Science.gov

Sample records for zebrafish xenograft model

  1. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.

    PubMed

    Staal, Frank J T; Spaink, Herman P; Fibbe, Willem E

    2016-02-15

    Zebrafish is gaining increased popularity as a model organism to study stem cell biology. It also is widely used as model system to visualize human leukemic stem cells. However, xenotransplantation of primary human stem/progenitor cells has not been described. Here, we use casper pigmentation mutant fish that are transparent crossed to fli-GFP transgenic fish as recipients of red labeled human CD34(+) cells. We have investigated various conditions and protocols with the aim to monitor and visualize the fate of transplanted human CD34(+) cells. We here report successful use of casper mutant zebrafish embryos for the direct monitoring of human hematopoietic stem cell transplantation, differentiation, and trafficking in vivo.

  2. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

    PubMed Central

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-01-01

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model. PMID:27556456

  3. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  4. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Guerra-Varela, Jorge; Silva, Siguara B. L.; Thomas, Olivier P.; Cabezas-Sainz, Pablo; Sánchez, Laura; López, Rafael; Botana, Luis M.

    2016-01-01

    The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo. Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools. PMID:27825113

  5. Zebrafish as a disease model for studying human hepatocellular carcinoma

    PubMed Central

    Lu, Jeng-Wei; Ho, Yi-Jung; Yang, Yi-Ju; Liao, Heng-An; Ciou, Shih-Ci; Lin, Liang-In; Ou, Da-Liang

    2015-01-01

    Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury. PMID:26576090

  6. Inflammatory diseases modelling in zebrafish

    PubMed Central

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-01-01

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  7. Animal Models of Tuberculosis: Zebrafish

    PubMed Central

    van Leeuwen, Lisanne M.; van der Sar, Astrid M.; Bitter, Wilbert

    2015-01-01

    Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish–Mycobacterium marinum infection model and its added value for tuberculosis research. PMID:25414379

  8. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts.

    PubMed

    Wagner, Daniel S; Delk, Nikki A; Lukianova-Hleb, Ekaterina Y; Hafner, Jason H; Farach-Carson, Mary C; Lapotko, Dmitri O

    2010-10-01

    Cell theranostics is a new approach that unites diagnosis, therapy and confirmation (guidance) of the results of therapy in one single process at cell level, thus principally improving both the rapidity and precision of treatment. The ideal theranostic agent will support all three of the above functions in vivo with cellular resolution, allowing individual assessment of disease state and the elimination of diseased cells while leaving healthy cells intact. We have developed and evaluated plasmonic nanobubbles (PNBs) as an in vivo tunable theranostic cellular agent in zebrafish hosting prostate cancer xenografts. PNBs were selectively generated around gold nanoparticles in cancer cells in the zebrafish with short single laser pulses. By varying the energy of the laser pulse, we dynamically tuned the PNB size in a theranostic sequence of two PNBs: an initial small PNB detected a cancer cell through optical scattering, followed by a second bigger PNB, which mechanically ablated this cell without damage to surrounding tissue, while its optical scattering confirmed the destruction of the cell. Thus PNBs supported the diagnosis and guided ablation of individual human cancer cells in a living organism without damage to the host.

  9. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.

  10. Streptococcus-Zebrafish Model of Bacterial Pathogenesis

    PubMed Central

    Neely, Melody N.; Pfeifer, John D.; Caparon, Michael

    2002-01-01

    Due to its small size, rapid generation time, powerful genetic systems, and genomic resources, the zebrafish has emerged as an important model of vertebrate development and human disease. Its well-developed adaptive and innate cellular immune systems make the zebrafish an ideal model for the study of infectious diseases. With a natural and important pathogen of fish, Streptococcus iniae, we have established a streptococcus- zebrafish model of bacterial pathogenesis. Following injection into the dorsal muscle, zebrafish developed a lethal infection, with a 50% lethal dose of 103 CFU, and died within 2 to 3 days. The pathogenesis of infection resembled that of S. iniae in farmed fish populations and that of several important human streptococcal diseases and was characterized by an initial focal necrotic lesion that rapidly progressed to invasion of the pathogen into all major organ systems, including the brain. Zebrafish were also susceptible to infection by the human pathogen Streptococcus pyogenes. However, disease was characterized by a marked absence of inflammation, large numbers of extracellular streptococci in the dorsal muscle, and extensive myonecrosis that occurred far in advance of any systemic invasion. The genetic systems available for streptococci, including a novel method of mutagenesis which targets genes whose products are exported, were used to identify several mutants attenuated for virulence in zebrafish. This combination of a genetically amenable pathogen with a well-defined vertebrate host makes the streptococcus-zebrafish model of bacterial pathogenesis a powerful model for analysis of infectious disease. PMID:12065534

  11. Neuroblastoma and Its Zebrafish Model.

    PubMed

    Zhu, Shizhen; Thomas Look, A

    2016-01-01

    Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.

  12. Zebrafish models of cerebrovascular disease.

    PubMed

    Walcott, Brian P; Peterson, Randall T

    2014-04-01

    Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.

  13. A xenograft animal model of human arteriovenous malformations

    PubMed Central

    2013-01-01

    Background Arteriovenous malformations (AVMs) are a type of high-flow vascular malformations that most commonly occurs in the head and neck. They are present at birth but are usually clinically asymptomatic until later in life. The pathogenesis of AVMs remains unclear and therapeutic approaches to AVMs are unsatisfied. In order to provide a tool for studying the pathogenesis and therapies of this disease, we established and studied a xenograft animal model of human AVMs. Methods Fresh human AVMs specimens harvested from 4 patients were sectioned (5x5x5 mm) and xenografted subcutaneously in 5 immunologically naïve nude mice (Athymic Nude-Foxn1nu). Each mouse had four pieces specimens in four quadrants along the back. The grafts were observed weekly for volume, color and texture. The grafts were harvested at every 30 days intervals for histologic examination. All grafts (n = 20) were sectioned and stained for hematoxylin and eosin (H&E). Comparative pathologic evaluation of the grafts and native AVMs were performed by two blinded pathologists. Immunohistochemical examination of human-specific nuclear antigen, vascular endothelial growth factor receptor-2 (VEGFR-2) and Ki-67 was performed. Results Clinical characteristics and pathologic diagnosis of native human derived AVMs were confirmed. 85% (n = 17) of AVM xenografts survived although the sizes decreased after implantation. Histological examination demonstrated numerous small and medium-size vessels and revealed structural characteristics matching the native AVMs tissue.76.5% (n = 13) of the surviving xenografts were positive for Ki-67 and human-specific nuclear antigen suggesting survival of the human derived tissue, 52.9% (n = 9) were positive for VEGFR-2. Conclusions This preliminary xenograft animal model suggests that AVMs can survive in the nude mouse. The presence of human-specific nuclear antigen, VEGFR-2, and Ki-67 demonstrates the stability of native tissue qualities within the

  14. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  15. Zebrafish Models for Human Acute Organophosphorus Poisoning

    PubMed Central

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J.; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick II, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B. Lynn; Zorzano, Antonio; Soares, Amadeu M.V.M; Raldúa, Demetrio

    2015-01-01

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning. PMID:26489395

  16. Modeling Syndromic Congenital Heart Defects in Zebrafish.

    PubMed

    Grant, Meagan G; Patterson, Victoria L; Grimes, Daniel T; Burdine, Rebecca D

    2017-01-01

    Cardiac development is a dynamic process regulated by spatial and temporal cues that are integrated to effect molecular, cellular, and tissue-level events that form the adult heart. Disruption of these highly orchestrated events can be devastating for cardiac form and function. Aberrations in heart development result in congenital heart defects (CHDs), which affect 1 in 100 infants in the United States each year. Zebrafish have proven informative as a model organism to understand both heart development and the mechanisms associated with CHDs due to the similarities in heart morphogenesis among vertebrates, as well as their genetic tractability and amenability to live imaging. In this review, we discuss the mechanisms of zebrafish heart development and the utility of zebrafish for understanding syndromic CHDs, those cardiac abnormalities that occur in the context of multisystem disorders. We conclude with avenues of zebrafish research that will potentially inform future therapeutic approaches for the treatment of CHDs.

  17. 184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma

    PubMed Central

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina

    2015-01-01

    Purpose Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development, and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Methods Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Results Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. Conclusions This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing and drug development. PMID:26661596

  18. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    PubMed

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  19. Zebrafish heart as a model for human cardiac electrophysiology.

    PubMed

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.

  20. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  1. Developing 'integrative' zebrafish models of behavioral and metabolic disorders.

    PubMed

    Nguyen, Michael; Yang, Ester; Neelkantan, Nikhil; Mikhaylova, Alina; Arnold, Raymond; Poudel, Manoj K; Stewart, Adam Michael; Kalueff, Allan V

    2013-11-01

    Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.

  2. Zebrafish Models for Dyslipidemia and Atherosclerosis Research

    PubMed Central

    Schlegel, Amnon

    2016-01-01

    Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques. PMID:28018294

  3. [Potential of the zebrafish model to study congenital muscular dystrophies].

    PubMed

    Ryckebüsch, Lucile

    2015-10-01

    In order to better understand the complexity of congenital muscular dystrophies (CMD) and develop new strategies to cure them, it is important to establish new disease models. Due to its numerous helpful attributes, the zebrafish has recently become a very powerful animal model for the study of CMD. For some CMD, this vertebrate model is phenotypically closer to human pathology than the murine model. Over the last few years, researchers have developed innovative techniques to screen rapidly and on a large scale for muscle defects in zebrafish. Furthermore, new genome editing techniques in zebrafish make possible the identification of new disease models. In this review, the major attributes of zebrafish for CMD studies are discussed and the principal models of CMD in zebrafish are highlighted.

  4. Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    PubMed Central

    Meijer, Annemarie H; Spaink, Herman P

    2011-01-01

    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening. PMID:21366518

  5. montalcino, a Zebrafish Model for Variegate Porphyria

    PubMed Central

    Dooley, Kimberly A.; Fraenkel, Paula G.; Langer, Nathaniel B.; Schmid, Bettina; Davidson, Alan J.; Weber, Gerhard; Chiang, Ken; Foott, Helen; Dwyer, Caitlin; Wingert, Rebecca A.; Zhou, Yi; Paw, Barry H.; Zon, Leonard I.

    2008-01-01

    Objective Inherited or acquired mutations in the heme biosynthetic pathway lead to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. Methods Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with RT-PCR was utilized to identify the genetic mutation, which was confirmed via allele specific oligo hybridizations. Whole mount in situ hybridizations and 0-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. Results Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hpf are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. Conclusion In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria. PMID:18550261

  6. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  7. Zebrafish heart as a model for human cardiac electrophysiology

    PubMed Central

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    ABSTRACT The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart. PMID:26671745

  8. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  9. Using engineered endonucleases to create knockout and knockin zebrafish models.

    PubMed

    Bedell, Victoria M; Ekker, Stephen C

    2015-01-01

    Over the last few years, the technology to create targeted knockout and knockin zebrafish animals has exploded. We have gained the ability to create targeted knockouts through the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR associated system (CRISPR/Cas). Furthermore, using the high-efficiency TALEN system, we were able to create knockin zebrafish using a single-stranded DNA (ssDNA) protocol described here. Through the use of these technologies, the zebrafish has become a valuable vertebrate model and an excellent bridge between the invertebrate and mammalian model systems for the study of human disease.

  10. Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models

    PubMed Central

    Vellenga, Edo

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303

  11. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  12. Think Small: Zebrafish as a Model System of Human Pathology

    PubMed Central

    Goldsmith, J. R.; Jobin, Christian

    2012-01-01

    Although human pathologies have mostly been modeled using higher mammal systems such as mice, the lower vertebrate zebrafish has gained tremendous attention as a model system. The advantages of zebrafish over classical vertebrate models are multifactorial and include high genetic and organ system homology to humans, high fecundity, external fertilization, ease of genetic manipulation, and transparency through early adulthood that enables powerful imaging modalities. This paper focuses on four areas of human pathology that were developed and/or advanced significantly in zebrafish in the last decade. These areas are (1) wound healing/restitution, (2) gastrointestinal diseases, (3) microbe-host interactions, and (4) genetic diseases and drug screens. Important biological processes and pathologies explored include wound-healing responses, pancreatic cancer, inflammatory bowel diseases, nonalcoholic fatty liver disease, and mycobacterium infection. The utility of zebrafish in screening for novel genes important in various pathologies such as polycystic kidney disease is also discussed. PMID:22701308

  13. The zebrafish as a model for complex tissue regeneration.

    PubMed

    Gemberling, Matthew; Bailey, Travis J; Hyde, David R; Poss, Kenneth D

    2013-11-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues and, in some cases, have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs.

  14. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  15. The zebrafish as a model for complex tissue regeneration

    PubMed Central

    Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

    2013-01-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

  16. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism.

  17. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights

    PubMed Central

    Harrison, Nicholas R.; Laroche, Fabrice J.F.; Gutierrez, Alejandro

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients. PMID:27165361

  18. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  19. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  20. A jump persistent turning walker to model zebrafish locomotion

    PubMed Central

    Mwaffo, Violet; Anderson, Ross P.; Butail, Sachit; Porfiri, Maurizio

    2015-01-01

    Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate. PMID:25392396

  1. A jump persistent turning walker to model zebrafish locomotion.

    PubMed

    Mwaffo, Violet; Anderson, Ross P; Butail, Sachit; Porfiri, Maurizio

    2015-01-06

    Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate.

  2. Zebrafish: A Model for the Study of Addiction Genetics

    PubMed Central

    Klee, Eric W; Schneider, Henning; Clark, Karl; Cousin, Margot; Ebbert, Jon; Hooten, Michael; Karpyak, Victor; Warner, David; Ekker, Stephen

    2013-01-01

    Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans. PMID:22207143

  3. Aquatic blues: modeling depression and antidepressant action in zebrafish.

    PubMed

    Nguyen, Michael; Stewart, Adam Michael; Kalueff, Allan V

    2014-12-03

    Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery.

  4. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  5. Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish

    PubMed Central

    Stobb, Michael; Peterson, Joshua M.; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome. PMID:22624008

  6. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  7. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish

    PubMed Central

    Maddison, Lisette A.; Chen, Wenbiao

    2017-01-01

    Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population. PMID:28184214

  8. Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models.

    PubMed

    Kyzar, Evan J; Kalueff, Allan V

    2016-10-01

    After decades of sociopolitical obstacles, the field of psychiatry is experiencing a revived interest in the use of hallucinogenic agents to treat brain disorders. Along with the use of ketamine for depression, recent pilot studies have highlighted the efficacy of classic serotonergic hallucinogens, such as lysergic acid diethylamide and psilocybin, in treating addiction, post-traumatic stress disorder, and anxiety. However, many basic pharmacological and toxicological questions remain unanswered with regard to these compounds. In this study, we discuss psychedelic medicine as well as the behavioral and toxicological effects of hallucinogenic drugs in zebrafish. We emphasize this aquatic organism as a model ideally suited to assess both the potential toxic and therapeutic effects of major known classes of hallucinogenic compounds. In addition, novel drugs with hallucinogenic properties can be efficiently screened using zebrafish models. Well-designed preclinical studies utilizing zebrafish can contribute to the reemerging treatment paradigm of psychedelic medicine, leading to new avenues of clinical exploration for psychiatric disorders.

  9. Using engineered endonucleases to create knockout and knockin zebrafish models

    PubMed Central

    Bedell, Victoria M.; Ekker, Stephen C.

    2015-01-01

    Summary Over the last few years, the technology to create targeted knockout and knockin zebrafish animals has exploded. We have gained the ability to create targeted knockouts through the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR associated system (CRISPR/Cas). Furthermore, using the high-efficiency TALEN system, we were able to create knockin zebrafish using a single-stranded DNA (ssDNA) protocol described here. Through the use of these technologies, the zebrafish has become a valuable vertebrate model and an excellent bridge between the invertebrate and mammalian model systems for the study of human disease. PMID:25408414

  10. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases

    PubMed Central

    Bragato, Cinzia; Gaudenzi, Germano; Blasevich, Flavia; Pavesi, Giulio; Maggi, Lorenzo; Giunta, Michele; Cotelli, Franco; Mora, Marina

    2016-01-01

    Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo. PMID:26842864

  11. Zebrafish (Danio rerio) embryos as a model for testing proteratogens.

    PubMed

    Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H

    2011-03-15

    Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ≥ 3 dpf. The LC₅₀ and EC₅₀ values were used to calculate the teratogenicity index (TI) for the different substances, and the EC₂₀ values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species.

  12. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  13. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  14. Zebrafish Model for Functional Screening of Flow-Responsive Genes

    PubMed Central

    Serbanovic-Canic, Jovana; de Luca, Amalia; Warboys, Christina; Ferreira, Pedro F.; Luong, Le A.; Hsiao, Sarah; Gauci, Ismael; Mahmoud, Marwa; Feng, Shuang; Souilhol, Celine; Bowden, Neil; Ashton, John-Paul; Walczak, Henning; Firmin, David; Krams, Rob; Mason, Justin C.; Haskard, Dorian O.; Sherwin, Spencer; Ridger, Victoria; Chico, Timothy J.A.

    2017-01-01

    Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites. PMID:27834691

  15. Human skeletal muscle xenograft as a new preclinical model for muscle disorders

    PubMed Central

    Zhang, Yuanfan; King, Oliver D.; Rahimov, Fedik; Jones, Takako I.; Ward, Christopher W.; Kerr, Jaclyn P.; Liu, Naili; Emerson, Charles P.; Kunkel, Louis M.; Partridge, Terence A.; Wagner, Kathryn R.

    2014-01-01

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1null IL2rγnull immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. PMID:24452336

  16. A new model to study visual attention in zebrafish.

    PubMed

    Braida, Daniela; Ponzoni, Luisa; Martucci, Roberta; Sala, Mariaelvina

    2014-12-03

    The major part of cognitive tasks applied to zebrafish has not fully assessed their attentional ability, a process by which the nervous system learns, organizes sensory input and generates coordinated behaviour. In an attempt to maximize the value of zebrafish as an animal model of cognition, we tested the possibility to apply a modified version of novel object recognition test named virtual object recognition test (VORT) using 2D geometrical shapes (square, triangle, circle, cross, etc.) on two iPod 3.5-inch widescreen displays, located on two opposite walls of the water tank. Each fish was subjected to a familiarization trial (T1), and after different time delays (from 5 min to 96 h) to a novel shape recognition trial (T2). A progressive decrease, across time, of memory performance, in terms of mean discrimination index and mean exploration time, was shown. The predictive validity was tested using cholinergic drugs. Nicotine (0.02 mg/kg intraperitoneally, IP) significantly increased, while scopolamine (0.025 mg/kg IP) and mecamylamine decreased, mean discrimination index. Zebrafish discriminated different movements (vertical, horizontal, oblique) and the discrimination index increased significantly when moving poorly discriminated shapes were presented, thus increasing visual attention. Taken together these findings demonstrate that VORT is a viable, fast and useful model to evaluate sustained attention in zebrafish and for predicting the efficacy of pharmacotherapies for cognitive disorders.

  17. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  18. Zebrafish as animal model for aquaculture nutrition research

    PubMed Central

    Ulloa, Pilar E.; Medrano, Juan F.; Feijoo, Carmen G.

    2014-01-01

    The aquaculture industry continues to promote the diversification of ingredients used in aquafeed in order to achieve a more sustainable aquaculture production system. The evaluation of large numbers of diets in aquaculture species is costly and requires time-consuming trials in some species. In contrast, zebrafish (Danio rerio) can solve these drawbacks as an experimental model, and represents an ideal organism to carry out preliminary evaluation of diets. In addition, zebrafish has a sequenced genome allowing the efficient utilization of new technologies, such as RNA-sequencing and genotyping platforms to study the molecular mechanisms that underlie the organism’s response to nutrients. Also, biotechnological tools like transgenic lines with fluorescently labeled neutrophils that allow the evaluation of the immune response in vivo, are readily available in this species. Thus, zebrafish provides an attractive platform for testing many ingredients to select those with the highest potential of success in aquaculture. In this perspective article aspects related to diet evaluation in which zebrafish can make important contributions to nutritional genomics and nutritional immunity are discussed. PMID:25309575

  19. Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.

    PubMed

    Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi

    2015-01-01

    Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.

  20. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  1. The Developing Utility of Zebrafish Models for Cognitive Enhancers Research

    PubMed Central

    Stewart, Adam Michael; Kalueff, Allan V

    2012-01-01

    Whereas cognitive impairment is a common symptom in multiple brain disorders, predictive and high-throughput animal models of cognition and behavior are becoming increasingly important in the field of translational neuroscience research. In particular, reliable models of the cognitive deficits characteristic of numerous neurobehavioral disorders such as Alzheimer’s disease and schizophrenia have become a significant focus of investigation. While rodents have traditionally been used to study cognitive phenotypes, zebrafish (Danio rerio) are gaining popularity as an excellent model to complement current translational neuroscience research. Here we discuss recent advances in pharmacological and genetic approaches using zebrafish models to study cognitive impairments and to discover novel cognitive enhancers and neuroprotective mechanisms. PMID:23449968

  2. First In-Mouse Development and Application of a Surgically Relevant Xenograft Model of Ovarian Carcinoma

    PubMed Central

    Helland, Øystein; Popa, Mihaela; Vintermyr, Olav K.; Molven, Anders; Gjertsen, Bjørn Tore; Bjørge, Line; McCormack, Emmet

    2014-01-01

    Purpose Preclinical models of epithelial ovarian cancer have not been exploited to evaluate the clinical standard combination therapy of surgical debulking with follow-up chemotherapy. As surgery is critical to patient survival, here we establish a combined surgical/chemotherapy xenograft model of epithelial ovarian cancer and demonstrate its translational relevance. Experimental Design SKOV-3luc+ ovary cancer cells were injected topically into the ovaries of immunodeficient mice. Disease development and effect of clinical standard treatment including hysterectomy, bilateral salpingoophorectomy and removal of metastasis with follow up chemotherapy (carboplatin 12 mg/kg + paclitaxel 15 mg/kg) was evaluated by clinical parameters. Tumor burden was quantified by bioluminescence imaging (BLI). Results The xenograft ovarian tumors developed were poorly differentiated and multicystic and the disease disseminated into the peritoneal cavity. When compared to the controls with a mean survival time of 4.9 weeks, mice treated with surgery and chemotherapy, surgery or chemotherapy demonstrated significantly improved mean survival of 16.1 weeks (p = 0.0008), 12.7 weeks (p = 0.0008), or 10.4 weeks (p = 0.008), respectively. Conclusion Combined surgical intervention and adjuvant chemotherapy was demonstrated for the first time in an orthotopic xenograft model of ovarian cancer. Similar to observation in human studies the combined approach resulted in the longest medial survival time, advocating application of this strategy in future preclinical therapeutic development for this disease. PMID:24594904

  3. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment.

    PubMed

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Sun, Bin; Panchal, Devang; Patel, Devalben; Tse, Alvina; Chen, Zhuo; Faluyi, Olusola O; Renouf, Daniel J; Girgis, Hala; Bandarchi, Bizhan; Schwock, Joerg; Xu, Wei; Bristow, Robert G; Tsao, Ming-Sound; Darling, Gail E; Ailles, Laurie E; El-Zimaity, Hala; Liu, Geoffrey

    2013-04-01

    There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.

  4. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  5. Data-driven stochastic modelling of zebrafish locomotion.

    PubMed

    Zienkiewicz, Adam; Barton, David A W; Porfiri, Maurizio; di Bernardo, Mario

    2015-11-01

    In this work, we develop a data-driven modelling framework to reproduce the locomotion of fish in a confined environment. Specifically, we highlight the primary characteristics of the motion of individual zebrafish (Danio rerio), and study how these can be suitably encapsulated within a mathematical framework utilising a limited number of calibrated model parameters. Using data captured from individual zebrafish via automated visual tracking, we develop a model using stochastic differential equations and describe fish as a self propelled particle moving in a plane. Based on recent experimental evidence of the importance of speed regulation in social behaviour, we extend stochastic models of fish locomotion by introducing experimentally-derived processes describing dynamic speed regulation. Salient metrics are defined which are then used to calibrate key parameters of coupled stochastic differential equations, describing both speed and angular speed of swimming fish. The effects of external constraints are also included, based on experimentally observed responses. Understanding the spontaneous dynamics of zebrafish using a bottom-up, purely data-driven approach is expected to yield a modelling framework for quantitative investigation of individual behaviour in the presence of various external constraints or biological assays.

  6. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species.

    PubMed

    Dahm, Ralf; Geisler, Robert

    2006-01-01

    In recent years, the zebrafish has become one of the most prominent vertebrate model organisms used to study the genetics underlying development, normal body function, and disease. The growing interest in zebrafish research was paralleled by an increase in tools and methods available to study zebrafish. While zebrafish research initially centered on mutagenesis screens (forward genetics), recent years saw the establishment of reverse genetic methods (morpholino knock-down, TILLING). In addition, increasingly sophisticated protocols for generating transgenic zebrafish have been developed and microarrays are now available to characterize gene expression on a near genome-wide scale. The identification of loci underlying specific traits is aided by genetic, physical, and radiation hybrid maps of the zebrafish genome and the zebrafish genome project. As genomic resources for aquacultural species are increasingly being generated, a meaningful interaction between zebrafish and aquacultural research now appears to be possible and beneficial for both sides. In particular, research on nutrition and growth, stress, and disease resistance in the zebrafish can be expected to produce results applicable to aquacultural fish, for example, by improving husbandry and formulated feeds. Forward and reverse genetics approaches in the zebrafish, together with the known conservation of synteny between the species, offer the potential to identify and verify candidate genes for quantitative trait loci (QTLs) to be used in marker-assisted breeding. Moreover, some technologies from the zebrafish field such as TILLING may be directly transferable to aquacultural research and production.

  7. Zebrafish: A Model System for the Study of Eye Genetics

    PubMed Central

    Fadool, James M.; Dowling, John E.

    2008-01-01

    Over the last decade, the use of the zebrafish as a genetic model has moved beyond the proof-of-concept for the analysis of vertebrate embryonic development to demonstrated utility as a mainstream model organism for the understanding of human disease. The initial identification of a variety of zebrafish mutations affecting the eye and retina, and the subsequent cloning of mutated genes have revealed cellular, molecular and physiological processes fundamental to visual system development. With the increasing development of genetic manipulations, sophisticated techniques for phenotypic characterization, behavioral approaches and screening strategies, the identification of novel genes or novel gene functions will have important implications for our understanding of human eye diseases, pathogenesis, and treatment. PMID:17962065

  8. Analysis of the retina in the zebrafish model.

    PubMed

    Malicki, J; Pooranachandran, N; Nikolaev, A; Fang, X; Avanesov, A

    2016-01-01

    The vertebrate retina is remarkably conserved in evolution. Its relative simplicity and well-defined architecture make it particularly suitable for developmental and functional analysis of neuronal networks in the vertebrate central nervous system. The zebrafish model is at the forefront of these studies. It makes it possible to apply a wide variety of parallel embryological, genetic, and imaging tools to study the eye. Here we discuss experimental approaches that range from cell lineage analysis to the imaging of synaptic calcium currents and atomic force microscopy. These methods are currently used in zebrafish to model morphogenetic events during early development of the eye primordium, cell fate decisions during retinal neurogenesis, and the differentiation and function of the many fine structural features that underlie the detection and processing of light stimuli in the eye.

  9. Patient-derived xenograft models of squamous cell carcinoma of the uterine cervix.

    PubMed

    Rofstad, Einar K; Simonsen, Trude G; Huang, Ruixia; Andersen, Lise Mari K; Galappathi, Kanthi; Ellingsen, Christine; Wegner, Catherine S; Hauge, Anette; Gaustad, Jon-Vidar

    2016-04-10

    Patient-derived xenograft (PDX) models of cancer are considered to reflect the biology and treatment response of human tumors to a larger extent than xenograft models initiated from established cell lines. The characterization of a panel of four novel PDX models of cervical carcinoma of the uterine cervix is described in this communication. The outcome of treatment differed substantially among the donor patients, and the PDX models were found to mirror the histology, aggressiveness, and metastatic propensity of the donor patients' tumors. Two of the models (BK-12 and LA-19) were highly metastatic, one model (ED-15) was poorly metastatic, and one model (HL-16) was non-metastatic. The primary tumors of the two highly metastatic models showed high density of intratumoral lymphatics, whereas the other two models did not develop intratumoral lymphatics. The potential of the models to metastasize to lymph nodes was associated with high expression of both angiogenesis-related genes and cancer stem cell-related genes. The models may be highly valuable for studying mechanisms linking lymph node metastasis to lymphangiogenesis, hemangiogenesis, and the presence of cancer stem cells.

  10. Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway

    NASA Astrophysics Data System (ADS)

    Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan

    2011-11-01

    Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.

  11. Zebrafish models of human motor neuron diseases: advantages and limitations.

    PubMed

    Babin, Patrick J; Goizet, Cyril; Raldúa, Demetrio

    2014-07-01

    Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.

  12. Zebrafish as a model for zoonotic aquatic pathogens

    PubMed Central

    Rowe, Hannah M.; Withey, Jeffrey H.; Neely, Melody N.

    2014-01-01

    Aquatic habitats harbor a multitude of bacterial species. Many of these bacteria can act as pathogens to aquatic species and/or non-aquatic organisms, including humans, that come into contact with contaminated water sources or colonized aquatic organisms. In many instances, the bacteria are not pathogenic to the aquatic species they colonize and are only considered pathogens when they come into contact with humans. There is a general lack of knowledge about how the environmental lifestyle of these pathogens allows them to persist, replicate and produce the necessary pathogenic mechanisms to successfully transmit to the human host and cause disease. Recently, the zebrafish infectious disease model has emerged as an ideal system for examining aquatic pathogens, both in the aquatic environment and during infection of the human host. This review will focus on how the zebrafish has been used successfully to analyze the pathogenesis of aquatic bacterial pathogens. PMID:24607289

  13. Zebrafish: predictive model for targeted cancer therapeutics from nature.

    PubMed

    Zulkhernain, Nursafwana Syazwani; Teo, Soo Hwang; Patel, Vyomesh; Tan, Pei Jean

    2014-01-01

    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.

  14. Toxicity of silver nanoparticles in zebrafish models.

    PubMed

    Asharani, P V; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag(+) ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  15. Zebrafish as an animal model to study ion homeostasis.

    PubMed

    Hwang, Pung-Pung; Chou, Ming-Yi

    2013-09-01

    Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during embryonic stages) assume the role of the kidney in body fluid ionic homeostasis. Four types of ionocyte expressing distinct sets of transporters have been identified in these organs: H(+)-ATPase-rich, Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing and K(+)-secreting cells; these ionocytes perform transepithelial H(+) secretion/Na(+) uptake/NH4 (+) excretion, Ca(2+) uptake, Na(+)/Cl(-) uptake, and K(+) secretion, respectively. Zebrafish ionocytes are analogous to various renal tubular cells, in terms of ion transporter expression and function. During embryonic development, ionocyte progenitors develop from epidermal stem cells and then differentiate into different types of ionocyte through a positive regulatory loop of Foxi3a/-3b and other transcription factors. Several hormones, including cortisol, vitamin D, stanniocalcin-1, calcitonin, and isotocin, were found to participate in the control pathways of ionic homeostasis by precisely studying the target ion transport pathways, ion transporters, or ionocytes of the hormonal actions. In conclusion, the zebrafish model not only enhances our understanding of body fluid ion homeostasis and hormonal control in fish but also informs studies on mammals and other animal species, thereby providing new insights into related fields.

  16. A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models

    PubMed Central

    Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

    2013-01-01

    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

  17. A new high-content model system for studies of gastrointestinal transit: the zebrafish.

    PubMed

    Rich, A

    2009-03-01

    The zebrafish gastrointestinal (GI) tract displays an anatomy and cellular architecture that is similar to the human GI tract, with concentric layers of inner epithelia, connective tissue, circular muscle and outer longitudinal muscle layers. Propulsion of luminal content results from the integrated activity of smooth muscle cells, enteric neurons and the interstitial cells of Cajal (ICC). Zebrafish larvae are transparent and propagating contractions in the entire GI tract are easily visualized. A new moderate-throughput zebrafish-based GI transit assay is described in this issue of Neurogastroenterology and Motility. This assay utilizes intact zebrafish larvae which contain essential regulatory elements (ICC and enteric neurons). Forward genetic analysis, which identifies genes underlying specific phenotypes, is possible using the zebrafish system. The zebrafish model system compliments existing models for studies of GI motility and will contribute to the understanding of the regulation of GI motility, and to identification of novel drug targets.

  18. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration.

    PubMed

    Schmid, Bettina; Haass, Christian

    2013-11-01

    Zebrafish has become a popular model organism to study human diseases. We will highlight the advantages and limitations of zebrafish as a model organism to study neurodegenerative diseases and introduce zinc finger nucleases, transcription activator-like effector nucleases, and the recently established clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated system for genome editing. The efficiency of the novel genome editing tools now greatly facilitates knock-out and, importantly, also makes knock-in approaches feasible in zebrafish. Genome editing in zebrafish avoids unspecific phenotypes caused by off-target effects and toxicity as frequently seen in conventional knock-down approaches.

  19. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model

    PubMed Central

    Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier; Saha, Pradip K.; Chen, Leon; Bell, Peter; Pankowicz, Francis P.; Hill, Matthew C.; Barzi, Mercedes; Leyton, Claudia Kettlun; Leung, Hon-Chiu Eastwood; Kruse, Robert L.; Himes, Ryan W.; Goss, John A.; Wilson, James M.; Chan, Lawrence; Lagor, William R.; Bissig, Karl-Dimiter

    2015-01-01

    Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. PMID:26081744

  20. Statistical evaluation and experimental design of a psoriasis xenograft transplantation model treated with cyclosporin A.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Alifrangis, Lene; Andersen, Søren; Dam, Tomas Norman

    2011-05-01

    Psoriasis xenograft transplantation models where human skin is transplanted onto immune-deficient mice are generally accepted in psoriasis research. Over the last decade, they have been widely employed to screen for new therapeutics with a potential anti-psoriatic effect. However, experimental designs differ in several parameters. Especially, the number of donors and grafts per experimental design varies greatly; numbers that are directly related to the probability of detecting statistically significant drug effects. In this study, we performed a statistical evaluation of the effect of cyclosporine A, a recognized anti-psoriatic drug, to generate a statistical model employable to simulate different scenarios of experimental designs and to calculate the associated statistical study power, defined as the probability of detecting a statistically significant anti-psoriatic drug treatment effect. Results showed that to achieve a study power of 0.8, at least 20 grafts per treatment group and a minimum of five donors should be included in the chosen experimental setting. To our knowledge, this is the first time that study power calculations have been performed to evaluate treatment effects in a psoriasis xenograft transplantation model. This study was based on a defined experimental protocol, thus other parameters such as drug potency, treatment protocol, mouse strain and graft size should, also, be taken into account when designing an experiment. We propose that the results obtained in this study may lend a more quantitative support to the validity of results obtained when exploring new potential anti-psoriatic drug effects.

  1. Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model

    PubMed Central

    OBERHOLZER, J; YU, D; TRIPONEZ, F; CRETIN, N; ANDEREGGEN, E; MENTHA, G; WHITE, D; BUEHLER, L; MOREL, P; LOU, J

    1999-01-01

    Although the involvement of complement in hyperacute rejection of xenotransplants is well recognized, its role in rejection of devascularized xenografts, such as pancreatic islets, is not completely understood. In this study, we investigated whether complement participates in the immunopathology of xeno-islet transplantation in a concordant rat to mouse model. Rat pancreatic islets were implanted under the kidney capsule of normal and cobra venom factor (CVF)-decomplementized diabetic C57BL/6 mice. Graft survival was monitored by blood glucose levels. Deposition of IgM and C3 on grafted islets in vivo or on isolated islets in vitro (after incubation with normal and decomplementized mouse serum), as well as CD4- and CD8-positive leucocyte infiltration of grafts, was checked by immunohistochemistry. In addition, complement-mediated cytotoxicity on rat islet cells was evaluated by a 3-(4,5-dimethythiazolyl)-2.5-diphenyl-2H-tetrazolium-bromide (MTT) assay. A significant C3 deposition was found on grafted islets from the first day after transplantation in vivo, as well as on isolated islets after incubation with mouse serum in vitro. By MTT assay, complement-mediated cytotoxicity for islet cells was found. Decomplementation by CVF decreased C3 deposition on either isolated or grafted islets, delayed CD4- and CD8-positive leucocyte infiltration, led to significant inhibition of complement-mediated cytotoxicity for islet cells, and prolonged graft survival (mean survival time 21·3 versus 8·5 days; P <0·01). Our results indicate that decomplementation can prolong the survival time of devascularized xenografts across concordant species. The deposition of complement on transplanted islets may contribute to xenograft rejection by direct cytotoxicity and by promoting leucocyte infiltration. PMID:10447729

  2. A two-scale model for correlation between B cell VDJ usage in zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael

    2011-03-01

    The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

  3. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  4. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  5. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review

    PubMed Central

    Brown, Kai M.; Xue, Aiqun; Mittal, Anubhav; Samra, Jaswinder S.; Smith, Ross; Hugh, Thomas J.

    2016-01-01

    AIMS We sought to objectively assess the internal and external validity of patient-derived xenograft (PDX) models as a platform in pre-clinical research into colorectal cancer (CRC). Metastatic disease is the most common cause of death from CRC, and despite significant research, the results of current combination chemotherapy and targeted therapies have been underwhelming for most of this patient group. One of the key factors limiting the success of translational CRC research is the biologically inaccurate models in which new therapies are developed. METHODS We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) guidelines to search Ovid MEDLINE and Embase databases up to July 2015 to identify studies involving PDX models of CRC where the model had been validated across multiple parameters. Data was extracted including host mouse strain, engraftment rate, site of engraftment, donor tumour source and development of metastases in the model. RESULTS Thirteen articles satisfied the inclusion criteria. There was significant heterogeneity amongst the included studies, but overall the median engraftment rate was high (70%) and PDX models faithfully recapitulated the characteristics of their patient tumours on the microscopic, genetic and functional levels. CONCLUSIONS PDX models of CRC have a reasonable internal validity and a high external validity. Developments in xenografting technology are broadening the applications of the PDX platform. However, the included studies could be improved by standardising reporting standards and closed following the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines. PMID:27517155

  6. Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model.

    PubMed

    Tulotta, C; He, S; van der Ent, W; Chen, L; Groenewoud, A; Spaink, H P; Snaar-Jagalska, B E

    2016-01-01

    Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.

  7. [Application of zebrafish model organism in the research of Chinese materia medica].

    PubMed

    Chen, Lei; Liu, Yi; Liang, Sheng-Wang

    2012-04-01

    Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.

  8. Zebrafish as a Model to Investigate CNS Myelination

    PubMed Central

    Preston, Marnie A.; Macklin, Wendy B.

    2015-01-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  9. The zebrafish as a model for nociception studies.

    PubMed

    Malafoglia, Valentina; Bryant, Bruce; Raffaeli, William; Giordano, Antonio; Bellipanni, Gianfranco

    2013-10-01

    Nociception is the sensory mechanism used to detect cues that can harm an organism. The understanding of the neural networks and molecular controls of the reception of pain remains an ongoing challenge for biologists. While we have made significant progress in identifying a number of molecules and pathways that are involved in transduction of noxious stimuli, from the skin through the sensory receptor cell and from this to the spinal cord on into the central nervous system, we still lack a clear understanding of the perceptual processes, the responses to pain and the regulation of pain perception. Mice and rat animal models have been extensively used for nociception studies. However, the study of pain and noiception in these organisms can be rather laborious, costly and time consuming. Conversely, the use of Drosophila and Caenorhabditis elegans may be affected by the large evolutionary distance between these animals and humans. We outline here the reasons why zebrafish presents a new and attractive model for studying pain reception and responses and the most interesting findings in the study of nociception that have been obtained using the zebrafish model.

  10. Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy

    PubMed Central

    Hao, Jingli; Graham, Peter; Chang, Lei; Ni, Jie; Wasinger, Valerie; Beretov, Julia; Deng, Junli; Duan, Wei; Bucci, Joseph; Malouf, David; Gillatt, David; Li, Yong

    2016-01-01

    Radioresistance is a major challenge for prostate cancer (CaP) metastasis and recurrence after radiotherapy. This study aimed to identify potential protein markers and signaling pathways associated with radioresistance using a PC-3 radioresistant (RR) subcutaneous xenograft mouse model and verify the radiosensitization effect from a selected potential candidate. PC-3RR and PC-3 xenograft tumors were established and differential protein expression profiles from two groups of xenografts were analyzed using liquid chromatography tandem-mass spectrometry. One selected glycolysis marker, lactate dehydrogenase A (LDHA) was validated, and further investigated for its role in CaP radioresistance. We found that 378 proteins and 51 pathways were significantly differentially expressed between PC-3RR and PC-3 xenograft tumors, and that the glycolysis pathway is closely linked with CaP radioresistance. In addition, we also demonstrated that knock down of LDHA with siRNA or inhibition of LDHA activity with a LDHA specific inhibitor (FX-11), could sensitize PC-3RR cells to radiotherapy with reduced epithelial-mesenchymal transition, hypoxia, DNA repair ability and autophagy, as well as increased DNA double strand breaks and apoptosis. In summary, we identified a list of potential RR protein markers and important signaling pathways from a PC-3RR xenograft mouse model, and demonstrate that targeting LDHA combined with radiotherapy could increase radiosensitivity in RR CaP cells, suggesting that LDHA is an ideal therapeutic target to develop combination therapy for overcoming CaP radioresistance. PMID:27708237

  11. A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma

    PubMed Central

    Awasthi, Niranjan; Li, Jun; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs

    2017-01-01

    Esophageal adenocarcinoma (EAC) has become the dominant type of esophageal cancer in United States. The 5-year survival rate of EAC is below 20% and most patients present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Improvement of EAC patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. In this study we aimed to establish a peritoneal dissemination xenograft mouse model of EAC that would support survival outcome analyses. To find the best candidate cell line from 7 human EAC cell lines of different origin named ESO26, OE33, ESO51, SK-GT-2, OE19, OACM5.1C and Flo-1 were injected intraperitoneally/subcutaneously into SCID mice. The peritoneal/xenograft tumor formation and mouse survival were compared among different groups. All cell lines injected subcutaneously formed tumors within 3 months at variable rates. All cell lines except OACM5.1C formed intraperitoneal tumors within 3 months at variable rates. Median animal survival with peritoneal dissemination was 108 days for ESO26 cells (5X106), 65 days for OE33 cells (5X106), 88 days for ESO51 cells (5X106), 76 days for SK-GT-2 cells (5X106), 55 days for OE19 cells (5X106), 45 days for OE19 cells (10X106) and 82 days for Flo-1 cells (5X106). Interestingly, only in the OE19 model all mice (7/7 for 5X106 and 5/5 for10X106) developed bloody ascites with liver metastasis after intraperitoneal injection. The median survival time of these animals was the shortest (45 days for 10X106 cells). In addition, median survival was significantly increased after paclitaxel treatment compared with the control group (57 days versus 45 days, p = 0.0034) along with a significant decrease of the relative subcutaneous tumor volume (p = 0.00011). Thus peritoneal dissemination mouse xenograft model for survival outcome assessment after intraperitoneal injection of OE19 cells will

  12. Patient-Derived Xenografts as a Model System for Radiation Research

    PubMed Central

    Willey, Christopher D.; Gilbert, Ashley; Anderson, Joshua C.; Gillespie, G. Yancey

    2015-01-01

    The cancer literature is filled with promising preclinical studies demonstrating impressive efficacy for new therapeutics, yet translation of these approaches into clinical successes has been rare, indicating that current methods used to predict efficacy are sub-optimal. The most likely reason for the limitation of these studies is the disconnect between preclinical models and cancers treated in the clinic. Specifically, most preclinical models are poor representations of human disease. Immortalized cancer cell lines that dominate the cancer literature may be, in a sense, “paper tigers” that have been selected by decades of culture to be artificially driven by highly targetable proteins. Thus, although effective in treating these cell lines either in vitro or as artificial tumors transplanted from culture into experimental animals as xenografts, the identified therapies will likely underperform in a clinical setting. This inherent limitation not only applies to drug testing, but also to experiments with radiation therapy. Indeed, traditional radiobiology methods rely on monolayer culture systems, with emphasis on colony formation and DNA damage assessment that may have limited clinical translation. As such, there has been keen interest in developing tumor explant systems in which patient tumors are directly transplanted into, and solely maintained in vivo, using immunocompromised mice. These so-called Patient-Derived Xenografts (PDX) represent a robust model system that has been garnering support in academia and industry as a superior preclinical approach to drug testing. Likewise, PDX models have the potential to improve radiation research. In this review, we describe how PDX models are currently being used for both drug and radiation testing and how they can be incorporated into a translational research program. PMID:26384275

  13. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  14. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  15. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  16. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  17. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  18. Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models

    PubMed Central

    Lee, Ji Young; Kim, Eun Ho; Chung, Namhyun

    2016-01-01

    The purpose of this study was to delineate the various factors that affect the growth characteristics of human cancer xenografts in nude mice and to reveal the relationship between the growth characteristics and radiosensitivity. We retrospectively analyzed 390 xenografts comprising nine different human cancer lines grown in nude mice used in our institute between 2009 and 2015. Tumor growth rate (TGR) was calculated using exponential growth equations. The relationship between the TGR of xenografts and the proliferation of the cells in vitro was examined. Additionally, we examined the correlations between the surviving fractions of cells after 2 Gy irradiation in vitro and the response of the xenograft to radiation. The TGR of xenografts was positively related to the proliferation of the cells in vitro (rP=0.9714, p<0.0001), whereas it was independent of the histological type of the xenografts. Radiation-induced suppression of the growth rate (T/C%) of xenografts was positively related to the radiosensitivity of the cells in vitro (SF2; rP=0.8684, p=0.0284) and TGR (rP=0.7623, p=0.0780). The proliferation of human cancer cells in vitro and the growth rate of xenografts were positively related. The radiosensitivity of cancer cells, as judged from the SF2 values in vitro, and the radiation-induced suppression of xenograft growth were positively related. In conclusion, the growth rate of human xenografts was independent of histological type and origin of the cancer cells, and was positively related to the proliferation of the cancer cells in vitro. PMID:28053611

  19. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    PubMed

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing.

  20. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  1. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    SciTech Connect

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A.

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  2. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  3. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  4. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  5. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation.

  6. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  7. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease.

    PubMed

    Carnovali, M; Ottria, R; Pasqualetti, S; Banfi, G; Ciuffreda, P; Mariotti, M

    2016-02-01

    The endocannabinoid system (which includes fatty acid derivatives, receptors, and metabolizing enzymes) is involved in a variety of physiological processes, including bone metabolism in which it regulates the function of osteoblasts and osteoclasts, as well as differentiation of their precursors. The zebrafish (Danio rerio) provides a useful animal model for bone research since zebrafish bones develop rapidly and are anatomically similar to mammalian bones. Putative orthologues and paralogs of endocannabinoid genes have recently been identified in zebrafish, demonstrating the presence of cannabinoid type 1 (CB1) and type 2 (CB2) receptors with affinity to endocannabinoid ligands. To identify therapeutic molecules potentially useful in bone-related diseases, we evaluated the in vivo effects of exposure to long-chain fatty acid amides in adult zebrafish. Using a well-established zebrafish scale model, we found that anandamide and N-linoleoylethanolamine are able to stimulate bone formation by increasing alkaline phosphatase activity in physiological conditions. In addition, they prevent the alteration of bone markers in a prednisolone-induced osteoporosis model in adult zebrafish scales, whereas their esterified forms do not. These data suggest that long-chain fatty acid amides are involved in regulating bone metabolism in zebrafish scales and that the CB2 receptor is a key mediator in this process.

  8. Patient-derived xenograft (PDX) models in basic and translational breast cancer research.

    PubMed

    Dobrolecki, Lacey E; Airhart, Susie D; Alferez, Denis G; Aparicio, Samuel; Behbod, Fariba; Bentires-Alj, Mohamed; Brisken, Cathrin; Bult, Carol J; Cai, Shirong; Clarke, Robert B; Dowst, Heidi; Ellis, Matthew J; Gonzalez-Suarez, Eva; Iggo, Richard D; Kabos, Peter; Li, Shunqiang; Lindeman, Geoffrey J; Marangoni, Elisabetta; McCoy, Aaron; Meric-Bernstam, Funda; Piwnica-Worms, Helen; Poupon, Marie-France; Reis-Filho, Jorge; Sartorius, Carol A; Scabia, Valentina; Sflomos, George; Tu, Yizheng; Vaillant, François; Visvader, Jane E; Welm, Alana; Wicha, Max S; Lewis, Michael T

    2016-12-01

    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.

  9. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system.

    PubMed

    Schmidt, Hayden R; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure.

  10. Zebrafish as a model for monocarboxyl transporter 8-deficiency.

    PubMed

    Vatine, Gad David; Zada, David; Lerer-Goldshtein, Tali; Tovin, Adi; Malkinson, Guy; Yaniv, Karina; Appelbaum, Lior

    2013-01-04

    Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter, monocarboxylate transporter 8 (MCT8), are associated with AHDS. MCT8 knock-out mice exhibit impaired TH levels; however, they lack neurological defects. Here, the zebrafish mct8 gene and promoter were isolated, and mct8 promoter-driven transgenic lines were used to show that, similar to humans, mct8 is primarily expressed in the nervous and vascular systems. Morpholino-based knockdown and rescue experiments revealed that MCT8 is strictly required for neural development in the brain and spinal cord. This study shows that MCT8 is a crucial regulator during embryonic development and establishes the first vertebrate model for MCT8 deficiency that exhibits a neurological phenotype.

  11. Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte-specific reporter line in zebrafish.

    PubMed

    Lin, Q; Zhang, Y; Zhou, R; Zheng, Y; Zhao, L; Huang, M; Zhang, X; Leung, A Y H; Zhang, W; Zhang, Y

    2016-11-29

    Mutations in the human myeloproliferative leukemia (MPL) protein gene are known to cause congenital amegakaryocytic thrombocytopenia (CAMT). The prognosis of this heritable disorder is poor and bone marrow transplantation is the only effective treatment. Here, by using the TALEN (transcription activator-like effector nuclease) technology, we created a zebrafish mpl mutant to model human CAMT. Disruption of zebrafish mpl lead to a severe reduction in thrombocytes and a high bleeding tendency, as well as deficiencies in adult hematopoietic stem/progenitor cells. We further demonstrated that thrombocytopenia in mpl mutant zebrafish was caused by impaired Tpo/Mpl/Jak2 signaling, resulting in reduced proliferation of thrombocyte precursors. These results indicate that mpl mutant zebrafish develop thrombocytopenia resembling the human CAMT. To utilize fully zebrafish to study thrombocyte biology and thrombocytopenia disorders, we generated a transgenic reporter line Tg(mpl:eGFP)smu4, in which green fluorescent protein (GFP) expression was driven by the mpl promoter. Detailed characterization of Tg(mpl:eGFP)smu4 fish confirmed that the thrombocyte lineage was specifically marked by GFP expression. In conclusion, we generated the first transmissible congenital thrombocytopenia zebrafish model mimicking human CAMT and a thrombocyte-specific transgenic line. Together with Tg(mpl:eGFP)smu4, mpl mutant zebrafish provide a useful tool for drug screening and study of thrombocytopoiesis.Leukemia advance online publication, 29 November 2016; doi:10.1038/leu.2016.320.

  12. A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection.

    PubMed

    Xu, Xiaopeng; Zhang, Lichun; Weng, Shaoping; Huang, Zhijian; Lu, Jing; Lan, Dongming; Zhong, Xuejun; Yu, Xiaoqiang; Xu, Anlong; He, Jianguo

    2008-06-20

    Zebrafish is a model animal for studies of genetics, development, toxicology, oncology, and immunology. In this study, infectious spleen and kidney necrosis virus (ISKNV) was used to establish an infection in zebrafish, and the experimental conditions were established and characterized. Mortality of adult zebrafish infected with ISKNV by intraperitoneal (i.p.) injection exceeded 60%. ISKNV can be passed stably in zebrafish for over ten passages. The ailing zebrafish displayed petechial hemorrhaging and scale protrusion. Histological analysis of moribund fish revealed necrosis of tissue and enlarged cells in kidney and spleen. The real-time RT-PCR analysis of mRNA level confirmed that ISKNV was replicated in zebrafish. Immunohistochemistry and immunofluorescence analyses further confirmed the presence of ISKNV-infected cells in almost all organs of the infected fish. Electron microscope analyses showed that the ISKNV particle was present in the infected tissues. The establishment of zebrafish infection model of ISKNV can offer a valuable tool for studying the interactions between ISKNV and its host.

  13. Antitumor Activity of VB-111, a Novel Antiangiogenic Virotherapeutic, in Thyroid Cancer Xenograft Mouse Models

    PubMed Central

    Reddi, H. V.; Madde, P.; Cohen, Y. C.; Bangio, L.; Breitbart, E.; Harats, D.; Bible, K. C.

    2011-01-01

    VB-111 is an engineered antiangiogenic adenovirus that expresses Fas-c in angiogenic blood vessels and has previously been shown to have significant antitumor activity in vitro and in vivo in Lewis lung carcinoma, melanoma, and glioblastoma models. To evaluate the efficacy of VB-111 in thyroid cancer, we conducted in vivo xenograft nude mouse studies using multiple thyroid cancer-derived cell lines models. VB-111 treatment resulted in 26.6% (P = 0.0596), 34.4% (P = 0.0046), and 37.6% (P = 0.0249) inhibition of tumor growth in follicular, papillary and anaplastic thyroid cancer models, respectively. No toxicity was observed in any model. All tumor types showed a consistent and significant reduction of CD-31 staining (P < 0.05), reflecting a reduction of angiogenic activity in the tumors, consistent with the intended targeting of the virus. A phase 2 clinical trial of VB-111 in patients with advanced differentiated thyroid cancer is ongoing. PMID:22701765

  14. Zebrafish – As an Integrative Model for Twenty-first Century Toxicity Testing

    EPA Science Inventory

    The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the...

  15. The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening

    EPA Pesticide Factsheets

    The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)

  16. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  17. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy.

    PubMed

    Valiulienė, Giedrė; Treigytė, Gražina; Savickienė, Jūratė; Matuzevičius, Dalius; Alksnė, Milda; Jarašienė-Burinskaja, Rasa; Bukelskienė, Virginija; Navakauskas, Dalius; Navakauskienė, Rūta

    2016-04-01

    Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism.

  18. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    PubMed

    Szymanska, Barbara; Wilczynska-Kalak, Urszula; Kang, Min H; Liem, Natalia L M; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C Patrick; Stewart, Clinton F; Lock, Richard B

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  19. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  20. Patient-Derived Xenograft Models to Improve Targeted Therapy in Epithelial Ovarian Cancer Treatment

    PubMed Central

    Scott, Clare L.; Becker, Marc A.; Haluska, Paul; Samimi, Goli

    2013-01-01

    Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer (OC) patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy. PDX models have been applied to pre-clinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast, and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations, and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues addressed in PDX models

  1. Robotic injection of zebrafish embryos for high-throughput screening in disease models.

    PubMed

    Spaink, Herman P; Cui, Chao; Wiweger, Malgorzata I; Jansen, Hans J; Veneman, Wouter J; Marín-Juez, Rubén; de Sonneville, Jan; Ordas, Anita; Torraca, Vincenzo; van der Ent, Wietske; Leenders, William P; Meijer, Annemarie H; Snaar-Jagalska, B Ewa; Dirks, Ron P

    2013-08-15

    The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.

  2. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  3. Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics

    PubMed Central

    Brunt, Lucy H.; Roddy, Karen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2016-01-01

    Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw. PMID:28060270

  4. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation

    PubMed Central

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-01-01

    Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review. PMID:27983682

  5. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    PubMed Central

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Background Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Methods Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. Results CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. Conclusion CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in

  6. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  7. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  8. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model.

    PubMed

    Jakobsen, Maria; Stenderup, Karin; Rosada, Cecilia; Moldt, Brian; Kamp, Søren; Dam, Tomas N; Jensen, Thomas G; Mikkelsen, Jacob Giehm

    2009-10-01

    Tumor necrosis factor-alpha (TNF-alpha) is upregulated in psoriatic skin and represents a prominent target in psoriasis treatment. The level of TNF-alpha-encoding mRNA, however, is not increased in psoriatic skin, and it remains unclear whether intervention strategies based on RNA interference (RNAi) are therapeutically relevant. To test this hypothesis the present study describes first the in vitro functional screening of a panel of short hairpin RNAs (shRNAs) targeting human TNF-alpha mRNA and, next, the transfer of the most potent TNF-alpha shRNA variant, as assessed in vitro, to human skin in the psoriasis xenograft transplantation model by the use of lentiviral vectors. TNF-alpha shRNA treatment leads to amelioration of the psoriasis phentotype in the model, as documented by reduced epidermal thickness, normalization of the skin morphology, and reduced levels of TNF-alpha mRNA as detected in skin biopsies 3 weeks after a single vector injection of lentiviral vectors encoding TNF-alpha shRNA. Our data show efficient lentiviral gene delivery to psoriatic skin and therapeutic applicability of anti-TNF-alpha shRNAs in human skin. These findings validate TNF-alpha mRNA as a target molecule for a potential persistent RNA-based treatment of psoriasis and establish the use of small RNA effectors as a novel platform for target validation in psoriasis and other skin disorders.

  9. Physeal Bystander Effects in Rhabdomyosarcoma Radiotherapy: Experiments in a New Xenograft Model

    PubMed Central

    Horton, Jason A.; Strauss, Judith A.; Allen, Matthew J.; Damron, Timothy A.

    2011-01-01

    Radiotherapy used in the treatment of pediatric musculoskeletal sarcomas may result in crippling defects of skeletal growth. Several radioprotective strategies have shown potential for preserving function of the irradiated epiphysis but have not been evaluated in a tumor-bearing animal model. We developed two bioluminescent human rhabdomyosarcoma cell lines that were used to establish xenograft tumors in skeletally immature mice. Bioluminescence imaging and radiography allowed serial evaluation of tumor growth and tibial elongation following localized radiotherapy. High-dose (10 Gy) radiotherapy significantly reduced tumor growth velocity and prolonged the median survival of tumor-bearing mice but also resulted in a significant 3.3% shortening of the irradiated limb. Exposure to a lower, 2 Gy dose resulted in 4.1% decrease in limb length but did not extend survival. This new model provides a clinically relevant means to test the efficacy and safety of novel radioprotectant and radiorecovery strategies for use in this context. PMID:21559211

  10. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Kim, Yoo-Shin; Aryasomayajula, Bhawani; Boulikas, Teni; Phan, Jack; Hung, Mien-Chie; Torchilin, Vladimir P; O’Neill, Brian E; Lapotko, Dmitri O

    2015-01-01

    Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an “inversion” of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials. PMID:26885444

  11. Zebrafish: A Versatile Animal Model for Fertility Research.

    PubMed

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  12. Zebrafish: A Versatile Animal Model for Fertility Research

    PubMed Central

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045

  13. Zebrafish as a Potential Model Organism for Drug Test Against Hepatitis C Virus

    PubMed Central

    Ding, Cun-Bao; Zhang, Jing-Pu; Zhao, Ye; Peng, Zong-Gen; Song, Dan-Qing; Jiang, Jian-Dong

    2011-01-01

    Screening and evaluating anti- hepatitis C virus (HCV) drugs in vivo is difficult worldwide, mainly because of the lack of suitable small animal models. We investigate whether zebrafish could be a model organism for HCV replication. To achieve NS5B-dependent replication an HCV sub-replicon was designed and created with two vectors, one with HCV ns5b and fluorescent rfp genes, and the other containing HCV's 5′UTR, core, 3′UTR and fluorescent gfp genes. The vectors containing sub-replicons were co-injected into zebrafish zygotes. The sub-replicon amplified in liver showing a significant expression of HCV core RNA and protein. The sub-replicon amplification caused no abnormality in development and growth of zebrafish larvae, but induced gene expression change similar to that in human hepatocytes. As the amplified core fluorescence in live zebrafish was detectable microscopically, it rendered us an advantage to select those with replicating sub-replicon for drug experiments. Ribavirin and oxymatrine, two known anti-HCV drugs, inhibited sub-replicon amplification in this model showing reduced levels of HCV core RNA and protein. Technically, this method had a good reproducibility and is easy to operate. Thus, zebrafish might be a model organism to host HCV, and this zebrafish/HCV (sub-replicon) system could be an animal model for anti-HCV drug screening and evaluation. PMID:21857967

  14. A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy

    PubMed Central

    Smith, Sarah J.; Wang, Jeffrey C.; Gupta, Vandana A.; Dowling, James J.

    2017-01-01

    Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing. PMID:28241031

  15. Establishment of multi-site infection model in zebrafish larvae for studying Staphylococcus aureus infectious disease.

    PubMed

    Li, Ya-juan; Hu, Bing

    2012-09-20

    Zebrafish (Danio rerio) is an ideal model for studying the mechanism of infectious disease and the interaction between host and pathogen. As a teleost, zebrafish has developed a complete immune system which is similar to mammals. Moreover, the easy acquirement of large amounts of transparent embryos makes it a good candidate for gene manipulation and drug screening. In a zebrafish infection model, all of the site, timing, and dose of the bacteria microinjection into the embryo are important factors that determine the bacterial infection of host. Here, we established a multi-site infection model in zebrafish larvae of 36 hours post-fertilization (hpf) by microinjecting wild-type or GFP-expressing Staphylococcus aereus (S. aureus) with gradient burdens into different embryo sites including the pericardial cavity (PC), eye, the fourth hindbrain ventricle (4V), yolk circulation valley (YCV), caudal vein (CV), yolk body (YB), and Duct of Cuvier (DC) to resemble human infectious disease. With the combination of GFP-expressing S. aureus and transgenic zebrafish Tg (coro1a: eGFP; lyz: Dsred) and Tg (lyz: Dsred) lines whose macrophages or neutrophils are fluorescent labeled, we observed the dynamic process of bacterial infection by in vivo multicolored confocal fluorescence imaging. Analyses of zebrafish embryo survival, bacterial proliferation and myeloid cells phagocytosis show that the site- and dose-dependent differences exist in infection of different bacterial entry routes. This work provides a consideration for the future study of pathogenesis and host resistance through selection of multi-site infection model. More interaction mechanisms between pathogenic bacteria virulence factors and the immune responses of zebrafish could be determined through zebrafish multi-site infection model.

  16. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model.

    PubMed

    Guo, Yong; He, Bin; Xu, Xiangbo; Wang, Jiedong

    2011-02-17

    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.

  17. Establishment, Maintenance and in vitro and in vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery

    PubMed Central

    Carlson, Brett L.; Pokorny, Jenny L.; Schroeder, Mark A.; Sarkaria, Jann N.

    2011-01-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors then can be used to establish short-term explant cultures or intracranial xenografts. The focus of this manuscript is to review the procedures associated with the establishment, maintenance and utilization of a primary GBM xenograft panel. PMID:21743824

  18. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics

    PubMed Central

    Spikol, Emma D.; Laverriere, Caroline E.; Robnett, Maya; Carter, Gabriela; Wolfe, Erin; Glasgow, Eric

    2016-01-01

    Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients. PMID:27857842

  19. Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Beldiman, Cornelia; Payne, Kimberly J

    2016-03-01

    Many leukemias are characterized by well-known mutations that drive oncogenesis. Mice engineered with these mutations provide a foundation for understanding leukemogenesis and identifying therapies. However, data from whole genome studies provide evidence that malignancies are characterized by multiple genetic alterations that vary between patients, as well as inherited genetic variation that can also contribute to oncogenesis. Improved outcomes will require precision medicine approaches-targeted therapies tailored to malignancies in each patient. Preclinical models that reflect the range of mutations and the genetic background present in patient populations are required to develop and test the combinations of therapies that will be used to provide precision medicine therapeutic strategies. Patient-derived xenografts (PDX) produced by transplanting leukemia cells from patients into immune deficient mice provide preclinical models where disease mechanisms and therapeutic efficacy can be studied in vivo in context of the genetic variability present in patient tumors. PDX models are possible because many elements in the bone marrow microenvironment show cross-species activity between mice and humans. However, several cytokines likely to impact leukemia cells are species-specific with limited activity on transplanted human leukemia cells. In this review we discuss the importance of PDX models for developing precision medicine approaches to leukemia treatment. We illustrate how PDX models can be optimized to overcome a lack of cross-species cytokine activity by reviewing a recent strategy developed for use with a high-risk form of B-cell acute lymphoblastic leukemia (B-ALL) that is characterized by overexpression of CRLF2, a receptor component for the cytokine, TSLP.

  20. Systematic Repurposing Screening in Xenograft Models Identifies Approved Drugs with Novel Anti-Cancer Activity

    PubMed Central

    Roix, Jeffrey J.; Harrison, S. D.; Rainbolt, Elizabeth A.; Meshaw, Kathryn R.; McMurry, Avery S.; Cheung, Peter; Saha, Saurabh

    2014-01-01

    Approved drugs target approximately 400 different mechanisms of action, of which as few as 60 are currently used as anti-cancer therapies. Given that on average it takes 10–15 years for a new cancer therapeutic to be approved, and the recent success of drug repurposing for agents such as thalidomide, we hypothesized that effective, safe cancer treatments may be found by testing approved drugs in new therapeutic settings. Here, we report in-vivo testing of a broad compound collection in cancer xenograft models. Using 182 compounds that target 125 unique target mechanisms, we identified 3 drugs that displayed reproducible activity in combination with the chemotherapeutic temozolomide. Candidate drugs appear effective at dose equivalents that exceed current prescription levels, suggesting that additional pre-clinical efforts will be needed before these drugs can be tested for efficacy in clinical trials. In total, we suggest drug repurposing is a relatively resource-intensive method that can identify approved medicines with a narrow margin of anti-cancer activity. PMID:25093583

  1. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  2. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  3. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model.

    PubMed

    Villadsen, Louise S; Schuurman, Janine; Beurskens, Frank; Dam, Tomas N; Dagnaes-Hansen, Frederik; Skov, Lone; Rygaard, Jorgen; Voorhorst-Ogink, Marleen M; Gerritsen, Arnout F; van Dijk, Marc A; Parren, Paul W H I; Baadsgaard, Ole; van de Winkel, Jan G J

    2003-11-01

    Psoriasis is a chronic inflammatory disease of the skin characterized by epidermal hyperplasia, dermal angiogenesis, infiltration of activated T cells, and increased cytokine levels. One of these cytokines, IL-15, triggers inflammatory cell recruitment, angiogenesis, and production of other inflammatory cytokines, including IFN-gamma, TNF-alpha, and IL-17, which are all upregulated in psoriatic lesions. To investigate the role of IL-15 in psoriasis, we generated mAb's using human immunoglobulin-transgenic mice. One of the IL-15-specific antibodies we generated, 146B7, did not compete with IL-15 for binding to its receptor but potently interfered with the assembly of the IL-15 receptor alpha, beta, gamma complex. This antibody effectively blocked IL-15-induced T cell proliferation and monocyte TNF-alpha release in vitro. In a human psoriasis xenograft model, antibody 146B7 reduced the severity of psoriasis, as measured by epidermal thickness, grade of parakeratosis, and numbers of inflammatory cells and cycling keratinocytes. These results obtained with this IL-15-specific mAb support an important role for IL-15 in the pathogenesis of psoriasis.

  4. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  5. Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis

    PubMed Central

    2013-01-01

    Background Inflammatory bowel disease (IBD) involves a breakdown in interactions between the host immune response and the resident commensal microbiota. Recent studies have suggested gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae. The aim of this study was to investigate the dysbiosis of intestinal microbiota in zebrafish models with IBD-like enterocolitis using culture-independent techniques. Results IBD-like enterocolitis was induced by exposing larval zebrafish to trinitrobenzenesulfonic acid (TNBS). Pathology was assessed by histology and immunofluorescence. Changes in intestinal microbiota were evaluated by denaturing gradient gel electrophoresis (DGGE) and the predominant bacterial composition was determined with DNA sequencing and BLAST and confirmed by real-time polymerase chain reaction. Larval zebrafish exposed to TNBS displayed intestinal-fold architecture disruption and inflammation reminiscent of human IBD. In this study, we defined a reduced biodiversity of gut bacterial community in TNBS-induced coliitis. The intestinal microbiota dysbiosis in zebrafish larvae with IBD-like colitis was characterized by an increased proportion of Proteobacteria (especially Burkholderia) and a decreased of Firmicutes(Lactobacillus group), which were significantly correlated with enterocolitis severity(Pearson correlation p < 0.01). Conclusions This is the first description of intestinal microbiota dysbiosis in zebrafish IBD-like models, and these changes correlate with TNBS-induced enterocolitis. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of human IBD. PMID:24325678

  6. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching.

    PubMed

    Howe, Douglas G; Bradford, Yvonne M; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-04

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, 'Fish' records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search.

  7. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    PubMed Central

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  8. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model.

    PubMed

    Jantscheff, Peter; Ziroli, Vittorio; Esser, Norbert; Graeser, Ralph; Kluth, Jessica; Sukolinskaya, Alena; Taylor, Lenka A; Unger, Clemens; Massing, Ulrich

    2009-01-01

    Fatal outcomes of prostate carcinoma (PCa) mostly result from metastatic spread rather than from primary tumor burden. Here, we monitored growth and metastatic spread of an orthotopic luciferase/GFP-expressing LNCaP PCa xenograft model in SCID mice by in vivo imaging and in vitro luciferase assay of tissues homogenates. Although the metastatic spread generally shows a significant correlation to primary tumor volumes, the susceptibility of various tissues to metastatic invasion was different in the number of affected animals as well as in absolute metastatic burden in the individual tissues. Using this xenograft model we showed that treatment with liposomal gemcitabine (GemLip) inhibited growth of the primary tumors (83.9 +/- 6.4%; P = 0.009) as well as metastatic burden in lymph nodes (95.6 +/- 24.0%; P = 0.047), lung (86.5 +/- 10.5%; P = 0.015), kidney (88.4 +/- 9.2%; P = 0.045) and stomach (79.5 +/- 6.6%; P = 0.036) already at very low efficient concentrations (8 mg/kg) as compared to conventional gemcitabine (360 mg/kg). Our data show that this orthotopic LNCaP xenograft PCa model seems to reflect the clinical situation characterized by the fact that at time of diagnosis, prostate neoplasms are biologically heterogeneous and thus, it is a useful model to investigate new anti-metastatic therapies.

  9. P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models.

    PubMed

    Lopez-Barcons, Lluis; Maurer, Barry J; Kang, Min H; Reynolds, C Patrick

    2017-03-24

    We previously reported that concurrent ketoconazole, an oral anti-fungal agent and P450 enzyme inhibitor, increased plasma levels of the cytotoxic retinoid, fenretinide (4-HPR) in mice. We have now determined the effects of concurrent ketoconazole on 4-HPR cytotoxic dose-response in four neuroblastoma (NB) cell lines in vitro and on 4-HPR activity against two cell line-derived, subcutaneous NB xenografts (CDX) and three patient-derived NB xenografts (PDX). Cytotoxicity in vitro was assessed by DIMSCAN assay. Xenografted animals were treated with 4-HPR/LXS (240 mg/kg/day) + ketoconazole (38 mg/kg/day) in divided oral doses in cycles of five continuous days a week. In one model, intratumoral levels of 4-HPR and metabolites were assessed by HPLC assay, and in two models intratumoral apoptosis was assessed by TUNEL assay, on Day 5 of the first cycle. Antitumor activity was assessed by Kaplan-Meier event-free survival (EFS). The in vitro cytotoxicity of 4-HPR was not affected by ketoconazole (P ≥ 0.06). Ketoconazole increased intratumoral levels of 4-HPR (P = 0.02), of the active 4-oxo-4-HPR metabolite (P = 0.04), and intratumoral apoptosis (P ≤ 0.002), compared to 4-HPR/LXS-alone. Concurrent ketoconazole increased EFS in both CDX models compared to 4-HPR/LXS-alone (P ≤ 0.01). 4-HPR + ketoconazole also increased EFS in PDX models compared to controls (P ≤ 0.03). Thus, concurrent ketoconazole decreased 4-HPR metabolism with resultant increases of plasma and intratumoral drug levels and antitumor effects in neuroblastoma murine xenografts. These results support the clinical testing of concurrent ketoconazole and oral fenretinide in neuroblastoma. This article is protected by copyright. All rights reserved.

  10. A transgenic zebrafish model for monitoring glucocorticoid receptor activity

    PubMed Central

    Krug, Randall G.; Poshusta, Tanya L.; Skuster, Kimberly J.; Berg, MaKayla R.; Gardner, Samantha L.; Clark, Karl J.

    2014-01-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socio-economically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder. PMID:24679220

  11. Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model

    SciTech Connect

    Wachsberger, Phyllis; Burd, Randy; Ryan, Anderson; Daskalakis, Constantine; Dicker, Adam P.

    2009-11-01

    Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

  12. Cellular therapy in combination with cytokines improves survival in a xenograft mouse model of ovarian cancer.

    PubMed

    Ingersoll, Susan B; Ahmad, Sarfraz; McGann, Hasina C; Banks, Robert K; Stavitzski, Nicole M; Srivastava, Milan; Ali, Ghazanfar; Finkler, Neil J; Edwards, John R; Holloway, Robert W

    2015-09-01

    Studies have shown enhanced survival of ovarian cancer patients in which the tumors are infiltrated with tumor infiltrating lymphocytes and natural killer cells showing the importance of immune surveillance and recognition in ovarian cancer. Therefore, in this study, we tested cellular immunotherapy and varying combinations of cytokines (IL-2 and/or pegylated-IFNα-2b) in a xenograft mouse model of ovarian cancer. SKOV3-AF2 ovarian cancer cells were injected intra-peritoneally (IP) into athymic nude mice. On day 7 post-tumor cell injection, mice were injected IP with peripheral blood mononuclear cells (PBMC; 5 × 10(6) PBMC) and cytokine combinations [IL-2 ± pegylated-IFNα-2b (IFN)]. Cytokine injections were continued weekly for IFN (12,000 U/injection) and thrice weekly for IL-2 (4000 U/injection). Mice were euthanized when they became moribund due to tumor burden at which time tumor and ascitic fluid were measured and collected. Treatment efficacy was measured by improved survival at 8 weeks and overall survival by Kaplan-Meier analysis. We observed that the mice tolerated all treatment combinations without significant weight loss or other apparent illness. Mice receiving PBMC plus IL-2 showed improved median survival (7.3 weeks) compared to mice with no treatment (4.2 weeks), IL-2 (3.5 weeks), PBMC (4.0 weeks), or PBMC plus IL-2 and IFN (4.3 weeks), although PBMC plus IL-2 was not statistically different than PBMC plus IFN (5.5 weeks, p > 0.05). We demonstrate that cytokine-stimulated cellular immune therapy with PBMC and IL-2 was well tolerated and resulted in survival advantage compared to untreated controls and other cytokine combinations in the nude-mouse model.

  13. Phylogeny of Zebrafish, a “Model Species,” within Danio, a “Model Genus”

    PubMed Central

    McCluskey, Braedan M.; Postlethwait, John H.

    2015-01-01

    Zebrafish (Danio rerio) is an important model for vertebrate development, genomics, physiology, behavior, toxicology, and disease. Additionally, work on numerous Danio species is elucidating evolutionary mechanisms for morphological development. Yet, the relationships of zebrafish and its closest relatives remain unclear possibly due to incomplete lineage sorting, speciation with gene flow, and interspecies hybridization. To clarify these relationships, we first constructed phylogenomic data sets from 30,801 restriction-associated DNA (RAD)-tag loci (483,026 variable positions) with clear orthology to a single location in the sequenced zebrafish genome. We then inferred a well-supported species tree for Danio and tested for gene flow during the diversification of the genus. An approach independent of the sequenced zebrafish genome verified all inferred relationships. Although identification of the sister taxon to zebrafish has been contentious, multiple RAD-tag data sets and several analytical methods provided strong evidence for Danio aesculapii as the most closely related extant zebrafish relative studied to date. Data also displayed patterns consistent with gene flow during speciation and postspeciation introgression in the lineage leading to zebrafish. The incorporation of biogeographic data with phylogenomic analyses put these relationships in a phylogeographic context and supplied additional support for D. aesculapii as the sister species to D. rerio. The clear resolution of this study establishes a framework for investigating the evolutionary biology of Danio and the heterogeneity of genome evolution in the recent history of a model organism within an emerging model genus for genetics, development, and evolution. PMID:25415969

  14. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products

    PubMed Central

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R.

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential “hits” fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a “bridge” to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories. PMID:26681965

  15. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation.

    PubMed

    Perrin, George Q; Li, Hua; Fishbein, Lauren; Thomson, Susanne A; Hwang, Min S; Scarborough, Mark T; Yachnis, Anthony T; Wallace, Margaret R; Mareci, Thomas H; Muir, David

    2007-11-01

    Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

  16. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.

  17. Synchronized oscillations in a mathematical model of segmentation in zebrafish

    NASA Astrophysics Data System (ADS)

    Liao, Kang-Ling; Shih, Chih-Wen; Tseng, Jui-Pin

    2012-04-01

    Somitogenesis is a process for the development of somites which are transient, segmental structures that lie along the anterior-posterior axis of vertebrate embryos. The pattern of somites is governed by the segmentation clock and its timing is controlled by the clock genes which undergo synchronous oscillation over adjacent cells in the posterior presomitic mesoderm (PSM). In this paper, we analyze a mathematical model which depicts the kinetics of the zebrafish segmentation clock genes subject to direct autorepression by their own products under time delay, and cell-to-cell interaction through Delta-Notch signalling. Our goal is to elucidate how synchronous oscillations are generated for the cells in the posterior PSM, and how oscillations are arrested for the cells in the anterior PSM. For this system of delayed equations, an iteration technique is employed to derive the global convergence to the synchronous equilibrium, which corresponds to the oscillation-arrested. By applying the delay Hopf bifurcation theory and the center manifold theorem, we derive the criteria for the existence of stable synchronous oscillations for the cells at the tail bud of the PSM. Our analysis provides the basic parameter ranges and delay magnitudes for stable synchronous, asynchronous oscillation and oscillation-arrested. We exhibit how synchronous oscillations are affected by the degradation rates and delays. Extended from the analytic theory, further numerical findings linked to the segmentation process are presented.

  18. Mitotane effects in a H295R xenograft model of adjuvant treatment of adrenocortical cancer.

    PubMed

    Lindhe, O; Skogseid, B

    2010-09-01

    Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, O, P'-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. O, P'-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [ (11)C]methionine (MET), [ (11)C] metomidate (MTO), 2-deoxy-2-[ (18)F]fluoro-d-glucose (FDG), and [ (18)F]-l-tyrosine (FLT) in the aggregates were assessed +/- drug treatment in vitro. Tumor growth was significantly inhibited when O, P'-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with O, P'-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 microM O, P'-DDD (p<0.01) in vitro. MeSO2-DDE (15 microM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with O, P'-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with O,P'-DDD. Further studies in humans are needed to investigate this.

  19. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer.

    PubMed

    Duska, L R; Hamblin, M R; Bamberg, M P; Hasan, T

    1997-01-01

    The effect of charge modification of photoimmunoconjugates (PICs) on their biodistribution in a xenograft model of ovarian cancer was investigated. Chlorin(e6)c(e6) was attached site specifically to the F(ab')2 fragment of the murine monoclonal antibody OC125, directed against human ovarian cancer cells, via poly-1-lysine linkers carrying cationic or anionic charges. Preservation of immunoreactivity was checked by enzyme-linked immunosorbent assay (ELISA). PICs were radiolabelled with 125I and compared with non-specific rabbit IgG PICs after intraperitoneal (i.p.) injection into nude mice. Samples were taken from normal organs and tumour at 3 h and 24 h. Tumour to normal 125I ratios showed that the cationic OC125F(ab')2 PIC had the highest tumour selectivity. Ratios for c(e6) were uniformly higher than for 125I, indicating that c(e6) became separated from 125I. OC125F(ab')2 gave highest tissue values of 125I, followed by cationic OC125F(ab')2 PIC; other species were much lower. The amounts of c(e6) delivered per gram of tumour were much higher for cationic OC125F(ab')2 PIC than for other species. The results indicate that cationic charge stimulates the endocytosis and lysosomal degradation of the OC125F(ab')2-pl-c(e6) that has bound to the i.p. tumour. Positively charged PICs may have applications in the i.p. photoimmunotherapy of minimal residual ovarian cancer.

  20. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy.

  1. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  2. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice.

    PubMed

    Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W; Corao, Diana; Barwe, Sonali P

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80-90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  3. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Tasian, Sarah K.; Vincent, Tiffaney; Hall, Junior W.; Sheen, Cecilia; Roberts, Kathryn G.; Seif, Alix E.; Barrett, David M.; Chen, I-Ming; Collins, J. Racquel; Mullighan, Charles G.; Hunger, Stephen P.; Harvey, Richard C.; Willman, Cheryl L.; Fridman, Jordan S.; Loh, Mignon L.; Grupp, Stephan A.

    2012-01-01

    CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL. PMID:22955920

  4. Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function.

    PubMed

    Blaser, R E; Vira, D G

    2014-05-01

    The past decade has seen rapid proliferation of behavioral research with zebrafish, and an emergence of interest in their potential as a model of neurocognitive function. Already, zebrafish have been proposed as a model of autism, Alzheimer's, drug abuse, schizophrenia, and other disorders involving cognitive dysfunction. Zebrafish have the sophisticated sensory and motor systems necessary for complex learning experiments, and their power as a genetic and developmental model has already been established. Currently, however, learning procedures remain unrefined, and behavioral variability presents a major problem for researchers. Before zebrafish can be effectively used to study the neurological bases of learning, a set of robust and replicable techniques must be characterized and standardized. The purpose of this review is to provide an overview and critique of learning procedures that have been used with zebrafish and their results. We hope that such an analysis will prove useful in this early stage of research to guide future learning experiments and thereby improve the efficiency and validity of research with this promising new animal model.

  5. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  6. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions.

    PubMed

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-10

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  7. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    PubMed Central

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731

  8. Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia

    PubMed Central

    Poglio, Sandrine; Lewandowski, Daniel; Calvo, Julien; Caye, Aurélie; Gros, Audrey; Laharanne, Elodie; Leblanc, Thierry; Landman-Parker, Judith; Baruchel, André; Soulier, Jean; Ballerini, Paola; Clappier, Emmanuelle; Pflumio, Françoise

    2016-01-01

    T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34− cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34− T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34− cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments. PMID:27191650

  9. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis.

    PubMed

    Goldstein, Seth D; Hayashi, Masanori; Albert, Catherine M; Jackson, Kyle W; Loeb, David M

    2015-10-01

    Overall survival rates for pediatric high-grade sarcoma have improved greatly in the past few decades, but prevention and treatment of distant metastasis remain the most compelling problems facing these patients. Traditional preclinical mouse models have not proven adequate to study the biology and treatment of spontaneous distant sarcoma metastasis. To address this deficit, we developed an orthotopic implantation/amputation model in which patient-derived sarcoma xenografts are surgically implanted into mouse hindlimbs, allowed to grow, then subsequently amputated and the animals observed for development of metastases. NOD/SCID/IL-2Rγ-null mice were implanted with either histologically intact high grade sarcoma patient-derived xenografts or cell lines in the pretibial space and affected limbs were amputated after tumor growth. In contrast to subcutaneous flank tumors, we were able to consistently detect spontaneous distant spread of the tumors using our model. Metastases were seen in 27-90 % of animals, depending on the xenograft, and were repeatable and predictable. We also demonstrate the utility of this model for studying the biology of metastasis and present preliminary new insights suggesting the role of arginine metabolism and macrophage phenotype polarization in creating a tumor microenvironment that facilitates metastasis. Subcutaneous tumors express more arginase than inducible nitric oxide synthase and demonstrate significant macrophage infiltration, whereas orthotopic tumors express similar amounts of inducible nitric oxide synthase and arginase and have only a scant macrophage infiltrate. Thus, we present a model of spontaneous distant sarcoma metastasis that mimics the clinical situation and is amenable to studying the biology of the entire metastatic cascade.

  10. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    PubMed Central

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.

    2015-01-01

    these human lymphoma xenograft models. PMID:25785845

  11. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    DOE PAGES

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; ...

    2015-03-18

    approaches in these human lymphoma xenograft models.« less

  12. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers

    SciTech Connect

    McAleer, Mary Frances . E-mail: adam.dicker@mail.tju.edu; Davidson, Christian; Davidson, William Robert; Yentzer, Brad; Farber, Steven A.; Rodeck, Ulrich; Dicker, Adam P.

    2005-01-01

    Purpose: Zebrafish (Danio rerio) embryos provide a unique vertebrate model to screen therapeutic agents easily and rapidly because of their relatively close genetic relationship to humans, ready abundance and accessibility, short embryonal development, and optical clarity. To validate zebrafish embryos as a screen for radiation modifiers, we evaluated the effects of ionizing radiation in combination with a known radioprotector (free radical scavenger Amifostine) or radiosensitizing agent (tyrosine kinase inhibitor AG1478). Methods and materials: Viable zebrafish embryos were exposed to 0-10 Gy single-fraction 250 kVp X-rays with or without either Amifostine (0-4 mM) or AG1478 (0-10 {mu}M) at defined developmental stages from 1-24 h postfertilization (hpf). Embryos were examined for morphologic abnormalities and viability until 144 hpf. Results: Radiation alone produced a time- and dose-dependent perturbation of normal embryonic development and survival with maximal sensitivity at doses {>=}4 Gy delivered before 4 hpf. Amifostine markedly attenuated this effect, whereas AG1478 enhanced teratogenicity and lethality, particularly at therapeutically relevant (2-6 Gy) radiation doses. Conclusions: Collectively, these data validate the use of zebrafish as a vertebrate model to assess the effect of radiation alone or with radiation response modulators. Zebrafish embryos may thus provide a rapid, facile system to screen novel agents ultimately intended for human use in the context of therapeutic or accidental radiation exposure.

  13. Limb Regeneration is Impaired in an Adult Zebrafish Model of Diabetes Mellitus

    PubMed Central

    Olsen, Ansgar S.; Sarras, Michael P.; Intine, Robert V.

    2010-01-01

    The zebrafish (Danio Rerio) is an established model organism for the study of developmental processes, human disease and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes. Intraperitoneal streptozocin injection of adult, wild type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a lesser amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin injected fish at three weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish. Nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. PMID:20840523

  14. A Post-Developmental Genetic Screen for Zebrafish Models of Inherited Liver Disease

    PubMed Central

    Kim, Seok-Hyung; Wu, Shu-Yu; Baek, Jeong-In; Choi, Soo Young; Su, Yanhui; Flynn, Charles R.; Gamse, Joshua T.; Ess, Kevin C.; Hardiman, Gary; Lipschutz, Joshua H.; Abumrad, Naji N.; Rockey, Don C.

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease. PMID:25950913

  15. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs.

    PubMed

    Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio

    2017-03-09

    Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC50) calculated in zebrafish embryos and lethal doses (LD50) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds.

  16. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs

    PubMed Central

    Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio

    2017-01-01

    Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC50) calculated in zebrafish embryos and lethal doses (LD50) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds. PMID:28282918

  17. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models.

    PubMed

    Wang, Louis W; Huttner, Inken G; Santiago, Celine F; Kesteven, Scott H; Yu, Ze-Yan; Feneley, Michael P; Fatkin, Diane

    2017-01-01

    The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l(-1) having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high frequency

  18. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models

    PubMed Central

    Wang, Louis W.; Huttner, Inken G.; Santiago, Celine F.; Kesteven, Scott H.; Yu, Ze-Yan; Feneley, Michael P.

    2017-01-01

    ABSTRACT The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l−1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high

  19. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  20. A Zebrafish Live Imaging Model Reveals Differential Responses of Microglia Toward Glioblastoma Cells In Vivo

    PubMed Central

    Hamilton, Lloyd; Astell, Katy R.; Velikova, Gergana

    2016-01-01

    Abstract Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia–glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8−/− zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma. PMID:27779463

  1. Proteomic analysis of the Rett syndrome experimental model mecp2(Q63X) mutant zebrafish.

    PubMed

    Cortelazzo, Alessio; Pietri, Thomas; De Felice, Claudio; Leoncini, Silvia; Guerranti, Roberto; Signorini, Cinzia; Timperio, Anna Maria; Zolla, Lello; Ciccoli, Lucia; Hayek, Joussef

    2017-02-10

    Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Recently, a zebrafish carrying a mecp2-null mutation has been developed with the resulting phenotypes exhibiting defective sensory and thigmotactic responses, and abnormal motor behavior reminiscent of the human disease. Here, we performed a proteomic analysis to examine protein expression changes in mecp2-null vs. wild-type larvae and adult zebrafish. We found a total of 20 proteins differentially expressed between wild-type and mutant zebrafish, suggesting skeletal and cardiac muscle functional defects, a stunted glycolysis and depleted energy availability. This molecular evidence is directly linked to the mecp2-null zebrafish observed phenotype. In addition, we identified changes in expression of proteins critical for a proper redox balance, suggesting an enhanced oxidative stress, a phenomenon also documented in human patients and RTT murine models. The molecular alterations observed in the mecp2-null zebrafish expand our knowledge on the molecular cascade of events that lead to the RTT phenotype.

  2. The physiology of fish at low pH: the zebrafish as a model system.

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2014-03-01

    Ionic regulation and acid-base balance are fundamental to the physiology of vertebrates including fish. Acidification of freshwater ecosystems is recognized as a global environmental problem, and the physiological responses to acid exposure in a few fish species are well characterized. However, the underlying mechanisms promoting ionic and acid-base balance for most fish species that have been investigated remain unclear. Zebrafish (Danio rerio) has emerged as a powerful model system to elucidate the molecular basis of ionic and acid-base regulation. The utility of zebrafish is related to the ease with which it can be genetically manipulated, its suitability for state-of-the-art molecular and cellular approaches, and its tolerance to diverse environmental conditions. Recent studies have identified several key regulatory mechanisms enabling acclimation of zebrafish to acidic environments, including activation of the sodium/hydrogen exchanger (NHE) and H(+)-ATPase for acid secretion and Na(+) uptake, cortisol-mediated regulation of transcellular and paracellular Na(+) movements, and ionocyte proliferation controlled by specific cell-fate transcription factors. These integrated physiological responses ultimately contribute to ionic and acid-base homeostasis in zebrafish exposed to acidic water. In the present review, we provide an overview of the general effects of acid exposure on freshwater fish, the adaptive mechanisms promoting extreme acid tolerance in fishes native to acidic environments, and the mechanisms regulating ionic and acid-base balance during acid exposure in zebrafish.

  3. The State of the Art of the Zebrafish Model for Toxicology and Toxicologic Pathology Research—Advantages and Current Limitations

    PubMed Central

    Spitsbergen, Jan M.; Kent, Michael L.

    2007-01-01

    The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1–2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology. PMID:12597434

  4. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation

    PubMed Central

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  5. Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age.

    PubMed

    Gilbert, Matthew J H; Zerulla, Tanja C; Tierney, Keith B

    2014-02-01

    A rapidly aging global population has motivated the development and use of models for human aging. Studies on aging have shown parallels between zebrafish and humans at the internal organization level; however, few parallels have been studied at the whole-organism level. Furthermore, the effectiveness of exercise as a method to mitigate the effects of aging has not been studied in zebrafish. We investigated the effects of aging and intermittent exercise on swimming performance, kinematics and behavior. Young, middle-aged and old zebrafish (20-29, 36-48 and 60-71% of average lifespan, respectively) were exercised to exhaustion in endurance and sprint swimming tests once a week for four weeks. Both endurance and sprint performance decreased with increased age. Swimming performance improved with exercise training in young and middle-aged zebrafish, but not in old zebrafish. Tail-beat amplitude, which is akin to stride length in humans, increased for all age groups with training. Zebrafish turning frequency, which is an indicator of routine activity, decreased with age but showed no change with exercise. In sum, our results show that zebrafish exhibit a decline in whole-organism performance and trainability with age. These findings closely resemble the senescence-related declines in physical ability experienced by humans and mammalian aging models and therefore support the use of zebrafish as a model for human exercise and aging.

  6. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function

    PubMed Central

    Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof

    2016-01-01

    The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans. PMID:27869769

  7. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function.

    PubMed

    Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof

    2016-11-19

    The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.

  8. Zebrafish: An in vivo model for the study of neurological diseases

    PubMed Central

    Best, J D; Alderton, Wendy K

    2008-01-01

    As the population ages, there is a growing need for effective therapies for the treatment of neurological diseases. A limited number of therapeutics are currently available to improve cognitive function and research is limited by the need for in vivo models. Zebrafish have recently become a focus of neurobehavioral studies since larvae display neuropathological and behavioral phenotypes that are quantifiable and relate to those seen in man. Due to the small size of Zebrafish larvae, assays can be undertaken in 96 well plates and as the larvae can live in as little as 200 μl of fluid, only a few milligrams of compound are needed for screening. Thus in vivo analysis of the effects of compounds can be undertaken at much earlier stages in the drug discovery process. This review will look at the utility of the zebrafish in the study of neurological diseases and its role in improving the throughput of candidate compounds in in vivo screens. PMID:18830398

  9. Using visual lateralization to model learning and memory in zebrafish larvae

    PubMed Central

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-01-01

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models. PMID:25727677

  10. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  11. Highly Effective Auger-Electron Therapy in an Orthotopic Glioblastoma Xenograft Model using Convection-Enhanced Delivery

    PubMed Central

    Thisgaard, Helge; Halle, Bo; Aaberg-Jessen, Charlotte; Olsen, Birgitte Brinkmann; Therkelsen, Anne Sofie Nautrup; Dam, Johan Hygum; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne Winther

    2016-01-01

    Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [125I]5-Iodo-2'-deoxyuridine (125I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy. PMID:27924163

  12. The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    PubMed Central

    Hussain, Nosheen; Connah, David; Ugail, Hassan; Cooper, Patricia A.; Falconer, Robert A.; Patterson, Laurence H.; Shnyder, Steven D.

    2016-01-01

    Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use. PMID:27491535

  13. Pseudotyped AAV Vector-Mediated Gene Transfer in a Human Fetal Trachea Xenograft Model: Implications for In Utero Gene Therapy for Cystic Fibrosis

    PubMed Central

    Leung, Alice; Katz, Anna B.; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Background Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls. Methodology/Principal Findings Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts. Conclusions/Significance Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis. PMID:22937069

  14. Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases

    PubMed Central

    Widziolek, Magdalena; Prajsnar, Tomasz K.; Tazzyman, Simon; Stafford, Graham P.; Potempa, Jan; Murdoch, Craig

    2016-01-01

    Porphyromonas gingivalis (Pg) is a keystone pathogen in the aetiology of chronic periodontitis. However, recent evidence suggests that the bacterium is also able to enter the bloodstream, interact with host cells and tissues, and ultimately contribute to the pathogenesis of cardiovascular disease (CVD). Here we established a novel zebrafish larvae systemic infection model showing that Pg rapidly adheres to and penetrates the zebrafish vascular endothelium causing a dose- and time-dependent mortality with associated development of pericardial oedemas and cardiac damage. The in vivo model was then used to probe the role of Pg expressed gingipain proteases using systemically delivered gingipain-deficient Pg mutants, which displayed significantly reduced zebrafish morbidity and mortality compared to wild-type bacteria. In addition, we used the zebrafish model to show efficacy of a gingipain inhibitor (KYT) on Pg-mediated systemic disease, suggesting its potential use therapeutically. Our data reveal the first real-time in vivo evidence of intracellular Pg within the endothelium of an infection model and establishes that gingipains are crucially linked to systemic disease and potentially contribute to CVD. PMID:27777406

  15. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis.

    PubMed

    Fehr, Alexander; Eshwar, Athmanya K; Neuhauss, Stephan C F; Ruetten, Maja; Lehner, Angelika; Vaughan, Lloyd

    2015-05-01

    Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827(T), a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 10(4) CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo.

  16. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.

    PubMed

    Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis

    2016-07-01

    Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd.

  17. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals.

    PubMed

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace's equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions.

  18. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals

    PubMed Central

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910

  19. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo

    SciTech Connect

    Thienpont, Benedicte; Barata, Carlos; Raldúa, Demetrio

    2013-06-01

    Maternal thyroxine (T4) plays an essential role in fetal brain development, and even mild and transitory deficits in free-T4 in pregnant women can produce irreversible neurological effects in their offspring. Women of childbearing age are daily exposed to mixtures of chemicals disrupting the thyroid gland function (TGFDs) through the diet, drinking water, air and pharmaceuticals, which has raised the highest concern for the potential additive or synergic effects on the development of mild hypothyroxinemia during early pregnancy. Recently we demonstrated that zebrafish eleutheroembryos provide a suitable alternative model for screening chemicals impairing the thyroid hormone synthesis. The present study used the intrafollicular T4-content (IT4C) of zebrafish eleutheroembryos as integrative endpoint for testing the hypotheses that the effect of mixtures of TGFDs with a similar mode of action [inhibition of thyroid peroxidase (TPO)] was well predicted by a concentration addition concept (CA) model, whereas the response addition concept (RA) model predicted better the effect of dissimilarly acting binary mixtures of TGFDs [TPO-inhibitors and sodium-iodide symporter (NIS)-inhibitors]. However, CA model provided better prediction of joint effects than RA in five out of the six tested mixtures. The exception being the mixture MMI (TPO-inhibitor)-KClO{sub 4} (NIS-inhibitor) dosed at a fixed ratio of EC{sub 10} that provided similar CA and RA predictions and hence it was difficult to get any conclusive result. There results support the phenomenological similarity criterion stating that the concept of concentration addition could be extended to mixture constituents having common apical endpoints or common adverse outcomes. - Highlights: • Potential synergic or additive effect of mixtures of chemicals on thyroid function. • Zebrafish as alternative model for testing the effect of mixtures of goitrogens. • Concentration addition seems to predict better the effect of

  20. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    PubMed Central

    Yu, Mi Hye; Kim, Hae Ri; Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo; Choi, Byung Ihn

    2016-01-01

    Objective To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. Materials and Methods A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. Results The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. Conclusion High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model. PMID:27587968

  1. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    SciTech Connect

    Nomura, Masatoshi; Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

  2. Comparison of the effects of vitamin D products in a psoriasis plaque test and a murine psoriasis xenograft model.

    PubMed

    Kvist, Peter H; Svensson, Lars; Hagberg, Oskar; Hoffmann, Vibeke; Kemp, Kaare; Røpke, Mads A

    2009-12-17

    The aim of the present study was to compare the effects of Daivobet and calcipotriol on clinical score and biomarker responses in a modified version of the Scholtz-Dumas psoriasis plaque assay. Furthermore, it was the aim to compare the effects of calcipotriol and betamethasone in the murine psoriasis xenograft model. Twenty four patients with psoriasis were treated topically once daily for three weeks, whereas the grafted mice were treated for four weeks. Clinical responses were scored twice weekly and biopsies were taken at the end of each study to analyse for skin biomarkers by histology and immunohistochemistry. The results clearly demonstrate effects on both clinical signs and biomarkers. In the patient study the total clinical score was reduced significantly with both Daivobet and calcipotriol. Both treatments reduced epidermal thickness, Ki-67 and cytokeratin 16 expression. T cell infiltration was significantly reduced by Daivobet but only marginally by calcipotriol. Both treatments showed strong effects on the epidermal psoriatic phenotype.Results from the xenograft model essentially showed the same results. However differences were observed when investigating subtypes of T cells.The study demonstrates the feasibility of obtaining robust biomarker data in the psoriasis plaque test that correlate well with those obtained in other clinical studies. Furthermore, the biomarker data from the plaque test correlate with biopsy data from the grafted mice.

  3. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor

    PubMed Central

    Cheng, Hongwei; Clarkson, Paul W.; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O.

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy. PMID:20981142

  4. Antitumor effects of FP3 in combination with capecitabine on PDTT xenograft models of primary colon carcinoma and related lymphatic and hepatic metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Xie, Bojian; He, Kuifeng; Xu, Zhenzhen; Li, Guangliang; Han, Na; Teng, Lisong; Cao, Feilin

    2012-07-01

    FP3 is an engineered protein which contains the extracellular domain 2 of VEGF receptor 1 (Flt-1) and extracellular domain 3 and 4 of VEGF receptor 2 (Flk-1, KDR) fused to the Fc portion of human immunoglobulin G 1. Previous studies demonstrated its antiangiogenic effects in vitro and in vivo, and its antitumor activity in vivo. In this study, patient-derived tumor tissue (PDTT) xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3 in combination with capecitabine. Xenografts were treated with FP3, capecitabine, alone or in combination. After tumor growth was confirmed, volume and microvessel density in tumors were evaluated. Levels of VEGF, and PCNA in the tumor were examined by immunohistonchamical staining, level of thymidine phosphorylase (TP) was examined by ELISA, and levels of related cell signaling pathways proteins expression were examined by western blotting. FP3 in combination with capecitabine showed significant antitumor activity in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3 in combination with capecitabine was lower than that of the control. Antitumor activity of FP3 in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). This study indicated that addition of FP3 to capecitabine significantly improved tumor growth inhibition in the PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.

  5. Assessing teratogenic changes in a zebrafish model of fetal alcohol exposure.

    PubMed

    Loucks, Evyn; Ahlgren, Sara

    2012-03-20

    Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.

  6. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish

    PubMed Central

    Kozol, Robert A.; Abrams, Alexander J.; James, David M.; Buglo, Elena; Yan, Qing; Dallman, Julia E.

    2016-01-01

    Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies. PMID:27458342

  7. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Karatayev, O; Chang, G-Q; Algava, D B; Leibowitz, S F

    2015-02-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake.

  8. Zebrafish model of photochemical thrombosis for translational research and thrombolytic screening in vivo.

    PubMed

    Lee, I-Ju; Yang, Yi-Cyun; Hsu, Jia-Wen; Chang, Wei-Tien; Chuang, Yung-Jen; Liau, Ian

    2017-04-01

    Acute thromboembolic diseases remain the major global cause of death or disability. Although an array of thrombolytic and antithrombotic drugs has been approved to treat or prevent thromboembolic diseases, many more drugs that target specific clotting mechanisms are under development. Here a novel zebrafish model of photochemical thrombosis is reported and its prospective application for the screening and preclinical testing of thrombolytic agents in vivo is demonstrated. Through photochemical excitation, a thrombus was induced to form at a selected section of the dorsal aorta of larval zebrafish, which had been injected with photosensitizers. Such photochemical thrombosis can be consistently controlled to occlude partially or completely the targeted blood vessel. Detailed mechanistic tests indicate that the zebrafish model of photochemical thrombosis exhibits essential features of classical coagulation and a thrombolytic pathway. For demonstration, tissue plasminogen activator (tPA), a clinically feasible thrombolytic agent, was shown to effectively dissolve photochemically induced blood clots. In light of the numerous unique advantages of zebrafish as a model organism, our approach is expected to benefit not only the development of novel thrombolytic and antithrombotic strategies but also the fundamental or translational research targeting hereditary thrombotic or coagulation disorders.

  9. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish.

    PubMed

    Kozol, Robert A; Abrams, Alexander J; James, David M; Buglo, Elena; Yan, Qing; Dallman, Julia E

    2016-01-01

    Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies.

  10. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models.

    PubMed

    Braidwood, Lynne; Learmonth, Kirsty; Graham, Alex; Conner, Joe

    2014-01-01

    Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.

  11. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  12. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  13. Zebrafish as a model system for the study of hemostasis and thrombosis

    PubMed Central

    Weyand, Angela C.; Shavit, Jordan A.

    2014-01-01

    Purpose of review Although the zebrafish has been established as a research tool over the past 2–3 decades, in hematology it has primarily been used to investigate areas distinct from coagulation. Advantages of this vertebrate model include high fecundity, rapid and external development, and conservation of virtually all clotting factors in the zebrafish genomic sequence. Here we summarize the growing application of this technology to the study of hemostasis and thrombosis. Recent findings Loss of function studies have demonstrated conservation of function for a number of zebrafish coagulation factors. These include positive and negative regulators of coagulation, as well as key components of the thrombus itself, such as von Willebrand factor, fibrinogen, and thrombocytes. Such analyses have also been leveraged to aid in the understanding of human variation and disease, as well as perform in vivo structure/function experiments. Summary The zebrafish is an organism that lends itself to a number of unique and powerful approaches not possible in mammals. This review demonstrates that there is a high degree of genetic and functional conservation of coagulation, portending future insights into hemostasis and thrombosis through use of this model. PMID:25054910

  14. New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox.

    PubMed

    Opitz, Robert; Antonica, Francesco; Costagliola, Sabine

    2013-12-01

    Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.

  15. The behavioral space of zebrafish locomotion and its neural network model

    NASA Astrophysics Data System (ADS)

    Girdhar, Kiran; Benitez-Jones, Maria; Thi, Ha Pham; Nelson, Mark; Gruebele, Martin; Chemla, Yann

    2014-03-01

    How does one describe quantitatively the complex motion of vertebrates? To answer this question, we investigated a model system for vertebrate locomotion: zebrafish swimming. We performed a quantitative analysis of all stereotyped behavioral swimming patterns of zebrafish larvae: spontaneous swimming, escape response to stimulus, and prey tracking. Previous attempts to analyze zebrafish swimming motion quantitatively have imposed many arbitrary parameters. Here, we instead used a parameter-independent method that produces an orthogonal set of ``eigen-shapes'' of fish backbones to describe swimming motion in a low-dimensional space. We show that a linear combination of only three such ``eigen-shapes'' is sufficient to describe 97% of zebrafish shapes. Moreover, stereotyped swimming behaviors fall on two low-dimensional attractors embedded in this three dimensional behavioral space. We also show using a two-dimensional correlation analysis that ``scoots'' and ``R-turns,'' which were previously described as discrete behavioral states, in fact represent extrema in a continuum in this low-dimensional behavioral space. To understand the neural basis of the behavior, we have also developed a neural network model of spontaneous swimming of fish larvae. We present a set of neural parameters such as synaptic conductance, stimulus amplitude that produces swimming behavior and reconstructed the low-dimensional behavioral space obtained from experimental results.

  16. The zebrafish as a gerontology model in nervous system aging, disease, and repair.

    PubMed

    Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve

    2015-11-01

    Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.

  17. Gene-specific differential response to anti-apoptotic therapies in zebrafish models of ocular coloboma

    PubMed Central

    Moosajee, Mariya; Shan, Xianghong; Gregory-Evans, Kevin

    2011-01-01

    Purpose We recently demonstrated that molecular therapy using aminoglycosides can overcome the underlying genetic defect in two zebrafish models of ocular coloboma and showed abnormal cell death to be a key feature associated with the optic fissure closure defects. In further studies to identify molecular therapies for this common congenital malformation, we now examine the effects of anti-apoptotic compounds in zebrafish models of ocular coloboma in vivo. Methods Two ocular coloboma zebrafish lines (pax2.1/noitu29a and lamb1/gupm189) were exposed to diferuloylmethane (curcumin) or benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD-fmk; a pan-caspase inhibitor) for up to 8 days post-fertilization. The effects of these compounds were assessed by morphology, histology, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. Results The size of the coloboma in gup zebrafish mutants treated with diferuloylmethane was greatly reduced. In treated mutants a reduction in TUNEL staining and a 67% decrease in activated caspase-3 protein were observed. The release of cytochrome c from the mitochondria into the cytosol was reduced fourfold by in vivo diferuloylmethane treatment, suggesting that the drug was acting to inhibit the intrinsic apoptotic pathway. Inhibition of caspases directly with zVAD-fmk also resulted in a similar reduction in coloboma phenotype. Treatment with either diferuloylmethane or zVAD-fmk resulted in a statistically significant 1.4 fold increase in length of survival of these mutant zebrafish (p<0.001), which normally succumb to the lethal genetic mutation. In contrast, the coloboma phenotype in noi zebrafish mutants did not respond to either diferuloylmethane or zVAD-fmk exposure, even though inhibition of apoptotic cell death was observed by a reduction in TUNEL staining. Conclusions The differential sensitivity to anti-apoptotic agents in lamb1-deficient and pax2.1-deficient zebrafish models

  18. A larval zebrafish model of bipolar disorder as a screening platform for neuro-therapeutics.

    PubMed

    Ellis, Lee David; Soanes, Kelly Howard

    2012-08-01

    Modelling neurological diseases has proven extraordinarily difficult due to the phenotypic complexity of each disorder. The zebrafish has become a useful model system with which to study abnormal neurological and behavioural activity and holds promise as a model of human disease. While most of the disease modelling using zebrafish has made use of adults, larvae hold tremendous promise for the high-throughput screening of potential therapeutics. The further development of larval disease models will strengthen their ability to contribute to the drug screening process. Here we have used zebrafish larvae to model the symptoms of bipolar disorder by treating larvae with sub-convulsive concentrations of the GABA antagonist pentylenetetrazol (PTZ). A number of therapeutics that act on different targets, in addition to those that have been used to treat bipolar disorder, were tested against this model to assess its predictive value. Carbamazepine, valproic acid, baclofen and honokiol, were found to oppose various aspects of the PTZ-induced changes in activity. Lidocaine and haloperidol exacerbated the PTZ-induced activity changes and sulpiride had no effect. By comparing the degree of phenotypic rescue with the mechanism of action of each therapeutic we have shown that the low-concentration PTZ model can produce a number of intermediate phenotypes that model symptoms of bipolar disorder, may be useful in modelling other disease states, and will help predict the efficacy of novel therapeutics.

  19. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression

    PubMed Central

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P.; Shields, David J.; Olson, Peter; Rejto, Paul A.; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC. PMID:26555578

  20. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

  1. A novel model of demyelination and remyelination in a GFP-transgenic zebrafish

    PubMed Central

    Fang, Yangwu; Lei, Xudan; Li, Xiang; Chen, Yanan; Xu, Fei; Feng, Xizeng; Wei, Shihui; Li, Yuhao

    2015-01-01

    ABSTRACT Demyelinating diseases consist of a variety of autoimmune conditions in which the myelin sheath is damaged due to genetic and/or environmental factors. During clinical treatment, some patients undergo partial remyelination, especially during the early disease stages. However, the mechanisms that regulate demyelination remain unclear. The myelin structure, myelin formation and myelin-related gene expression are highly conserved between mammals and zebrafish. Therefore, the zebrafish is an ideal model organism to study myelination. In this study, we generated a transgenic zebrafish Tg(mbp:nfsB-egfp) expressing a fusion protein composed of enhanced green fluorescent protein (EGFP) and NTR from the myelin basic protein (mbp) promoter. Tg(mbp:nfsB-egfp) expressed NTR-EGFP reproducibly and hereditarily in oligodendrocytes along the spinal cord. Treatment of zebrafish larvae Tg(mbp:nfsB-egfp) with metronidazole (Mtz) resulted in the selective ablation of oligodendrocytes and led to demyelination, accompanied by behavioral changes, including decreased total movement distance, velocity, total movement time and fast movement time. After withdrawal of Mtz for a seven day recovery period, the expression of EGFP and MBP protein was observed again which indicates remyelination. Additionally, locomotor capacity was restored. Collectively, Tg(mbp:nfsB-egfp), a heritable and stable transgenic line, provides a novel, powerful tool to study the mechanisms of demyelination and remyelination. PMID:25527642

  2. A Zebrafish Model of Myelodysplastic Syndrome Produced through tet2 Genomic Editing

    PubMed Central

    Gjini, Evisa; Mansour, Marc R.; Sander, Jeffry D.; Moritz, Nadine; Nguyen, Ashley T.; Kesarsing, Michiel; Gans, Emma; He, Shuning; Chen, Si; Ko, Myunggon; Kuang, You-Yi; Yang, Song; Zhou, Yi; Rodig, Scott; Zon, Leonard I.; Joung, J. Keith; Rao, Anjana

    2014-01-01

    The ten-eleven translocation 2 gene (TET2) encodes a member of the TET family of DNA methylcytosine oxidases that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to initiate the demethylation of DNA within genomic CpG islands. Somatic loss-of-function mutations of TET2 are frequently observed in human myelodysplastic syndrome (MDS), which is a clonal malignancy characterized by dysplastic changes of developing blood cell progenitors, leading to ineffective hematopoiesis. We used genome-editing technology to disrupt the zebrafish Tet2 catalytic domain. tet2m/m (homozygous for the mutation) zebrafish exhibited normal embryonic and larval hematopoiesis but developed progressive clonal myelodysplasia as they aged, culminating in myelodysplastic syndromes (MDS) at 24 months of age, with dysplasia of myeloid progenitor cells and anemia with abnormal circulating erythrocytes. The resultant tet2m/m mutant zebrafish lines show decreased levels of 5hmC in hematopoietic cells of the kidney marrow but not in other cell types, most likely reflecting the ability of other Tet family members to provide this enzymatic activity in nonhematopoietic tissues but not in hematopoietic cells. tet2m/m zebrafish are viable and fertile, providing an ideal model to dissect altered pathways in hematopoietic cells and, for small-molecule screens in embryos, to identify compounds with specific activity against tet2 mutant cells. PMID:25512612

  3. A tale of two models: mouse and zebrafish as complementary models for lymphatic studies.

    PubMed

    Kim, Jun-Dae; Jin, Suk-Won

    2014-07-01

    Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.

  4. The metastasis suppressor KISS1 lacks antimetastatic activity in the C8161.9 xenograft model of melanoma.

    PubMed

    Navenot, Jean-Marc; Evans, Barry; Oishi, Shinya; Setsuda, Shohei; Fujii, Nobutaka; Peiper, Stephen C

    2012-04-01

    The objective of this study was to use the established xenograft model of human melanoma (C8161.9) to test a pharmacological approach to the effect of the metastasis suppressor KISS1. A KISS1 analog was used to inhibit the metastatic development of C8161.9 cells in nude mice. Further experiments were performed to test the validity of the C8161.9 model and test the connection between KISS1 expression and loss of metastatic potential. New clones of C8161.9 cells were obtained, with or without KISS1 expression, and were tested for metastasis formation. The absence of benefit in survival with the KISS1 analog compared with PBS prompted us to revisit the C8161.9 model. We found that the cells expressing KISS1, used in the previous study and obtained by transfection and single-cell cloning, were defective for both formation of orthotopic tumors and metastases. In mixing experiments, these cells could not suppress orthotopic tumor growth of KISS1-negative C8161.9 cells, suggesting that the suppression of metastasis by C8161.9-KISS1 cells may be intrinsic to the selected clone rather than related to KISS1 expression. Isolation of clones from parental C8161.9 cells in soft agar yielded cell populations that phenotypically and genotypically mimicked the KISS1-positive clone. In addition, new clones expressing KISS1 did not show any decrease in metastatic growth. These data demonstrate the heterogeneity of cell types in the C8161.9 cell line and the high risk of artifact linked to single-cell selection. A different xenograft model will be necessary to evaluate the use of KISS1 analogs as antimetastatic therapy.

  5. Transgenic zebrafish as a novel animal model to study tauopathies and other neurodegenerative disorders in vivo.

    PubMed

    Paquet, Dominik; Schmid, Bettina; Haass, Christian

    2010-01-01

    Our ageing society is confronted with a dramatic increase in patients suffering from tauopathies such as Alzheimer's disease, frontotemporal dementia and others. Typical neuropathological lesions including tangles composed of hyperphosphorylated tau protein as well as severe neuronal cell death characterize these disorders. No mechanism-based cures are available at present. Genetically modified animals are invaluable models to understand the molecular disease mechanisms and to screen for modifying compounds. We recently introduced tau-transgenic zebrafish as a novel model for tauopathies. Our model allows recapitulating key pathological features of tauopathies within an extremely short time. Moreover, life imaging of tau-dependent neuronal cell death was performed for the very first time. This demonstrated tau-dependent neuronal cell loss independent of tangle formation. Finally, we exemplified that the zebrafish frontotemporal dementia model can be used to screen for drugs that prevent abnormal tau phosphorylation and neuronal cell death.

  6. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner.

    PubMed

    Xu, Hong-Bin; Shen, Fu-Ming; Lv, Qian-Zhou

    2016-04-05

    Our previous study suggested that co-administration of celecoxib increased chemo-sensitivity of multidrug-resistant human gastric cancer SGC-7901/DDP cells to cisplatin (DDP) in vitro. The present study was designed to investigate whether celecoxib had the similar activities in vivo. SGC-7901/DDP and SGC-7901 xenograft mouse models were established. At the end of the experiment, cisplatin treatment alone significantly inhibited tumor growth in SGC-7901 xenograft, as compared with that in SGC-7901/DDP xenograft, suggesting that it maintained cisplatin sensitivity. When cisplatin and celecoxib were co-administrated, their antitumor activities were augmented in SGC-7901/DDP xenograft. The levels of Ki67 and PCNA after combination therapy were significantly decreased in SGC-7901/DDP xenograft, as compared with those of cisplatin treatment alone. Moreover, examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effect of celecoxib on cyclooxygenase-2 and P-glycoprotein expression was the possible reason to increase sensitivity of SGC-7901/DDP cells to cisplatin in vivo. However, the ratio of thromboxane B2 and prostaglandin F1α was elevated after celecoxib treatment in mice. This has been proposed to increase the risk of thrombogenesis. Further studies are required to evaluate the efficacy and safety of celecoxib for reducing chemo-resistance in gastric cancer.

  7. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models

    PubMed Central

    Olaciregui, Nagore G.; Barton, Kelly L.; Ehteda, Anahid; Chitranjan, Arjanna; Chang, Cecilia; Gifford, Andrew J.; Tsoli, Maria; Ziegler, David S.; Carcaboso, Angel M.; Becher, Oren J.

    2017-01-01

    Background Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. Methods A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. Results In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. Conclusion Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation. PMID

  8. A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic Adenocarcinoma Xenografts in a Mouse Model

    PubMed Central

    Strand, Martin F.; Wilson, Steven R.; Dembinski, Jennifer L.; Holsworth, Daniel D.; Khvat, Alexander; Okun, Ilya; Petersen, Dirk; Krauss, Stefan

    2011-01-01

    Background Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. Principal Findings Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a “focused diversity” library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. Significance We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists. PMID:21698280

  9. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  10. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  11. Zebrafish models in translational research: tipping the scales toward advancements in human health.

    PubMed

    Phillips, Jennifer B; Westerfield, Monte

    2014-07-01

    Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.

  12. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  13. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  14. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  15. Computational and functional analysis of biopharmaceutical drugs in zebrafish: Erythropoietin as a test model.

    PubMed

    Guarienti, Michela; Giacopuzzi, Edoardo; Gianoncelli, Alessandra; Sigala, Sandra; Spano, Pierfranco; Pecorelli, Sergio; Pani, Luca; Memo, Maurizio

    2015-12-01

    The zebrafish (Danio rerio) is a very popular vertebrate model system, especially embryos represent a valuable tool for in vivo pharmacological assays. This is mainly due to the zebrafish advantages when compared to other animal models. Erythropoietin is a glycoprotein hormone that acts principally on erythroid progenitors, stimulating their survival, proliferation and differentiation. Recombinant human erythropoietin (rhEPO) has been widely used in medicine to treat anemia and it is one of the best-selling biotherapeutics worldwide. The recombinant molecule, industrially produced in CHO cells, has the same amino acid sequence of endogenous human erythropoietin, but differs in the glycosylation pattern. This may influence efficacy and safety, particularly immunogenicity, of the final product. We employed the zebrafish embryo as a vertebrate animal model to perform in vivo pharmacological assays. We conducted a functional analysis of rhEPO alpha Eprex(®) and two biosimilars, the erythropoietin alpha Binocrit(®) and zeta Retacrit(®). By in silico analysis and 3D modeling we proved the interaction between recombinant human erythropoietin and zebrafish endogenous erythropoietin receptor. Then we treated zebrafish embryos with the 3 rhEPOs and we investigated their effect on erythrocytes production with different assays. By real time-PCR we observed the relative upregulation of gata1 (2.4 ± 0.3 fold), embryonic α-Hb (1.9 ± 0.2 fold) and β-Hb (1.6 ± 0.1 fold) transcripts. A significant increase in Stat5 phosphorylation was also assessed in embryos treated with rhEPOs when compared with the negative controls. Live imaging in tg (kdrl:EGFP; gata1:ds-red) embryos, o-dianisidine positive area quantification and cyanomethemoglobin content quantification revealed a 1.8 ± 0.3 fold increase of erythrocytes amount in embryos treated with rhEPOs when compared with the negative controls. Finally, we verified that recombinant human erythropoietins did not cause any

  16. Modeling the Behavior of Red Blood Cells within the Caudal Vein Plexus of Zebrafish

    PubMed Central

    Djukic, Tijana R.; Karthik, Swapna; Saveljic, Igor; Djonov, Valentin; Filipovic, Nenad

    2016-01-01

    Due to the important biological role of red blood cells (RBCs) in vertebrates, the analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology and biomechanics. In this paper the behavior of RBCs within the immature capillary plexus during embryonic development of zebrafish has been analyzed. Relying on the fact that zebrafish embryos are small and optically transparent, it is possible to image the blood flow. In this way the anatomy of blood vessels is monitored along with the circulation throughout their development. Numerical simulations were performed using a specific numerical model that combines fluid flow simulation, modeling of the interaction of individual RBCs immersed in blood plasma with the surrounding fluid and modeling the deformation of individual cells. The results of numerical simulations are in accordance with the in vivo observed region of interest within the caudal vein plexus of the zebrafish embryo. Good agreement of results demonstrates the capabilities of the developed numerical model to predict and analyze the motion and deformation of RBCs in complex geometries. The proposed model (methodology) will help to elucidate different rheological and hematological related pathologies and finally to design better treatment strategies. PMID:27774070

  17. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  18. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  19. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    PubMed

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.

  20. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.

    PubMed

    Plantié, Emilie; Migocka-Patrzałek, Marta; Daczewska, Małgorzata; Jagla, Krzysztof

    2015-04-09

    Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.

  1. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains

    PubMed Central

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  2. Establishment of Infection Models in Zebrafish Larvae (Danio rerio) to Study the Pathogenesis of Aeromonas hydrophila

    PubMed Central

    Saraceni, Paolo R.; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2016-01-01

    Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia, and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal. Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC) and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host–pathogen interactions to be characterized. The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf) through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord, or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and determined the

  3. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine.

    PubMed

    Morgan, Katherine M; Riedlinger, Gregory M; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors' histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions.

  4. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models.

    PubMed

    Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W

    2006-01-15

    OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.

  5. Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity

    PubMed Central

    Den Broeder, Marjo J.; Kopylova, Victoria A.; Kamminga, Leonie M.; Legler, Juliette

    2015-01-01

    The Peroxisome Proliferator-Activated Receptors (PPARs) PPARA and PPARD are regulators of lipid metabolism with important roles in energy release through lipid breakdown, while PPARG plays a key role in lipid storage and adipogenesis. The aim of this review is to describe the role of PPARs in lipid metabolism, adipogenesis, and obesity and evaluate the zebrafish as an emerging vertebrate model to study the function of PPARs. Zebrafish are an appropriate model to study human diseases, including obesity and related metabolic diseases, as pathways important for adipogenesis and lipid metabolism which are conserved between mammals and fish. This review synthesizes knowledge on the role of PPARs in zebrafish and focuses on the putative function of PPARs in zebrafish adipogenesis. Using in silico analysis, we confirm the presence of five PPARs (pparaa, pparab, pparda, ppardb, and pparg) in the zebrafish genome with 67–74% identity to human and mouse PPARs. During development, pparda/b paralogs and pparg show mRNA expression around the swim bladder and pancreas, the region where adipocytes first develop, whereas pparg is detectable in adipocytes at 15 days post fertilization (dpf). This review indicates that the zebrafish is a promising model to investigate the specific functions of PPARs in adipogenesis and obesity. PMID:26697060

  6. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  7. Xmrk, Kras and Myc Transgenic Zebrafish Liver Cancer Models Share Molecular Signatures with Subsets of Human Hepatocellular Carcinoma

    PubMed Central

    Zheng, Weiling; Li, Zhen; Nguyen, Anh Tuan; Li, Caixia; Emelyanov, Alexander; Gong, Zhiyuan

    2014-01-01

    Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC). Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24–29%) and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2%) of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down) in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup. PMID:24633177

  8. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  9. Perspectives on Zebrafish Models of Hallucinogenic Drugs and Related Psychotropic Compounds

    PubMed Central

    2013-01-01

    Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs’ action. The utility of zebrafish (Danio rerio) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans. PMID:23883191

  10. Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model.

    PubMed

    Chen, Xiaoyun; Wang, Jian; Cao, Ziquan; Hosaka, Kayoko; Jensen, Lasse; Yang, Huasheng; Sun, Yuping; Zhuang, Rujie; Liu, Yizhi; Cao, Yihai

    2015-07-14

    Retinoblastoma is a highly invasive malignant tumor that often invades the brain and metastasizes to distal organs through the blood stream. Invasiveness and metastasis of retinoblastoma can occur at the early stage of tumor development. However, an optimal preclinical model to study retinoblastoma invasiveness and metastasis in relation to drug treatment has not been developed. Here, we developed an orthotopic zebrafish model in which retinoblastoma invasion and metastasis can be monitored at a single cell level. We took the advantages of immune privilege and transparent nature of developing zebrafish embryos. Intravitreal implantation of color-coded retinoblastoma cells allowed us to kinetically monitor tumor cell invasion and metastasis. Further, interactions between retinoblastoma cells and surrounding microvasculatures were studied using a transgenic zebrafish that exhibited green fluorescent signals in blood vessels. We discovered that tumor cells invaded neighboring tissues and blood stream when primary tumors were at the microscopic sizes. These findings demonstrate that retinoblastoma metastasis occurs at the early stage and antiangiogenic drugs such as Vegf morpholino and sunitinib could potentially interfere with tumor invasiveness and metastasis. Thus, this orthotopic retinoblastoma model offers a new and unique opportunity to study the early events of tumor invasion, metastasis and drug responses.

  11. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Karatayev, O.; Chang, G.-Q.; Algava, D.B.; Leibowitz, S.F

    2014-01-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period of time to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically-relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake. PMID:25257106

  12. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature.

    PubMed

    Grimes, D T; Boswell, C W; Morante, N F C; Henkelman, R M; Burdine, R D; Ciruna, B

    2016-06-10

    Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis.

  13. Use of TSHβ:EGFP transgenic zebrafish as a rapid in vivo model for assessing thyroid-disrupting chemicals

    SciTech Connect

    Ji, Cheng; Jin, Xia; He, Jiangyan; Yin, Zhan

    2012-07-15

    Accumulating evidence indicates that a wide range of chemicals have the ability to interfere with the hypothalamic–pituitary–thyroid (HPT) axis. Novel endpoints should be evaluated in addition to existing methods in order to effectively assess the effects of these chemicals on the HPT axis. Thyroid-stimulating hormone subunit β (TSHβ) plays central regulatory roles in the HPT system. We identified the regulatory region that determines the expression level of zebrafish TSHβ in the anterior pituitary. In the transgenic zebrafish with EGFP driven by the TSHβ promoter, the similar responsive patterns between the expression levels of TSHβ:EGFP and endogenous TSHβ mRNA in the pituitary are observed following treatments with goitrogen chemicals and exogenous thyroid hormones (THs). These results suggest that the TSHβ:EGFP transgenic reporter zebrafish may be a useful alternative in vivo model for the assessment of chemicals interfering with the HPT system. Highlights: ► The promoter of zebrafish TSHβ gene has been identified. ► The stable TSHβ:EGFP transgenic zebrafish reporter germline has been generated. ► The EGFP in the transgenic fish recapitulated the pattern of pituitary TSHβ mRNA. ► The transgenic zebrafish may be an in vivo model for EDC assessment.

  14. Multi-Chemotherapeutic Schedules Containing the pan-FGFR Inhibitor ARQ 087 are Safe and Show Antitumor Activity in Different Xenograft Models.

    PubMed

    Chilà, Rosaria; Hall G, Terence; Abbadessa, Giovanni; Broggini, Massimo; Damia, Giovanna

    2017-02-02

    ARQ 087 is a multi-tyrosine kinase inhibitor with potent activity against the FGFR receptor family, currently in Phase I clinical studies for the treatment of advanced solid tumors. The compound has a very safe profile and induces tumor regressions in FGFR-driven models. The feasibility of combining ARQ 087 with chemotherapy was investigated in FGFR deregulated human xenografts. Nude mice were transplanted subcutaneously with H1581, and when tumor masses reached 150 mg, were randomized to receive vehicle, ARQ 087, paclitaxel, carboplatin as single agents or in combination. Similar experimental conditions were applied in nude mice bearing SNU16 and MFE296 xenografts, with the inclusion of capecitabine in the former xenograft model. In the different xenograft models, the drugs given as single agents ranged from very active to partially active. The double combinations were more active than the single ones, but the triple combinations were the most active. In particular, the combination of ARQ 087 + paclitaxel + carboplatin in H1581 bearing mice was able to induce tumor regression in all the mice, with 6/8 mice tumor free at day 140 after tumor transplant. Of note, no toxic deaths nor premature stopping or delaying of drug administration were observed. The data herein reported demonstrated the feasibility of using xenografts models for poli-chemotherapeutic trials mimicking the best standard of care in treatment of specific tumor type and that ARQ 087, a new pan-FGFR inhibitor, can be safely combined with standard cytotoxic chemotherapeutic drugs with apparently no sign of cumulative toxicity and an associated increased antitumor effect.

  15. Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.

    PubMed

    Dougherty, Max; Kamel, George; Shubinets, Valeriy; Hickey, Graham; Grimaldi, Michael; Liao, Eric C

    2012-09-01

    Cranial neural crest cells follow stereotypic patterns of migration to form craniofacial structures. The zebrafish is a powerful vertebrate genetic model where transgenics with reporter proteins under the transcriptional regulation of lineage-specific promoters can be generated. Numerous studies demonstrate that the zebrafish ethmoid plate is embryologically analogous to the mammalian palate. A fate map correlating embryonic cranial neural crest to defined jaw structures would provide a useful context for the morphogenetic analysis of craniofacial development. To that end, the sox10:kaede transgenic was generated, where sox10 provides lineage restriction to the neural crest. Specific regions of neural crest were labeled at the 10-somite stage by photoconversion of the kaede reporter protein. Lineage analysis was carried out during pharyngeal development in wild-type animals, after miR140 injection, and after estradiol treatment. At the 10-somite stage, cranial neural crest cells anterior of the eye contributed to the median ethmoid plate, whereas cells medial to the eye formed the lateral ethmoid plate and trabeculae and a posterior population formed the mandible. miR-140 overexpression and estradiol inhibition of Hedgehog signaling resulted in cleft development, with failed migration of the anterior cell population to form the median ethmoid plate. The sox10:kaede transgenic line provides a useful tool for neural crest lineage analysis. These studies illustrate the advantages of the zebrafish model for application in morphogenetic studies of vertebrate craniofacial development.

  16. Model-free information-theoretic approach to infer leadership in pairs of zebrafish.

    PubMed

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  17. Model-free information-theoretic approach to infer leadership in pairs of zebrafish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  18. Zebrafish as a Model to Assess the Teratogenic Potential of Nitrite.

    PubMed

    Keshari, Vishal; Adeeb, Basma; Simmons, Alison E; Simmons, Thomas W; Diep, Cuong Q

    2016-02-16

    High nitrate levels in the environment may result in congenital defects or miscarriages in humans. Presumably, this is due to the conversion of nitrate to nitrite by gut and salivary bacteria. However, in other mammalian studies, high nitrite levels do not cause birth defects, although they can lead to poor reproductive outcomes. Thus, the teratogenic potential of nitrite is not clear. It would be useful to have a vertebrate model system to easily assess teratogenic effects of nitrite or any other chemical of interest. Here, we demonstrate the utility of zebrafish (Danio rerio) to screen compounds for toxicity and embryonic defects. Zebrafish embryos are fertilized externally and have rapid development, making them a good model for teratogenic studies. We show that increasing the time of exposure to nitrite negatively affects survival. Increasing the concentration of nitrite also adversely affects survival, whereas nitrate does not. For embryos that survive nitrite exposure, various defects can occur, including pericardial and yolk sac edema, swim bladder noninflation, and craniofacial malformation. Our results indicate that the zebrafish is a convenient system for studying the teratogenic potential of nitrite. This approach can easily be adapted to test other chemicals for their effects on early vertebrate development.

  19. Polyclonal anti-Candida antibody improves phagocytosis and overall outcome in zebrafish model of disseminated candidiasis.

    PubMed

    Bergeron, Audrey C; Barker, Sarah E; Brothers, Kimberly M; Prasad, Brinda C; Wheeler, Robert T

    2017-03-01

    Fungal infections are a major cause of animal and plant morbidity and mortality worldwide. Effective biological therapeutics could complement current antifungal drugs, but understanding of their in vivo mechanisms has been hampered by technical barriers to intravital imaging of host-pathogen interactions. Here we characterize the fungal infection of zebrafish as a model to understand the mechanism-of-action for biological antifungal therapeutics through intravital imaging of these transparent animals. We find that non-specific human IgG enhances phagocytosis by zebrafish phagocytes in vivo. Polyclonal anti-Candida antibodies enhance containment of fungi in vivo and promote survival. Analysis suggests that early phagocytic containment is a strong prognostic indicator for overall survival. Although polyclonal anti-Candida antibodies protect against disease, this is not necessarily the case for individual monoclonal anti-Candida antibodies. Thus, the zebrafish appears to provide a useful model host for testing if a biological therapeutic promotes phagocytosis in vivo and enhances protection against candidemia.

  20. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model.

    PubMed

    Torraca, Vincenzo; Masud, Samrah; Spaink, Herman P; Meijer, Annemarie H

    2014-07-01

    Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.

  1. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses.

    PubMed

    Sullivan, Con; Jurcyzszak, Denise; Goody, Michelle F; Gabor, Kristin A; Longfellow, Jacob R; Millard, Paul J; Kim, Carol H

    2017-01-20

    Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here

  2. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  3. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts.

    PubMed

    Hoffman, Robert M

    2015-08-01

    The majority of human solid tumours do not metastasize when grown subcutaneously in immunocompromised mice; this includes patient-derived xenograft (PDX) models. However, orthotopic implantation of intact tumour tissue can lead to metastasis that mimics that seen in patients. These patient-derived orthotopic xenograft (PDOX) models have a long history and might better recapitulate human tumours than PDX models.

  4. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs

    PubMed Central

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty

    2016-01-01

    in this study. The embryonic zebrafish model is recommended as a well-established method for rapidly assessing the toxicity of homeopathic drugs. PMID:28127503

  5. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish

    PubMed Central

    Elipot, Yannick; Bretaud, Sandrine; Arnould, Sylvain; Duchateau, Philippe; Ruggiero, Florence; Joly, Jean-Stéphane; Sohm, Frédéric

    2015-01-01

    Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders. PMID:26221953

  6. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement.

    PubMed

    Marrs, James A; Clendenon, Sherry G; Ratcliffe, Don R; Fielding, Stephen M; Liu, Qin; Bosron, William F

    2010-01-01

    This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid (RA) signaling caused by embryonic ethanol exposure. RA deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with RA at a low concentration (10(-9)M) and 100mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100mM ethanol alone. The rescued phenotype that we observed was quantitatively more similar to embryos treated with 10(-9)M RA alone (RA toxicity) than to untreated or 100mM ethanol-treated embryos. RA rescued defects caused by 100mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation, and ear development. Morphological evidence also suggests that other characteristic features of FASD (e.g., neural axis patterning) are rescued by RA supplement.

  7. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus

    USGS Publications Warehouse

    Sanders, George E.; Batts, William N.; Winton, James R.

    2003-01-01

    To improve our understanding of the genetic basis of fish disease, we developed a pathogen model, using zebrafish (Danio rerio) and spring virema of carp virus (SVCV). Replicate groups of 10 fish were acclimated to 20 or 24°C, then were exposed to SVCV concentrations of 103 to 105 plaque-forming units per milliliter (PFU/ml) of water and observed daily. In a second trial, fish were acclimated to 15°C, and replicate groups of 10 fish were exposed to SVCV at a concentration of 105 PFU/ml; however, the temperature was raised 1°C/wk. Moribund fish were collected for histologic examination, and dead fish were assayed for virus by use of cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Mortality exceeded 50% in fish exposed to 105 PFU of SVCV/ml at the lower temperatures. Clinical signs of disease became evident seven days after viral exposure and were observed most consistently in fish of the 105 PFU/ml groups. Affected zebrafish were anorectic and listless, with epidermal petechial hemorrhages followed by death. Use of plaque assays and RT-PCR analysis confirmed presence of SVCV at titers ≥ 104 PFU/g of tissue. Histologic lesions included multifocal brachial necrosis and melanomacrophage proliferation in gills, liver, and kidneys. These results indicate that zebrafish are susceptible to infection by SVCV under conditions that mimic a natural route of exposure.

  8. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  9. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures

    PubMed Central

    Baxendale, Sarah; Holdsworth, Celia J.; Meza Santoscoy, Paola L.; Harrison, Michael R. M.; Fox, James; Parkin, Caroline A.; Ingham, Philip W.; Cunliffe, Vincent T.

    2012-01-01

    SUMMARY The availability of animal models of epileptic seizures provides opportunities to identify novel anticonvulsants for the treatment of people with epilepsy. We found that exposure of 2-day-old zebrafish embryos to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic-activity-regulated genes in the CNS, and elicited vigorous episodes of calcium (Ca2+) flux in muscle cells as well as intense locomotor activity. We then screened a library of ∼2000 known bioactive small molecules and identified 46 compounds that suppressed PTZ-inducedtranscription of the synaptic-activity-regulated gene fos in 2-day-old (2 dpf) zebrafish embryos. Further analysis of a subset of these compounds, which included compounds with known and newly identified anticonvulsant properties, revealed that they exhibited concentration-dependent inhibition of both locomotor activity and PTZ-induced fos transcription, confirming their anticonvulsant characteristics. We conclude that this in situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications. Moreover, our results demonstrate that suppression of PTZ-induced fos expression provides a sensitive means of identifying compounds with anticonvulsant activities. PMID:22730455

  10. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  11. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  12. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models.

    PubMed

    Jain, Meenu; Gamage, Nipuni-Dhanesha H; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R; Angara, Kartik; Rashid, Mohammad H; Iskander, Asm; Borin, Thaiz F; Wenbo, Zhi; Ara, Roxan; Ali, Meser M; Lebedyeva, Iryna; Chwang, Wilson B; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S

    2017-01-31

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.

  13. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model.

    PubMed

    Muselaers, Constantijn H J; Oosterwijk, Egbert; Bos, Desirée L; Oyen, Wim J G; Mulders, Peter F A; Boerman, Otto C

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT study in mice with intraperitoneally growing ccRCC lesions. Mice with intraperitoneal xenografts were injected with 1, 3, 10, 30, or 100 μg of G250 labeled with 10 MBq indium 111 (111In) to determine the optimal protein dose. The optimal protein dose determined with imaging and biodistribution studies was used in a subsequent RIT experiment in three groups of 10 mice with intraperitoneal SK-RC-52 tumors. One group received 13 MBq 177Lu-DOTA-G250, a control group received 13 MBq nonspecific 177Lu-MOPC21, and the second control group was not treated and received 20 MBq 111In-DOTA-G250. The optimal G250 protein dose to target ccRCC in this model was 10 μg G250. Treatment with 13 MBq 177Lu-DOTA-G250 was well tolerated and resulted in significantly prolonged median survival (139 days) compared to controls (49-53 days, p  =  .015), indicating that RIT has potential in this metastatic ccRCC model.

  14. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models

    PubMed Central

    Jain, Meenu; Gamage, Nipuni-Dhanesha H.; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R.; Angara, Kartik; Rashid, Mohammad H.; Iskander, Asm; Borin, Thaiz F.; Wenbo, Zhi; Ara, Roxan; Ali, Meser M.; Lebedyeva, Iryna; Chwang, Wilson B.; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S.

    2017-01-01

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model. PMID:28139732

  15. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer

    PubMed Central

    Dobbin, Zachary C.; Katre, Ashwini A.; Steg, Adam D.; Erickson, Britt K.; Shah, Monjri M.; Alvarez, Ronald D.; Conner, Michael G.; Schneider, David; Chen, Dongquan; Landen, Charles N.

    2014-01-01

    A cornerstone of preclinical cancer research has been the use of clonal cell lines. However, this resource has underperformed in its ability to effectively identify novel therapeutics and evaluate the heterogeneity in a patient's tumor. The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy, but also basic tenets of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor's heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of six pair of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer PMID:25209969

  16. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine

    PubMed Central

    Morgan, Katherine M.; Riedlinger, Gregory M.; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R.

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors’ histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions. PMID:28154808

  17. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma

    PubMed Central

    Martin, Chelsea K; Werbeck, Jillian L.; Thudi, Nanda K.; Lanigan, Lisa G.; Wolfe, Tobie D.; Toribio, Ramiro E.; Rosol, Thomas J.

    2010-01-01

    Squamous cell carcinoma is the most common form of oral cancer. Destruction and invasion of mandibular and maxillary bone frequently occurs and contributes to morbidity and mortalilty. We hypothesized that the bisphosphonate drug zoledronic acid (ZOL) would inhibit tumor-induced osteolysis and reduce tumor growth and invasion in a murine xenograft model of bone-invasive oral squamous cell carcinoma (OSCC) derived from an osteolytic feline OSCC. Luciferase-expressing OSCC cells (SCCF2Luc) were injected into the perimaxillary subgingiva of nude mice which were then treated with 100 μg/kg ZOL or vehicle. ZOL treatment reduced tumor growth and prevented loss of bone volume and surface area, but had no effect on tumor invasion. Effects on bone were associated with reduced osteolysis and increased periosteal new bone formation. ZOL-mediated inhibition of tumor-induced osteolysis was characterized by reduced numbers of tartrate-resistant acid phosphatase-positive osteoclasts at the tumor-bone interface, where it was associated with osteoclast vacuolar degeneration. The ratio of eroded to total bone surface was not affected by treatment, arguing that ZOL-mediated inhibition of osteolysis was independent of effects on osteoclast activation or initiation of bone resorption. In summary, our results establish that ZOL can reduce OSCC-induced osteolysis and my be valuable as an adjuvant therapy in OSCC to preserve mandibular and maxillary bone volume and function. PMID:20959474

  18. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  19. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  20. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-08-01

    Local disease control is a major challenge in pancreatic cancer treatment, because surgical resection of the primary tumor is only possible in a minority of patients and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for focal ablation of pancreatic tumors, this approach remains underinvestigated. Using photothermal sensitizers in combination with laser light irradiation for PTT can result in more efficient conversion of light energy to heat and improved spatial confinement of thermal destruction to the tumor. Porphysomes are self-assembled nanoparticles composed mainly of pyropheophorbide-conjugated phospholipids, enabling the packing of ˜80,000 porphyrin photosensitizers per particle. The high-density porphyrin loading imparts enhanced photonic properties and enables high-payload tumor delivery. A patient-derived orthotopic pancreas xenograft model was used to evaluate the feasibility of porphysome-enhanced PTT for pancreatic cancer. Biodistribution and tumor accumulation were evaluated using fluorescence intensity measurements from homogenized tissues and imaging of excised organs. Tumor surface temperature was recorded using IR optical imaging during light irradiation to monitor treatment progress. Histological analyses were conducted to determine the extent of PTT thermal damage. These studies may provide insight into the influence of heat-sink effect on thermal therapy dosimetry for well-perfused pancreatic tumors.

  1. Switching to zebrafish neurobehavioral models: The obsessive-compulsive disorder paradigm.

    PubMed

    D'Amico, Davide; Estivill, Xavier; Terriente, Javier

    2015-07-15

    Obsessive-compulsive disorder (OCD) is the tenth most disabling illness of any kind. OCD stands as a paradigm for complex neurobehavioral disorders due to its polygenic origin. It presents heterogenic clinical presentation, variable disease onset, progression and treatment responses, what makes its understanding a major neuropsychiatric challenge. Like with other neurobehavioral disorders, animal models are essential tools for decoding OCD genetic complexity, understanding its biological base and discovering novel treatments and diagnostic methods. 20 years of rodent OCD modeling have helped to understand the disease better, but multiple questions remain regarding OCD. Innovative whole genome sequencing (WGS) approaches might provide important answers on OCD risk associated genes. However, exploiting those large data sets through the use of traditional animal models is costly and time consuming. Zebrafish might be an appropriate animal model to streamline the pipeline of gene functional validation. This animal model shows several advantages versus rodent models, such as faster and cheaper genetic manipulation, strong impact on the 3Rs implementation, behavioral phenotypic reproducibility of OCD-like behaviors (obsessions and compulsions) and feasibility to develop high-throughput assays for novel OCD drug therapies discovery. In conclusion, zebrafish could be an innovative and relevant model for understanding OCD.

  2. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.

  3. A GCSFR/CSF3R zebrafish mutant models the persistent basal neutrophil deficiency of severe congenital neutropenia

    PubMed Central

    Pazhakh, Vahid; Clark, Sharon; Keightley, M. Cristina; Lieschke, Graham J.

    2017-01-01

    Granulocyte colony-stimulating factor (GCSF) and its receptor (GCSFR), also known as CSF3 and CSF3R, are required to maintain normal neutrophil numbers during basal and emergency granulopoiesis in humans, mice and zebrafish. Previous studies identified two zebrafish CSF3 ligands and a single CSF3 receptor. Transient antisense morpholino oligonucleotide knockdown of both these ligands and receptor reduces neutrophil numbers in zebrafish embryos, a technique widely used to evaluate neutrophil contributions to models of infection, inflammation and regeneration. We created an allelic series of zebrafish csf3r mutants by CRISPR/Cas9 mutagenesis targeting csf3r exon 2. Biallelic csf3r mutant embryos are viable and have normal early survival, despite a substantial reduction of their neutrophil population size, and normal macrophage abundance. Heterozygotes have a haploinsufficiency phenotype with an intermediate reduction in neutrophil numbers. csf3r mutants are viable as adults, with a 50% reduction in tissue neutrophil density and a substantial reduction in the number of myeloid cells in the kidney marrow. These csf3r mutants are a new animal model of human CSF3R-dependent congenital neutropenia. Furthermore, they will be valuable for studying the impact of neutrophil loss in the context of other zebrafish disease models by providing a genetically stable, persistent, reproducible neutrophil deficiency state throughout life. PMID:28281657

  4. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model.

    PubMed

    Prajsnar, Tomasz K; Hamilton, Ruth; Garcia-Lara, Jorge; McVicker, Gareth; Williams, Alexander; Boots, Michael; Foster, Simon J; Renshaw, Stephen A

    2012-10-01

    The innate immune system is the primary defence against the versatile pathogen, Staphylococcus aureus. How this organism is able to avoid immune killing and cause infections is poorly understood. Using an established larval zebrafish infection model, we have shown that overwhelming infection is due to subversion of phagocytes by staphylococci, allowing bacteria to evade killing and found foci of disease. Larval zebrafish coinfected with two S. aureus strains carrying different fluorescent reporter gene fusions (but otherwise isogenic) had bacterial lesions, at the time of host death, containing predominantly one strain. Quantitative data using two marked strains revealed that the strain ratios, during overwhelming infection, were often skewed towards the extremes, with one strain predominating. Infection with passaged bacterial clones revealed the phenomenon not to bedue to adventitious mutations acquired by the pathogen. After infection of the host, all bacteria are internalized by phagocytes and the skewing of population ratios is absolutely dependent on the presence of phagocytes. Mathematical modelling of pathogen population dynamics revealed the data patterns are consistent with the hypothesis that a small number of infected phagocytes serve as an intracellular reservoir for S. aureus, which upon release leads to disseminated infection. Strategies to specifically alter neutrophil/macrophage numbers were used to map the potential subpopulation of phagocytes acting as a pathogen reservoir, revealing neutrophils as the likely 'niche'. Subsequently in a murine sepsis model, S. aureus abscesses in kidneys were also found to be predominantly clonal, therefore likely founded by an individual cell, suggesting a potential mechanism analogous to the zebrafish model with few protected niches. These findings add credence to the argument that S. aureus control regimes should recognize both the intracellular as well as extracellular facets of the S. aureus life

  5. Lack of long-lasting effects of mitotane adjuvant therapy in a mouse xenograft model of adrenocortical carcinoma.

    PubMed

    Doghman, Mabrouka; Lalli, Enzo

    2013-12-05

    Mitotane is a widely used drug in the therapy of adrenocortical carcinoma (ACC). It is important to set up preclinical protocols to study the possible synergistic effects of its association with new drugs for ACC therapy. We assessed the efficacy of different routes of administration of mitotane (i.p. and oral) in inhibiting growth of H295R ACC cell xenografts in an adjuvant setting. Both formulations of mitotane could inhibit H295R xenografts growth only at short times after carcinoma cells inoculation, even though plasma mitotane levels approached or fell within the therapeutic range in humans. Our results show that mitotane adjuvant therapy is inadequate to antagonize long-term growth of H295R cancer cells xenografts and that care should then be taken in the design of preclinical protocols to evaluate the performance of new drugs in association with mitotane.

  6. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  7. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    PubMed Central

    Cui, Yanfen; Zhang, Caiyuan; Luo, Ran; Liu, Huanhuan; Zhang, Zhongyang; Xu, Tianyong; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27895477

  8. A Zebrafish Model for Chlamydia Infection with the Obligate Intracellular Pathogen Waddlia chondrophila

    PubMed Central

    Fehr, Alexander G. J.; Ruetten, Maja; Seth-Smith, Helena M. B.; Nufer, Lisbeth; Voegtlin, Andrea; Lehner, Angelika; Greub, Gilbert; Crosier, Philip S.; Neuhauss, Stephan C. F.; Vaughan, Lloyd

    2016-01-01

    Obligate intracellular chlamydial bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum are important pathogens of terrestrial and marine vertebrates, yet many features of their pathogenesis and host specificity are still unknown. This is particularly true for families such as the Waddliacea which, in addition to epithelia, cellular targets for nearly all Chlamydia, can infect and replicate in macrophages, an important arm of the innate immune system or in their free-living amoebal counterparts. An ideal pathogen model system should include both host and pathogen, which led us to develop the first larval zebrafish model for chlamydial infections with Waddlia chondrophila. By varying the means and sites of application, epithelial cells of the swim bladder, endothelial cells of the vasculature and phagocytosing cells of the innate immune system became preferred targets for infection in zebrafish larvae. Through the use of transgenic zebrafish, we could observe recruitment of neutrophils to the infection site and demonstrate for the first time that W. chondrophila is taken up and replicates in these phagocytic cells and not only in macrophages. Furthermore, we present evidence that myeloid differentiation factor 88 (MyD88) mediated signaling plays a role in the innate immune reaction to W. chondrophila, eventually by Toll-like receptor (TLRs) recognition. Infected larvae with depleted levels of MyD88 showed a higher infection load and a lower survival rate compared to control fish. This work presents a new and potentially powerful non-mammalian experimental model to study the pathology of chlamydial virulence in vivo and opens up new possibilities for investigation of other members of the PVC superphylum. PMID:27917158

  9. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  10. Human cytomegalovirus infection leads to elevated levels of transplant arteriosclerosis in a humanized mouse aortic xenograft model.

    PubMed

    Abele-Ohl, S; Leis, M; Wollin, M; Mahmoudian, S; Hoffmann, J; Müller, R; Heim, C; Spriewald, B M; Weyand, M; Stamminger, T; Ensminger, S M

    2012-07-01

    Recent findings emphasized an important role of human cytomegalovirus (HCMV) infection in the development of transplant arteriosclerosis. Therefore, the aim of this study was to develop a human peripheral blood lymphocyte (hu-PBL)/Rag-2(-/-) γc(-/-) mouse-xenograft-model to investigate both immunological as well as viral effector mechanisms in the progression of transplant arteriosclerosis. For this, sidebranches from the internal mammary artery were recovered during coronary artery bypass graft surgery, tissue-typed and infected with HCMV. Then, size-matched sidebranches were implanted into the infrarenal aorta of Rag-2(-/-) γc(-/-) mice. The animals were reconstituted with human peripheral blood mononuclear cells (PBMCs) 7 days after transplantation. HCMV-infection was confirmed by Taqman-PCR and immunofluorescence analyses. Arterial grafts were analyzed by histology on day 40 after transplantation. PBMC-reconstituted Rag-2(-/-) γc(-/-) animals showed splenic chimerism levels ranging from 1-16% human cells. After reconstitution, Rag-2(-/-) γc(-/-) mice developed human leukocyte infiltrates in their grafts and vascular lesions that were significantly elevated after infection. Cellular infiltration revealed significantly increased ICAM-1 and PDGF-R-β expression after HCMV-infection of the graft. Arterial grafts from unreconstituted Rag-2(-/-) γc(-/-) recipients showed no vascular lesions. These data demonstrate a causative relationship between HCMV-infection as an isolated risk factor and the development of transplant-arteriosclerosis in a humanized mouse arterial-transplant-model possibly by elevated ICAM-1 and PDGF-R-β expression.

  11. Effects of chitosan on xenograft models of melanoma in C57BL/6 mice and hepatoma formation in SCID mice.

    PubMed

    Yeh, Ming-Yang; Wu, Ming-Fang; Shang, Hung-Sheng; Chang, Jin-Biou; Shih, Yung-Luen; Chen, Yung-Liang; Hung, Hsiao-Fang; Lu, Hsu-Feng; Yeh, Chun; Wood, W Gibson; Hung, Fang-Ming; Chung, Jing-Gung

    2013-11-01

    According to the World Health Organization, Complementary and alternative medicine (CAM) is a comprehensive term referring to traditional medical treatments and various forms of indigenous medicines, also known as indigenous or folk medicine. Cancer patients often use CAM in the form of nutritional supplements, psychological techniques and natural medical approaches in the place of or in parallel to conventional medicine. The present study aimed to determine if Chitosan can inhibit lung metastasis and hepatoma formation, by studying xenograft of B16F10 melanoma cells in C57BL/6 mice and of Smmu 7721 cells in SCID mice, respectively. For the lung metastasis model, after a five-week treatment, the survival rates of B6 mice were 15% for the control group and 35%, 20%, 45% and 40% for the 320,000 kDa, 173,000 kDa, 86,000 kDa and 8,000 kDa molecular-weight treatment groups, respectively. Chitosan treatment dramatically increased lifespan and inhibited tumor metastasis especially in treatment groups of the low-molecular weight compound. For the hepatoma growth model, the size of the liver tumor mass was approximately >14 mm in the control group. In comparison to the control group, the tumor mass grew slowly with Chitosan treatment, especially at the low-molecular weight treatment group. Chitosan slowed-down the rate of tumor growth but did not inhibit tumor formation. Data presented herein demonstrate that Chitosan has anticancer effects and thus further study of the substance is warranted to examine for mechanisms of action and optimal dosage.

  12. A human xenograft model for testing early events of epithelial neoplastic invasion

    PubMed Central

    McCANDLESS, JOHN R.; CRESS, ANNE E.; RABINOVITZ, ISAAC; PAYNE, CLAIRE M.; BOWDEN, G. TIM; KNOX, J. DAVID; NAGLE, RAY B.

    2017-01-01

    We report on a model of human prostate tumor cell invasion using the SCID (severe combined immunodeficient) mouse diaphragm. Tumor cells were injected into SCID mice intraperitoneally and the diaphragms harvested three to five weeks later. Electron microscopy showed tumor cell penetration of the mesothelial cell layer and adhesion to the underlying basement membrane on the inferior surface of the mouse diaphragm, where colonies developed. Immunohistochemistry showed invasion by tumor cells through the basement membrane into the muscle of the diaphragm, presence of human tumor cells among the muscle cells and the presence of selected proteins on the invasion front of the tumor cells. Digital image analysis enabled quantitative comparison of events in the metastatic cascade by variants of the tumor cell line and evaluation of the effectiveness of a putative tumor inhibitor. Results suggest that the SCID mouse diaphragm model is a convenient, effective, easily oriented and reproducible in vivo model of the early events associated with human prostate tumor cell invasion. PMID:21533373

  13. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology.

    PubMed

    Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E

    2012-01-01

    The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.

  14. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    PubMed

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  15. A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity

    PubMed Central

    Bakthavatsalam, Subha; Das Sharma, Shreya; Sonawane, Mahendra; Thirumalai, Vatsala; Datta, Ankona

    2014-01-01

    Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson’s disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly understood. To address this issue, we generated a zebrafish model of manganism by incubating larvae in rearing medium containing Mn. We find that Mn-treated zebrafish larvae exhibit specific postural and locomotor defects. Larvae begin to float on their sides, show a curved spine and swim in circles. We discovered that treatment with Mn causes postural defects by interfering with mechanotransduction at the neuromasts. Furthermore, we find that the circling locomotion could be caused by long-duration bursting in the motor neurons, which can lead to long-duration tail bends in the Mn-treated larvae. Mn-treated larvae also exhibited fewer startle movements. Additionally, we show that the intensity of tyrosine hydroxylase immunoreactivity is reversibly reduced after Mn-treatment. This led us to propose that reduced dopamine neuromodulation drives the changes in startle movements. To test this, when we supplied an external source of dopamine to Mn-treated larvae, the larvae exhibited a normal number of startle swims. Taken together, these results indicate that Mn interferes with neuronal function at the sensory, motor and modulatory levels, and open avenues for therapeutically targeted studies on the zebrafish model of manganism. PMID:25261567

  16. The Zebrafish Brain in Research and Teaching: A Simple in Vivo and in Vitro Model for the Study of Spontaneous Neural Activity

    ERIC Educational Resources Information Center

    Vargas, R.; Johannesdottir, I. P.; Sigurgeirsson, B.; Porsteinsson, H.; Karlsson, K. AE.

    2011-01-01

    Recently, the zebrafish ("Danio rerio") has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits.…

  17. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  18. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  19. pH-Responsive Artemisinin Dimer in Lipid Nanoparticles Are Effective Against Human Breast Cancer in a Xenograft Model

    PubMed Central

    ZHANG, YITONG J.; ZHAN, XI; WANG, LIGUO; HO, RODNEY J.Y.; SASAKI, TOMIKAZU

    2016-01-01

    Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug–lipid particles (d ~ 80 nm). Cryo-electron microscopy of the ADP drug–lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109–lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy. PMID:25753991

  20. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma.

    PubMed

    Doñate, Carmen; Vijaya Kumar, Archana; Imhof, Beat A; Matthes, Thomas

    2016-11-01

    Junctional adhesion molecule (JAM)-C is a member of the JAM family, expressed by a variety of different cell types, including human B lymphocytes and some B-cell lymphoma subtypes-in particular, mantle cell lymphoma (MCL). Treatment with anti-JAM-C pAbs reduces homing of human B cells to lymphoid organs in a NOD/SCID mouse model. In the present study, the role of JAM-C in the engraftment of human lymphoma B cells in mice was investigated. Administration of novel anti-JAM-C mAbs reduced tumor growth of JAM-C(+) MCL cells in bone marrow, spleen, liver, and lymph nodes of mice. Treatment with anti-JAM-C antibodies significantly reduced the proliferation of JAM-C-expressing lymphoma B cells. Moreover, the binding of anti-JAM-C antibodies inhibited the phosphorylation of ERK1/2, without affecting other signaling pathways. The results identify for the first time the intracellular MAPK cascade as the JAM-C-driven signaling pathway in JAM-C(+) B cells. Targeting JAM-C could constitute a new therapeutic strategy reducing lymphoma B-cell proliferation and their capacity to reach supportive lymphoid microenvironments.

  1. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer.

  2. In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model.

    PubMed

    Yin, Hai-Tao; Zhang, De-Geng; Wu, Xiao-Li; Huang, Xin-En; Chen, Gang

    2013-01-01

    Curcumin (Cum) has been reported to have potential chemo-preventive and chemotherapeutic activity through influencing various processes, inducing cell cycle arrest, differentiation and apoptosis in a series of cancers. However, the poor solubility of Cum limits its further applications in the treatment of cancer. We have previously reported Cum-loaded nanoparticles (Cum-NPs) prepared with amphilic methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) block copolymers. The current study demonstrated superior antitumor efficacy of Cum-NPs over free Cum in the treatment of lung cancer. In vivo evaluation further demonstrated superior anticancer effects of Cum-NPs by delaying tumor growth compared to free Cum in an established A549 transplanted mice model. Moreover, Cum-NPs showed little toxicity to normal tissues including bone marrow, liver and kidney at a therapeutic dose. These results suggest that Cum-NPs are effective to inhibit the growth of human lung cancer with little toxicity to normal tissues, and could provide a clinically useful therapeutic regimen. They thus merit more research to evaluate the feasibility of clinical application.

  3. Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia; Samkoe, Kimberley S.; Chen, Alina; Hoopes, P. Jack; Rizvi, Imran; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Pancreatic cancer is an aggressive disease with a poor prognosis, usually treated with chemoradiation therapy. Interstitial photodynamic therapy is a potentially effective adjuvant treatment that is under development. In the current study, two orthotopic pancreatic cancer models (AsPC-1 and Panc-1), have been characterized with respect to growth rates, morphology and liposomal drug (Verteporfin) uptake and distribution in SCID mice. Fluorescence of Verteporfin was measured in liver and tumor in vivo using a PDT fluorescence dosimeter with measurements taken before and up to one hour after tail vein injection. Fluorescence reached a plateau by about 15 minutes and did not decrease over the first hour. At time points from 15 minutes to 24 hrs, the internal organs (kidney, spleen, pancreas, tumor, muscle, lung, liver, and skin were excised and scanned on a Typhoon imager. The ratio of fluorescence in tumor versus normal tissues was analyzed with image processing, calculated at each time point and compared to in vivo results. Tissue distribution of Verteporfin in relation to functional vasculature marked by DiOc7 was carried out on frozen sections. Final analysis will result in determination of the ideal time point to administer light to achieve maximum tumor destruction while preserving normal tissue.

  4. A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis.

    PubMed

    Balci, Tugce B; Prykhozhij, Sergey V; Teh, Evelyn M; Da'as, Sahar I; McBride, Eileen; Liwski, Robert; Chute, Ian C; Leger, Daniel; Lewis, Stephen M; Berman, Jason N

    2014-10-01

    Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM.

  5. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model.

    PubMed

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L

    2016-12-01

    The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed.

  6. Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: A Potential Model of Retinopathy of Prematurity

    PubMed Central

    Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2–4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  7. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)

    PubMed Central

    Fu, Sonia; Cooper, Jonathan D.; Harvey, Robert J.

    2016-01-01

    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery. PMID:27327661

  8. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    PubMed

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression.

  9. Zebrafish erythropoiesis and the utility of fish as models of anemia

    PubMed Central

    2012-01-01

    Erythrocytes contain oxygen-carrying hemoglobin to all body cells. Impairments in the generation of erythrocytes, a process known as erythropoiesis, or in hemoglobin synthesis alter cell function because of decreased oxygen supply and lead to anemic diseases. Thus, understanding how erythropoiesis is regulated during embryogenesis and adulthood is important to develop novel therapies for anemia. The zebrafish, Danio rerio, provides a powerful model for such study. Their small size and the ability to generate a large number of embryos enable large-scale analysis, and their transparency facilitates the visualization of erythroid cell migration. Importantly, the high conservation of hematopoietic genes among vertebrates and the ability to successfully transplant hematopoietic cells into fish have enabled the establishment of models of human anemic diseases in fish. In this review, we summarize the current progress in our understanding of erythropoiesis on the basis of zebrafish studies and highlight fish models of human anemias. These analyses could enable the discovery of novel drugs as future therapies. PMID:23257067

  10. Zebrafish erythropoiesis and the utility of fish as models of anemia.

    PubMed

    Kulkeaw, Kasem; Sugiyama, Daisuke

    2012-12-20

    Erythrocytes contain oxygen-carrying hemoglobin to all body cells. Impairments in the generation of erythrocytes, a process known as erythropoiesis, or in hemoglobin synthesis alter cell function because of decreased oxygen supply and lead to anemic diseases. Thus, understanding how erythropoiesis is regulated during embryogenesis and adulthood is important to develop novel therapies for anemia. The zebrafish, Danio rerio, provides a powerful model for such study. Their small size and the ability to generate a large number of embryos enable large-scale analysis, and their transparency facilitates the visualization of erythroid cell migration. Importantly, the high conservation of hematopoietic genes among vertebrates and the ability to successfully transplant hematopoietic cells into fish have enabled the establishment of models of human anemic diseases in fish. In this review, we summarize the current progress in our understanding of erythropoiesis on the basis of zebrafish studies and highlight fish models of human anemias. These analyses could enable the discovery of novel drugs as future therapies.

  11. Use of the Zebrafish Larvae as a Model to Study Cigarette Smoke Condensate Toxicity

    PubMed Central

    Ellis, Lee D.; Soo, Evelyn C.; Achenbach, John C.; Morash, Michael G.; Soanes, Kelly H.

    2014-01-01

    The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products. PMID:25526262

  12. Fetal Origins of Life Stage Disease: A Zebrafish Model for the ...

    EPA Pesticide Factsheets

    In the U.S., childhood obesity has more than doubled in children and quadrupled in adolescents in the past 30 years, affects 35% of adults, and costs the U.S. healthcare industry >$200 billion annually. The chemical environment in the womb may cause susceptibility to different life-stage and life-long metabolic diseases including obesity. The challenge is to understand if exposures during developmentally sensitive windows impact life-stage disease, such as obesity, by increasing adipose tissue mass. In vitro models lack the integrated systems approach needed to assess adipose development, while mammalian models are impractical in a screen of thousands of chemicals. Therefore, an obesogen screening method was developed to interrogate bioactivity using a full systems approach, in a vertebrate zebrafish model with complete metabolic activity, at a time when the full signaling repertoire is expressed and active, to optimally examine how chemical dose and duration impact life-stage adipose mass. A time-line for adipose depot formation was mapped in zebrafish 6−14 days post fertilization (dpf) using the lipophilic dye, Nile Red, in combination with fluorescent microscopy. Those time points were then used to investigate the impact of embryonic tributyltin chloride (TBT, a known obesogen) exposure (10nM daily renewal, 0−5dpf) on adipose mass. Fluorescent microscopy revealed adipose depots that were larger and appeared 2 days earlier in TBT treated compared to contro

  13. A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway

    PubMed Central

    Thurman, Josh; Reinecke, James; Raff, Amanda C.; Melamed, Michal L.; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W.; Hostetter, Thomas H

    2016-01-01

    Many organic solutes accumulate in ESRD and some are poorly removed removed with urea based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients pre-dialysis or from normal subjects. Zebrafish embryos 24 hours post fertilization were exposed to experimental media at a ratio of 3:1 water:human serum. Those exposed to serum from uremic subjects had significantly reduced survival at 8 hours (19% +/− 18% vs. 94% +/− 6%; p < 0.05, uremic serum vs control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50kD showed significantly greater toxicity with the larger molecular weight fraction (83% +/− 11% vs 7% +/−17% survival, p < 0.05, <50kD vs >50 kD, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96%+/− 5% vs 28%+/− 20% survival, p < 0.016, chelated vs non chelated serum respectively). Anti- factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98% +/− 6% vs. 3% +/− 9% survival, p < 0.016, anti- factor B treated vs non treated, respectively).Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and non-specific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420

  14. A zebrafish model for uremic toxicity: role of the complement pathway.

    PubMed

    Berman, Nathaniel; Lectura, Melisa; Thurman, Joshua M; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement.

  15. The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models

    PubMed Central

    2013-01-01

    Background Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. Results To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. Conclusion This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation. PMID:24148783

  16. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research.

    PubMed

    Cachat, Jonathan; Kyzar, Evan J; Collins, Christopher; Gaikwad, Siddharth; Green, Jeremy; Roth, Andrew; El-Ounsi, Mohamed; Davis, Ari; Pham, Mimi; Landsman, Samuel; Stewart, Adam Michael; Kalueff, Allan V

    2013-01-01

    An indole alkaloid, ibogaine is the principal psychoactive component of the iboga plant, used by indigenous peoples in West Africa for centuries. Modulating multiple neurotransmitter systems, the drug is a potent hallucinogen in humans, although its psychotropic effects remain poorly understood. Expanding the range of model species is an important strategy for translational neuroscience research. Here we exposed adult zebrafish (Danio rerio) to 10 and 20mg/L of ibogaine, testing them in the novel tank, light-dark box, open field, mirror stimulation, social preference and shoaling tests. In the novel tank test, the zebrafish natural diving response (geotaxis) was reversed by ibogaine, inducing initial top swimming followed by bottom dwelling. Ibogaine also attenuated the innate preference for dark environments (scototaxis) in the light-dark box test. While it did not exert overt locomotor or thigmotaxic responses in the open field test, the drug altered spatiotemporal exploration of novel environment, inducing clear preference of some areas over others. Ibogaine also promoted 'mirror' exploration in the mirror stimulation test, disrupted group cohesion in the shoaling test, and evoked strong coloration responses due to melanophore aggregation, but did not alter brain c-fos expression or whole-body cortisol levels. Overall, our results support the complex pharmacological profile of ibogaine and its high sensitivity in zebrafish models, dose-dependently affecting multiple behavioral domains. While future investigations in zebrafish may help elucidate the mechanisms underlying these unique behavioral effects, our study strongly supports the developing utility of aquatic models in hallucinogenic drug research. High sensitivity of three-dimensional phenotyping approaches applied here to behavioral effects of ibogaine in zebrafish provides further evidence of how 3D reconstructions of zebrafish swimming paths may be useful for high-throughput pharmacological screening.

  17. Gucy2f zebrafish knockdown – a model for Gucy2d-related leber congenital amaurosis

    PubMed Central

    Stiebel-Kalish, Hadas; Reich, Ehud; Rainy, Nir; Vatine, Gad; Nisgav, Yael; Tovar, Anna; Gothilf, Yoav; Bach, Michael

    2012-01-01

    Mutations in retinal-specific guanylate cyclase (Gucy2d) are associated with Leber congenital amaurosis-1 (LCA1). Zebrafish offer unique advantages relative to rodents, including their excellent color vision, precocious retinal development, robust visual testing strategies, low cost, relatively easy transgenesis and shortened experimental times. In this study we will demonstrate the feasibility of using gene-targeting in the zebrafish as a model for the photoreceptor-specific GUCY2D-related LCA1, by reporting the visual phenotype and retinal histology resulting from Gucy2f knockdown. Gucy2f zebrafish LCA-orthologous cDNA was identified and isolated by PCR amplification. Its expression pattern was determined by whole-mount in-situ hybridization and its function was studied by gene knockdown using two different morpholino-modified oligos (MO), one that blocks translation of Gucy2f and one that blocks splicing of Gucy2f. Visual function was assessed with an optomotor assay on 6-days-post-fertilization larvae, and by analyzing changes in retinal histology. Gucy2f knockdown resulted in significantly lower vision as measured by the optomotor response compared with uninjected and control MO-injected zebrafish larvae. Histological changes in the Gucy2f-knockdown larvae included loss and shortening of cone and rod outer segments. A zebrafish model of Gucy2f-related LCA1 displays early visual dysfunction and photoreceptor layer dystrophy. This study serves as proof of concept for the use of zebrafish as a simple, inexpensive model with excellent vision on which further study of LCA-related genes is possible. PMID:22378290

  18. Inactivation of Myosin Binding Protein C Homolog in Zebrafish as a Model for Human Cardiac Hypertrophy and Diastolic Dysfunction

    PubMed Central

    Chen, Yau‐Hung; Pai, Chiung‐Wen; Huang, Shu‐Wei; Chang, Sheng‐Nan; Lin, Lian‐Yu; Chiang, Fu‐Tien; Lin, Jiunn‐Lee; Hwang, Juey‐Jen; Tsai, Chia‐Ti

    2013-01-01

    Background Sudden cardiac death due to malignant ventricular arrhythmia is a devastating manifestation of cardiac hypertrophy. Sarcomere protein myosin binding protein C is functionally related to cardiac diastolic function and hypertrophy. Zebrafish is a better model to study human electrophysiology and arrhythmia than rodents because of the electrophysiological characteristics similar to those of humans. Methods and Results We established a zebrafish model of cardiac hypertrophy and diastolic dysfunction by genetic knockdown of myosin binding protein C gene (mybpc3) and investigated the electrophysiological phenotypes in this model. We found expression of zebrafish mybpc3 restrictively in the heart and slow muscle, and mybpc3 gene was evolutionally conservative with sequence homology between zebrafish and human mybpc3 genes. Zebrafish with genetic knockdown of mybpc3 by morpholino showed ventricular hypertrophy with increased myocardial wall thickness and diastolic heart failure, manifesting as decreased ventricular diastolic relaxation velocity, pericardial effusion, and dilatation of the atrium. In terms of electrophysiological phenotypes, mybpc3 knockdown fish had a longer ventricular action potential duration and slower ventricular diastolic calcium reuptake, both of which are typical electrophysiological features in human cardiac hypertrophy and heart failure. Impaired calcium reuptake resulted in increased susceptibility to calcium transient alternans and action potential duration alternans, which have been proved to be central to the genesis of malignant ventricular fibrillation and a sensitive marker of sudden cardiac death. Conclusions mybpc3 knockdown in zebrafish recapitulated the morphological, mechanical, and electrophysiological phenotypes of human cardiac hypertrophy and diastolic heart failure. Our study also first demonstrated arrhythmogenic cardiac alternans in cardiac hypertrophy. PMID:24047589

  19. Binding difference of fipronil with GABAARs in fruitfly and zebrafish: insights from homology modeling, docking, and molecular dynamics simulation studies.

    PubMed

    Zheng, Nan; Cheng, Jiagao; Zhang, Wei; Li, Weihua; Shao, Xusheng; Xu, Zhiping; Xu, Xiaoyong; Li, Zhong

    2014-11-05

    Fipronil, which targets GABAA receptors (GABAARs), is the first phenylpyrazole insecticide widely used in crop protection and public hygiene. However, its high toxicity on fishes greatly limited its applications. In the present study, a series of computational methods including homology modeling, docking, and molecular dynamics simulation studies were integrated to explore the binding difference of fipronil with GABAARs from fruitfly and zebrafish systems. It was found that, in the zebrafish system, the H-bond between 6'Thr and fipronil exerted key effects on the recognition of fipronil, which was absent in the fruitfly system. On the other hand, in the fruitfly system, strong electrostatic interaction between 2'Ala and fipronil was favorable to the binding of fipronil but detrimental to the binding in the zebrafish system. These findings marked the binding difference of fipronil with different GABAARs, which might be helpful in designing selective insecticides against pests instead of fishes.

  20. Use of TSHβ:EGFP transgenic zebrafish as a rapid in vivo model for assessing thyroid-disrupting chemicals.

    PubMed

    Ji, Cheng; Jin, Xia; He, Jiangyan; Yin, Zhan

    2012-07-15

    Accumulating evidence indicates that a wide range of chemicals have the ability to interfere with the hypothalamic-pituitary-thyroid (HPT) axis. Novel endpoints should be evaluated in addition to existing methods in order to effectively assess the effects of these chemicals on the HPT axis. Thyroid-stimulating hormone subunit β (TSHβ) plays central regulatory roles in the HPT system. We identified the regulatory region that determines the expression level of zebrafish TSHβ in the anterior pituitary. In the transgenic zebrafish with EGFP driven by the TSHβ promoter, the similar responsive patterns between the expression levels of TSHβ:EGFP and endogenous TSHβ mRNA in the pituitary are observed following treatments with goitrogen chemicals and exogenous thyroid hormones (THs). These results suggest that the TSHβ:EGFP transgenic reporter zebrafish may be a useful alternative in vivo model for the assessment of chemicals interfering with the HPT system.

  1. Nicotinic involvement in memory function in zebrafish.

    PubMed

    Levin, Edward D; Chen, Elaine

    2004-01-01

    Zebrafish are an emerging model for the study of the molecular mechanisms of brain function. To conduct studies of the neural bases of behavior in zebrafish, we must understand the behavioral function of zebrafish and how it is altered by perturbations of brain function. This study determined nicotine actions on memory function in zebrafish. With the methods that we have developed to assess memory in zebrafish using delayed spatial alternation (DSA), we determined the dose effect function of acute nicotine on memory function in zebrafish. As in rodents and primates, low nicotine doses improve memory in zebrafish, while high nicotine doses have diminished effect and can impair memory. This study shows that nicotine affects memory function in zebrafish much like in rats, mice, monkeys and humans. Now, zebrafish can be used to help understand the molecular mechanisms crucial to nicotine effects on memory.

  2. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  3. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    PubMed

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.

  4. Altered Chondrocyte Differentiation and Extracellular Matrix Homeostasis in a Zebrafish Model for Mucolipidosis II

    PubMed Central

    Flanagan-Steet, Heather; Sias, Christina; Steet, Richard

    2009-01-01

    Mucolipidosis II (ML-II) is a pediatric disorder caused by defects in the biosynthesis of mannose 6-phosphate, the carbohydrate recognition signal responsible for targeting certain acid hydrolases to lysosomes. The mechanisms underlying the developmental defects of ML-II are largely unknown due in part to the lack of suitable animal models. To overcome these limitations, we developed a model for ML-II in zebrafish by inhibiting the expression of N-acetylglucosamine-1-phosphotransferase, the enzyme that initiates mannose 6-phosphate biosynthesis. Morphant embryos manifest craniofacial defects, impaired motility, and abnormal otolith and pectoral fin development. Decreased mannose phosphorylation of several lysosomal glycosidases was observed in morphant lysates, consistent with the reduction in phosphotransferase activity. Investigation of the craniofacial defects in the morphants uncovered striking changes in the timing and localization of both type II collagen and Sox9 expression, suggestive of an accelerated chondrocyte differentiation program. Accumulation of type II collagen was also noted within misshapen cartilage elements at later stages of development. Furthermore, we observed abnormal matrix formation and calcium deposition in morphant otoliths. Collectively, these data provide new insight into the developmental pathology of ML-II and suggest that altered production and/or homeostasis of extracellular matrix proteins are integral to the disease process. These findings highlight the potential of the zebrafish system in studying lysosomal disease pathogenesis. PMID:19834066

  5. RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1.

    PubMed

    Ear, Jason; Huang, Haigen; Wilson, Tianna; Tehrani, Zahra; Lindgren, Anne; Sung, Victoria; Laadem, Abderrahmane; Daniel, Thomas O; Chopra, Rajesh; Lin, Shuo

    2015-08-13

    Diamond-Blackfan Anemia (DBA) is a bone marrow failure disorder characterized by low red blood cell count. Mutations in ribosomal protein genes have been identified in approximately half of all DBA cases. Corticosteriod therapy and bone marrow transplantation are common treatment options for patients; however, significant risks and complications are associated with these treatment options. Therefore, novel therapeutic approaches are needed for treating DBA. Sotatercept (ACE-011, and its murine ortholog RAP-011) acts as an activin receptor type IIA ligand trap, increasing hemoglobin and hematocrit in pharmacologic models, in healthy volunteers, and in patients with β-thalassemia, by expanding late-stage erythroblasts through a mechanism distinct from erythropoietin. Here, we evaluated the effects of RAP-011 in zebrafish models of RPL11 ribosome deficiency. Treatment with RAP-011 dramatically restored hemoglobin levels caused by ribosome stress. In zebrafish embryos, RAP-011 likely stimulates erythropoietic activity by sequestering lefty1 from erythroid cells. These findings identify lefty1 as a signaling component in the development of erythroid cells and rationalize the use of sotatercept in DBA patients.

  6. Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom

    PubMed Central

    Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.

    2014-01-01

    Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301

  7. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome.

    PubMed

    Bilotta, Joseph; Barnett, Jalynn A; Hancock, Laura; Saszik, Shannon

    2004-01-01

    Prenatal exposure to alcohol has been shown to produce the overt physical and behavioral symptoms known as fetal alcohol syndrome (FAS) in humans. Also, it is believed that low concentrations and/or short durations of alcohol exposure can produce more subtle effects. The purpose of this study was to investigate the effects of embryonic ethanol exposure on the zebrafish (Danio rerio) in order to determine whether this species is a viable animal model for studying FAS. Fertilized embryos were reared in varying concentrations of ethanol (1.5% and 2.9%) and exposure times (e.g., 0-8, 6-24, 12-24, and 48-72 h postfertilization; hpf); anatomical measures including eye diameter and heart rate were compared across groups. Results found that at the highest concentration of ethanol (2.9%), there were more abnormal physical distortions and significantly higher mortality rates than any other group. Embryos exposed to ethanol for a shorter duration period (0-8 hpf) at a concentration of 1.5% exhibited more subtle effects such as significantly smaller eye diameter and lower heart rate than controls. These results indicate that embryonic alcohol exposure affects external and internal physical development and that the severity of these effects is a function of both the amount of ethanol and the timing of ethanol exposure. Thus, the zebrafish represents a useful model for examining basic questions about the effects of embryonic exposure to ethanol on development.

  8. Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Jaja-Chimedza, Asha; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2012-01-01

    Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. PMID:23170087

  9. Zebrafish as a model system for environmental health studies in the grade 9-12 classroom.

    PubMed

    Tomasiewicz, Henry G; Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A; Petering, David H

    2014-08-01

    Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular.

  10. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Martinez, Shannalee R; Baez, Ineavely; Coats, Jacqueline S; Mayagoitia, Karina; Concepcion, Katherine R; Ginelli, Elizabeth; Beldiman, Cornelia; Benitez, Abigail; Weldon, Abby J; Arogyaswamy, Keshav; Shiraz, Parveen; Fisher, Ross; Morris, Christopher L; Zhang, Xiao-Bing; Filippov, Valeri; Van Handel, Ben; Ge, Zheng; Song, Chunhua; Dovat, Sinisa; Su, Ruijun Jeanna; Payne, Kimberly J

    2016-04-01

    Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2.

  11. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis.

    PubMed Central

    Seydel, K B; Li, E; Swanson, P E; Stanley, S L

    1997-01-01

    The protozoan parasite Entamoeba histolytica causes amebic dysentery and amebic liver abscess, diseases associated with significant morbidity and mortality worldwide. E. histolytica infection appears to involve the initial attachment of amebic trophozoites to intestinal epithelial cells, followed by lysis of these cells and subsequent invasion into the submucosa. A recent in vitro study (L. Eckmann, S. L. Reed, J. R. Smith, and M. F. Kagnoff, J. Clin. Invest. 96:1269-1279, 1995) demonstrated that incubation of E. histolytica trophozoites with epithelial cell lines results in epithelial cell production of inflammatory cytokines, including interleukin-1 (IL-1) and IL-8, suggesting that intestinal epithelial cell production of cytokines might play a role in the inflammatory response and tissue damage seen in intestinal amebiasis. To determine whether intestinal epithelial cell production of IL-1 and IL-8 occurs in response to E. histolytica infection in vivo and as an approach to studying the specific interactions between amebic trophozoites and human intestine, we used a SCID mouse-human intestinal xenograft (SCID-HU-INT) model of disease, where human intestinal xenografts were infected with virulent E. histolytica trophozoites. Infection of xenografts with E. histolytica trophozoites resulted in extensive tissue damage, which was associated with the development of an early inflammatory response composed primarily of neutrophils. Using oligonucleotide primers that specifically amplify human IL-1beta and IL-8, we could demonstrate by reverse transcription PCR that mRNA for both IL-1beta and IL-8 is produced by human intestinal xenografts in response to amebic infection. The increase in human intestinal IL-1beta and IL-8 in response to invasive amebiasis was confirmed by enzyme-linked immunosorbent assays specific for human IL-1beta and IL-8. Using immunohistochemistry, we confirmed that human intestinal epithelial cells were the source of IL-8 in infected xenografts

  12. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    SciTech Connect

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.; Kopelovich, Levy; Pressey, Joseph G.; Athar, Mohammad

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  13. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  14. Prey capture in zebrafish larvae serves as a model to study cognitive functions

    PubMed Central

    Muto, Akira; Kawakami, Koichi

    2013-01-01

    Prey capture in zebrafish larvae is an innate behavior which can be observed as early as 4~days postfertilization, the day when they start to swim. This simple behavior apparently involves several neural processes including visual perception, recognition, decision-making, and motor control, and, therefore, serves as a good model system to study cognitive functions underlying natural behaviors in vertebrates. Recent progresses in imaging techniques provided us with a unique opportunity to image neuronal activity in the brain of an intact fish in real-time while the fish perceives a natural prey, paramecium. By expanding this approach, it would be possible to image entire brain areas at a single-cell resolution in real-time during prey capture, and identify neuronal circuits important for cognitive functions. Further, activation or inhibition of those neuronal circuits with recently developed optogenetic tools or neurotoxins should shed light on their roles. Thus, we will be able to explore the prey capture in zebrafish larvae more thoroughly at cellular levels, which should establish a basis of understanding of the cognitive function in vertebrates. PMID:23781176

  15. Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry

    PubMed Central

    Signore, Iskra A.; Guerrero, Néstor; Loosli, Felix; Colombo, Alicia; Villalón, Aldo; Wittbrodt, Joachim; Concha, Miguel L.

    2008-01-01

    Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here, we studied the pattern of epithalamic asymmetry in zebrafish (Danio rerio) and medaka (Oryzias latipes), two related teleost species with 115–200 Myr of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the parapineal–habenular–interpeduncular system. Nodal signalling exhibits comparable spatial and temporal asymmetric expressions in the presumptive epithalamus preceding the development of morphological asymmetries. Neuroanatomical asymmetries consist of left-sided asymmetric positioning and connectivity of the parapineal organ, enlargement of neuropil in the left habenula compared with the right habenula and segregation of left–right habenular efferents along the dorsoventral axis of the interpeduncular nucleus. Despite the overall conservation of asymmetry, we observed heterotopic changes in the topology of parapineal efferent connectivity, heterochronic shifts in the timing of developmental events underlying the establishment of asymmetry and divergent degrees of canalization of embryo laterality. We offer new tools for developmental time comparison among species and propose, for each of these transformations, novel hypotheses of ontogenic mechanisms that explain interspecies variations that can be tested experimentally. Together, these findings highlight the usefulness of zebrafish and medaka as comparative models to study the developmental mechanisms of epithalamic asymmetry in vertebrates. PMID:19064351

  16. Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics.

    PubMed

    Veneman, Wouter J; de Sonneville, Jan; van der Kolk, Kees-Jan; Ordas, Anita; Al-Ars, Zaid; Meijer, Annemarie H; Spaink, Herman P

    2015-03-01

    We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria. For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.

  17. Defective neural crest migration revealed by a Zebrafish model of Alx1-related frontonasal dysplasia.

    PubMed

    Dee, Chris T; Szymoniuk, Christoph R; Mills, Peter E D; Takahashi, Tokiharu

    2013-01-15

    Frontonasal dysplasia (FND) refers to a class of midline facial malformations caused by abnormal development of the facial primordia. The term encompasses a spectrum of severities but characteristic features include combinations of ocular hypertelorism, malformations of the nose and forehead and clefting of the facial midline. Several recent studies have drawn attention to the importance of Alx homeobox transcription factors during craniofacial development. Most notably, loss of Alx1 has devastating consequences resulting in severe orofacial clefting and extreme microphthalmia. In contrast, mutations of Alx3 or Alx4 cause milder forms of FND. Whilst Alx1, Alx3 and Alx4 are all known to be expressed in the facial mesenchyme of vertebrate embryos, little is known about the function of these proteins during development. Here, we report the establishment of a zebrafish model of Alx-related FND. Morpholino knock-down of zebrafish alx1 expression causes a profound craniofacial phenotype including loss of the facial cartilages and defective ocular development. We demonstrate for the first time that Alx1 plays a crucial role in regulating the migration of cranial neural crest (CNC) cells into the frontonasal primordia. Abnormal neural crest migration is coincident with aberrant expression of foxd3 and sox10, two genes previously suggested to play key roles during neural crest development, including migration, differentiation and the maintenance of progenitor cells. This novel function is specific to Alx1, and likely explains the marked clinical severity of Alx1 mutation within the spectrum of Alx-related FND.

  18. Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry.

    PubMed

    Signore, Iskra A; Guerrero, Néstor; Loosli, Felix; Colombo, Alicia; Villalón, Aldo; Wittbrodt, Joachim; Concha, Miguel L

    2009-04-12

    Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here, we studied the pattern of epithalamic asymmetry in zebrafish (Danio rerio) and medaka (Oryzias latipes), two related teleost species with 115-200 Myr of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the parapineal-habenular-interpeduncular system. Nodal signalling exhibits comparable spatial and temporal asymmetric expressions in the presumptive epithalamus preceding the development of morphological asymmetries. Neuroanatomical asymmetries consist of left-sided asymmetric positioning and connectivity of the parapineal organ, enlargement of neuropil in the left habenula compared with the right habenula and segregation of left-right habenular efferents along the dorsoventral axis of the interpeduncular nucleus. Despite the overall conservation of asymmetry, we observed heterotopic changes in the topology of parapineal efferent connectivity, heterochronic shifts in the timing of developmental events underlying the establishment of asymmetry and divergent degrees of canalization of embryo laterality. We offer new tools for developmental time comparison among species and propose, for each of these transformations, novel hypotheses of ontogenic mechanisms that explain interspecies variations that can be tested experimentally. Together, these findings highlight the usefulness of zebrafish and medaka as comparative models to study the developmental mechanisms of epithalamic asymmetry in vertebrates.

  19. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation

    PubMed Central

    Kaufman, Charles K.; Mosimann, Christian; Fan, Zi Peng; Yang, Song; Thomas, Andrew; Ablain, Julien; Tan, Justin L.; Fogley, Rachel D.; van Rooijen, Ellen; Hagedorn, Elliott; Ciarlo, Christie; White, Richard; Matos, Dominick; Puller, Ann-Christin; Santoriello, Cristina; Liao, Eric; Young, Richard A.; Zon, Leonard I.

    2016-01-01

    The “cancerized field” concept posits that cells in a given tissue share an oncogenic mutation or insult and are thus cancer-prone, yet only discreet clones within the field initiate tumors. Nearly all benign nevi carry oncogenic BRAFV600E mutations, but they only rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCP’s) and is specifically re-expressed in melanoma. We show by live imaging of transgenic zebrafish crestin reporters that, within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, and this establishes that a fate change occurs at melanoma initiation in this model. We show the crestin element is regulated by NCP transcription factors, including sox10. Forced sox10 overexpression in melanocytes accelerated melanoma formation, consistent with activation of a NCP gene signature and super-enhancers leading to melanoma. Our work highlights the importance of NCP state reemergence as a key event in melanoma initiation. PMID:26823433

  20. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model.

    PubMed

    Hoseinifar, Seyed Hossein; Safari, Roghieh; Dadar, Maryam

    2017-03-01

    Propionate is a short-chain fatty acid (SCFA) that improves physiological and pathophysiological properties. However, there is limited information available about the effects of SCFAs on mucosal immune parameters as well as growth and appetite related genes expression. The aim of the present study was to evaluate the effect of sodium propionate (SP) intake on the mucosal immune parameters, growth and appetite related genes expression using zebrafish (Danio rerio) as model organism. Zebrafish fed control or diet supplemented with different levels (0.5, 1 and 2%) of SP for 8weeks. At the end of feeding trial, the expression of the key genes related to growth and appetite (GH, IGF1, MYSTN and Ghrl) was evaluated. Also, mucosal immune parameters (Total Ig, lysozyme and protease activity) were studied in skin mucus of zebrafish. The results showed that dietary administration of SP significantly (P<0.05) up-regulated the expression of GH, IGF1 and down-regulated MYSTN gene. Also, feeding zebrafish with SP supplemented diet significantly increased appetite related gene expression (P<0.05) with a more pronounced effect in higher inclusion levels. Compared with control group, the expression of appetite related gene (Ghrl) was remarkably (P<0.05) higher in SP fed zebrafish. Also, elevated mucosal immune parameters was observed in zebrafish fed SP supplemented diet. The present results revealed beneficial effects of dietary SP on mucosal immune response and growth and appetite related genes expression. These results also highlighted the potential use of SP as additive in human diets.

  1. Leadership emergence in a data-driven model of zebrafish shoals with speed modulation

    NASA Astrophysics Data System (ADS)

    Zienkiewicz, A.; Barton, D. A. W.; Porfiri, M.; Di Bernardo, M.

    2015-11-01

    Models of collective animal motion can greatly aid in the design and interpretation of behavioural experiments that seek to unravel, isolate, and manipulate the determinants of leader-follower relationships. Here, we develop an initial model of zebrafish social behaviour, which accounts for both speed and angular velocity regulatory interactions among conspecifics. Using this model, we analyse the macroscopic observables of small shoals influenced by an "informed" agent, showing that leaders which actively modulate their speed with respect to their neighbours can entrain and stabilise collective dynamics of the naïve shoal. Supplementary material in the form of two mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjst/e2015-50093-5

  2. A Novel Zebrafish Model to Provide Mechanistic Insights into the Inflammatory Events in Carrageenan-Induced Abdominal Edema

    PubMed Central

    Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Chakraborty, Chiranjib; Chen, Chun-Hong; Chen, Wu-Fu; Jean, Yen-Hsuan; Wang, Hui-Min David; Sung, Chun-Sung; Sun, Yu-Min; Wu, Chang-Yi; Liu, Wangta; Hsiao, Chung-Der; Wen, Zhi-Hong

    2014-01-01

    A suitable small animal model may help in the screening and evaluation of new drugs, especially those from natural products, which can be administered at lower dosages, fulfilling an urgent worldwide need. In this study, we explore whether zebrafish could be a model organism for carrageenan-induced abdominal edema. The research results showed that intraperitoneal (i.p.) administration of 1.5% λ-carrageenan in a volume of 20 µL significantly increased abdominal edema in adult zebrafish. Levels of the proinflammatory proteins tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) were increased in carrageenan-injected adult zebrafish during the development of abdominal edema. An associated enhancement was also observed in the leukocyte marker, myeloperoxidase (MPO). To support these results, we further observed that i.p. methylprednisolone (MP; 1 µg), a positive control, significantly inhibited carrageenan-induced inflammation 24 h after carrageenan administration. Furthermore, i.p. pretreatment with either an anti-TNF-α antibody (1∶5 dilution in a volume of 20 µL) or the iNOS-selective inhibitor aminoguanidine (AG; 1 µg) inhibited carrageenan-induced abdominal edema in adult zebrafish. This new animal model is uncomplicated, easy to develop, and involves a straightforward inducement of inflammatory edema for the evaluation of small volumes of drugs or test compounds. PMID:25141004

  3. Anti-tumor activity of Sann-Joong-Kuey-Jian-Tang alone and in combination with 5-fluorouracil in a human colon cancer colo 205 cell xenograft model.

    PubMed

    Cheng, Chun-Yuan; Lin, Yi-Hsiang; Su, Chin-Cheng

    2010-01-01

    Malignant tumors are the leading cause of death in Taiwan; among these, colon cancer ranks third as a cause of cancer-related death. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicinal prescription, has been used to treat lymph node diseases and infectious lesions, and exhibits cytotoxic activity in many cancer cell lines. Our previous studies demonstrated that SJKJT inhibits the proliferation of human colon cancer colo 205 cells in vitro. The aim of this study was to evaluate the anti-tumor activity of SJKJT alone and in combination with 5-fluorouracil (5-FU) in vivo. SCID mice bearing human colon cancer colo 205 cell xenografts were administered SJKJT alone (30 mg/kg daily, p.o.), SJKJT (30 mg/kg daily, p.o.) in combination with 5-FU (30 mg/kg weekly, i.p.), or vehicle alone. At the end of the 4-week dosing schedule, the tumor and animal body weights were individually measured. The SCID mice were sacrificed with CO2 inhalation, the xenograft tumors were dissected, and the protein expression of microtubule-associated protein light chain 3 (MAP-LC3-II) in colo 205 xenograft tumors was measured by Western blotting. In the control, SJKJT-, and SJKJT plus 5-FU-treated mice, the tumor weights were 6.37±2.57, 0.43±0.35 and 1.63±0.46 g, and the mice body weights were 29±0.55, 29±2.71 and 27±0.77 g, respectively. Treatment with SJKJT resulted in a reduction in tumor weight compared with the control group, indicating that SJKJT inhibits tumor growth in a colo 205 xenograft model. SJKJT also increased LC3-II protein expression as compared to the controls. The present study shows that SJKJT alone or in combination with 5-FU has a positive effect on the treatment of SCID mice bearing human colon cancer colo 205 cell xenografts. This suggests that SJKJT has therapeutic potential in the treatment of human colon cancer.

  4. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.; Afrin, Farhat

    2015-03-18

    % cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.

  5. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  6. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease

    PubMed Central

    Hayes, Madeline; Gao, Xiaochong; Yu, Lisa X; Paria, Nandina; Henkelman, R. Mark; Wise, Carol A.; Ciruna, Brian

    2014-01-01

    Scoliosis is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine. Curvatures caused by malformed vertebrae (congenital scoliosis (CS)) are apparent at birth. Spinal curvatures with no underlying vertebral abnormality (idiopathic scoliosis (IS)) most commonly manifest during adolescence. The genetic and biological mechanisms responsible for IS remain poorly understood due largely to limited experimental models. Here we describe zygotic ptk7 (Zptk7) mutant zebrafish, deficient in a critical regulator of Wnt signalling, as the first genetically defined developmental model of IS. We identify a novel sequence variant within a single IS patient that disrupts PTK7 function, consistent with a role for dysregulated Wnt activity in disease pathogenesis. Furthermore, we demonstrate that embryonic loss-of-gene function in maternal-zygotic ptk7 mutants (MZptk7) leads to vertebral anomalies associated with CS. Our data suggest novel molecular origins of, and genetic links between, congenital and idiopathic forms of disease. PMID:25182715

  7. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease.

    PubMed

    Hayes, Madeline; Gao, Xiaochong; Yu, Lisa X; Paria, Nandina; Henkelman, R Mark; Wise, Carol A; Ciruna, Brian

    2014-09-03

    Scoliosis is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine. Curvatures caused by malformed vertebrae (congenital scoliosis (CS)) are apparent at birth. Spinal curvatures with no underlying vertebral abnormality (idiopathic scoliosis (IS)) most commonly manifest during adolescence. The genetic and biological mechanisms responsible for IS remain poorly understood due largely to limited experimental models. Here we describe zygotic ptk7 (Zptk7) mutant zebrafish, deficient in a critical regulator of Wnt signalling, as the first genetically defined developmental model of IS. We identify a novel sequence variant within a single IS patient that disrupts PTK7 function, consistent with a role for dysregulated Wnt activity in disease pathogenesis. Furthermore, we demonstrate that embryonic loss-of-gene function in maternal-zygotic ptk7 mutants (MZptk7) leads to vertebral anomalies associated with CS. Our data suggest novel molecular origins of, and genetic links between, congenital and idiopathic forms of disease.

  8. From Omics to Drug Metabolism and High Content Screen of Natural Product in Zebrafish: A New Model for Discovery of Neuroactive Compound

    PubMed Central

    Hung, Ming Wai; Zhang, Zai Jun; Li, Shang; Lei, Benson; Yuan, Shuai; Cui, Guo Zhen; Man Hoi, Pui; Chan, Kelvin; Lee, Simon Ming Yuen

    2012-01-01

    The zebrafish (Danio rerio) has recently become a common model in the fields of genetics, environmental science, toxicology, and especially drug screening. Zebrafish has emerged as a biomedically relevant model for in vivo high content drug screening and the simultaneous determination of multiple efficacy parameters, including behaviour, selectivity, and toxicity in the content of the whole organism. A zebrafish behavioural assay has been demonstrated as a novel, rapid, and high-throughput approach to the discovery of neuroactive, psychoactive, and memory-modulating compounds. Recent studies found a functional similarity of drug metabolism systems in zebrafish and mammals, providing a clue with why some compounds are active in zebrafish in vivo but not in vitro, as well as providing grounds for the rationales supporting the use of a zebrafish screen to identify prodrugs. Here, we discuss the advantages of the zebrafish model for evaluating drug metabolism and the mode of pharmacological action with the emerging omics approaches. Why this model is suitable for identifying lead compounds from natural products for therapy of disorders with multifactorial etiopathogenesis and imbalance of angiogenesis, such as Parkinson's disease, epilepsy, cardiotoxicity, cerebral hemorrhage, dyslipidemia, and hyperlipidemia, is addressed. PMID:22919414

  9. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease.

    PubMed

    Friedrich, Timo; Lambert, Aaron M; Masino, Mark A; Downes, Gerald B

    2012-03-01

    Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD.

  10. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae.

    PubMed

    Gao, Yongfei; Feng, Jianfeng; Wang, Cancan; Zhu, Lin

    2017-04-01

    Quantitative predictions of metal-metal interactions and toxicity in aquatic organisms meet a unique challenge. Accumulation and toxicity of Cu and Zn mixtures in zebrafish larvae has been quantified in binary metal system with variable combinatorial concentrations in order to understand the interactions between essential trace metals and assess availability of the toxicokinetic-toxicodynamic (TK-TD) model which simulated the uptake of metals over time as well as metal toxicity after 24h of exposure. Competitive uptake experiments showed a straightforward antagonistic competition, as would be predicted by Michaelis-Menten competitive equilibrium model. Zn uptake decreased significantly in the presence of Cu(2+) concentrations higher than 10(-6)M. Cu(2+) was shown to compete strongly with Zn for uptake, having a higher affinity constant to biotic ligand (BL) sites (KCuBL=10(5.42)M(-1)) than Zn (KZnBL=10(4.13)M(-1)). TK-TD model considering potential metal-metal antagonism interactions showed good predictive power in predicting accumulation and toxicity of Cu-Zn mixtures in zebrafish larvae with the high coefficient of determination (r(2)) and significant level (p). In particular, with the elevated Zn concentrations in mixtures, the TD model showed better predictive power in predicting toxicity of 10(-6)M Cu concentration in Cu-Zn mixtures. The TK-TD analysis provided some new insights into the interactive mechanism of binary Cu and Zn exposure in aquatic animals and may have important implications for our understanding of quantitative predictions of metal-metal interactions and toxicity in a field where animals are simultaneously exposed to several metals.

  11. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern.

    PubMed

    Hiroshima, Yukihiko; Zhang, Yong; Zhang, Nan; Maawy, Ali; Mii, Sumiyuki; Yamamoto, Mako; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Murakami, Takashi; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Murata, Takuya; Endo, Itaru; Hoffman, Robert M

    2015-01-01

    Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient's cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient's cervical tumors resulted in primary growth but not metastasis.

  12. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    PubMed

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  13. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  14. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  15. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome1,2,3

    PubMed Central

    Dinday, Matthew T.

    2015-01-01

    Abstract Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy. PMID:26465006

  16. Time-dependent sensitization of stress responses in zebrafish: A putative model for post-traumatic stress disorder.

    PubMed

    Lima, Monica Gomes; Silva, Rhayra Xavier do Carmo; Silva, Suéllen de Nazaré Dos Santos; Rodrigues, Lais do Socorro Dos Santos; Oliveira, Karen Renata Herculano Matos; Batista, Evander de Jesus Oliveira; Maximino, Caio; Herculano, Anderson Manoel

    2016-07-01

    Time-dependent sensitization (TDS)-the delayed increase in neurobehavioral responses to heterotypic stressors after exposure to an intense, inescapable stressor-has been proposed as an animal model for post-traumatic stress disorder (PTSD). Translationally relevant stressors used in TDS are capable of affecting more than one behavioral domain and produce interindividual variability in responsiveness. Here, conspecific alarm substance (CAS) is shown to induce TDS in zebrafish in inter- and intra-population-specific way. Exposure to CAS, an ecologically relevant stimulus which produces fear-like responses acutely, increased anxiety and arousal in zebrafish from the blue shortfin (BSF) phenotype 24h after stimulus delivery. Anxiety-like responses were differently affected immediately and 24h after stimulus delivery. Anxiety-like responses were more sensitized in zebrafish from the longfin (LOF) than in the BSF phenotype, an effect which is reminiscent of "basal" differences in anxiety-like behavior. After application of behavioral cutoff criteria, CAS was shown to produce intense TDS in ∼25% of LOF animals, while ∼20% of exposed animals showed little evidence of TDS. Overall, these results suggest that CAS induces TDS in zebrafish after a 24h "incubation" period, with inter- and intra-population variability that underlines its face and ecological validity.

  17. Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases

    PubMed Central

    Pei, Wuhong; Xu, Lisha; Varshney, Gaurav K.; Carrington, Blake; Bishop, Kevin; Jones, MaryPat; Huang, Sunny C.; Idol, Jennifer; Pretorius, Pamela R.; Beirl, Alisha; Schimmenti, Lisa A.; Kindt, Katie S.; Sood, Raman; Burgess, Shawn M.

    2016-01-01

    Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes. PMID:27425195

  18. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

    PubMed Central

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-01-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health. PMID:27927007

  19. Impaired light detection of the circadian clock in a zebrafish melanoma model

    PubMed Central

    Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David

    2015-01-01

    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development. PMID:25832911

  20. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  1. Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids.

    PubMed

    Fang, Longhou; Miller, Yury I

    2012-10-01

    With the advent of genetic engineering, zebrafish (Danio rerio) were recognized as an attractive model organism to study many biological processes. Remarkably, the small size and optical transparency of zebrafish larvae enable high-resolution imaging of live animals. Zebrafish respond to various environmental and pathological factors with robust oxidative stress. In this article, we provide an overview of the molecular mechanisms involved in oxidative stress and antioxidant response in zebrafish. Existing applications of genetically encoded fluorescent sensors allow imaging, in real time, of the production of H(2)O(2) and studying its involvement in inflammatory responses, as well as activation of the oxidation-sensitive transcription factors HIF and NRF2. Oxidative stress, combined with hyperlipidemia, leads to oxidation of lipoproteins, the process that contributes significantly to the development of atherosclerosis in humans. Recent work found that feeding zebrafish a high-cholesterol diet results in hypercholesterolemia, vascular lipid accumulation, and extreme lipoprotein oxidation. Generation of a transgenic zebrafish expressing a green fluorescent protein-tagged human antibody to malondialdehyde (MDA)-modified LDL makes possible the in vivo visualization of MDA epitopes in the vascular wall and testing of the efficacy of antioxidants and dietary interventions. Thus, using zebrafish as a model organism provides important advantages in studying the roles of reactive oxygen species and lipid oxidation in basic biologic and pathologic processes.

  2. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  3. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  4. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Sobhebidari, Pooya; Tavakkoli, Jahan; Wen, Xiao-Yan; Baker, Andrew J

    2016-12-20

    Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.

  5. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.

    PubMed

    Kishi, Shuji

    2011-09-01

    Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and

  6. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer

    PubMed Central

    Morton, J. Jason; Bird, Gregory; Keysar, Stephen B.; Astling, David P.; Lyons, Traci R; Anderson, Ryan T.; Glogowska, Magdalena J.; Estes, Patricia; Eagles, Justin R.; Le, Phuong N.; Gan, Gregory; McGettigan, Brett; Fernandez, Pamela; Padilla-Just, Nuria; Varella-Garcia, Marileila; Song, John I.; Bowles, Daniel W.; Schedin, Pepper; Tan, Aik-Choon; Roop, Dennis R.; Wang, Xiao-Jing; Refaeli, Yosef; Jimeno, Antonio

    2015-01-01

    The limitations of cancer cell lines have led to the development of direct patient derived xenograft (PDX) models. However, the interplay between the implanted human cancer cells and recruited mouse stromal and immune cells alters the tumor microenvironment and limits the value of these models. To overcome these constraints, we have developed a technique to expand human hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-depleted bone marrow of a NOD/SCID/IL2rg−/− (NSG) mouse on which a patient’s tumor is then transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and help replicate its natural microenvironment. Despite previous passage on nude mice, the expression of epithelial, stromal, and immune genes in XactMice tumors aligns more closely to that of the patient tumor than to those grown in non-humanized mice – an effect partially facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The human immune and stromal cells produced in the XactMice can help recapitulate the microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on non-humanized mice, and provide a more accurate tumor model to guide patient treatment. PMID:25893296

  7. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  8. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    SciTech Connect

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  9. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model.

    PubMed

    Hsu, Yu-Chieh; Chiang, Jo-Hua; Yu, Chun-Shu; Hsia, Te-Chun; Wu, Rick Sai-Chuen; Lien, Jin-Cherng; Lai, Kuang-Chi; Yu, Fu-Shun; Chung, Jing-Gung

    2017-01-01

    Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca(2+) production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.

  10. Tamoxifen increases apoptosis but does not influence markers of proliferation in an MCF-7 xenograft model of breast cancer.

    PubMed

    Hawkin, R A; Arends, M J; Ritchie, A A; Langdon, S; Miller, W R

    2000-04-01

    Twenty-four nude mice bearing MCF-7 breast cancer cells grown as xenografts and treated with tamoxifen (2.5 mg slow-release pellet) were studied for up to 35 days. Tumour size was measured in 2 dimensions at regular time-intervals and tumours were harvested on each of days 2, 4, 7, 14, 28 and 35 after the start of treatment. Control animals (8) received no treatment and the tumours were harvested after 0 or 35 days. Tumour sections were assessed for prevalence of apoptosis and mitosis and examined immunocytochemically for Ki(67)(MIB-1) and bcl-2 expression. Tumours increased in size during tamoxifen-treatment, but at a significantly slower rate (max. 2.6-fold) than in the untreated control animals; thus tumours not actually regressing may, nevertheless, be responding significantly to tamoxifen. MIB-1 and bcl-2 immunostaining and mitosis failed to show any consistent change over the period of study. Apoptosis, however, increased progressively and significantly to day-28 in tamoxifen-treated tumours, reaching approximately a 5-fold increase over day-0 values, then decreasing again to nearly 3-fold by day-35 (P= 0.0002). The apoptosis: mitosis ratio in treated tumours also increased to approximately 10-fold on day-28 over day-0 values, decreasing to nearly 4-fold by day-35 (P= 0.037). Within the treated group, apoptosis was significantly inversely correlated with both mitosis (R = -0.38, P= 0.03) and expression of bcl-2 (R = -0.48, P= 0.0056) and strongly positively correlated with both time on tamoxifen (R = +0.63, P= 0.0003) and the % inhibition of growth by tamoxifen (R = +0.58,P = 0.0012) in the 28 individual, treated tumours (estimated relative to the mean growth rate in the controls). The apoptosis: mitosis ratio was also inversely correlated with bcl-2 expression (R = -0.56, P= 0.0021) and positively correlated with both time on tamoxifen (R = +0.50, P= 0.0068) and % inhibition of growth (R = +0.56, P= 0.0019). In this hormone-sensitive tumour model for breast

  11. Novel Effects of Simvastatin on Uterine Fibroids: In vitro and Patient-Derived Xenograft Mouse Model Study

    PubMed Central

    BORAHAY, Mostafa A.; VINCENT, Kathleen; MOTAMEDI, Massoud; SBRANA, Elena; KILIC, Gokhan S.; AL-HENDY, Ayman; BOEHNING, Darren

    2015-01-01

    Objective Uterine leiomyomas represent a common gynecologic problem with no satisfactory long-term medical treatment. The purpose of this study is to examine the effects of simvastatin on uterine leiomyoma, both in vitro and in vivo. Study Design This is a laboratory-based experimental study. For in vitro studies, we used human and rat leiomyoma cells. For in vivo studies, we used immunodeficient mice supplemented with estrogen/progesterone pellets xenografted with human leiomyoma tissue explant. Results For in vitro studies, cells were treated with different concentrations of simvastatin for 48 hours. Simvastatin induced dose-dependent apoptosis in leiomyoma cells as measured by a fluorometric caspase-3 activity assay, and inhibited proliferation as demonstrated by an MTT assay (both were significant at 5 and 10 μM). In addition, simvastatin decreased Akt signaling pathway phosphorylation as examined using Western blot analysis. For in vivo studies, animals were treated for 28 days with simvastatin (20 μg/ gm body weight/ day) vs vehicle control. The treatment inhibited tumor growth as measured weekly using calipers and/ or ultrasound (P<.01). Finally, simvastatin decreased expression of the proliferation marker Ki67 in xenograft tumor tissue as examined by immunohistochemistry (P=.02). Conclusion Simvastatin can be a promising treatment for uterine leiomyoma. Further studies, including pharmacokinetic and drug delivery studies, are required. PMID:25840272

  12. Establishment of a Zebrafish Infection Model for the Study of Wild-Type and Recombinant European Sheatfish Virus

    PubMed Central

    Martín, Verónica; Mavian, Carla; López Bueno, Alberto; de Molina, Antonio; Díaz, Eduardo; Andrés, Germán; Alcami, Antonio

    2015-01-01

    Amphibian-like ranaviruses include pathogens of fish, amphibians, and reptiles that have recently evolved from a fish-infecting ancestor. The molecular determinants of host range and virulence in this group are largely unknown, and currently fish infection models are lacking. We show that European sheatfish virus (ESV) can productively infect zebrafish, causing a lethal pathology, and describe a method for the generation of recombinant ESV, establishing a useful model for the study of fish ranavirus infections. PMID:26246565

  13. Reprofiling using a zebrafish melanoma model reveals drugs cooperating with targeted therapeutics

    PubMed Central

    del Ama, Laura Fernandez; Jones, Mary; Walker, Paul; Chapman, Anna; Braun, Julia A.; Mohr, Jasmine; Hurlstone, Adam F. L.

    2016-01-01

    Phenotype-guided re-profiling of approved drug molecules presents an accelerated route to developing anticancer therapeutics by bypassing the target-identification bottleneck of target-based approaches and by sampling drugs already in the clinic. Further, combinations incorporating targeted therapies can be screened for both efficacy and toxicity. Previously we have developed an oncogenic-RAS-driven zebrafish melanoma model that we now describe display melanocyte hyperplasia while still embryos. Having devised a rapid method for quantifying melanocyte burden, we show that this phenotype can be chemically suppressed by incubating V12RAS transgenic embryos with potent and selective small molecule inhibitors of either MEK or PI3K/mTOR. Moreover, we demonstrate that combining MEK inhibitors (MEKi) with dual PI3K/mTOR inhibitors (PI3K/mTORi) resulted in a super-additive suppression of melanocyte hyperplasia. The robustness and simplicity of our novel screening assay inspired us to perform a modest screen of FDA approved compounds for their ability to potentiate MEKi PD184352 or PI3K/mTORi NVPBEZ235 suppression of V12RAS-driven melanocyte hyperplasia. Through this route, we confirmed Rapamycin as a compound that could synergize with MEKi and even more so with PI3K/mTORi to suppress melanoma development, including suppressing the growth of cultured human melanoma cells. Further, we discovered two additional compounds—Disulfiram and Tanshinone—that also co-operate with MEKi to suppress the growth of transformed zebrafish melanocytes and showed activity toward cultured human melanoma cells. In conclusion, we provide proof-of-concept that our phenotype-guided screen could be used to identify compounds that affect melanoma development and prompt further evaluation of Disulfiram and Tanshinone as possible partners for combination therapy. PMID:27248171

  14. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Cao, Feilin; Han, Na; Xu, Zhenzhen; Li, Guangliang; He, Kuifeng; Teng, Lisong

    2012-08-01

    Heterogeneity in primary tumors and related metastases may result in failure of antitumor therapies, particularly in targeted therapies for the treatment of cancer. In this study, patient-derived tumor tissue (PDTT) xenograft models of colon carcinoma with lymphatic and hepatic metastases were used to evaluate the response to EGFR- and VEGF-targeted therapies. Our results showed that primary colon carcinoma and its corresponding lymphatic and hepatic metastases have a different response rate to anti-EGFR (cetuximab) and anti-VEGF (bevacizumab) therapies. However, the underlying mechanism of these types of phenomenon is still unclear. To investigate whether such phenomena may result from the heterogeneity in primary colon carcinoma and related metastases, we compared the expression levels of cell signaling pathway proteins using immunohistochemical staining and western blotting, and the gene status of KRAS using pyrosequencing in the same primary colon carcinoma and its corresponding lymphatic and hepatic metastatic tissues which were used for establishing the PDTT xenograft models. Our results showed that the expression levels of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR were different in primary colon carcinoma and matched lymphatic and hepatic metastases although the KRAS gene status in all cases was wild-type. Our results indicate that the heterogeneity in primary colon carcinoma and its corresponding lymphatic and hepatic metastases may result in differences in the response to dual-inhibition of EGFR and VEGF.

  15. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  16. Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

    PubMed Central

    Wang, Jie; Chen, Chao; Wang, Shiying; Zhang, Yong; Yin, Peihao; Gao, Zhongxiang; Xu, Jie; Feng, Dianxu; Zuo, Qinsong; Zhao, Ronghua; Chen, Teng

    2015-01-01

    Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin. PMID:26770191

  17. 5α-reductase Inhibition Coupled with Short Off Cycles Increases Survival in the LNCaP Xenograft Prostate Tumor Model on Intermittent Androgen Deprivation Therapy

    PubMed Central

    Pascal, Laura E.; Masoodi, Khalid Z.; O’Malley, Katherine J.; Shevrin, Daniel; Gingrich, Jeffrey R.; Parikh, Rahul A.; Wang, Zhou

    2014-01-01

    Purpose Intermittent androgen deprivation therapy (IADT) for patients with PSA progression after treatment for localized prostate cancer is an alternative to the standard continuous ADT. IADT allows for the recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor in order to lessen the side effects of continuous ADT and potentially prolong survival. Previously, IADT coupled with finasteride was shown to prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was not prolonged and fixed at 10–14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition, but resumed growth after several days in the animal models. 5α-reductase inhibition in shorter off-cycles of testosterone recovery could maximize tumor growth inhibition during IADT and perhaps increase survival. Materials and Methods The LNCaP xenograft tumor model was utilized to evaluate the effectiveness of short off-cycles of 4 days coupled with 5α-reductase inhibition on IADT on survival and tumor regrowth. Results Dutasteride inhibited initial testosterone-induced tumor regrowth during both the first and second off-cycle and significantly increased survival. Conclusions These results further support the potential for IADT combined with 5α-reductase inhibition to improve survival in prostate cancer patients when off cycle durations are short or very short. PMID:25444984

  18. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.

    PubMed

    Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

    2014-01-01

    Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.

  19. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome123

    PubMed Central

    Kumar, Maneesh G.; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T.; Baraban, Scott C.

    2016-01-01

    Abstract Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID:27066534

  20. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration

    PubMed Central

    Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.

    2015-01-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336

  1. An inducible transgene reports activation of macrophages in live zebrafish larvae.

    PubMed

    Sanderson, Leslie E; Chien, An-Tzu; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Hall, Christopher J

    2015-11-01

    Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.

  2. A novel anti-tumor inhibitor identified by virtual screen with PLK1 structure and zebrafish assay.

    PubMed

    Lu, Jing; Xin, Shengchang; Meng, Huan; Veldman, Matt; Schoenfeld, David; Che, Chao; Yan, Ruibin; Zhong, Hanbing; Li, Song; Lin, Shuo

    2013-01-01

    Polo-like kinase 1 (PLK1), one of the key regulators of mitosis, is a target for cancer therapy due to its abnormally high activity in several tumors. Plk1 is highly conserved and shares a nearly identical 3-D structure between zebrafish and humans. The initial 10 mitoses of zebrafish embryonic cleavages occur every∼30 minutes, and therefore provide a rapid assay to evaluate mitosis inhibitors including those targeting Plk1. To increase efficiency and specificity, we first performed a computational virtual screen of∼60000 compounds against the human Plk1 3-D structure docked to both its kinase and Polo box domain. 370 candidates with the top free-energy scores were subjected to zebrafish assay and 3 were shown to inhibit cell division. Compared to general screen for compounds inhibiting zebrafish embryonic cleavage, computation increased the efficiency by 11 folds. One of the 3 compounds, named I2, was further demonstrated to effectively inhibit multiple tumor cell proliferation in vitro and PC3 prostate cancer growth in Xenograft mouse model in vivo. Furthermore, I2 inhibited Plk1 enzyme activity in a dose dependent manner. The IC50 values of I2 in these assays are compatible to those of ON-01910, a Plk1 inhibitor currently in Phase III clinic trials. Our studies demonstrate that zebrafish assays coupled with computational screening significantly improves the efficiency of identifying specific regulators of biological targets. The PLK1 inhibitor I2, and its analogs, may have potential in cancer therapeutics.

  3. The Zebrafish- Danio rerio – Is a Useful Model for Measuring the Effects of Small-molecule Mitigators of Late Effects of Ionizing Irradiation

    PubMed Central

    EPPERLY, MICHAEL W.; BAHARY, NATHAN; QUADER, MUBINA; DEWALD, VALERIE; GREENBERGER, JOEL S.

    2013-01-01

    Background/Aim Use of zebrafish models may decrease the cost of screening new irradiation protectors and mitigators. Materials and Methods Zebrafish (Danio rerio) models were tested for screening water-soluble radiation protectors and mitigators. Irradiation of embryos and monitoring survival, and measuring fibrosis of the caudal musculature of adults allowed for testing of acute and late effects, respectively. Results Incubation of zebrafish embryos either before or after irradiation in ethyl pyruvate (1 mM) increased survival. Irradiation of adults to 15 to 75 Gy, delivered in single-fraction at 13 Gy/min, showed dose-dependent fibrosis at 30 days, quantitated as physiological decrease in swimming tail movement, and histopathological detection of collagen deposition in the dorsal musculature. Continuous administration of small-molecule radioprotector drugs in the water after irradiation reduced both acute and chronic injuries. Conclusion The zebrafish is cost-effective for screening new radiation countermeasures. PMID:23160669

  4. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments

    PubMed Central

    Collignon, Bertrand; Séguret, Axel; Halloy, José

    2016-01-01

    Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences. PMID:26909173

  5. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents.

    PubMed

    Podechard, Normand; Chevanne, Martine; Fernier, Morgane; Tête, Arnaud; Collin, Aurore; Cassio, Doris; Kah, Olivier; Lagadic-Gossmann, Dominique; Sergent, Odile

    2016-11-28

    The easy-to-use in vivo model, zebrafish larva, is being increasingly used to screen chemical-induced hepatotoxicity, with a good predictivity for various mechanisms of liver injury. However, nothing is known about its applicability in exploring the mechanism called membrane remodeling, depicted as changes in membrane fluidity or lipid raft properties. The aim of this study was, therefore, to substantiate the zebrafish larva as a suitable in vivo model in this context. Ethanol was chosen as a prototype toxicant because it is largely described, both in hepatocyte cultures and in rodents, as capable of inducing a membrane remodeling leading to hepatocyte death and liver injury. The zebrafish larva model was demonstrated to be fully relevant as membrane remodeling was maintained even after a 1-week exposure without any adaptation as usually reported in rodents and hepatocyte cultures. It was also proven to exhibit a high sensitivity as it discriminated various levels of cytotoxicity depending on the extent of changes in membrane remodeling. In this context, its sensitivity appeared higher than that of WIF-B9 hepatic cells, which is suited for analyzing this kind of hepatotoxicity. Finally, the protection afforded by a membrane stabilizer, ursodeoxycholic acid (UDCA), or by a lipid raft disrupter, pravastatin, definitely validated zebrafish larva as a reliable model to quickly assess membrane remodeling involvement in chemical-induced hepatotoxicity. In conclusion, this model, compatible with a high throughput screening, might be adapted to seek hepatotoxicants via membrane remodeling, and also drugs targeting membrane features to propose new preventive or therapeutic strategies in chemical-induced liver diseases. Copyright © 2016 John Wiley & Sons, Ltd.

  6. As2 O3 combined with leflunomide prolongs heart xenograft survival via suppressing the response of Th1, Th2, and B cells in a rat model.

    PubMed

    Jiao, Zhi-Xing; Leng, Yun; Xia, Jun-Jie; Wu, Hai-Qiao; Jin, Ning; Fu, Jia-Zhao; Cheng, Lian-Na; Wang, Jin-Hua; Ni, Shao-Bin; Qi, Zhong-Quan

    2016-05-01

    Xenotransplantation remits the severe shortage of human organs and tissues for transplantation, which is a problem that severely limits the application of transplantation to the treatment of human disease. However, severe immune rejection significantly limits the efficacy of xenotransplantation. In this study, we systematically investigated the immunosuppressive effect and mechanism of action of As2 O3 and leflunomide using a hamster-to-rat heart xenotransplantation model. We initially examined heart xenograft survival following As2 O3 and leflunomide treatment alone or combined treatment. We found that treatment with As2 O3 combined with leflunomide can significantly prolong the survival of heart xenograft by inhibiting Th1 and Th2 differentiation and reducing the production of IgG and IgM. Interestingly, As2 O3 and leflunomide showed low toxicity to the organs of the recipient. Taken together, these observations indicate that treatment with As2 O3 combined with leflunomide may be a promising immunosuppressive schedule for xenotransplantation.

  7. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  8. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  9. Zebrafish Model of NF1 for Structure-Function Analysis, Mechanisms of Glial Tumorigenesis, and Chemical Biology

    DTIC Science & Technology

    2014-05-01

    Neuroblastoma . Shuning He. NF Conference 2014. Washington DC, June 7-10 2014. • Abstract: In vivo Analysis of the Consequences of loss of the NF1...Tumor Suppressor in High-Grade Glioma, Malignant Peripheral Nerve Sheath Tumor (MPNST) and Neuroblastoma . Shuning He. 11th International...Suppressor in High-Grade Glioma, Malignant Peripheral Nerve Sheath Tumor (MPNST) and Neuroblastoma . Shuning He. Zebrafish Disease Models Conference

  10. Thalidomide Effects in Patients with Hereditary Hemorrhagic Telangiectasia During Therapeutic Treatment and in Fli-EGFP Transgenic Zebrafish Model

    PubMed Central

    Peng, Hong-Ling; Yi, Yi-Fang; Zhou, Shun-Ke; Xie, Si-Si; Zhang, Guang-Sen

    2015-01-01

    Background: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by recurrent epistaxis, mucocutaneous telangiectasia, and arteriovenous malformations. The efficacy of traditional treatments for HHT is very limited. The aim of this study was to investigate the therapeutic role of thalidomide in HHT patients and the effect in FLI-EGFP transgenic zebrafish model. Methods: HHT was diagnosed according to Shovlin criteria. Five HHT patients were treated with thalidomide (100 mg/d). The Epistaxis Severity Score (ESS), telangiectasia spots, and hepatic computed tomography angiography (CTA) were used to assess the clinical efficacy of thalidomide. The Fli-EGFP zebrafish model was investigated for the effect of thalidomide on angiogenesis. Dynamic real-time polymerase chain reaction assay, ELISA and Western blotting from patient's peripheral blood mononuclear cells and plasma were used to detect the expression of transforming growth factor beta 3 (TGF-β3) messenger RNA (mRNA) and vascular endothelial growth factor (VEGF) protein before and after 6 months of thalidomide treatment. Results: The average ESS before and after thalidomide were 6.966 ± 3.093 and 1.799 ± 0.627, respectively (P = 0.009). The “telangiectatic spot” on the tongue almost vanished; CTA examination of case 2 indicated a smaller proximal hepatic artery and decreased or ceased hepatic artery collateral circulation. The Fli-EGFP zebrafish model manifested discontinuous vessel development and vascular occlusion (7 of 10 fishes), and the TGF-β3 mRNA expression of five patients was lower after thalidomide therapy. The plasma VEGF protein expression was down-regulated in HHT patients. Conclusions: Thalidomide reverses telangiectasia and controls nosebleeds by down-regulating the expression of TGF-β3 and VEGF in HHT patients. It also leads to vascular remodeling in the zebrafish model. PMID:26608985

  11. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models

    PubMed Central

    Elks, Philip M.; Renshaw, Stephen A.; Meijer, Annemarie H.; Walmsley, Sarah R.; van Eeden, Fredericus J.

    2015-01-01

    ABSTRACT A low level of tissue oxygen (hypoxia) is a physiological feature of a wide range of diseases, from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydroxylase enzymes, which regulate the protein stability of hypoxia-inducible factor α (HIF-α) transcription factors. When stabilised, HIF-α binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to coordinate a wide-ranging transcriptional programme in response to the hypoxic environment. This year marks the 20th anniversary of the discovery of the HIF-1α transcription factor, and in recent years the HIF-mediated hypoxia response is being increasingly recognised as an important process in determining the outcome of diseases such as cancer, inflammatory disease and bacterial infections. Animal models have shed light on the roles of HIF in disease and have uncovered intricate control mechanisms that involve multiple cell types, observations that might have been missed in simpler in vitro systems. These findings highlight the need for new whole-organism models of disease to elucidate these complex regulatory mechanisms. In this Review, we discuss recent advances in our understanding of hypoxia and HIFs in disease that have emerged from studies of zebrafish disease models. Findings from such models identify HIF as an integral player in the disease processes. They also highlight HIF pathway components and their targets as potential therapeutic targets against conditions that range from cancers to infectious disease. PMID:26512123

  12. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration

    PubMed Central

    Chávez, Myra N.; Aedo, Geraldine; Fierro, Fernando A.; Allende, Miguel L.; Egaña, José T.

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism. PMID:27014075

  13. Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies.

    PubMed

    Key, Brian; Devine, Christine A

    2003-01-01

    Zebrafish provide a rapid and effective means for assessing gene function in the vertebrate nervous system. By employing gain- and loss-of-function techniques it is possible to obtain insights into the roles of both wild-type and heterologously expressed genes. Such approaches enable rapid progression from gene discovery to gene expression and finally to gene function even when examining development of a tissue as complex as the nervous system. Exploiting the full potential of zebrafish as a bioassay for the nervous system will require, not only an understanding of the molecular and cellular basis of normal zebrafish development, but also an appreciation of comparative processes in other species. When applied to mutant animals, classic morphological approaches and contemporary molecular genetic techniques are providing a wealth of information on the development of the nervous system at the molecular, cell, system and behavioural levels. Zebrafish are now emerging as an important tool, supporting mouse genetical approaches for understanding neural function in vertebrates.

  14. Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer.

    PubMed

    Lobert, Viola H; Mouradov, Dmitri; Heath, Joan K

    2016-01-01

    Colorectal cancer, encompassing colon and rectal cancer, arises from the epithelial lining of the large bowel. It is most prevalent in Westernised societies and is increasing in frequency as the world becomes more industrialised. Unfortunately, metastatic colorectal cancer is not cured by chemotherapy and the annual number of deaths caused by colorectal cancer, currently 700,000, is expected to rise. Our understanding of the contribution that genetic mutations make to colorectal cancer, although incomplete, is reasonably well advanced. However, it has only recently become widely appreciated that in addition to the ongoing accumulation of genetic mutations, chronic inflammation also plays a critical role in the initiation and progression of this disease. While a robust and tractable genetic model of colorectal cancer in zebrafish, suitable for pre-clinical studies, is not yet available, the identification of genes required for the rapid proliferation of zebrafish intestinal epithelial cells during development has highlighted a number of essential genes that could be targeted to disable colorectal cancer cells. Moreover, appreciation of the utility of zebrafish to study intestinal inflammation is on the rise. In particular, zebrafish provide unique opportunities to investigate the impact of genetic and environmental factors on the integrity of intestinal epithelial barrier function. With currently available tools, the interplay between epigenetic regulators, intestinal injury, microbiota composition and innate immune cell mobilisation can be analysed in exquisite detail. This provides excellent opportunities to define critical events that could potentially be targeted therapeutically. Further into the future, the use of zebrafish larvae as hosts for xenografts of human colorectal cancer tissue, while still in its infancy, holds great promise that zebrafish could one day provide a practical, preclinical personalized medicine platform for the rapid assessment of the

  15. Innovative approaches to establish and characterize primary cultures: an ex vivo 3D system and the zebrafish model

    PubMed Central

    Liverani, Chiara; La Manna, Federico; Groenewoud, Arwin; Mercatali, Laura; Van Der Pluijm, Gabri; Pieri, Federica; Cavaliere, Davide; De Vita, Alessandro; Spadazzi, Chiara; Miserocchi, Giacomo; Bongiovanni, Alberto; Recine, Federica; Riva, Nada; Amadori, Dino; Tasciotti, Ennio; Snaar-Jagalska, Ewa

    2017-01-01

    ABSTRACT Patient-derived specimens are an invaluable resource to investigate tumor biology. However, in vivo studies on primary cultures are often limited by the small amount of material available, while conventional in vitro systems might alter the features and behavior that characterize cancer cells. We present our data obtained on primary dedifferentiated liposarcoma cells cultured in a 3D scaffold-based system and injected into a zebrafish model. Primary cells were characterized in vitro for their morphological features, sensitivity to drugs and biomarker expression, and in vivo for their engraftment and invasiveness abilities. The 3D culture showed a higher enrichment in cancer cells than the standard monolayer culture and a better preservation of liposarcoma-associated markers. We also successfully grafted primary cells into zebrafish, showing their local migratory and invasive abilities. Our work provides proof of concept of the ability of 3D cultures to maintain the original phenotype of ex vivo cells, and highlights the potential of the zebrafish model to provide a versatile in vivo system for studies with limited biological material. Such models could be used in translational research studies for biomolecular analyses, drug screenings and tumor aggressiveness assays. PMID:27895047

  16. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  17. Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting.

    PubMed

    Huang, Ying-Yu; Rinner, Oliver; Hedinger, Patrik; Liu, Shih-Chii; Neuhauss, Stephan C F

    2006-09-27

    A large fraction of homozygous zebrafish mutant belladonna (bel) larvae display a reversed optokinetic response (OKR) that correlates with failure of the retinal ganglion cells to cross the midline and form the optic chiasm. Some of these achiasmatic mutants display strong spontaneous eye oscillations (SOs) in the absence of motion in the surround. The presentation of a stationary grating was necessary and sufficient to evoke SO. Both OKR reversal and SO depend on vision and are contrast sensitive. We built a quantitative model derived from bel fwd (forward) eye behaviors. To mimic the achiasmatic condition, we reversed the sign of the retinal slip velocity in the model, thereby successfully reproducing both reversed OKR and SO. On the basis of the OKR data, and with the support of the quantitative model, we hypothesize that the reversed OKR and the SO can be completely attributed to RGC misrouting. The strong resemblance between the SO and congenital nystagmus (CN) seen in humans with defective retinotectal projections implies that CN, of so far unknown etiology, may be directly caused by a projection defect.

  18. Pharmacological HIF2α inhibition improves VHL disease-associated phenotypes in zebrafish model.

    PubMed

    Metelo, Ana Martins; Noonan, Haley R; Li, Xiang; Jin, Youngnam; Baker, Rania; Kamentsky, Lee; Zhang, Yiyun; van Rooijen, Ellen; Shin, Jordan; Carpenter, Anne E; Yeh, Jing-Ruey; Peterson, Randall T; Iliopoulos, Othon

    2015-05-01

    Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis. These phenotypes are driven by aberrant expression of HIF2α, which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production. Currently, there are no effective treatments available for VHL disease. Here, using an animal model of VHL, we report a marked improvement of VHL-associated phenotypes following treatment with HIF2α inhibitors. Inactivation of vhl in zebrafish led to constitutive activation of HIF2α orthologs and modeled several aspects of the human disease, including erythrocytosis, pathologic angiogenesis in the brain and retina, and aberrant kidney and liver proliferation. Treatment of vhl(-/-) mutant embryos with HIF2α-specific inhibitors downregulated Hif target gene expression in a dose-dependent manner, improved abnormal hematopoiesis, and substantially suppressed erythrocytosis and angiogenic sprouting. Moreover, pharmacologic inhibition of HIF2α reversed the compromised cardiac contractility of vhl(-/-) embryos and partially rescued early lethality. This study demonstrates that small-molecule targeting of HIF2α improves VHL-related phenotypes in a vertebrate animal model and supports further exploration of this strategy for treating VHL disease.

  19. Pharmacological HIF2α inhibition improves VHL disease–associated phenotypes in zebrafish model

    PubMed Central

    Metelo, Ana Martins; Noonan, Haley R.; Li, Xiang; Jin, Youngnam; Baker, Rania; Kamentsky, Lee; Zhang, Yiyun; van Rooijen, Ellen; Shin, Jordan; Carpenter, Anne E.; Yeh, Jing-Ruey; Peterson, Randall T.; Iliopoulos, Othon

    2015-01-01

    Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis. These phenotypes are driven by aberrant expression of HIF2α, which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production. Currently, there are no effective treatments available for VHL disease. Here, using an animal model of VHL, we report a marked improvement of VHL-associated phenotypes following treatment with HIF2α inhibitors. Inactivation of vhl in zebrafish led to constitutive activation of HIF2α orthologs and modeled several aspects of the human disease, including erythrocytosis, pathologic angiogenesis in the brain and retina, and aberrant kidney and liver proliferation. Treatment of vhl–/– mutant embryos with HIF2α-specific inhibitors downregulated Hif target gene expression in a dose-dependent manner, improved abnormal hematopoiesis, and substantially suppressed erythrocytosis and angiogenic sprouting. Moreover, pharmacologic inhibition of HIF2α reversed the compromised cardiac contractility of vhl–/– embryos and partially rescued early lethality. This study demonstrates that small-molecule targeting of HIF2α improves VHL-related phenotypes in a vertebrate animal model and supports further exploration of this strategy for treating VHL disease. PMID:25866969

  20. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma

    PubMed Central

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo

    2014-01-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy. PMID:24304419

  1. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma.

    PubMed

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2014-09-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy.

  2. Protective effect of dieckol isolated from Ecklonia cava against ethanol caused damage in vitro and in zebrafish model.

    PubMed

    Kang, Min-Cheol; Kim, Kil-Nam; Kang, Sung-Myung; Yang, Xiudong; Kim, Eun-A; Song, Choon Bok; Nah, Jae-Woon; Jang, Mi-Kyeong; Lee, Jung-Suck; Jung, Won-Kyo; Jeon, You-Jin

    2013-11-01

    In the present study, the protective effects of phlorotannins isolated from Ecklonia cava against ethanol-induced cell damage and apoptosis were investigated both in vitro and in vivo. Three phlorotannin compounds, namely phloroglucinol, eckol and dieckol, were successively isolated and identified from the extract. Dieckol showed the strongest protective effect against ethanol-induced cell apoptosis in Chang liver cells, with the lowest cytotoxicity. It was observed that dieckol reduced cell apoptosis through activation of Bcl-xL and PARP, and down-regulation of Bax and caspase-3 in Western blot analyses. In the in vivo study, the protective effect of ethanol induced by dieckol was investigated in a zebrafish model. The dieckol treated group scavenged intracellural reactive oxygen species and prevented lipid peroxidation and ethanol induced cell death in the zebrafish embryo. In conclusion, dieckol isolated from E. cava might possess a potential protective effect against ethanol-induced liver diseases.

  3. Loss of Type I Collagen Telopeptide Lysyl Hydroxylation Causes Musculoskeletal Abnormalities in a Zebrafish Model of Bruck Syndrome

    PubMed Central

    Gistelinck, Charlotte; Witten, Paul Eckhard; Huysseune, Ann; Symoens, Sofie; Malfait, Fransiska; Larionova, Daria; Simoens, Pascal; Dierick, Manuel; Van Hoorebeke, Luc; De Paepe, Anne; Kwon, Ronald Y; Weis, MaryAnn; Eyre, David R; Willaert, Andy; Coucke, Paul J

    2017-01-01

    Bruck syndrome (BS) is a disorder characterized by joint flexion contractures and skeletal dysplasia that shows strong clinical overlap with the brittle bone disease Osteogenesis Imperfecta (OI). BS is caused by bi-allelic mutations in either the FKBP10 or the PLOD2 gene. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of lysine residues in fibrillar collagen telopeptides. This hydroxylation directs cross-linking of collagen fibrils in the extracellular matrix, which is necessary to provide stability and tensile integrity to the collagen fibrils. To further elucidate the function of LH2 in vertebrate skeletal development, we created a zebrafish model harboring a homozygous plod2 nonsense mutation resulting in reduced telopeptide hydroxylation and cross-linking of bone type I collagen. Adult plod2 mutants present with a shortened body axis and severe skeletal abnormalities with evidence of bone fragility and fractures. The vertebral column of plod2 mutants is short and scoliotic with compressed vertebrae that show excessive bone formation at the vertebral end plates, and increased tissue mineral density in the vertebral centra. The muscle fibers of mutant zebrafish have a reduced diameter near the horizontal myoseptum. The endomysium, a layer of connective tissue ensheathing the individual muscle fibers, is enlarged. Transmission electron microscopy of mutant vertebral bone shows type I collagen fibrils that are less organized with loss of the typical plywood-like structure. In conclusion, plod2 mutant zebrafish show molecular and tissue abnormalities in the musculoskeletal system that are concordant with clinical findings in BS patients. Therefore, the plod2 zebrafish mutant is a promising model for the elucidation of the underlying pathogenetic mechanisms leading to BS and the development of novel therapeutic avenues in this syndrome. PMID:27541483

  4. Cyclooxygenase-1 as a Potential Therapeutic Target for Seizure Suppression: Evidences from Zebrafish Pentylenetetrazole-Seizure Model

    PubMed Central

    Barbalho, Patrícia Gonçalves; Carvalho, Benilton de Sá; Lopes-Cendes, Iscia; Maurer-Morelli, Claudia Vianna

    2016-01-01

    Cyclooxygenases (COX)-1 and -2 are isoenzymes that catalyze the conversion of arachidonic acid into prostaglandins (PGs). COX-2 and PGs are rapidly increased following seizures and are known to play important roles in the neuroinflammatory process. COX-2 isoform has been predominantly explored as the most suitable target for pharmacological intervention in epilepsy studies, while COX-1 remains poorly investigated. In the present study, we evaluated the effects of selective COX-1 inhibitor or selective COX-2 inhibitor on seizure suppression in the zebrafish pentylenetetrazole (PTZ)-seizure model. Zebrafish larvae were incubated in 5 μM of SC-236 for 24 h or 2.8 μM of SC-560 for 30 min, followed by exposure to 15 mM PTZ for 60 min. Real-time quantitative PCR analysis was carried out to investigate transcription levels of cox1 (ptgs1), as well as to determine cfos levels, used as a marker for neuronal activity. Effects of selective COX-2 or COX-1 inhibitors on locomotor activity response (velocity and distance moved) during PTZ exposure were evaluated using the Danio Vision video-tracking system. Our results showed an inducible expression of the cox1 gene after 60 min of PTZ exposure. Cox1 mRNA levels were upregulated compared with the control group. We found that COX-2 inhibition treatment had no effect on zebrafish PTZ-induced seizures. On the other hand, COX-1 inhibition significantly attenuated PTZ-induced increase of locomotor activity and reduced the c-fos mRNA expression. These findings suggest that COX-1 inhibition rather than COX-2 has positive effects on seizure suppression in the zebrafish PTZ-seizure model. PMID:27895618

  5. Carotenoid glycosides from cyanobacteria are teratogenic in the zebrafish (Danio rerio) embryo model.

    PubMed

    Jaja-Chimedza, Asha; Sanchez, Kristel; Gantar, Miroslav; Gibbs, Patrick; Schmale, Michael; Berry, John P

    2017-05-01

    Toxigenicity of cyanobacteria is widely associated with production of several well-described toxins that pose recognized threats to human and ecosystem health as part of both freshwater eutrophication, and episodic blooms in freshwater and coastal habitats. However, a preponderance of evidence indicates contribution of additional bioactive, and potentially toxic, metabolites. In the present study, the zebrafish (Danio rerio) embryo was used as a model of vertebrate development to identify, and subsequently isolate and characterize, teratogenic metabolites from two representative strains of C. raciborskii. Using this approach, three chemically related carotenoids - and specifically the xanthophyll glycosides, myxol 2'-glycoside (1), 4-ketomyxol 2'-glycoside (2) and 4-hydroxymyxol 2'-glycoside (3) - which are, otherwise, well known pigment molecules from cyanobacteria were isolated as potently teratogenic compounds. Carotenoids are recognized "pro-retinoids" with retinoic acid, as a metabolic product of the oxidative cleavage of carotenoids, established as both key mediator of embryo development and, consequently, a potent teratogen. Accordingly, a comparative toxicological study of chemically diverse carotenoids, as well as apocarotenoids and retinoids, was undertaken. Based on this, a working model of the developmental toxicity of carotenoids as pro-retinoids is proposed, and the teratogenicity of these widespread metabolites is discussed in relation to possible impacts on aquatic vertebrate populations.

  6. A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement.

    PubMed

    Bosch, Rosa; Moreno, María José; Dieguez-Gonzalez, Rebeca; Céspedes, María Virtudes; Gallardo, Alberto; Trias, Manuel; Grañena, Albert; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon

    2013-08-01

    Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of β1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement.

  7. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape

    PubMed Central

    Long, Thomas J.; Sprenger, Cynthia C.; Plymate, Stephen R.; Ratner, Buddy D.

    2014-01-01

    Synthetic biomaterial scaffolds show promise for in vitro and in vivo 3D cancer models. Tumors engineered in biomaterial scaffolds have shown evidence of being more physiologically relevant than some traditional preclinical model systems, and synthetic biomaterials provide the added benefit of defined and consistent microenvironmental control. Here, we examine sphere-templated poly(2-hydroxyethyl methacrylate) (pHEMA) scaffolds as the basis for engineering xenografts from multiple human prostate cancer cell lines. pHEMA scaffolds seeded and pre-cultured with tumorigenic M12 cells prior to implantation generated tumors in athymic nude mice, demonstrating the ability of the scaffolds to be used as a synthetic vehicle for xenograft generation. pHEMA scaffolds seeded with LNCaP C4-2 cells, which require Matrigel or stromal cell support for tumor formation, were poorly tumorigenic up to twelve weeks after implantation even when Matrigel was infused into the scaffold, demonstrating a lack of necessary pro-tumorigenic signaling within the scaffolds. Finally, M12mac25 cells, which are ordinarily rendered non-tumorigenic through the expression of the tumor suppressor insulin-like growth factor binding protein 7 (IGFBP7), displayed a tumorigenic response when implanted within porous pHEMA scaffolds. These M12mac25 tumors showed a significantly higher macrophage infiltration within the scaffolds driven by the foreign body response to the materials. These findings show the potential for this biomaterials-based model system to be used in the study of prostate cancer tumorigenesis and dormancy escape. PMID:24942815

  8. Assessment of functional competence of endothelial cells from human pluripotent stem cells in zebrafish embryos.

    PubMed

    Orlova, Valeria V; Drabsch, Yvette; ten Dijke, Peter; Mummery, Christine L

    2014-01-01

    Human pluripotent stem cells (hPSCs) are proving to be a valuable source of endothelial cells (ECs), pericytes, and vascular smooth muscle cells (vSMCs). Although an increasing number of phenotypic markers are becoming available to determine the phenotypes of these cells in vitro, the ability to integrate and form functional vessels in the host organism, typically mouse, remains critical for the assessment of EC functional competence. However, current mouse models require relatively large numbers of cells that might be difficult to derive simultaneously from multiple hPSCs lines. Therefore, there is an urgent need for new functional assays that are robust and can be performed with small numbers of cells. Here we describe a novel zebrafish xenograft model to test functionality of hPSC-derived ECs. The assay can be performed in 10 days and requires only ~100-400 human cells per embryo. Thus, the zebrafish xenograft model can be useful for the accurate and rapid assessment of functionality of hPSC-derived ECs in a lower vertebrate model that is widely viewed by regulatory authorities as a more acceptable alternative to adult mice.

  9. Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model

    PubMed Central

    Ye, Suo-fu; Li, Jian; Ji, Shuang-min; Zeng, Hui-hui; Lu, Wei

    2017-01-01

    Thioredoxin reductase (TrxR) is a component of several redox-sensitive signaling cascades that mediate important biological processes such as cell survival, maturation, growth, migration and inhibition of apoptosis. The expression levels of TrxR1 in some human carcinoma cell lines are nearly 10 times higher than those in normal cells. Ethaselen is a novel antitumor candidate that exerts potent inhibition on non-small cell lung cancer (NSCLC) by targeting TrxR. In this study we explored the relationship between the ethaselen dose and TrxR activity level and the relationship between TrxR degradation and tumor apoptosis in a human lung carcinoma A549 xenograft model. BALB/c nude mice implanted with human NSCLC cell line A54 were administered ethaselen (36, 72, 108 mg·kg−1·d−1, ig) or vehicle for 10 d. The tumor size and TrxR activity levels in tumor tissues were daily recorded and detected. Based on the experimental data, NONMEM 7.2 was used to develop an integrated dose-biomarker-response model for describing the quantitative relationship between ethaselen dose and tumor eradication effects. The time course of TrxR activity levels was modeled using an indirect response model (IDR model), in which the influence of the tumor growth rates on Kin with the linear correction factor γ1 (0.021 d/mm). The drug binding-inhibition effects on Kout was described using a sigmoidal Emax model with Smax (5.95), SC50 (136 mg/kg) and Hill's coefficient γ2 (2.29). The influence of TrxR activity inhibition on tumor eradication was characterized by an Emax model with an Emax (130 mm3/d) and EC50 (0.0676). This model was further validated using a visual predictive check (VPC) and was used to predict the efficacy of different doses. In conclusion, the properties and characteristics of ethaselen acting on TrxR degradation and subsequently resulting in tumor apoptosis are characterized by the IDR model and integrated dose-biomarker-response model with high goodness-of-fit and great

  10. Functional ginger extracts from supercritical fluid carbon dioxide extraction via in vitro and in vivo assays: antioxidation, antimicroorganism, and mice xenografts models.

    PubMed

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan; Wang, Hui-Min

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements.

  11. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  12. Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models

    PubMed Central

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

  13. Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio).

    PubMed

    Hinfray, N; Palluel, O; Turies, C; Cousin, C; Porcher, J M; Brion, F

    2006-08-01

    Many chemicals in the aquatic environment are able to adversely affect in vitro brain and ovarian aromatase expression/activity. However, it remains to be determined if these substances elicit in vivo effect in fish. With the view to further understanding possible effects of endocrine disrupting chemicals (EDCs) on aromatase function, we first developed methods to measure brain and ovarian aromatase expression/activity in a model species, the zebrafish, and assessed the effect of estradiol (E2) and androstatrienedione (ATD), a steroidal aromatase inhibitor. We showed that CYP19b gene was predominantly expressed in the brain whereas in the ovary CYP19a mRNA level was predominant. Moreover, aromatase activities (AA) were higher in brain than in ovary. In adult zebrafish, E2 treatment had no effect on aromatase expression/activity in brain, whereas at larval stage, E2 strongly triggered CYP19b expression. In the ovaries, E2 led to a complete inhibition of both CYP19a expression and AA. Exposure to ATD led to a total inhibition of both brain and ovarian AA but had no effect on CYP19 transcripts abundance. Together, these results provide relevant knowledge concerning the characterization of aromatase in the zebrafish, and reinforce the idea that brain and ovarian aromatase are promising markers of EDCs in fish and deserve further in vivo studies.

  14. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    PubMed

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases.

  15. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    SciTech Connect

    Pagel, John M; Kenoyer, Aimee L; Back, Tom; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Park, Steven I; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozoco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K; Green, Damian J; Appelbaum, Frederick R; Press, Oliver W

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.

  16. Antitumor activity of (R,R')-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse.

    PubMed

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-12-01

    (R,R')-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo.

  17. Antitumor activity of (R,R’)-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse

    PubMed Central

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-01-01

    (R,R’)-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo. PMID:25505565

  18. Neural and Synaptic Defects in slytherin a Zebrafish Model for Human Congenital Disorders of Glycosylation

    SciTech Connect

    Y Song; J Willer; P Scherer; J Panzer; A Kugath; E Skordalakes; R Gregg; G Willer; R Balice-Gordon

    2011-12-31

    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development.

  19. Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Louie, Ke'ale W; Grzegorski, Steven J; Klionsky, Daniel J; Kahana, Alon

    2016-10-02

    Cell identity involves both selective gene activity and specialization of cytoplasmic architecture and protein machinery. Similarly, reprogramming differentiated cells requires both genetic program alterations and remodeling of the cellular architecture. While changes in genetic and epigenetic programs have been well documented in dedifferentiating cells, the pathways responsible for remodeling the cellular architecture and eliminating specialized protein complexes are not as well understood. Here, we utilize a zebrafish model of adult muscle regeneration to study cytoplasmic remodeling during cell dedifferentiation. We describe activation of autophagy early in the regenerative response to muscle injury, while blocking autophagy using chloroquine or Atg5 and Becn1 knockdown reduced the rate of regeneration with accumulation of sarcomeric and nuclear debris. We further identify Casp3/caspase 3 as a candidate mediator of cellular reprogramming and Fgf signaling as an important activator of autophagy in dedifferentiating myocytes. We conclude that autophagy plays a critical role in cell reprogramming by regulating cytoplasmic remodeling, facilitating the transition to a less differentiated cell identity.

  20. Indole Alkaloids from Fischerella Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Walton, Katherine; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2014-01-01

    Cyanobacteria are recognized producers of toxic or otherwise bioactive metabolite associated, in particular, with so-called “harmful algal blooms” (HABs) and eutrophication of freshwater systems. In the present study, two apparently teratogenic indole alkaloids from a freshwater strain of the widespread cyanobacterial genus, Fischerella (Stigonemataceae), were isolated by bioassay-guided fractionation, specifically using the zebrafish (Danio rerio) embryo, as a model of vertebrate development. The two alkaloids include the previously known 12-epi-hapalindole H isonitrile (1), and a new nitrile-containing variant, 12-epi-ambiguine B nitrile (2). Although both compounds were toxic to developing embryos, the former compound was shown to be relatively more potent, and to correlate best with the observed embryo toxicity. Related indole alkaloids from Fischerella, and other genera in the Stigonemataceae, have been widely reported as antimicrobial compounds, specifically in association with apparent allelopathy. However, this is the first report of their vertebrate toxicity, and the observed teratogenicity of these alkaloids supports a possible contribution to the toxicity of this widespread cyanobacterial family, particularly in relation to freshwater HABs and eutrophication. PMID:25533520

  1. Microgavage of Zebrafish Larvae

    PubMed Central

    Cocchiaro, Jordan L.; Rawls, John F.

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development1-5, physiology6-11, disease12-16, and host-microbe interactions17-25. Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae26. Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results.We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to

  2. Novel Vitamin K analogs suppress seizures in zebrafish and mouse models of epilepsy.

    PubMed

    Rahn, J J; Bestman, J E; Josey, B J; Inks, E S; Stackley, K D; Rogers, C E; Chou, C J; Chan, S S L

    2014-02-14

    Epilepsy is a debilitating disease affecting 1-2% of the world's population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit histone deacetylases (HDACs) using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, 2-benzamido-1 4-naphthoquinone (NQN1), significantly decreased swim activity to levels equal to that of valproic acid, 2-n-propylpentanoic acid (VPA). We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogs. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6Hz) and corneal-kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogs for the prevention of seizures and suggest the potential mechanism for this protection may lie in the

  3. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    PubMed Central

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  4. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion

    PubMed Central

    Tenor, Jennifer L.; Oehlers, Stefan H.; Yang, Jialu L.

    2015-01-01

    ABSTRACT The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. PMID:26419880

  5. Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV).

    PubMed

    Novoa, Beatriz; Romero, Alejandro; Mulero, Victoriano; Rodríguez, Iván; Fernández, Ignacio; Figueras, Antonio

    2006-07-26

    The rhabdovirus viral haemorrhagic septicemia virus (VHSV) is the etiological agent of one of the most important salmonid viral diseases. In the present work, the ability of VHSV to infect and replicate in zebrafish at low temperature (15 degrees C) was demonstrated. Zebrafish was also used to determine the effectiveness of the recombinant virus rIHNV-Gvhsv GFP as a live attenuated vaccine against the virulent VHSV strain. Fish intraperitoneally injected with 3 x 10(6) to 3 x 10(5)TCID50/ml of the wild type VHSV showed a 100% of cumulative mortality, meanwhile only 57% of mortality was obtained in bath infections. Infected fish showed external clinical signs and histological observations revealed the appearance of small haemorrhages in the muscle, kidney, liver and dermis. Neither mortalities nor clinical signs were recorded in fish infected with a live attenuated recombinant virus. By RT-PCR technique, VHSV was detected in all the organs as early as 24h, but the recombinant virus was not detected in all the sampled days. VHSV was able to replicate "in vitro" in head kidney cells but the replication capacity of the attenuated viral strain was limited. The recombinant virus rIHNV-Gvhsv GFP was able to protect against VHSV with a survival rate ranging from 20% to 60% depending of the vaccine dose. The increase of TLR3, IFNalphabeta, Mx, IFNgamma and TNFalpha expression at 72h post-infection in the kidney of VHSV-infected fish contrasted with the results obtained with the avirulent virus, which did not induce an increment of this expression in infected fish. Zebrafish is a suitable animal model to study VHSV infection and immune (innate and adaptive) responses and, more importantly, we demonstrate for the first time the usefulness of the zebrafish as a vaccination model to viral diseases. In addition, the high protection obtained with the live attenuated virus demonstrates that the zebrafish is able to mount an efficient antiviral immune response at 15 degrees C.

  6. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  7. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to