross a hurdle, to avoid mild electric shocks following a conditioning light signal. One hour after acquisition of the task, zebrafish were injected intracerebroventricularly with monoclonal antibodies against the HNK-1 epitope or polyclonal antibodies against ependymins. Control fish received immunoglobulins G (IgGs) from nonimmune rat serum or the monoclonal antibody C183 against an unrelated cell-surface protein of the cyprinid brain. Two days later, injected zebrafish were tested for recall, and for quantitative evaluation a retention score (RS), ranging from 1.0 for immediate recall to 0.0, indicating no saving, was calculated. The average RS of anti-HNK-1-injected fish (RS = 0.30) and anti-ependymin-injected fish (0.24) were significantly different from the RS of uninjected fish (0.77), of controls injected with nonimmune serum IgGs (0.68), of C183-injected controls (0.78), and of overtrained fish injected with anti-HNK-1 antibodies (0.81). Anti-HNK-1 and anti-ependymin antibodies were characterized by Western blot analyses of subcellular brain fractions and immunohistochemical staining of the zebrafish optic tectum. Our data suggest that the antibodies influence cell recognition events at synaptic membranes and/or associated intracellular signaling cascades, and thereby block memory consolidation.

  2. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  3. The business of human embryonic stem cell research and an international analysis of relevant laws.

    PubMed

    De Trizio, Ella; Brennan, Christopher S

    2004-01-01

    Few sciences have held out such therapeutic promise and correspondingly stirred so much controversy in countries throughout the world as the developing science surrounding human embryonic stem cells. Since the first reported development of several lines of human embryonic stem cells in 1988, many governments around the world have attempted to address the thorny ethical issues raised by human embryonic stem cell research by the passage of laws. In some cases these laws have directly regulated governmental funding of the science; in other cases they have created a legal environment that has either encouraged or discouraged both governmental and private funding of the science. This article first differentiates human embryonic stem cells from other types of stem cells and frames the ethical controversy surrounding human embryonic stem cell research, then surveys laws governing human embryonic stem cell research in various scientifically advanced countries located throughout the Pacific Rim, Europe and North America and explains the impact these laws have had on governmental and private funding of human embryonic stem cell research.

  4. Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain.

    PubMed

    Ogino, Takashi; Sawada, Masato; Takase, Hiroshi; Nakai, Chiemi; Herranz-Pérez, Vicente; Cebrián-Silla, Arantxa; Kaneko, Naoko; García-Verdugo, José Manuel; Sawamoto, Kazunobu

    2016-10-15

    In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the neurogenic niche of the aged zebrafish brain has not been investigated. Here we show that multiciliated ependymal cells emerge in the neurogenic niche of the aged zebrafish telencephalon. These multiciliated cells appear predominantly in the dorsal part of the ventral telencephalic ventricular zone, which also contains clusters of migrating new neurons. Scanning electron microscopy and live imaging analyses indicated that these multiple cilia beat coordinately and generate constant fluid flow within the ventral telencephalic ventricle. Analysis of the cell composition by transmission electron microscopy revealed that the neurogenic niche in the aged zebrafish contains different types of cells, with ultrastructures similar to those of ependymal cells, transit-amplifying cells, and migrating new neurons in postnatal mice. These data suggest that the transformation capacity of radial glial cells is conserved but that its timing is different between fish and mice. J. Comp. Neurol. 524:2982-2992, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

    PubMed

    Veazey, Kylee J; Golding, Michael C

    2011-01-01

    Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified m

  6. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    USDA-ARS?s Scientific Manuscript database

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  7. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo

  8. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    PubMed Central

    Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512

  9. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study.

    PubMed

    Piccinetti, Chiara Carla; De Leo, Alfredo; Cosoli, Gloria; Scalise, Lorenzo; Randazzo, Basilio; Cerri, Graziano; Olivotto, Ike

    2018-06-15

    The augmented exposure of both environment and human being to electromagnetic waves and the concomitant lack of an unequivocal knowledge about biological consequences of these radiations, raised public interest on electromagnetic pollution. In this context, the present study aims to evaluate the biological effects on zebrafish (ZF) embryos of 100 MHz radiofrequency electromagnetic field (RF-EMF) exposure through a multidisciplinary protocol. Because of the shared synteny between human and ZF genomes that validated its use in biomedical research, toxicology and developmental biology studies, ZF was here selected as experimental model and a measurement protocol and biological analyses have been set up to clearly discriminate between RF-EMF biological and thermal effects. The results showed that a 100 MHz EMF was able to affect ZF embryonic development, from 24 to 72 h post fertilization (hpf) in all the analyzed pathways. Particularly, at the 48 hpf stage, a reduced growth, an increased transcription of oxidative stress genes, the onset of apoptotic/autophagic processes and a modification in cholesterol metabolism were detected. ZF embryos faced stress induced by EMF radiation by triggering detoxification mechanisms and at 72 hpf they partially recovered from stress reaching the hatching time in a comparable way respect to the control group. Data here obtained showed unequivocally the in vivo effects of RF-EMF on an animal model, excluding thermal outcomes and thus represents the starting point for more comprehensive studies on dose response effects of electromagnetic fields radiations consequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells.

    PubMed

    Hirano, Mariko; Yamamoto, Akitsugu; Yoshimura, Naoko; Tokunaga, Tomoyuki; Motohashi, Tsutomu; Ishizaki, Katsuhiko; Yoshida, Hisahiro; Okazaki, Kenji; Yamazaki, Hidetoshi; Hayashi, Shin-Ichi; Kunisada, Takahiro

    2003-12-01

    Embryonic stem cells have the potential to give rise to all cell lineages when introduced into the early embryo. They also give rise to a limited number of different cell types in vitro in specialized culture systems. In this study, we established a culture system in which a structure consisting of lens, neural retina, and pigmented retina was efficiently induced from embryonic stem cells. Refractile cell masses containing lens and neural retina were surrounded by retinal pigment epithelium layers and, thus, designated as eye-like structures. Developmental processes required for eye development appear to proceed in this culture system, because the formation of the eye-like structures depended on the expression of Pax6, a key transcription factor for eye development. The present culture system opens up the possibility of examining early stages of eye development and also of producing cells for use in cellular therapy for various diseases of the eye. Copyright 2003 Wiley-Liss, Inc.

  11. Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells.

    PubMed

    Barkhordarian, Andre; Sison, Jay; Cayabyab, Riana; Mahanian, Nicole; Chiappelli, Francesco

    2011-01-06

    Mesenchymal stem cells (MSCs) provide an appropriate model to study epigenetic changes during osteogenesis and bone regeneration due to their differentiation potential. Since there are no unique markers for MSCs, methods of identification are limited. The complex morphology of human embryonic palatal mesenchyme stem cell (HEPM) requires analysis of fractal dimensions to provide an objective quantification of self-similarity, a statistical transformation of cellular shape and border complexity. We propose the hypothesis of a study to compare and contrast sequential steps of osteogenic differentiation in HEPMs both phenotypically using immunocytochemistry, and morphometrically using fractal analysis from undifferentiated passage 1 (P1) to passage 7 (P7) cells. The proof-of-concept is provided by results we present here that identify and compare the modulation of expression of certain epigenetic biomarkers (alkaline phosphatase, ALP; stromal interaction molecule-1, STRO-1; runt-related transcription factor-2, RUNX2), which are established markers of osteogenesis in bone marrow studies, of osteoblastic/skeletal morphogenesis, and of osteoblast maturation. We show that Osteoinductive medium (OIM) modulates the rate of differentiation of HEPM into Run-2+ cells, the most differentiated subpopulation, followed by ALP+ and STRO-1+ cells. Taken together, our phenotypical and morphometric data demonstrate the feasibility of using HEPM to assess osteogenic differentiation from an early undifferentiated to a differentiated stage. This research model may lay the foundation for future studies aimed at characterizing the epigenetic characteristics of osteoimmunological disorders and dysfunctions (e.g., osteoarthritis, temporomandibular joint disorders), so that proteomic profiling can aid the diagnosis and monitor the prognosis of these and other osteoimmunopathologies.

  12. Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.

    PubMed

    Seiler, C; Nicolson, T

    1999-11-15

    Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. Copyright 1999 John Wiley & Sons, Inc.

  13. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.

    PubMed

    Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C

    2010-08-01

    Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.

  14. Generation of thalamic neurons from mouse embryonic stem cells.

    PubMed

    Shiraishi, Atsushi; Muguruma, Keiko; Sasai, Yoshiki

    2017-04-01

    The thalamus is a diencephalic structure that plays crucial roles in relaying and modulating sensory and motor information to the neocortex. The thalamus develops in the dorsal part of the neural tube at the level of the caudal forebrain. However, the molecular mechanisms that are essential for thalamic differentiation are still unknown. Here, we have succeeded in generating thalamic neurons from mouse embryonic stem cells (mESCs) by modifying the default method that induces the most-anterior neural type in self-organizing culture. A low concentration of the caudalizing factor insulin and a MAPK/ERK kinase inhibitor enhanced the expression of the caudal forebrain markers Otx2 and Pax6. BMP7 promoted an increase in thalamic precursors such as Tcf7l2 + /Gbx2 + and Tcf7l2 + /Olig3 + cells. mESC thalamic precursors began to express the glutamate transporter vGlut2 and the axon-specific marker VGF, similar to mature projection neurons. The mESC thalamic neurons extended their axons to cortical layers in both organotypic culture and subcortical transplantation. Thus, we have identified the minimum elements sufficient for in vitro generation of thalamic neurons. These findings expand our knowledge of thalamic development. © 2017. Published by The Company of Biologists Ltd.

  15. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells

    PubMed Central

    Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2012-01-01

    The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500–2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation. PMID:22802633

  16. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    PubMed

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  17. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    PubMed

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  18. Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina

    PubMed Central

    2009-01-01

    Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate

  19. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    SciTech Connect

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they weremore » unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.« less

  20. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells.

    PubMed

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.

  1. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  2. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  3. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    PubMed

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Embryonic stem cell trials for macular degeneration: a preliminary report.

    PubMed

    Schwartz, Steven D; Hubschman, Jean-Pierre; Heilwell, Gad; Franco-Cardenas, Valentina; Pan, Carolyn K; Ostrick, Rosaleen M; Mickunas, Edmund; Gay, Roger; Klimanskaya, Irina; Lanza, Robert

    2012-02-25

    It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients. We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardt's macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with ClinicalTrials.gov, numbers NCT01345006 and NCT01344993. Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt's macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular

  5. Contested embryonic culture in Japan--public discussion, and human embryonic stem cell research in an aging welfare society.

    PubMed

    Sleeboom-Faulkner, Margaret

    2010-01-01

    This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.

  6. Potential for pharmacological manipulation of human embryonic stem cells

    PubMed Central

    Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2013-01-01

    The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554

  7. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  8. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    SciTech Connect

    Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less

  9. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

    PubMed

    Tang, Qin; Iyer, Sowmya; Lobbardi, Riadh; Moore, John C; Chen, Huidong; Lareau, Caleb; Hebert, Christine; Shaw, McKenzie L; Neftel, Cyril; Suva, Mario L; Ceol, Craig J; Bernards, Andre; Aryee, Martin; Pinello, Luca; Drummond, Iain A; Langenau, David M

    2017-10-02

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA-protein kinase catalytic subunit ( prkdc ), interleukin-2 receptor γ a ( il2rga ), and double-homozygous-mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. © 2017 Tang et al.

  10. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing

    PubMed Central

    Iyer, Sowmya; Lobbardi, Riadh; Chen, Huidong; Hebert, Christine; Shaw, McKenzie L.; Neftel, Cyril; Suva, Mario L.; Bernards, Andre; Aryee, Martin; Drummond, Iain A.

    2017-01-01

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA–protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous–mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. PMID:28878000

  11. Morphogenesis and Cell Fate Determination within the Adaxial Cell Equivalence Group of the Zebrafish Myotome

    PubMed Central

    Nguyen-Chi, Mai E.; Bryson-Richardson, Robert; Sonntag, Carmen; Hall, Thomas E.; Gibson, Abigail; Sztal, Tamar; Chua, Wendy; Schilling, Thomas F.; Currie, Peter D.

    2012-01-01

    One of the central questions of developmental biology is how cells of equivalent potential—an equivalence group—come to adopt specific cellular fates. In this study we have used a combination of live imaging, single cell lineage analyses, and perturbation of specific signaling pathways to dissect the specification of the adaxial cells of the zebrafish embryo. We show that the adaxial cells are myogenic precursors that form a cell fate equivalence group of approximately 20 cells that consequently give rise to two distinct sub-types of muscle fibers: the superficial slow muscle fibers (SSFs) and muscle pioneer cells (MPs), distinguished by specific gene expression and cell behaviors. Using a combination of live imaging, retrospective and indicative fate mapping, and genetic studies, we show that MP and SSF precursors segregate at the beginning of segmentation and that they arise from distinct regions along the anterior-posterior (AP) and dorsal-ventral (DV) axes of the adaxial cell compartment. FGF signaling restricts MP cell fate in the anterior-most adaxial cells in each somite, while BMP signaling restricts this fate to the middle of the DV axis. Thus our results reveal that the synergistic actions of HH, FGF, and BMP signaling independently create a three-dimensional (3D) signaling milieu that coordinates cell fate within the adaxial cell equivalence group. PMID:23133395

  12. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    PubMed

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  13. Autonomous assembly of epithelial structures by subrenal implantation of dissociated embryonic inner-ear cells.

    PubMed

    Wang, Li; Zhang, Kaiqing; Zhu, Helen He; Gao, Wei-Qiang

    2015-05-27

    Microenvironment and cell-cell interactions play an important role during embryogenesis and are required for the stemness and differentiation of stem cells. The inner-ear sensory epithelium, containing hair cells and supporting cells, is derived from the stem cells within the otic vesicle at early embryonic stages. However, whether or not such microenvironment or cell-cell interactions within the embryonic otic tissue have the capacity to regulate the proliferation and differentiation of stem cells and to autonomously reassemble the cells into epithelial structures is unknown. Here, we report that on enzymatic digestion and dissociation to harvest all the single cells from 13.5-day-old rat embryonic (E13.5) inner-ear tissue as well as on implantation of these cells under renal capsules; the dissociated cells are able to reassemble themselves to form epithelial structures as early as 7 days after implantation. By 25 days after implantation, more mature epithelial structures are formed. Immunostaining with cell-type-specific markers reveals that hair cells and supporting cells are not only formed, but are also well aligned with the hair cells located in the apical layer surrounded by the supporting cells. These findings suggest that microenvironment and cell-cell interactions within the embryonic inner-ear tissue have the autonomous signals to induce the formation of sensory epithelial structures. This method may also provide a useful system to study the potential of stem cells to differentiate into hair cells in vivo.

  14. Next generation mothers: Maternal control of germline development in zebrafish.

    PubMed

    Dosch, Roland

    2015-01-01

    In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.

  15. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    SciTech Connect

    Li, Wen-Zhong; Ai, Zhi-Ying; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100

    2015-09-25

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation.more » Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.« less

  16. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    PubMed

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  17. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  18. Two-photon-based photoactivation in live zebrafish embryos.

    PubMed

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  19. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems. Copyright 2008 Wiley-Liss, Inc.

  20. Anesthesia and euthanasia in zebrafish.

    PubMed

    Matthews, Monte; Varga, Zoltán M

    2012-01-01

    Because of the relative ease of embryonic manipulation and observation, the ability to produce a great number of genetic mutations, efficient screening methods, and the continued advance of molecular genetic tools, such as the progress in sequencing and mapping of the zebrafish genome, the use of zebrafish (Danio rerio) as a biomedical model organism continues to expand. However, studies involving zebrafish husbandry and veterinary care struggle to keep pace with scientific progress. This article outlines some of the current, acceptable methods for providing anesthesia and euthanasia and provides some examples of how performance-based approaches can be used to advance the relatively limited number of anesthetic and euthanizing techniques available for zebrafish.

  1. In vitro thermal effects on embryonic cells of endangered hawksbill turtle Eretmochelys imbricata.

    PubMed

    Takeshita, Satoshi; Matsuda, Naoki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    2013-12-01

    The hawksbill turtle is an ectotherm, whose sex is determined by temperature during embryonic development. This study aimed to determine whether embryonic hawksbill turtle cells respond differently to temperature than mammalian cells. Embryonic hawksbill turtle cells were established in culture, and thermal effects on these cells were investigated in vitro. Cells were maintained in Dulbecco's Modified Eagle Medium supplemented with non-essential amino acids, vitamin solution, sodium pyruvate, and 10% fetal bovine serum at 33°C and cell proliferation occurred at 25-33°C. When cells were incubated at 37°C (the temperature of mammalian cell culture) for 24 h, cell growth was completely inhibited. This growth inhibition was evidently recovered by changing the incubation temperature back to 33°C. Expression of heat shock protein was found to increase with elevating culture temperature from 25 to 33°C.

  2. Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report

    PubMed Central

    Shroff, Geeta

    2016-01-01

    Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312

  3. The roles of ERAS during cell lineage specification of mouse early embryonic development.

    PubMed

    Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei

    2015-08-01

    Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.

  4. Differentiation of female Oct4-GFP embryonic stem cells into germ lineage cells.

    PubMed

    Ma, Xin; Li, Peng; Sun, Xiang; Sun, Yifeng; Hu, Rong; Yuan, Ping

    2018-04-01

    Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development. © 2018 International Federation for Cell Biology.

  5. Derivation of novel genetically diverse human embryonic stem cell lines.

    PubMed

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  6. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish

    PubMed Central

    Nagao, Yusuke; Takada, Hiroyuki; Miyadai, Motohiro; Adachi, Tomoko; Kamei, Yasuhiro; Hara, Ikuyo; Naruse, Kiyoshi; Hibi, Masahiko

    2018-01-01

    Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in

  7. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  8. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene.

    PubMed Central

    Field, S J; Johnson, R S; Mortensen, R M; Papaioannou, V E; Spiegelman, B M; Greenberg, M E

    1992-01-01

    The c-fos protooncogene encodes a transcription factor that is thought to play a critical role in proliferation and differentiation as well as in the physiological response of mature cells to their environment. To test directly the role of c-fos in growth and differentiation, we generated mouse embryonic stem cell lines in which both copies of the c-fos gene were specifically disrupted by homologous recombination. Remarkably, the disruption of both copies of c-fos in these cells has no detectable effect on embryonic stem cell viability, growth rate, or differentiation potential. Embryonic stem cells lacking c-fos can differentiate into a wide range of cell types in tissue culture and also in chimeric mice. We conclude that despite a large body of literature suggesting an important role for c-fos in cell growth and differentiation, in at least some cell types this gene is not essential for these processes. Images PMID:1329091

  9. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  10. Novel Method To Differentiate Human Embryonic Stem Cells Into Dopaminergic Nerve Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Drug Abuse's Development and Plasticity Section is seeking statements of capability or interest from parties interested in licensing opportunities to further develop, evaluate, or commercialize novel methods to differentiate human embryonic stem cells into dopaminergic nerve cells. The invention described here is a novel method of differentiating human embryonic stem cells (hESCs) into dopaminergic nerve cells, which is preferable to the currently available dopaminergic differentiation techniques.

  11. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months.

  12. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells.

    PubMed

    Liu, Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-Lin; X Wilson, John

    2010-09-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14-16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.

  13. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon

  14. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  15. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.

    2010-01-01

    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450

  16. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2018-05-02

    Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified

  17. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  18. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  19. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay

    EPA Science Inventory

    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...

  20. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio).

    PubMed

    Eide, Marta; Rusten, Marte; Male, Rune; Jensen, Knut Helge Midtbø; Goksøyr, Anders

    2014-02-01

    The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.

    PubMed

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-10-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. © 2016 The Author(s).

  2. In Vitro Microvibration Increases Implantation Rate after Embryonic Cell Transplantation

    PubMed Central

    Isachenko, Vladimir; Sterzik, Karl; Maettner, Robert; Isachenko, Evgenia; Todorov, Plamen; Rahimi, Gohar; Mallmann, Peter; Strehler, Erwin; Pereligin, Igor; Alabarte, José Luis; Merzenich, Markus

    2017-01-01

    In natural conditions the oocyte and embryo are subjected to ever-changing dynamic processes. However, the routine assisted reproductive technologies today involve the use of static in vitro culture systems. The objective was to determine whether there is any difference in the viability of embryos after in vitro culture under static and mechanical microvibration conditions. The viability of embryonic cells (9,624 embryos) generated from 4,436 couples after in vitro culture was evaluated. For groups ≤29, 30-34, 35-39, and ≥40 years, the following rates of high-quality embryos without fragmentation (two to four blastomeres on day 2; six to eight blastomeres and compacting morula on day 3; blastocyst, expanded and hatching blastocyst on day 5) were detected (static vs. vibration, respectively): 65% versus 71%, 44% versus 69%, 67% versus 76% (for statistically significant differences between respective rates in these three groups, p <0.05), and 67% versus 66% (p > 0.1). The following baby-take-home rates were determined for groups ≤29, 30-34, 35-39, and ≥40 years (static vs. vibration, respectively): 30% versus 31% (p > 0.1, increasing only on the level of tendency), 28% versus 37%, 23% versus 29%, and 9% versus 15% (differences between respective rates in these three groups with p < 0.05). It was concluded that in vitro culture of embryos under microvibration (with a mimic of conditions in nature whereby oviductal fluid is mechanically agitated by the epithelial cilia) significantly increases the baby-take-home rate for patients 30 years and older. PMID:27725062

  3. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  4. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  5. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  7. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    PubMed

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2018-01-01

    β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  8. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis

    PubMed Central

    Perlin, Julie R.; Robertson, Anne L.

    2017-01-01

    Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies. PMID:28830909

  9. Development of the zebrafish mesonephros.

    PubMed

    Diep, Cuong Q; Peng, Zhenzhen; Ukah, Tobechukwu K; Kelly, Paul M; Daigle, Renee V; Davidson, Alan J

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. © 2015 Wiley Periodicals, Inc.

  10. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  11. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.

  12. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and

  13. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  14. Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina

    PubMed Central

    Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.

    2013-01-01

    Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678

  15. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  16. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  17. Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.

    PubMed

    Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari

    2015-03-01

    We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.

  18. Hyperforin inhibits cell proliferation and differentiation in mouse embryonic stem cells.

    PubMed

    Nakamura, K; Aizawa, K; Yamauchi, J; Tanoue, A

    2013-10-01

    Hyperforin, a phloroglucinol derivative of St. John's Wort, has been identified as the major molecule responsible for this plant's products anti-depressant effects. It can be expected that exposure to St. John's Wort during pregnancy occurs with some frequency although embryotoxic or teratogenic effects of St. John's Wort and hyperforin have not yet been experimentally examined in detail. In this study, to determine any embryotoxic effects of hyperforin, we have attempted to determine whether hyperforin affects growth and survival processes of employing mouse embryonic stem (mES) cells (representing embryonic tissue) and fibroblasts (representing adult tissues). We used a modified embryonic stem cell test, which has been validated as an in vitro developmental toxicity protocol, mES cells, to assess embryotoxic potential of chemicals under investigation. We have identified that high concentrations of hyperforin inhibited mouse ES cell population growth and induced apoptosis in fibroblasts. Under our cell culture conditions, ES cells mainly differentiated into cardiomyocytes, although various other cell types were also produced. In this condition, hyperforin affected ES cell differentiation into cardiomyocytes in a dose-dependent manner. Analysis of tissue-specific marker expression also revealed that hyperforin at high concentrations partially inhibited ES cell differentiation into mesodermal and endodermal lineages. Hyperforin is currently used in the clinic as a safe and effective antidepressant. Our data indicate that at typical dosages it has only a low risk of embryotoxicity; ingestion of large amounts of hyperforin by pregnant women, however, may pose embryotoxic and teratogenic risks. © 2013 John Wiley & Sons Ltd.

  19. From embryonic stem cells to functioning germ cells: science, clinical and ethical perspectives.

    PubMed

    Kiatpongsan, Sorapop

    2007-10-01

    Embryonic stem cells have been well recognized as cells having a versatile potential to differentiate into all types of cells in the body including germ cells. There are many research studies focusing on the differentiation processes and protocols to derive various types of somatic cells from embryonic stem cells. However, germ cells have unique differentiation process and developmental pathway compared with somatic cells. Consequently, they will require different differentiation protocols and special culture techniques. More understanding and established in vitro systems for gametogenesis will greatly contribute to further progression of knowledge and technology in germ cell biology, reproductive biology and reproductive medicine. Moreover if oocytes can be efficiently produced in vitro, this will play an important role on progression in nuclear transfer and nuclear reprogramming technology. The present article will provide concise review on past important discoveries, current ongoing studies and future views of this challenging research area. An ethical perspective has also been proposed to give comprehensive summary and viewpoint for future clinical application.

  20. Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells

    PubMed Central

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2014-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP+ cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen’s node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures. PMID:21351873

  1. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    PubMed

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  2. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells

    PubMed Central

    Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W

    2015-01-01

    Summary It has long been the dream of biologists to map gene expression at the single cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after LIF withdrawal. The reproducibility of these high-throughput single cell data allowed us to deconstruct cell populations and infer gene expression relationships. PMID:26000487

  3. Culture of adult transgenic zebrafish retinal explants for live-cell imaging by multiphoton microscopy

    PubMed Central

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-01-01

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina i.e. they migrate between the basal inner nuclear layer (INL) and the outer nuclear layer (ONL), respectively, in a process described as interkinetic nuclear migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP]mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM. PMID:28287581

  4. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    PubMed

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP] mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  5. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Asuncion, James D; Matsui, Jonathan I

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  6. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.

    PubMed

    Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai

    2012-09-18

    To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.

  7. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  8. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    PubMed

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  9. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    PubMed

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  10. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  11. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos

    PubMed Central

    Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde

    2009-01-01

    BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307

  12. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Hayashi, Katsuhiko; Saitou, Mitinori

    2013-08-01

    Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.

  13. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro.

    PubMed

    Zhou, Jun-Mei; Chu, Jian-Xin; Chen, Xue-Jin

    2008-01-01

    Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.

  14. Live Imaging of Cell Motility and Actin Cytoskeleton of Individual Neurons and Neural Crest Cells in Zebrafish Embryos

    PubMed Central

    Andersen, Erica; Asuri, Namrata; Clay, Matthew; Halloran, Mary

    2010-01-01

    The zebrafish is an ideal model for imaging cell behaviors during development in vivo. Zebrafish embryos are externally fertilized and thus easily accessible at all stages of development. Moreover, their optical clarity allows high resolution imaging of cell and molecular dynamics in the natural environment of the intact embryo. We are using a live imaging approach to analyze cell behaviors during neural crest cell migration and the outgrowth and guidance of neuronal axons. Live imaging is particularly useful for understanding mechanisms that regulate cell motility processes. To visualize details of cell motility, such as protrusive activity and molecular dynamics, it is advantageous to label individual cells. In zebrafish, plasmid DNA injection yields a transient mosaic expression pattern and offers distinct benefits over other cell labeling methods. For example, transgenic lines often label entire cell populations and thus may obscure visualization of the fine protrusions (or changes in molecular distribution) in a single cell. In addition, injection of DNA at the one-cell stage is less invasive and more precise than dye injections at later stages. Here we describe a method for labeling individual developing neurons or neural crest cells and imaging their behavior in vivo. We inject plasmid DNA into 1-cell stage embryos, which results in mosaic transgene expression. The vectors contain cell-specific promoters that drive expression of a gene of interest in a subset of sensory neurons or neural crest cells. We provide examples of cells labeled with membrane targeted GFP or with a biosensor probe that allows visualization of F-actin in living cells1. Erica Andersen, Namrata Asuri, and Matthew Clay contributed equally to this work. PMID:20130524

  15. Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors

    PubMed Central

    Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.

    2014-01-01

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein–coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals. PMID:24407481

  16. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line

    PubMed Central

    Jiang, Linjia; Romero-Carvajal, Andres; Haug, Jeff S.; Seidel, Christopher W.; Piotrowski, Tatjana

    2014-01-01

    Deafness caused by the terminal loss of inner ear hair cells is one of the most common sensory diseases. However, nonmammalian animals (e.g., birds, amphibians, and fish) regenerate damaged hair cells. To understand better the reasons underpinning such disparities in regeneration among vertebrates, we set out to define at high resolution the changes in gene expression associated with the regeneration of hair cells in the zebrafish lateral line. We performed RNA-Seq analyses on regenerating support cells purified by FACS. The resulting expression data were subjected to pathway enrichment analyses, and the differentially expressed genes were validated in vivo via whole-mount in situ hybridizations. We discovered that cell cycle regulators are expressed hours before the activation of Wnt/β-catenin signaling following hair cell death. We propose that Wnt/β-catenin signaling is not involved in regulating the onset of proliferation but governs proliferation at later stages of regeneration. In addition, and in marked contrast to mammals, our data clearly indicate that the Notch pathway is significantly down-regulated shortly after injury, thus uncovering a key difference between the zebrafish and mammalian responses to hair cell injury. Taken together, our findings lay the foundation for identifying differences in signaling pathway regulation that could be exploited as potential therapeutic targets to promote either sensory epithelium or hair cell regeneration in mammals. PMID:24706903

  17. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity.

    PubMed

    Kruger, Matthew; Boney, Robert; Ordoobadi, Alexander J; Sommers, Thomas F; Trapani, Josef G; Coffin, Allison B

    2016-01-01

    Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  18. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity

    PubMed Central

    Kruger, Matthew; Boney, Robert; Ordoobadi, Alexander J.; Sommers, Thomas F.; Trapani, Josef G.; Coffin, Allison B.

    2016-01-01

    Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20–30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment. PMID:27065807

  19. Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

    PubMed Central

    Sood, Raman; Liu, Paul

    2012-01-01

    Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis. PMID:22888355

  20. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  1. Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity

    PubMed Central

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157

  2. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    PubMed

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  3. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure.

    PubMed

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; Schröder, Rasmus R

    2015-08-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    PubMed

    Zhao, Dongxin; Chen, Song; Cai, Jun; Guo, Yushan; Song, Zhihua; Che, Jie; Liu, Chun; Wu, Chen; Ding, Mingxiao; Deng, Hongkui

    2009-07-31

    The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  5. Efficient femtosecond driven SOX 17 delivery into mouse embryonic stem cells: differentiation studies

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Lemboumba, Satuurnin Ombinda; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which all