NASA Astrophysics Data System (ADS)
Kruger, Pamela C.; Parsons, Patrick J.
2007-03-01
Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3 SD) for Al were very similar: 3.0, 3.2, and 4.1 μg L - 1 for the Z5100, 4100ZL, and 3110, respectively. Serum Al method detection limits (3 SD) were 9.8, 6.9, and 7.3 μg L - 1 , respectively. Accuracy was assessed using archived serum (and plasma) reference materials from various external quality assessment schemes (EQAS). Values found with all three instruments were within the acceptable EQAS ranges. The data indicate that relatively modest ETAAS instrumentation equipped with continuum background correction is adequate for routine serum Al monitoring.
NASA Astrophysics Data System (ADS)
Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team
2017-08-01
The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.
Variable thickness double-refracting plate
Hadeishi, Tetsuo
1976-01-01
This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito
2010-06-15
We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubovmore » modes that have gapless linear dispersion relations but do not belong to the NG modes.« less
NASA Astrophysics Data System (ADS)
Keebaugh, Christof; Marshman, Emily; Singh, Chandralekha
2018-07-01
Understanding when and how to make limiting case approximations and why they are valid in a particular situation is a hallmark of expertise in physics. Using limiting cases can simplify the problem-solving process significantly and they often provide a means to check that the results obtained are reasonable. We discuss an investigation of student difficulties with the corrections to the energy spectrum of the hydrogen atom for the limiting cases of the strong and weak field Zeeman effects using degenerate perturbation theory. This investigation was carried out in advanced quantum mechanics courses by administering written free-response and multiple-choice questions and conducting individual interviews with students. Here we first discuss the common student difficulties related to these concepts. We then describe how the research on student difficulties was used as a guide to develop and evaluate a quantum interactive learning tutorial (QuILT) which strives to help students develop a functional understanding of the concepts necessary for finding the corrections to the energy spectrum of the hydrogen atom for the strong field and weak field Zeeman effects. The development of the QuILT and its evaluation in the undergraduate and PhD level courses are presented.
NASA Technical Reports Server (NTRS)
Kaufmann, D. C.
1976-01-01
The fine frequency setting of a cesium beam frequency standard is accomplished by adjusting the C field control with the appropriate Zeeman frequency applied to the harmonic generator. A novice operator in the field, even when using the correct Zeeman frequency input, may mistakenly set the C field to any one of seven major Beam I peaks (fingers) represented by the Ramsey curve. This can result in frequency offset errors of as much as 2.5 parts in ten to the tenth. The effects of maladjustment are demonstrated and suggestions are discussed on how to avoid the subtle traps associated with C field adjustments.
Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.
McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T
2013-12-13
Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.
NASA Astrophysics Data System (ADS)
Nagai, Yuki
2015-02-01
We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.
THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Štěpán, Jiri; Bueno, Javier Trujillo
We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the jointmore » action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.« less
NASA Astrophysics Data System (ADS)
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Khodas, M.; Levchenko, A.; Catelani, G.
2012-06-01
We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.
Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb
NASA Astrophysics Data System (ADS)
Brown, Natalie C.; Brown, Kenneth R.
2018-05-01
Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .
An Essay on Interactive Investigations of the Zeeman Effect in the Interstellar Medium
ERIC Educational Resources Information Center
Woolsey, Lauren
2015-01-01
The paper presents an interactive module created through the Wolfram Demonstrations Project that visualizes the Zeeman effect for the small magnetic field strengths present in the interstellar medium. The paper provides an overview of spectral lines and a few examples of strong and weak Zeeman splitting before discussing the module in depth.…
Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions
NASA Astrophysics Data System (ADS)
Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina
2017-09-01
Context. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims: We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods: We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (I.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results: An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N,J = 2, 2 ← 1, 1 (86.1 GHz), N,J = 4, 3 ← 3, 2 (159.0 GHz), N,J = 1, 1 ← 0, 1 (286.3 GHz), N,J = 2, 2 ← 1, 2 (309.5 GHz), and N,J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. The complete list of measured Zeeman components is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A20
Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions.
Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina
2017-09-01
Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (i.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O 2 has been carried out. An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N , J = 2, 2 ← 1, 1 (86.1 GHz), N , J = 4, 3 ← 3, 2 (159.0 GHz), N , J = 1, 1 ← 0, 1 (286.3 GHz), N , J = 2, 2 ← 1, 2 (309.5 GHz), and N , J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions.
Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions⋆
Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina
2017-01-01
Context Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (i.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N, J = 2, 2 ← 1, 1 (86.1 GHz), N, J = 4, 3 ← 3, 2 (159.0 GHz), N, J = 1, 1 ← 0, 1 (286.3 GHz), N, J = 2, 2 ← 1, 2 (309.5 GHz), and N, J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. PMID:29151607
NASA Astrophysics Data System (ADS)
Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim
2017-09-01
Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings.
Huang, S M; Tokura, Y; Akimoto, H; Kono, K; Lin, J J; Tarucha, S; Ono, K
2010-04-02
We investigated the electron transport property of the InGaAs/GaAs double quantum dots, the electron g factors of which are different from each other. We found that in a magnetic field, the resonant tunneling is suppressed even if one of the Zeeman sublevels is aligned. This is because the other misaligned Zeeman sublevels limit the total current. A finite broadening of the misaligned sublevel partially relieves this bottleneck effect, and the maximum current is reached when interdot detuning is half the Zeeman energy difference.
Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.
Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang
2013-12-02
We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.
Performance of spectral MSE diagnostic on C-Mod and ITER
NASA Astrophysics Data System (ADS)
Liao, Ken; Rowan, William; Mumgaard, Robert; Granetz, Robert; Scott, Steve; Marchuk, Oleksandr; Ralchenko, Yuri; Alcator C-Mod Team
2015-11-01
Magnetic field was measured on Alcator C-mod by applying spectral Motional Stark Effect techniques based on line shift (MSE-LS) and line ratio (MSE-LR) to the H-alpha emission spectrum of the diagnostic neutral beam atoms. The high field of Alcator C-mod allows measurements to be made at close to ITER values of Stark splitting (~ Bv⊥) with similar background levels to those expected for ITER. Accurate modeling of the spectrum requires a non-statistical, collisional-radiative analysis of the excited beam population and quadratic and Zeeman corrections to the Stark shift. A detailed synthetic diagnostic was developed and used to estimate the performance of the diagnostic at C-Mod and ITER parameters. Our analysis includes the sensitivity to view and beam geometry, aperture and divergence broadening, magnetic field, pixel size, background noise, and signal levels. Analysis of preliminary experiments agree with Kinetic+(polarization)MSE EFIT within ~2° in pitch angle and simulations predict uncertainties of 20 mT in | B | and <2° in pitch angle. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG03-96ER-54373 and DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Mal'shukov, A. G.
2018-02-01
It is shown that the spin-orbit and Zeeman interactions result in phase shifts of Andreev-reflected holes propagating at the surface of a topological insulator, or in Rashba spin-orbit-coupled two-dimensional normal metals, which are in contact with an s -wave superconductor. Due to interference of holes reflected through different paths of the Andreev interferometer the electric current through external contacts varies depending on the strength and direction of the Zeeman field. It also depends on mutual orientations of Zeeman fields in different shoulders of the interferometer. Such a nonlocal effect is a result of the long-range coherency caused by the superconducting proximity effect. This current has been calculated within the semiclassical theory for Green's functions in the diffusive regime, by assuming a strong disorder due to elastic scattering of electrons.
Copper in household drinking water in the city of Zagreb, Croatia.
Pizent, Alica; Butković, Sanja
2010-09-01
Copper concentration was estimated in tap water samples obtained from 70 households in Zagreb, serviced by a public water supply system. First-draw and flushed samples of tap water were collected in the morning and total copper concentration was determined by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. We also estimated the contribution of plumbing material to copper concentrations in tap water. In households with copper pipes, median and range copper values were 310 μg L-1 [(27 to 632) μg L-1] in first-draw samples and 16 μg L-1 [(5 to 52) μg L-1] in flushed samples. Corresponding values for households with galvanised pipes were 140 μg L-1 [(11 to 289) μg L-1] and 8 μg L-1 [(1 to 42) μg L-1], respectively. Copper concentrations in household tap water in Zagreb were far below the proposed safe limits set by the Croatian and WHO regulations and EPA standards, and drinking water in Zagreb is not a significant source of copper exposure.
Rucandio, M Isabel; Petit-Domínguez, M Dolores
2002-01-01
Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.
Interaction between Rashba and Zeeman effects in a quantum well channel.
Choi, Won Young; Kwon, Jae Hyun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol
2014-05-01
The applied field induced Zeeman effect interferes with Rashba effect in a quantum well system. The angle dependence of Shubnikov-de Haas oscillation shows that the in-plane term of the applied field changes the intrinsic Rashba induced spin splitting. The total effective spin-orbit interaction parameter is determined by the vector sum of the Rashba field and the applied field.
Very Large Array H I Zeeman Observations of the Cygnus X Region: DR 22 and ON 2
NASA Astrophysics Data System (ADS)
Mayo, E. A.; Troland, T. H.
2012-02-01
We have used the Very Large Array to study the Zeeman effect in 21 cm H I absorption lines from two star-forming regions in the Cygnus X complex, DR 22 and ON 2. We measure the line-of-sight magnetic field toward these regions, finding B los = -84 ± 11 μG toward the DR 22 H II region and B los < 50 μG toward each of the two H II regions in ON 2. We interpret these results in terms of two different models. In one model, we assume that the H I Zeeman effect is a measure of magnetic fields in the associated molecular clouds. If so, then the DR 22 molecular cloud is magnetically subcritical, that is, magnetically dominated. The ON 2 molecular clouds are magnetically supercritical. In a second model, we assume that the H I Zeeman effect is a measure of magnetic fields in photon-dominated regions where the gas has been compressed (and the field amplified) by absorption of stellar radiation. We find that this second model, where the measured field strength has been affected by star formation, accounts well for the DR 22 H I Zeeman effect. This same model, however, overpredicts the magnetic field in ON 2. ON 2 may be a region where the magnetic field is energetically insignificant or where the field happens to lie nearly in the plane of the sky.
Steimle, Timothy C; Wang, Hailing; Gengler, Jamie J; Stoll, Michael; Meijer, Gerard
2008-10-28
The Zeeman tuning of the P(1)(0) line (nu=17 568.35 cm(-1)) of the A (7)Pi-X (7)Sigma(+) (0,0) band of manganese monohydride, MnH, has been investigated. The laser induced fluorescence spectrum of a supersonic molecular beam sample was recorded at a resolution of approximately 40 MHz and with field strengths of up to 362.0 mT. The observed spectrum was successfully fitted using a traditional effective Zeeman Hamiltonian to determine an effective magnetic g-factor for the J=2 level of the F(1)-spin component of the A (7)Pi(v=0) state. Spectral predictions of the P(1)(0) line at field strengths used in magnetic trapping experiments are presented.
The Zeeman effect in the (0,0) band of the A 7Π-X 7Σ+ transition of manganese monohydride, MnH
NASA Astrophysics Data System (ADS)
Steimle, Timothy C.; Wang, Hailing; Gengler, Jamie J.; Stoll, Michael; Meijer, Gerard
2008-10-01
The Zeeman tuning of the P1(0) line (ν =17 568.35 cm-1) of the A Π7-X Σ7+ (0,0) band of manganese monohydride, MnH, has been investigated. The laser induced fluorescence spectrum of a supersonic molecular beam sample was recorded at a resolution of approximately 40 MHz and with field strengths of up to 362.0 mT. The observed spectrum was successfully fitted using a traditional effective Zeeman Hamiltonian to determine an effective magnetic g-factor for the J =2 level of the F1-spin component of the A Π7(v =0) state. Spectral predictions of the P1(0) line at field strengths used in magnetic trapping experiments are presented.
NASA Astrophysics Data System (ADS)
Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.
2018-04-01
The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.
The Rb 780-nanometer Faraday anomalous dispersion optical filter: Theory and experiment
NASA Technical Reports Server (NTRS)
Yin, B.; Alvarez, L. S.; Shay, T. M.
1994-01-01
The Faraday anomalous dispersion optical filter may provide ultra-high background noise rejection for free-space laser communications systems. The theoretical model for the filter is reported. The experimental measurements and their comparison with theoretical results are discussed. The results show that the filter can provide a 56-dB solar background noise rejection with about a 2-GHz transmission bandwidth and no image degradation. To further increase the background noise rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is designed and experimentally demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch
Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we presentmore » a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.« less
NASA Astrophysics Data System (ADS)
Doi, Atsushi; Kasahara, Shunji; Katô, Hajime; Baba, Masaaki
2004-04-01
Sub-Doppler high-resolution excitation spectra and the Zeeman effects of the 601, 101601, and 102601 bands of the S1 1B2u←S0 1A1g transition of benzene were measured by crossing laser beam perpendicular to a collimated molecular beam. 1593 rotational lines of the 101601 band and 928 lines of the 102601 band were assigned, and the molecular constants of the excited states were determined. Energy shifts were observed for the S1 1B2u(v1=1,v6=1,J,Kl=-11) levels, and those were identified as originating from a perpendicular Coriolis interaction. Many energy shifts were observed for the S1 1B2u(v1=2,v6=1,J,Kl) levels. The Zeeman splitting of a given J level was observed to increase with K and reach the maximum at K=J, which demonstrates that the magnetic moment lies perpendicular to the molecular plane. The Zeeman splittings of the K=J levels were observed to increase linearly with J. From the analysis, the magnetic moment is shown to be originating mostly from mixing of the S1 1B2u and S2 1B1u states by the J-L coupling (electronic Coriolis interaction). The number of perturbations was observed to increase as the excess energy increases, and all the perturbing levels were found to be a singlet state from the Zeeman spectra.
The Zeeman Effect in the 44 GHz Class I Methanol Maser Line toward DR21(OH)
NASA Astrophysics Data System (ADS)
Momjian, E.; Sarma, A. P.
2017-01-01
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam-1 maser centered at an LSR velocity of 0.83 km s-1, we find a 20-σ detection of zBlos = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ˜ 107-8 cm-3, then the B versus n1/2 relation would imply, from comparison with Zeeman effect detections in the CN(1 - 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be ˜10 mG. Combined with our detected zBlos = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ˜5 Hz mG-1. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H2O. Empirical attempts to determine z, as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH3OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M
2016-11-01
Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.
Spin Exchange Optical Pumping of 129Xe for the Neutron Electron Dipole Moment Experiment at TRIUMF
NASA Astrophysics Data System (ADS)
Miller, Eric; Hayamizu, Tomohiro; Wienands, Joshua; Altiere, Emily; Jones, David; Madison, Kirk; Momose, Takamasa; Lang, Michael; Bidinosti, Chris; Martin, Jeffery
2016-09-01
Spin polarized noble gases have been a field of study for several decades and are of particular interest with respect to magnetic sensing. Using the Spin Exchange Optical Pumping technique, one can use the angular momentum of circularly polarized NIR photons to spin polarize Rb atoms, which then collide with Xe to polarize the ground state Zeeman sublevels of Xe many orders of magnitude above typical thermal Boltzmann distributions. The resulting polarized gas, with its magnetic dipole moment, is a useful probe of magnetic fields. We plan to use two spin polarized species, 129Xe and 199Hg, as dual co-magnetometers for the neutron EDM experiment at TRIUMF. They will be used to correct the neutron precession frequency for drifts due to magnetic field instability and geometric phase effects. For 129Xe, we aim to probe the populations of the ground state Zeeman sublevels using UV two-photon transitions. The respective populations depend on how much polarization we can produce using the SEOP technique. We will present technical details of our apparatus including results from a parameter space search, investigating how mode of preparation (batch or continuous flow), temperature, flow rate, and laser power affect 129Xe polarization as measured by low field NMR.
Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe2
NASA Astrophysics Data System (ADS)
Larentis, Stefano; Movva, Hema C. P.; Fallahazad, Babak; Kim, Kyounghwan; Behroozi, Armand; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel
2018-05-01
We study the magnetotransport of high-mobility electrons in monolayer and bilayer MoSe2, which show Shubnikov-de Haas (SdH) oscillations and quantum Hall states in high magnetic fields. An electron effective mass of 0.8 me is extracted from the SdH oscillations' temperature dependence; me is the bare electron mass. At a fixed electron density the longitudinal resistance shows minima at filling factors (FFs) that are either predominantly odd, or predominantly even, with a parity that changes as the density is tuned. The SdH oscillations are insensitive to an in-plane magnetic field, consistent with an out-of-plane spin orientation of electrons at the K point. We attribute the FF parity transitions to an interaction enhancement of the Zeeman energy as the density is reduced, resulting in an increased Zeeman-to-cyclotron energy ratio.
Zeeman Tuning Rate for Q Branch Transitions in the v3 Band of NO2
NASA Technical Reports Server (NTRS)
Mahon, C. R.; Chackerian, C., Jr.; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
Zeeman tuning rates have bee a measured for Q branch transitions in the v3 band of NO2(approx.1610/cm) for magnetic fields of up to 564 Gauss. The average measured tuning rate is 0.1815(53) x 10(exp -3)/cm/Gauss with no dependence on Ka within the approx. equal to 3% standard deviation. Despite significant ,pin-rotation interaction between several of the observed levels the result agrees with the simple linear model for Honda case (be molecules (tuning rate = 2muogs = 0.18696 x 10(exp -3)/cm/Gauss) which neglects the spin-rotation interaction between different J states. The Zeeman effect is analyzed in a full treatment of the Hamiltonian, including spin-rotation interaction, in order to account for the agreement with 2muogs and to explore the onset of spin-rotation effects in the spectra as the magnetic field is increased.
NASA Astrophysics Data System (ADS)
Schoepp, Juergen
The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.
Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center
NASA Astrophysics Data System (ADS)
Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj
2017-01-01
We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.
CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.
1995-05-01
Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry
2018-01-19
The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100 Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.
NASA Astrophysics Data System (ADS)
Zhang, J.-Z.; Galbraith, I.
2008-05-01
Using perturbation theory, intraband magneto-optical absorption is calculated for InAs/GaAs truncated pyramidal quantum dots in a magnetic field applied parallel to the growth direction z . The effects of the magnetic field on the electronic states as well as the intraband transitions are systematically studied. Selection rules governing the intraband transitions are discussed based on the symmetry properties of the electronic states. While the broadband z -polarized absorption is almost insensitive to the magnetic field, the orbital Zeeman splitting is the dominant feature in the in-plane polarized spectrum. Strong in-plane polarized magneto-absorption features are located in the far-infrared region, while z -polarized absorption occurs at higher frequencies. This is due to the dot geometry (the base length is much larger than the height) yielding different quantum confinement in the vertical and lateral directions. The Thomas-Reiche-Kuhn sum rule, including the magnetic field effect, is applied together with the selection rules to the absorption spectra. The orbital Zeeman splitting depends on both the dot size and the confining potential—the splitting decreases as the dot size or the confining potential decreases. Our calculated Zeeman splittings are in agreement with experimental data.
Third-order Zeeman effect in highly charged ions
NASA Astrophysics Data System (ADS)
Varentsova, A. S.; Agababaev, V. A.; Volchkova, A. M.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.
2017-10-01
The contribution of the third order in magnetic field to the Zeeman splitting of the ground state of hydrogenlike, lithiumlike, and boronlike ions in the range Z = 6 - 82 is investigated within the relativistic approach. Both perturbative and non-perturbative methods of calculation are employed and found to be in agreement. For lithiumlike and boronlike ions the interelectronic-interaction effects are taken into account within the approximation of the local screening potential. The contribution of the third-order effect in low- and medium-Z boronlike ions is found to be important for anticipated high-precision measurements.
Phase control of a Zeeman-split He-Ne gas laser by variation of the gaseous discharge voltage.
Shelton, W N; Hunt, R H
1992-07-20
Zeeman-split lasers are useful for precise positioning or motion control. In applications that employ such a laser to control closely the position of a moving system, phase noise in the Zeeman frequency is a serious problem. Control of low-frequency phase noise can be obtained through variation of the external magnetic field by way of a solenoid wound around the laser tube. It is the finding in this work that control of the residual higher-frequency noise of a He-Ne laser can be obtained through small variations of the high voltage that is used to effect the gaseous discharge in the laser tube. The application of the present system is to the control of the path difference in a Fourier-transform interferometric spectrometer.
Suppression of Zeeman gradients by nuclear polarization in double quantum dots.
Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P
2012-12-07
We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.
THE ZEEMAN EFFECT IN THE 44 GHZ CLASS I METHANOL MASER LINE TOWARD DR21(OH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momjian, E.; Sarma, A. P., E-mail: emomjian@nrao.edu, E-mail: asarma@depaul.edu
2017-01-10
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam{sup −1} maser centered at an LSR velocity of 0.83 km s{sup −1}, we find a 20- σ detection of zB {sub los} = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ∼ 10{sup 7–8} cm{sup −3}, then the B versus n {sup 1/2} relation would imply, from comparison with Zeeman effect detections in the CN(1 − 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masersmore » in DR21(OH) should be ∼10 mG. Combined with our detected zB {sub los} = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ∼5 Hz mG{sup −1}. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H{sub 2}O. Empirical attempts to determine z , as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH{sub 3}OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.« less
Mercury, cadmium and arsenic contents of calcium dietary supplements.
Kim, Meehye
2004-08-01
The cadmium (Cd) and arsenic (As) contents of calcium (Ca) supplements available on the Korean market were determined by a graphite furnace atomic absorption spectrometer using Zeeman background correction and peak area mode after microwave digestion. The mercury (Hg) content of the supplements was measured using an Hg analyser. Recoveries ranged from 92 to 98% for Hg, Cd and As analyses. Fifty-five brands of Ca supplements were classified into seven categories based on the major composite: bone, milk, oyster/clam shell, egg shell, algae, shark cartilage and chelated. The means of Hg, Cd and As in Ca supplements were 0.01, 0.02, and 0.48 mg kg(-1), respectively. Ca supplements made of shark cartilage had the highest means of Hg (0.06 mg kg(-1)) and Cd (0.13 mg kg(-1)). The mean daily intakes of Hg and Cd from the supplement were estimated as about 0.1-0.2 microg, with both contributing less than 0.4% of provisional tolerable daily intakes set by the Food and Agricultural Organization/World Health Organization Joint Food Additive and Contaminants Committee.
VLA HI Zeeman Observations of the Cygnus X Region: DR 22 And ON 2
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth A.; Troland, T. H.
2010-01-01
The Very Large Array in Socorro, New Mexico has been used to study the Zeeman Effect in the 21cm HI line seen in absorption against radio sources in the Cygnus X region. Cygnus X is geometrically favorable for Zeeman effect observations as the region lies along the mean field direction of the diffuse interstellar medium (ISM) of the galaxy. We present observations of two compact HII regions within Cygnus X, DR 22 and ON 2. The data show magnetic field strengths of the order -80 μG toward DR 22 alone with no significant detections toward ON 2. This information is used to estimate the magnetic energy of the DR 22 star-forming cloud, and allows for a complete analysis of the energetics of the region revealing the role of the magnetic field. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.
Kosik-Bogacka, Danuta I.; Baranowska-Bosiacka, Irena; Marchlewicz, Mariola; Kolasa, Agnieszka; Jakubowska, Katarzyna; Olszewska, Maria; Łanocha, Natalia; Wiernicki, Ireneusz; Millo, Barbara; Wiszniewska, Barbara; Chlubek, Dariusz
2011-01-01
Summary Background The aim of this study was to assess the effect of diet supplementation with L-ascorbic acid (500 mg/L), tocopherol (3 mg/kg b.w.), and/or a water soluble analog of tocopherol (Trolox) (48 mg/L) on ion transport in the colon of rats subjected to a chronic exposure (9 months) to 0.1% lead acetate in drinking water. Material/Methods The electrophysiological parameters of the colon wall were measured with Ussing methods. Lead content in the whole blood was analyzed by graphite furnace atomic absorption spectrometry (GFAAS) using Zeeman correction. L-ascorbic acid and tocopherol in plasma was measured by high performance liquid chromatography. Immunohistochemical reaction was carried out for visualization of occludin, the intracellular tight junction protein. Results We showed a strong inhibitory effect of lead on the electrophysiological parameters, changes in intestinal permeability, disappearance of junctional occludin, decreased amount of mucus covering the colon surface, and the accumulation of PAS-positive substance in the apical region of the cytoplasm in the absorptive cells. Conclusions Supplementation with tocopherol or Trolox did not exert a beneficial influence on the studied parameters. L-ascorbic acid positively influenced the examined electrophysiological parameters, as it cancelled the inhibitory influence of lead on ion transport in the rat colon. L-ascorbic acid also protected against tight junction disruption of epithelial cells in the colon of the lead-treated rats. A similar effect was observed in the group of rats receiving lead and supplemented with L-ascorbic acid plus Trolox. PMID:21169903
Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics
NASA Astrophysics Data System (ADS)
Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul
2017-10-01
The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.
Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films
NASA Astrophysics Data System (ADS)
Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian
2018-04-01
Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.
Spin-dependent polarizabilities of hydrogenic atoms in magnetic fields of arbitrary strength
NASA Astrophysics Data System (ADS)
Castner, T. G.; Dexter, D. L.; Druger, S. D.
1981-12-01
Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms using the Hassé variational approach. The polarizabilities α(↑) and α(↓) for the two spin directions have been obtained for the electric field both parallel and perpendicular to the magnetic field Hz in the weak-field (γ<<1), intermediate-field (γ~1), and strong-field (γ>>1) limits, where γ=(ɛ2ℏ3Hzm*2e3c), with ɛ a static dielectric constant and m* an isotropic effective mass. The results for hydrogen atoms (ɛ=1 and m*=m) in the weak-field limit yield [α(↓)-α(↑)]α(0)~2.31α2fsγ (αfs=1137) with a negligible anisotropy. In the strong-field limit [α⊥(↓)-α⊥(↑)] falls precipitously while [α∥(↓)-α∥(↑)] continues to increase up to at least γ=104, but more slowly than linearly with γ. The spin-independent quantities [α∥(↓)+α∥(↑)] and [α⊥(↓)+α⊥(↑)] are discussed in the intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction are also discussed.
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth A.
2009-01-01
Interstellar magnetic fields are believed to play a crucial role in the star-formation process, therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.
NASA Astrophysics Data System (ADS)
Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.
2014-06-01
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)
2011-01-01
Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.
Rashba sandwiches with topological superconducting phases
NASA Astrophysics Data System (ADS)
Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena
2018-05-01
We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.
The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers
NASA Astrophysics Data System (ADS)
Zhao, Jun-Hui; Goss, W. M.; Diamond, P.
We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, E. Alsina; Bueno, J. Trujillo; Belluzzi, L., E-mail: ealsina@iac.es, E-mail: jtb@iac.es, E-mail: belluzzi@irsol.ch
2016-11-10
We highlight the main results of a radiative transfer investigation on the magnetic sensitivity of the solar Mg ii k resonance line at 2795.5 Å, accounting for the joint action of the Hanle and Zeeman effects as well as partial frequency redistribution phenomena. We confirm that at the line center, the linear polarization signals produced by scattering processes are measurable, and that they are sensitive, via the Hanle effect, to magnetic fields with strengths between 5 and 50 G, approximately. We also show that the Zeeman effect produces conspicuous circular polarization signals, especially for longitudinal fields stronger than 50 G,more » which can be used to estimate the magnetization of the solar chromosphere via the familiar magnetograph formula. The most novel result is that magneto-optical effects produce, in the wings of the line, a decrease of the Q / I scattering polarization pattern and the appearance of U / I signals (i.e., a rotation of the plane of linear polarization). This sensitivity of the Q / I and U / I wing signals to both weak (∼5 G) and stronger magnetic fields expands the scientific interest of the Mg ii k line for probing the chromosphere in quiet and active regions of the Sun.« less
Magnetic Trapping and Coherent Control of Laser-Cooled Molecules
NASA Astrophysics Data System (ADS)
Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.
2018-04-01
We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5 ×103 molecules for almost 2 s at a temperature of 70 (8 ) μ K and a density of 1.2 ×105 cm-3. We measure the state-specific loss rate due to collisions with background helium.
NASA Astrophysics Data System (ADS)
Matin, M.; Mondal, Rajib; Barman, N.; Thamizhavel, A.; Dhar, S. K.
2018-05-01
Here, we report an extremely large positive magnetoresistance (XMR) in a single-crystal sample of MoSi2, approaching almost 107% at 2 K in a 14-T magnetic field without appreciable saturation. Hall resistivity data reveal an uncompensated nature of MoSi2 with an electron-hole compensation level sufficient enough to expect strong saturation of magnetoresistance in the high-field regime. Magnetotransport and the complementary de Haas-van Alphen (dHvA) oscillations results, however, suggest that strong Zeeman effect causes a magnetic field-induced modulation of the Fermi pockets and drives the system towards perfect electron-hole compensation condition in the high-field regime. Thus, the nonsaturating XMR of this semimetal arises under the unconventional situation of Zeeman effect-driven electron-hole compensation, whereas its huge magnitude is decided solely by the ultralarge value of the carrier mobility. Intrinsic ultralarge carrier mobility, strong suppression of backward scattering of the charge carriers, and nontrivial Berry phase in dHvA oscillations attest to the topological character of MoSi2. Therefore, this semimetal represents another material hosting combination of topological and conventional electronic phases.
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla
NASA Astrophysics Data System (ADS)
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; Kono, Junichiro; Crooker, Scott A.
2016-02-01
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 μeV T-1 (g-factor ~=-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.
Magnetooptics of the luminescent transitions in Tb3+:Gd3Ga5O12
NASA Astrophysics Data System (ADS)
Valiev, Uygun V.; Gruber, John B.; Ivanov, Igor'A.; Burdick, Gary W.; Liang, Hongbin; Zhou, Lei; Fu, Dejun; Pelenovich, Oleg V.; Pelenovich, Vasiliy O.; Lin, Zhou
2015-08-01
The spectra of the luminescence and magnetic circular polarization of luminescence in terbium-gadolinium gallium garnet Tb3+:Gd3Ga5O12 (Tb3+:GGG) were studied within the visible spectral range at temperatures T = 90 and 300 K in an external magnetic field of 0.45 T. The Zeeman effect in the luminescence "green" band associated with 4f → 4f transition 5D4 → 7F5 of Tb3+:GGG was also studied at T = 90 K in an external field of 0.55 T. Measurement of the Zeeman effect in Tb3+:GGG carried out for some doublet lines of the luminescence band 5D4 → 7F5 at T = 90 K shows that a magnetooptical effect of the intensity change of the emitted light is observed on these lines, in contrast to pure Zeeman splitting of the emission lines measured in the luminescence band 5D4 → 7F6. For the systems we have studied, the maximal value of the magnetooptical effect of the intensity change of the luminescence line at low temperatures has been achieved in paramagnetic garnet Tb0.2Y2.8Al5O12 at comparatively low magnetic fields.
Stokes-Doppler coherence imaging for ITER boundary tomography.
Howard, J; Kocan, M; Lisgo, S; Reichle, R
2016-11-01
An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Multistage Zeeman decelerator for molecular-scattering studies
NASA Astrophysics Data System (ADS)
Cremers, Theo; Chefdeville, Simon; Janssen, Niek; Sweers, Edwin; Koot, Sven; Claus, Peter; van de Meerakker, Sebastiaan Y. T.
2017-04-01
We present a concept for a multistage Zeeman decelerator that is optimized particularly for applications in molecular beam scattering experiments. The decelerator consists of a series of alternating hexapoles and solenoids, that effectively decouple the transverse focusing and longitudinal deceleration properties of the decelerator. It can be operated in a deceleration and acceleration mode, as well as in a hybrid mode that makes it possible to guide a particle beam through the decelerator at constant speed. The deceleration features phase stability, with a relatively large six-dimensional phase-space acceptance. The separated focusing and deceleration elements result in an unequal partitioning of this acceptance between the longitudinal and transverse directions. This is ideal in scattering experiments, which typically benefit from a large longitudinal acceptance combined with narrow transverse distributions. We demonstrate the successful experimental implementation of this concept using a Zeeman decelerator consisting of an array of 25 hexapoles and 24 solenoids. The performance of the decelerator in acceleration, deceleration, and guiding modes is characterized using beams of metastable helium (3S ) atoms. Up to 60% of the kinetic energy was removed for He atoms that have an initial velocity of 520 m/s. The hexapoles consist of permanent magnets, whereas the solenoids are produced from a single hollow copper capillary through which cooling liquid is passed. The solenoid design allows for excellent thermal properties and enables the use of readily available and cheap electronics components to pulse high currents through the solenoids. The Zeeman decelerator demonstrated here is mechanically easy to build, can be operated with cost-effective electronics, and can run at repetition rates up to 10 Hz.
Determinants of blood lead levels in an adult population from a mining area in Brazil
NASA Astrophysics Data System (ADS)
Bastos Paoliello, M. M.; Mello de Capitani, E.; Gonçalves da Cunha, F.; Carvalho, M. De Fatima; Matsuo, T.; Sakuma, A.; Ribeiro Figueiredo, B.
2003-05-01
During the last fifty year the Ribeira river valley, Brazil, had been under the influence of the full activity of a huge lead refinery and mining along the riverside. The plant completely stopped all kind of industrial activities at the end of 1995, and part of the worker population and their families still remain living nearby in smal communities. The objective of the present study was to assess the deterninants of blood lead levels (BLL) in these nining areas, where residual environmental contamination from the past industrial activity still remains. Blood samples of 350 adults aged 15 to 70, residing in areas around the mine and the refinery were collected. A questionnaire was given in order to gather information on food habits, current and former residential places occupationnal activities, among other variables. Blood lead concentrations were analysed by graphite furnace atomic absorption spectrometry using Zeeman background correction. Logistic regression analysis was conducted to examine the independent contribution of selected variables in predicting BLL in those subjects. The following variables showed significant association with high BLL: residential area close to the lead refinery, former dwelling at the refinery village, male gender, smoking habits, and consume of fruits from home back yard.
NASA Astrophysics Data System (ADS)
Kamogawa, Marcos Y.; Nogueira, Ana Rita A.; Costa, Letícia M.; Garcia, Edivaldo E.; Nóbrega, Joaquim A.
2001-10-01
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l -1 for the determination of Cu and Pb, and 5.0 g l -1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l -1 HNO 3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l -1 Cd 2+, 30 μg l -1 Pb 2+, and 10 μg l -1 Cu 2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.
Entanglement-Based dc Magnetometry with Separated Ions*
NASA Astrophysics Data System (ADS)
Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.
2017-07-01
We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; Kono, Junichiro; Crooker, Scott A.
2016-01-01
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately −230 μeV T−1 (g-factor ≃−4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ∼1.53 and ∼1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials. PMID:26856412
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS 2 and MoS 2 to 65 Tesla
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; ...
2016-02-09
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS 2 and MoS 2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately –230 μeV T–1 (g-factor ≃–4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS 2,more » from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). Lastly, these results highlight the utility of high magnetic fields for understanding new two-dimensional materials.« less
Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla.
Stier, Andreas V; McCreary, Kathleen M; Jonker, Berend T; Kono, Junichiro; Crooker, Scott A
2016-02-09
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 μeV T(-1) (g-factor ≃-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ∼1.53 and ∼1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry
Elsheimer, H.N.; Fries, T.L.
1990-01-01
A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.
Zeeman relaxation of MnH (X7Σ+) in collisions with He3: Mechanism and comparison with experiment
NASA Astrophysics Data System (ADS)
Turpin, F.; Stoecklin, T.; Halvick, Ph.
2011-03-01
We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH (7Σ) in collisions with He3. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔMj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.
Trends in measurement of solar vector magnetic fields using the Zeeman effect
NASA Technical Reports Server (NTRS)
Harvey, J. W.
1985-01-01
Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990.
Linear Polarization Measurements of Chromospheric Emission Lines
NASA Technical Reports Server (NTRS)
Sheeley, N. R., Jr.; Keller, C. U.
2003-01-01
We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.
Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A
2016-08-24
One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules.
NASA Astrophysics Data System (ADS)
Juraschek, Dominik M.; Fechner, Michael; Balatsky, Alexander V.; Spaldin, Nicola A.
2017-06-01
An appealing mechanism for inducing multiferroicity in materials is the generation of electric polarization by a spatially varying magnetization that is coupled to the lattice through the spin-orbit interaction. Here we describe the reciprocal effect, in which a time-dependent electric polarization induces magnetization even in materials with no existing spin structure. We develop a formalism for this dynamical multiferroic effect in the case for which the polarization derives from optical phonons, and compute the strength of the phonon Zeeman effect, which is the solid-state equivalent of the well-established vibrational Zeeman effect in molecules, using density functional theory. We further show that a recently observed behavior—the resonant excitation of a magnon by optically driven phonons—is described by the formalism. Finally, we discuss examples of scenarios that are not driven by lattice dynamics and interpret the excitation of Dzyaloshinskii-Moriya-type electromagnons and the inverse Faraday effect from the viewpoint of dynamical multiferroicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, E. Alsina; Bueno, J. Trujillo; Belluzzi, L., E-mail: ealsina@iac.es
2017-02-10
The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTEmore » radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.« less
Chen, Shan; Li, Xiao-ning; Liang, Yi-zeng; Zhang, Zhi-min; Liu, Zhao-xia; Zhang, Qi-ming; Ding, Li-xia; Ye, Fei
2010-08-01
During Raman spectroscopy analysis, the organic molecules and contaminations will obscure or swamp Raman signals. The present study starts from Raman spectra of prednisone acetate tablets and glibenclamide tables, which are acquired from the BWTek i-Raman spectrometer. The background is corrected by R package baselineWavelet. Then principle component analysis and random forests are used to perform clustering analysis. Through analyzing the Raman spectra of two medicines, the accurate and validity of this background-correction algorithm is checked and the influences of fluorescence background on Raman spectra clustering analysis is discussed. Thus, it is concluded that it is important to correct fluorescence background for further analysis, and an effective background correction solution is provided for clustering or other analysis.
Measurement of Valley Kondo Effect in a Si/SiGe Quantum Dot
NASA Astrophysics Data System (ADS)
Yuan, Mingyun; Yang, Zhen; Tang, Chunyang; Rimberg, A. J.; Joynt, R.; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.
2013-03-01
The Kondo effect in Si/SiGe QDs can be enriched by the valley degree of freedom in Si. We have observed resonances showing temperature dependence characteristic of the Kondo effect in two consecutive Coulomb diamonds. These resonances exhibit unusual magnetic field dependence that we interpret as arising from Kondo screening of the valley degree of freedom. In one diamond two Kondo peaks due to screening of the valley index exist at zero magnetic field, revealing a zero-field valley splitting of Δ ~ 0.28 meV. In a non-zero magnetic field the peaks broaden and coalesce due to Zeeman splitting. In the other diamond, a single resonance at zero bias persists without Zeeman splitting for non-zero magnetic field, a phenomenon characteristic of valley non-conservation in tunneling. This research is supported by the NSA and ARO.
Magnetic-field-induced mixed-level Kondo effect in two-level systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.
2016-10-17
We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less
Transport anomalies of high-mobility Q-valley electrons in few-layer WS2 and MoS2
NASA Astrophysics Data System (ADS)
Wang, Ning
Atomically thin transition metal dichalcogenides (TMDCs) have opened new avenues for exploring physical property anomalies due to their large band gaps, strong spin-orbit couplings, and rich valley degrees of freedom. Although novel optical phenomena such as valley selective circular dichroism, opto-valley Hall effect, and valley Zeeman effect have been extensively studied in TMDCs, investigation of quantum transport properties has encountered a number of obstacles primarily due to the low carrier mobility and strong impurity scattering. Recently, we successfully fabricated ultrahigh-mobility few-layer TMDC field-effect transistors based on the boron nitride encapsulation method and observed a number of interesting transport properties, such as even-odd layer-dependent magnetotransport of Q-valley electrons in WS2 and MoS2 and unconventional quantum Hall transport of Γ-valley hole carriers in WSe2. In few-layer samples of these TMDCs, the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q-valleys related by three-fold rotational symmetry and time reversal symmetry. In even-layers the extra inversion symmetry requires all states to be Kramers degenerate, whereas in odd-layers the intrinsic inversion asymmetry dictates the Q-valleys to be spin-valley coupled. In this talk, I'll demonstrate the prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices. In addition, we observe a series of quantum Hall states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field in p-type few-layer TMDCs, indicating a large Zeeman energy associated with the carriers in the valence band at the Γ-valley. Financial supports from the Research Grants Council of Hong Kong (Project Nos. 16302215, HKU9/CRF/13G, 604112 and N-HKUST613/12) are hereby acknowledged.
Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications
NASA Technical Reports Server (NTRS)
Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)
2017-01-01
An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.
Pineau, Alain; Fauconneau, Bernard; Plouzeau, Eric; Fernandez, Béatrice; Quellard, Nathalie; Levillain, Pierre; Guillard, Olivier
2017-01-01
Lead (Pb) represents a serious threat to wildlife and ecosystems. The aim of this study was to examine the subcellular effects of dietary Pb pellet ingestion on mallard (Anas platyrhynchos) livers. After ingestion of a single Pb shot (LS4 size class: 0.177 ± 0.03 g) in 41 mallard ducks (22 males and 19 females) versus 10 controls (5 males and 5 females), all 7-week old, a morphologic study was conducted by TEM (transmission electron microscopy) of liver at the subcellular level. The results in treated mallards showed at a magnification of 2500 X that hepatic parenchyma was altered as evidenced by intralysosomal electron-dense deposits, which are compatible with Pb deposits. Further, at a higher magnification (15,000 X) in both genders, deterioration of mitochondria was observed in which the crests and, to a lesser extent, outer membrane were lysed. While the rough endoplasmic reticulum was fragmented, intracytoplasmic electron-dense material compatible with Pb deposits was maximally visible, thereby underscoring the deeply destructive effect of this metal on the subcellular architecture of the liver. In addition, applying an optimized and validated method in a clean room using electrothermal atomic absorption spectrophotometer (ETAAS) with Zeeman background correction, the objective was to improve and refine certain indispensable measurements pertaining to Pb impregnation in tissues other than liver such as kidneys, bones, and feathers of mallards. Data demonstrated show that compared with controls, Pb accumulation increases significantly, not only in the liver (3-fold), but also in the bones and the feathers (14-fold). No significant difference was noted between males and females. Bearing in mind the marked subcellular toxicity attributed to Pb, this study reinforces present-day arguments advocating limitation of game consumption.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
Modelling Delta-Notch perturbations during zebrafish somitogenesis.
Murray, Philip J; Maini, Philip K; Baker, Ruth E
2013-01-15
The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's 'clock and wavefront' model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of 'salt and pepper' patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the 'salt and pepper' patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model. Copyright © 2012 Elsevier Inc. All rights reserved.
Zeeman Effect in Ruby at High Pressures
NASA Astrophysics Data System (ADS)
Dan, Ioana
2012-02-01
We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.
Zeeman effect of weak La I lines investigated by the use of optogalvanic spectroscopy
NASA Astrophysics Data System (ADS)
Sobolewski, Ł. M.; Windholz, L.; Kwela, J.
2017-03-01
New Landé- gJ factors of 35 energy levels of La I, found from investigations of 40 spectral lines in the wavelength range 562.959÷609.537 nm, were determined. As a source of free La atoms a hollow cathode discharge lamp was used. We monitored the signal of the optogalvanic effect appearing when a laser beam is passing through the hollow cathode. Spectra were recorded in the presence of a magnetic field of about 800 G produced by a permanent magnet, for two linear polarizations of the exciting laser light. Optogalvanic spectroscopy is a very sensitive method, so we were able to observe the Zeeman effect of very weak atomic lines. In this way we have determined for the first time the Landé-gJ factors for 35 recently found levels of neutral La. The Landé gJ- factors for several other levels were reinvestigated.
Rashba effect in an asymmetric quantum dot in a magnetic field
NASA Astrophysics Data System (ADS)
Bandyopadhyay, S.; Cahay, M.
2002-12-01
We derive an expression for the total spin-splitting energy in an asymmetric quantum dot with ferromagnetic contacts, subjected to a transverse electric field. Such a structure has been shown by one of us to act as a spintronic quantum gate with in-built qubit readers and writers (Phys. Rev. B61, 13813 (2000)). The ferromagnetic contacts result in a magnetic field that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting can be finely tuned with a transverse electric field as a result of nonvanishing Rashba spin-orbit coupling in an asymmetric quantum dot. This feature is critical for implementing a quantum gate.
Karadjova, Irina B; Lampugnani, Leonardo; Tsalev, Dimiter L
2005-02-28
Analytical procedures for electrothermal atomic absorption spectrometric (ETAAS) determination of arsenic in essential oils from lavender (Lavendula angustifolia) and rose (Rosa damascena) are described. For direct ETAAS analysis, oil samples are diluted with ethanol or i-propanol for lavender and rose oil, respectively. Leveling off responses of four different arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) is achieved by using a composite chemical modifier: l-cysteine (0.05gl(-1)) in combination with palladium (2.5mug) and citric acid (100mug). Transverse-heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction and 'end-capped' graphite tubes with integrated pyrolytic graphite platforms, pre-treated with Zr-Ir for permanent modification are employed as most appropriate atomizer. Calibration with solvent-matched standard solutions of As(III) is used for four- and five-fold diluted samples of lavender and rose oil, respectively. Lower dilution factors required standard addition calibration by using aqueous (for lavender oil) or i-propanol (for rose oil) solutions of As(III). The limits of detection (LOD) for the whole analytical procedure are 4.4 and 4.7ngg(-1) As in levender and rose oil, respectively. The relative standard deviation (R.S.D.) for As at 6-30ngg(-1) levels is between 8 and 17% for both oils. As an alternative, procedure based on low temperature plasma ashing in oxygen with ETAAS, providing LODs of 2.5 and 2.7ngg(-1) As in levender and rose oil, respectively, and R.S.D. within 8-12% for both oils has been elaborated. Results obtained by both procedures are in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.
2000-02-15
This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c)more » 2000 The American Physical Society.« less
NASA Astrophysics Data System (ADS)
Khosropour, B.
2016-07-01
In this work, we consider a D-dimensional ( β, β^' -two-parameters deformed Heisenberg algebra, which was introduced by Kempf et al. The angular-momentum operator in the presence of a minimal length scale based on the Kempf-Mann-Mangano algebra is obtained in the special case of β^' = 2β up to the first order over the deformation parameter β . It is shown that each of the components of the modified angular-momentum operator, commutes with the modified operator {L}2 . We find the magnetostatic field in the presence of a minimal length. The Zeeman effect in the deformed space is studied and also Lande's formula for the energy shift in the presence of a minimal length is obtained. We estimate an upper bound on the isotropic minimal length.
ACTIVE REGION FILAMENTS MIGHT HARBOR WEAK MAGNETIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A., E-mail: cdiazbas@iac.es
Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between themmore » being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.« less
A versatile dual-species Zeeman slower for caesium and ytterbium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, S. A., E-mail: s.a.hopkins@durham.ac.uk; Butler, K.; Guttridge, A.
2016-04-15
We describe the design, construction, and operation of a versatile dual-species Zeeman slower for both Cs and Yb, which is easily adaptable for use with other alkali metals and alkaline earths. With the aid of analytic models and numerical simulation of decelerator action, we highlight several real-world problems affecting the performance of a slower and discuss effective solutions. To capture Yb into a magneto-optical trap (MOT), we use the broad {sup 1}S{sub 0} to {sup 1}P{sub 1} transition at 399 nm for the slower and the narrow {sup 1}S{sub 0} to {sup 3}P{sub 1} intercombination line at 556 nm formore » the MOT. The Cs MOT and slower both use the D2 line (6{sup 2}S{sub 1/2} to 6{sup 2}P{sub 3/2}) at 852 nm. The slower can be switched between loading Yb or Cs in under 0.1 s. We demonstrate that within a few seconds the Zeeman slower loads more than 10{sup 9} Yb atoms and 10{sup 8} Cs atoms into their respective MOTs. These are ideal starting numbers for further experiments on ultracold mixtures and molecules.« less
NASA Astrophysics Data System (ADS)
Itoh, Naoki; Nozawa, Satoshi; Kohyama, Yasuharu
2000-04-01
We extend the formalism of relativistic thermal and kinematic Sunyaev-Zeldovich effects and include the polarization of the cosmic microwave background photons. We consider the situation of a cluster of galaxies moving with a velocity β≡v/c with respect to the cosmic microwave background radiation. In the present formalism, polarization of the scattered cosmic microwave background radiation caused by the proper motion of a cluster of galaxies is naturally derived as a special case of the kinematic Sunyaev-Zeldovich effect. The relativistic corrections are also included in a natural way. Our results are in complete agreement with the recent results of relativistic corrections obtained by Challinor, Ford, & Lasenby with an entirely different method, as well as the nonrelativistic limit obtained by Sunyaev & Zeldovich. The relativistic correction becomes significant in the Wien region.
Unique spin-polarized transmission effects in a QD ring structure
NASA Astrophysics Data System (ADS)
Hedin, Eric; Joe, Yong
2010-10-01
Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.
Design of a Permanent-Magnet Zeeman Slower
NASA Astrophysics Data System (ADS)
Adler, Charles; Narducci, Frank; Sukenik, Charles; Mulholland, Jonathan; Goodale, Sarah
2006-05-01
During the past decade, low cost, flexible, and highly-polarized magnetic field sheet material has become available with field strengths useful for applications in modern atomic physics experiments. One advantage of using such material is that it can easily be cut to almost any desired shape without appreciable loss of field strength making it more versatile than ceramic magnets. We present the design of a Zeeman slower, made from such material, for cooling an atomic beam of neutral rubidium atoms and discuss results from an atomic beam trajectory simulation which indicates that the slower should perform well. We will also report on progress of a prototype permanent magnet Zeeman slower presently under construction in the laboratory.
Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla
Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan; ...
2015-12-01
In this paper, we report quantum oscillation studies on the Bi 2Te 3-xS x topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x = 0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov–de Haas and de Hass–van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surfacemore » states is estimated to be between 1.8 and 4.5. Lastly, these observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.« less
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
Tunable spin splitting and spin lifetime in polar WSTe monolayer
NASA Astrophysics Data System (ADS)
Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo
2018-04-01
The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.
Wu, Zefei; Xu, Shuigang; Lu, Huanhuan; Khamoshi, Armin; Liu, Gui-Bin; Han, Tianyi; Wu, Yingying; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Yao, Yugui; Zhang, Fan; Wang, Ning
2016-01-01
In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs. PMID:27651106
Getting a grip on the transverse motion in a Zeeman decelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulitz, Katrin; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk; Motsch, Michael
2014-03-14
Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This ismore » achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.« less
Designing and building a permanent magnet Zeeman slower for calcium atoms using a 3D printer
NASA Astrophysics Data System (ADS)
Parsagian, Alexandria; Kleinert, Michaela
2015-10-01
We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.
Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.
2000-03-01
We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum tangential field.
[Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser
NASA Technical Reports Server (NTRS)
2003-01-01
The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.
Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures
NASA Astrophysics Data System (ADS)
Kozhevnikov, S. V.; Ott, F.; Semenova, E.
2017-03-01
Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.
Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor
Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.
2016-01-01
We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675
Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B
2000-04-01
The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M.
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steadymore » State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.« less
Allen, Robert C; John, Mallory G; Rutan, Sarah C; Filgueira, Marcelo R; Carr, Peter W
2012-09-07
A singular value decomposition-based background correction (SVD-BC) technique is proposed for the reduction of background contributions in online comprehensive two-dimensional liquid chromatography (LC×LC) data. The SVD-BC technique was compared to simply subtracting a blank chromatogram from a sample chromatogram and to a previously reported background correction technique for one dimensional chromatography, which uses an asymmetric weighted least squares (AWLS) approach. AWLS was the only background correction technique to completely remove the background artifacts from the samples as evaluated by visual inspection. However, the SVD-BC technique greatly reduced or eliminated the background artifacts as well and preserved the peak intensity better than AWLS. The loss in peak intensity by AWLS resulted in lower peak counts at the detection thresholds established using standards samples. However, the SVD-BC technique was found to introduce noise which led to detection of false peaks at the lower detection thresholds. As a result, the AWLS technique gave more precise peak counts than the SVD-BC technique, particularly at the lower detection thresholds. While the AWLS technique resulted in more consistent percent residual standard deviation values, a statistical improvement in peak quantification after background correction was not found regardless of the background correction technique used. Copyright © 2012 Elsevier B.V. All rights reserved.
Zeeman relaxation of cold atomic iron and nickel in collisions with He3
NASA Astrophysics Data System (ADS)
Johnson, Cort; Newman, Bonna; Brahms, Nathan; Doyle, John M.; Kleppner, Daniel; Greytak, Thomas J.
2010-06-01
We have measured the ratio γ of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-He3 and Ni-He3 systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) He3 buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the He3 temperature. γ is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine γ accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find γNi-3He=5×103 and γFe-3He⩽3×103 at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.013201 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London)NATUAS0028-083610.1038/nature02938 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2006-00263-3 45, 147 (2007)].
High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.
2017-03-01
In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...
Isotope dependence of the Zeeman effect in lithium-like calcium
Köhler, Florian; Blaum, Klaus; Block, Michael; Chenmarev, Stanislav; Eliseev, Sergey; Glazov, Dmitry A.; Goncharov, Mikhail; Hou, Jiamin; Kracke, Anke; Nesterenko, Dmitri A.; Novikov, Yuri N.; Quint, Wolfgang; Minaya Ramirez, Enrique; Shabaev, Vladimir M.; Sturm, Sven; Volotka, Andrey V.; Werth, Günter
2016-01-01
The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests. PMID:26776466
NASA Astrophysics Data System (ADS)
Larsson, R.; Milz, M.; Rayer, P.; Saunders, R.; Bell, W.; Booton, A.; Buehler, S. A.; Eriksson, P.; John, V.
2015-10-01
We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Same channel, there is 1.2 K in average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Same channel, there is 1.3 K in average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies causing up to ± 7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.
NASA Astrophysics Data System (ADS)
Larsson, Richard; Milz, Mathias; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju O.
2016-03-01
We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high-altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Concerning the same channel, there is 1.2 K on average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Regarding the same channel, there is 1.3 K on average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies, causing up to ±7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.
Performance of the Zeeman analyzer system of the McDonald Observatory 2.7 meter telescope
NASA Technical Reports Server (NTRS)
Vogt, S. S.; Tull, R. G.; Kelton, P. W.
1980-01-01
The paper describes a multichannel photoelectric Zeeman analyzer at the coude spectrograph of the McDonald 2.7 m reflector. A comparison of Lick and McDonald observations of HD 153882 reveals no significant difference in slopes or zero points of the two magnetic fields indicating that the systematic scale difference of 30-40% is probably instrumental in origin. Observations of the magnetic variable beta Cor Bor revealed a more nearly sinusoidal magnetic curve with less internal scatter than the photographically determined field measures of the Lick and Mauna Kea Zeeman systems. Investigation of periodicity in the secularly varying magnetic minima of beta Cor Bor did not yield evidence of previously noted periodicities other than that expected from the time structure of the data sampling.
Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin
2013-08-09
Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...
Berman, S.M.; Richardson R.W.
1983-12-29
The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, S. N., E-mail: s.holmes@crl.toshiba.co.uk; Newton, P. J.; Llandro, J.
Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disordermore » or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.« less
NASA Astrophysics Data System (ADS)
Moskalenko, Sveatoslav A.; Podlesny, Igor V.; Dumanov, Evgheni V.; Liberman, Michael A.
2015-09-01
We consider the energy spectrum of the two-dimensional cavity polaritons under the influence of a strong magnetic and electric fields perpendicular to the surface of the GaAs-type quantum wells (QWs) with p-type valence band embedded into the resonators. As the first step in this direction the Landau quantization (LQ) of the electrons and heavy-holes (hh) was investigated taking into account the Rashba spin-orbit coupling (RSOC) with third-order chirality terms for hh and with nonparabolicity terms in their dispersion low including as well the Zeeman splitting (ZS) effects. The nonparabolicity term is proportional to the strength of the electric field and was introduced to avoid the collapse of the semiconductor energy gap under the influence of the third order chirality terms. The exact solutions for the eigenfunctions and eigenenergies were obtained using the Rashba method [E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)
Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Jain, J. K.; Eisenstein, J. P.
2017-05-01
In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage Vmax. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of Vmax. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of Vmax with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94, 125409 (2016), 10.1103/PhysRevB.94.125409]. For fractional quantum Hall states, we predict a substantial discontinuous jump in Vmax when the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized state.
ZEEMAN DOPPLER MAPS: ALWAYS UNIQUE, NEVER SPURIOUS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stift, Martin J.; Leone, Francesco
Numerical models of atomic diffusion in magnetic atmospheres of ApBp stars predict abundance structures that differ from the empirical maps derived with (Zeeman) Doppler mapping (ZDM). An in-depth analysis of this apparent disagreement investigates the detectability by means of ZDM of a variety of abundance structures, including (warped) rings predicted by theory, but also complex spot-like structures. Even when spectra of high signal-to-noise ratio are available, it can prove difficult or altogether impossible to correctly recover shapes, positions, and abundances of a mere handful of spots, notwithstanding the use of all four Stokes parameters and an exactly known field geometry;more » the recovery of (warped) rings can be equally challenging. Inversions of complex abundance maps that are based on just one or two spectral lines usually permit multiple solutions. It turns out that it can by no means be guaranteed that any of the regularization functions in general use for ZDM (maximum entropy or Tikhonov) will lead to a true abundance map instead of some spurious one. Attention is drawn to the need for a study that would elucidate the relation between the stratified, field-dependent abundance structures predicted by diffusion theory on the one hand, and empirical maps obtained by means of “canonical” ZDM, i.e., with mean atmospheres and unstratified abundances, on the other hand. Finally, we point out difficulties arising from the three-dimensional nature of the atomic diffusion process in magnetic ApBp star atmospheres.« less
Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es
Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.
Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less
Tunable-φ Josephson junction with a quantum anomalous Hall insulator
NASA Astrophysics Data System (ADS)
Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro
2017-12-01
We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.
New 30-50 Ghz Wideband Receiver for Nobeyama 45-M Telescope with Capability to Observe Three Zeeman
NASA Astrophysics Data System (ADS)
Huang, Yau De
2018-01-01
Zeeman measurement is the only tool to probe the magnetic field strengths directly. A new receiver covering 30-50 GHz frequency range is proposed for Nobeyama 45-m telescope based on the design of the ALMA Band 1 receiver. With dual linear polarization feed, wide IF bandwidth and state-of-the-art noise performance, it is capable to observe three Zeeman transitions (SO at 30.0 GHz and CCS at 33.7 and 45.4 GHz) toward the pre-protostellar cores simultaneously. This feature will not only increase the survey efficiency but also provide a reliable tool to calibrate the unwanted instrumental cross-polarization. Slim receiver layout also allows easy expansion to form focal plane array. We will present the receiver design and the current status of the pro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam
We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less
Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study
Jiang, M.; Pickett, W. E.; Scalettar, R. T.
2013-04-03
Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study the impacts of an on-site Hubbard interaction U, finite temperature, and an external (Zeeman) magnetic field on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U on the degree of thermalmore » depolarization, and follow relative band shifts and monitor when significant gap states appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet → saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic properties are rather robust to U.« less
Ultracold Molecules in Optical Lattices: Efficient Production and Application to Molecular Clocks
2015-05-03
near the intercombination- line threshold were measured for a variety of states, and explained by considering nonadiabatic effects ( Coriolis coupling) in...Moszynski, T. Zelevinsky. Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts, Physical Review Letters, (12...M. McDonald, G. Reinaudi, W. Skomorowski, R. Moszynski, T. Zelevinsky. Measurement of Nonadiabatic Effects in Ultracold Molecules via Anomalous
Methods for Probing Magnetic Films with Neutrons
NASA Astrophysics Data System (ADS)
Kozhevnikov, S. V.; Ott, F.; Radu, F.
2018-03-01
We review various methods in the investigation of magnetic films with neutrons, including those based on the effects of Larmor precession, Zeeman spatial splitting of the beam, neutron spin resonance, and polarized neutron channeling. The underlying principles, examples of the investigated systems, specific features, applications, and perspectives of these methods are discussed.
Brice, Joseph T.; Liang, Tao; Raston, Paul L.; ...
2016-09-27
Here, sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims tomore » account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.« less
Compressing the fluctuation of the magnetic field by dynamic compensation
NASA Astrophysics Data System (ADS)
Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu
2018-03-01
We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.
Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser
NASA Technical Reports Server (NTRS)
Mcmanus, J. Barry; Kebabian, Paul L.; Kolb, Charles E.
1989-01-01
The construction of an atmospheric methane measurement instrument based on a Zeeman-split IR He-Ne laser is reported. The laser has a tranverse magnetic field over about 2/3 of its gain length and can oscillate at an (unsplit) frequency (2947.91/cm) centered on a methane absorption line, or on either of two frequencies split by + or - 0.055/cm from the center, with low CH4 absorption. The laser is tuned to dwell sequentially at each frequency, giving two differential absorption measurements in each 46-ms tuning cycle. Atmospheric measurements are made using two multiple pass absorption cells, one with fast (0.75-s) and one with slow (5-s) flow response times. Fluctuations in ambient CH4 of about 20-ppb (rms, 1-s averaging) are detected, with interference fringe effects the dominant noise source. The instrument has operated in a field experiment (NASA GTE/ABLE-3A) in Alaska.
NASA Technical Reports Server (NTRS)
Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.
2017-01-01
Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.
Magnetic fluorescent lamp having reduced ultraviolet self-absorption
Berman, Samuel M.; Richardson, Robert W.
1985-01-01
The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.
NASA Astrophysics Data System (ADS)
Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang
2016-03-01
We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).
The history of polarisation measurements: their role in studies of magnetic fields
NASA Astrophysics Data System (ADS)
Wielebinski, R.
2015-03-01
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Symmetry breaking in SNS junctions: edge transport and field asymmetries
NASA Astrophysics Data System (ADS)
Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles
We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.
Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2011-01-15
We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less
Apparatus and method for performing two-frequency interferometry
Johnston, Roger G.
1990-01-01
The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.
Apparatus and method for performing two-frequency interferometry
Johnston, R.G.
1988-01-25
The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.
Many-body and spin-orbit aspects of the alternating current phenomena
NASA Astrophysics Data System (ADS)
Glenn, Rachel M.
The thesis reports on research in the general field of light interaction with matter. According to the topics addressed, it can be naturally divided into two parts: Part I, many-body aspects of the Rabi oscillations which a two-level systems undergoes under a strong resonant drive; and Part II, absorption of the ac field between the spectrum branches of two-dimensional fermions that are split by the combined action of Zeeman and spin-orbit (SO) fields. The focus of Part I is the following many-body effects that modify the conventional Rabi oscillations: Chapter 1, coupling of a two-level system to a single vibrational mode of the environment. Chapter 2, correlated Rabi oscillations in two electron-hole systems coupled by tunneling with strong electron-hole attraction. In Chapter 1, a new effect of Rabi-vibronic resonance is uncovered. If the frequency of the Rabi oscillations, OR, is close to the frequency o0 of the vibrational mode, the oscillations acquire a collective character. It is demonstrated that the actual frequency of the collective oscillations exhibits a bistable behavior as a function of OR - o0. The main finding in Chapter 2 is, that the Fourier spectrum of the Rabi oscillations in two coupled electron-hole systems undergoes a strong transformation with increasing O R. For OR smaller than the tunneling frequency, the spectrum is dominated by a low-frequency (<< OR ) component and contains two additional weaker lines; conventional Rabi oscillations are restored only as OR exceeds the electron-hole attraction strength. The highlight of Part II is a finding that, while the spectrum of absorption between either Zeeman-split branches or SO-split branches is close to a delta-peak, in the presence of both, it transforms into a broad line with singular behavior at the edges. In particular, when the magnitudes of Zeeman and SO are equal, absorption of very low (much smaller than the splitting) frequencies become possible. The shape of the absorption spectrum is highly anisotropic with respect to the exciting field. This peculiar behavior of the absorption is also studied in wire geometry, where the interplay between two couplings (Zeeman and spin-orbit splitting) affects the shape of numerous absorption peaks.
Applying Zeeman Doppler imaging to solar spectra
NASA Astrophysics Data System (ADS)
Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.
2004-03-01
A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).
Sympathetic Cooling of Lattice Atoms by a Bose-Einstein Condensate
2010-08-13
average out to zero net change in momentum. This type of cooling is the basis for techniques such as Zeeman slowing and Magneto - optical traps . On a...change in momentum. This type of cooling is the basis for techniques such as Zeeman slowing and Magneto - optical traps . On a more basic level, an excited...cause stimulated emission of a second excitation. A quantitative explanation requires the use of the density fluctuation operator . This operator
An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, William, E-mail: william.bowden@physics.ox.ac.uk; Gunton, Will; Semczuk, Mariusz
2016-04-15
We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of {sup 6}Li and {sup 85}Rb and achieve magneto-optical trap (MOT) loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven temperatures. Key design choices, including thermally separating the effusive sources and using a segmented coil design to enable computer control of the magnetic field profile, ensure that the apparatus can be easilymore » modified to slow other atomic species. By performing the final slowing using the quadrupole magnetic field of the MOT, we are able to shorten our Zeeman slower length making for a more compact system without compromising performance. We outline the construction and analyze the emission properties of our effusive sources. We also verify the performance of the source and slower, and we observe sequential loading rates of 12 × 10{sup 8} atoms/s for a Rb oven temperature of 140 °C and 1.1 × 10{sup 8} atoms/s for a Li reservoir at 460 °C, corresponding to reservoir lifetimes for continuous operation of 10 and 4 years, respectively.« less
Wilhelm, Michael; Wittsiepe, Jürgen; Seiwert, Margarete; Hünken, Andreas; Becker, Kerstin; Conrad, André; Schulz, Christine; Kolossa-Gehring, Marike
2013-03-01
Human biomonitoring of nickel has gained interest in environmental medicine due to its wide distribution in the environment and its allergenic potential. There are indications that the prevalence of nickel sensitization in children is increased by nickel exposure and that oral uptake of nickel can exacerbate nickel dermatitis in nickel-sensitive individuals. Urinary nickel measurement is a good indicator of exposure. However, data on nickel levels in urine of children are rare. For the first time, the German Environmental Survey on children (GerES IV) 2003-2006 provided representative data to describe the internal nickel exposure of children aged 3-14 years in Germany. Nickel was measured after enrichment in the organic phase of urine by graphite furnace atomic absorption spectrometry with Zeeman background correction. Nickel levels (n=1576) ranged from <0.5 to 15 μg/l. Geometric mean was 1.26 μg/l. Multivariate regression analysis showed that gender, age, socio-economic status, being overweighted, consumption of hazelnut spread, nuts, cereals, chocolate and urinary creatinine were significant predictors for urinary nickel excretion of children who do not smoke. 20.2% of the variance could be explained by these variables. With a contribution of 13.8% the urinary creatinine concentration was the most important predictor. No influence of nickel intake via drinking water and second hand smoke exposure was observed. Copyright © 2012 Elsevier GmbH. All rights reserved.
Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system
NASA Astrophysics Data System (ADS)
Guo, Yao-Wu; Chen, Yan
2018-04-01
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.
NASA Astrophysics Data System (ADS)
Hirata, Christopher M.; Mishra, Abhilash; Venumadhav, Tejaswi
2018-05-01
We propose a new method to measure the tensor-to-scalar ratio r using the circular polarization of the 21 cm radiation from the pre-reionization epoch. Our method relies on the splitting of the F =1 hyperfine level of neutral hydrogen due to the quadrupole moment of the cosmic microwave background (CMB). We show that unlike the Zeeman effect, where MF=±1 have opposite energy shifts, the CMB quadrupole shifts MF=±1 together relative to MF=0 . This splitting leads to a small circular polarization of the emitted 21 cm radiation. In this paper (Paper I in a series on this effect), we present calculations on the microphysics behind this effect, accounting for all processes that affect the hyperfine transition. We conclude with an analytic formula for the circular polarization from the Dark Ages as a function of pre-reionization parameters and the value of the remote quadrupole of the CMB. We also calculate the splitting of the F =1 hyperfine level due to other anisotropic radiation sources and show that they are not dominant. In a companion paper (Paper II) we make forecasts for measuring the tensor-to-scalar ratio r using future radio arrays.
A classical treatment of the quadratic Zeeman effect in atomic hydrogen
NASA Astrophysics Data System (ADS)
Al-Laithy, M. A.; Farmer, C. M.; McDowell, M. R. C.
1985-03-01
A description of the non-relativistic classical motion of the electron of a hydrogen atom in the presence of a static magnetic field of arbitrary (non-relativistic) strength is given for arbitrary angular momentum. Applications are given to m = 0 and m = 3 at B = 26.877 kG.
MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard
2016-01-01
Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600
FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosén, L.; Kochukhov, O.; Wade, G. A.
Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less
Mercury Pollution Exploration in Latvia with High-Sensitivity Zeeman Atomic Absorption Spectrometry
NASA Astrophysics Data System (ADS)
Bogans, Egils; Gavare, Zanda; Svagere, Anda; Poikane, Rita; Skudra, Jānis
2011-01-01
This research presents Hg pollution measurements performed in Latvia with sensitive method using Zeeman AAS analyzer RA-915+ and necessary attachments. Air in Riga city and water samples from a number of rivers and lakes of Latvia were analyzed for presence of low-level Hg concentrations. Ombrotrophic bog peat was analyzed to get insight into long-term trends. Environment in the sites sampled is relatively clean according to the results obtained, but there are local spots of pollution.
Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting
NASA Astrophysics Data System (ADS)
Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao
2017-10-01
Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.
Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle
NASA Astrophysics Data System (ADS)
Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.
2013-05-01
The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.
Spin interferometry in anisotropic spin-orbit fields
NASA Astrophysics Data System (ADS)
Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku
2018-03-01
Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
Doppler-Zeeman mapping of the magnetic CP star HD 215441
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.
1997-07-01
The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.
Cao, Ye; Liu, Xia -Ji; He, Lianyi; ...
2015-02-09
We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction n s,yy is generally largermore » than n s,xx in most parameter space. At zero temperature, there is always a discontinuity jump in n s,xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1T F, where T F is the Fermi degenerate temperature. Furthermore, their observation is within the reach of current experimental techniques in cold-atom laboratories.« less
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields
NASA Astrophysics Data System (ADS)
Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-05-01
We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite signs. The magnetophotoluminescence data indicate that the electron transition from the T12 states to the 1A ground state defines the zero-phonon emission at 1.674 eV, while the T12→1E transition is responsible for the zero-phonon line at 1.666 eV. The T12 (1E ) states are characterized by an orbital Zeeman splitting with gL=0.071 (0.128).
ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity
NASA Astrophysics Data System (ADS)
Stesmans, A.; Iacovo, S.; Afanas'ev, V. V.
2016-10-01
Low-temperature (T = 1.7-77 K) multi frequency electron spin resonance (ESR) study on p-type 2H-polytype geological MoS2 crystals reveals p-type doping predominantly originating from As atoms substituting for S sites in densities of (2.4 ± 0.2) × 1017 cm-3. Observation of a "half field"(g ˜ 3.88) signal firmly correlating with the central Zeeman As accepter signal indicates the presence of spin S > ½ As agglomerates, which together with the distinct multicomponent makeup of the Zeeman signal points to manifest non-uniform As doping; only ˜13% of the total As response originates from individual decoupled As dopants. From ESR monitoring the latter vs. T, an activation energy Ea = (0.7 ± 0.2) meV is obtained. This unveils As as a noticeable shallow acceptor dopant, appropriate for realization of effective p-type doping in targeted 2D MoS2-based switching devices.
Solar polarimetry through the K I lines at 770 nm
NASA Astrophysics Data System (ADS)
Quintero Noda, C.; Uitenbroek, H.; Katsukawa, Y.; Shimizu, T.; Oba, T.; Carlsson, M.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.
2017-09-01
We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km, and that they are sensitive to the line-of-sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line-of-sight velocity and the magnetic field.
NASA Technical Reports Server (NTRS)
Nedoluha, Gerald E.; Watson, William D.
1992-01-01
The present study solves the transfer equations for the polarized radiation of astrophysical 22-GHz water masers in the presence of a magnetic field which causes a Zeeman splitting that is much smaller than the spectral line breadth. The emphasis is placed on the relationship between the recently detected circular polarization in this maser radiation and the strength of the magnetic field. When the observed spectral line breadth is smaller than about 0.8 km/s (FWHM), it is calculated that the uncertainty is less than a factor of about 2. The accuracy is improved significantly when the angle between the line of sight and the direction of the magnetic field does not exceed about 45 deg. Uncertainty in the strength of the magnetic field due to lack of knowledge about which hyperfine transition is the source of the 22-GHz masers is removed. The 22-GHz maser feature is found to be the result of a merger of the three strongest hyperfine components.
Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5
Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian
2016-01-01
Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493
R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...
2015-10-22
We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less
Environmental corrections of a dual-induction logging while drilling tool in vertical wells
NASA Astrophysics Data System (ADS)
Kang, Zhengming; Ke, Shizhen; Jiang, Ming; Yin, Chengfang; Li, Anzong; Li, Junjian
2018-04-01
With the development of Logging While Drilling (LWD) technology, dual-induction LWD logging is not only widely applied in deviated wells and horizontal wells, but it is used commonly in vertical wells. Accordingly, it is necessary to simulate the response of LWD tools in vertical wells for logging interpretation. In this paper, the investigation characteristics, the effects of the tool structure, skin effect and drilling environment of a dual-induction LWD tool are simulated by the three-dimensional (3D) finite element method (FEM). In order to closely simulate the actual situation, real structure of the tool is taking into account. The results demonstrate that the influence of the background value of the tool structure can be eliminated. The values of deducting the background of a tool structure and analytical solution have a quantitative agreement in homogeneous formations. The effect of measurement frequency could be effectively eliminated by chart of skin effect correction. In addition, the measurement environment, borehole size, mud resistivity, shoulder bed, layer thickness and invasion, have an effect on the true resistivity. To eliminate these effects, borehole correction charts, shoulder bed correction charts and tornado charts are computed based on real tool structure. Based on correction charts, well logging data can be corrected automatically by a suitable interpolation method, which is convenient and fast. Verified with actual logging data in vertical wells, this method could obtain the true resistivity of formation.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
Physics of the infrared spectrum
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Jefferies, John; Lindsey, Charles
1991-01-01
The IR bandpass is attractive for solar magnetic field studies in virtue of the proportionality to wavelength of the ratio of Zeeman splitting to line width. The large Zeeman splitting and optical thinness of the 12-micron observations render them especially useful for vector magnetic field derivations. The IR continuum, and many IR spectral lines, are formed in LTE and are useful in studies of the temperature structure of the solar atmosphere from the deepest observable photospheric layers to chromospheric altitudes. The far-IR continuum is an excellent thermometer for the upper photosphere and chromosphere.
Optical field induced rotation of polarization in rubidium atoms with the additional magnetic field
NASA Astrophysics Data System (ADS)
Ummal Momeen, M.; Hu, Jianping
2017-11-01
We present the magnetic and optical field induced rotation of polarization in 87Rb and 85Rb atoms at geophysical magnetic fields. The line shape varies considerably in the presence of a magnetic field of the order of a few mG. Multiple Zeeman sublevel EIT systems involving rubidium atoms are investigated. Theoretical formalism of optical field induced polarization rotation in the presence of a magnetic field is discussed by considering all the Zeeman sublevels. It is noted that the ground state population distribution also plays a major role.
Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs
Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.
2010-01-01
Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158
NASA Technical Reports Server (NTRS)
Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.
1984-01-01
Observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data streams on high density tape reveal major shortcomings in a technique proposed by the Canadian Center for Remote Sensing in 1982 for the radiometric correction of TM data. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and data corrected using the earlier proposed technique is explained and the correction required for these factors as a function of individual scan line number for each detector is described. How the revised technique can be incorporated into an operational environment is demonstrated.
Suggestions to Gain Deeper Understanding of Magnetic Fields in Astrophysics Classrooms
NASA Astrophysics Data System (ADS)
Woolsey, Lauren N.
2016-01-01
I present two tools that could be used in an undergraduate or graduate classroom to aid in developing intuition of magnetic fields, how they are measured, and how they affect large scale phenomena like the solar wind. The first tool is a Mathematica widget I developed that simulates observations of magnetic field in the Interstellar Medium (ISM) using the weak Zeeman effect. Woolsey (2015, JAESE) discusses the relevant background information about what structures in the ISM produce a strong enough effect and which molecules are used to make the measurement and why. This widget could be used in an entry level astronomy course as a way to show how astronomers actually make certain types of measurements and allow students to practice inquiry-based learning to understand how different aspects of the ISM environment strengthen or weaken the observed signal. The second tool is a Python model of the solar wind, The Efficient Modified Parker Equation Solving Tool (TEMPEST), that is publicly available on GitHub (https://github.com/lnwoolsey/tempest). I discuss possible short-term projects or investigations that could be done using the programs in the TEMPEST library that are suitable for upper-level undergraduates or in graduate level coursework (Woolsey, 2015, JRAEO).
Spintronics: A Spin-Based Electronics Vision for the Future
2001-11-01
the Zeeman splitting of the conduc- tion (valence) band must be greater than the Fermi energy, EF, of the electrons ( holes ). In concentrated materials...magnetic field B 5 0 T (purple curve), 0.025 T (pink curve), and 0.250 T ( black curve). [Adapted from (120)] Fig. 5. Field effect...control of hole -induced ferromag- netism in magnetic semicon- ductor (In,Mn)As field-effect transistors. Shown is mag- netic field dependence of the
NASA Astrophysics Data System (ADS)
Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.
2018-03-01
In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.
NASA Astrophysics Data System (ADS)
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2017-08-01
In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.
EUO-Based Multifunctional Heterostructures
2015-06-06
magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal
NASA Technical Reports Server (NTRS)
Dunn, A. R.
1975-01-01
Computer techniques for data analysis of sunspot observations are presented. Photographic spectra were converted to digital form and analyzed. Methods of determining magnetic field strengths, i.e., the Zeeman effect, are discussed. Errors originating with telescope equipment and the magnetograph are treated. Flow charts of test programs and procedures of the data analysis are shown.
NASA Astrophysics Data System (ADS)
Zhai, Li-Xue; Wang, Yan; An, Zhong
2018-05-01
Spin-dependent transport in one-dimensional (1D) three-terminal Rashba rings is investigated under a weak magnetic field, and we focus on the Zeeman splitting (ZS) effect. For this purpose, the interaction between the electron spin and the weak magnetic field has been treated by perturbation theory. ZS removes the spin degeneracy, and breaks both the time reversal symmetry and the spin reversal symmetry of the ring system. Consequently, all conductance zeros are lifted and turned into conductance dips. Aharonov-Bohm (AB) oscillations can be found in both branch conductances and the total conductance as a function of the magnetic field. In a relatively high magnetic field, the decoherence caused by ZS decreases the amplitude of the branch conductance and increases that of the total conductance. The results have been compared with those reported in the published literature, and a reasonable agreement is obtained. The conductance as a function of the Rashba spin-orbit coupling (RSOC) strength has also been investigated. As the RSOC strength increases, the role of ZS becomes weaker and weaker; ZS can even be neglected when B ≤ 0.1 T.
Feige 7 - A hot, rotating magnetic white dwarf
NASA Technical Reports Server (NTRS)
Liebert, J.; Angel, J. R. P.; Stockman, H. S.; Spinrad, H.; Beaver, E. A.
1977-01-01
Results are reported for image-tube-scanner and digicon observations of Feige 7, a faint blue star identified as a probable white dwarf. It is found that this star is a magnetic white dwarf showing a very rich spectrum with Zeeman subcomponents of both hydrogen and neutral helium as well as periodic spectrum and circular-polarization variations. A polarization period of 2.2 hr is computed, and a surface magnetic-field strength of about 18 MG is determined by matching features of the absorption spectrum to Zeeman components. It is suggested that the only reasonable explanation for the periodic variations in circular polarization is an oblique rotator with the spin axis approximately in the plane of the sky and tilted by about 24 deg to the magnetic axis. An effective temperature in the range from 20,000 to 25,000 K is estimated, an absolute magnitude of about 10.5 is derived, and the atmosphere is shown to be helium-dominated. The evolution of Feige 7 is discussed in terms of possible magnetic-field effects on atmospheric composition, rotation velocity (5.5 km/s for a radius of 7000 km), and the origin of white-dwarf magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstone, H.J.; Moats, R.K.
1981-04-01
With the aim of high-order calculations, a new recursive solution for the degenerate Rayleigh-Schroedinger perturbation-theory wave function and energy has been derived. The final formulas, chi/sup (N/)/sub sigma/ = R/sup () -sigma/summation/sup N/-1/sub k/ = 0 H/sup (sigma+1+k/)/sub sigma+1/chi/sup (N/-1-k), E/sup (N/+sigma) = <0Vertical BarH/sup (N/+sigma)/sub sigma+1/Vertical Bar0> + < 0Vertical Barsummation/sup N/-2/sub k/ = 0H/sup (sigma+1+k/)/sub sigma+1/ Vertical Barchi/sup (N/-1-k)>,which involve new Hamiltonian-related operators H/sup (sigma+k/)/sub sigma/ and H/sup( sigma+k/)/sub sigma/, strongly resemble the standard nondegenerate recursive formulas. As an illustration, the perturbed energy coefficients for the 3s-3d/sub 0/ states of hydrogen in the Zeeman effect have been calculatedmore » recursively through 87th order in the square of the magnetic field. Our treatment is compared with that of Hirschfelder and Certain (J. Chem. Phys. 60, 1118 (1974)), and some relative advantages of each are pointed out.« less
Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonte, G.; Falsaperla, P.; Schiffrer, G.
1990-06-01
We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible tomore » apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.
2016-11-15
We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less
Precision Measurement of the Rovibrational Energy-Level Structure of ^{4}He^{+}_{2}
NASA Astrophysics Data System (ADS)
Semeria, Luca; Jansen, Paul; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frederic
2017-06-01
He_{2}^{+} is a three-electron system for which highly accurate ab initio calculations are possible. The latest calculations of the rovibrational energies of He_{2}^{+} by Tung et al. have a reported accuracy of 120 MHz, although they do not include relativistic and quantum electrodynamics (QED) effects. We determined the rovibrational structure of ^{4}He^{+}_{2} from measurements of the Rydberg spectrum of metastable a ^3Σ_u^+ He_{2} (He^{*}_{2} hereafter) and Rydberg-series extrapolation using multichannel quantum-defect-theory. He^{*}_{2} molecules are produced in supersonic beams with velocities tunable down to about 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. They are then excited to high-np Rydberg states by single-photon excitation. In the experiments, we use a pulsed uv laser system, with a near Fourier-transform-limited bandwidth of 150 MHz. The Zeeman deceleration reduces the systematic uncertainty arising from a possible Doppler shift and greatly simplifies the spectral assignment because of its spin-rotational state selectivity. Results will be presented on the rotational structure of the lowest three vibrational levels of He^{+}_{2}. The unprecedented accuracy that we have obtained for the v^{+}=0 rotational intervals of He_{2}^{+} enables the quantification of the relativistic and QED corrections by comparison with the results of Tung et al.^a W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys., 136, 104309, 2012. C. Jungen, Elements of Quantum Defect Theory, in : Handbook of High-resolution Spectroscopy, 2001. D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys., 140, 064304, 2014. A. W. Wiederkehr, S. D. Hogan, M. Andrist, H. Schmutz, B. Lambillotte, J. A. Agner, and F. Merkt., J. Chem. Phys., 135, 214202, 2011. M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A, 89, 043420, 2014. P. Jansen, L. Semeria, L. E. Hofer, S. Scheidegger, J. A. Agner, H. Schmutz, and F. Merkt. Phys. Rev. Lett., 115, 133202, 2015. L. Semeria, P. Jansen and F. Merkt, J. Chem. Phys., 145, 204301, 2016.
Low plasma selenium concentration is associated with elevated risk to neoplastic polyps of the colon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, L.C.; Hixson, L.G.; Sampliner, R.E.
1991-03-11
A cross-sectional study was conducted to examine the relationship of selenium (Se) status and polyps incidence in a sequential series of 100 patients undergoing outpatient colonoscopies at the Tucson VA Hospital. Se was measured in plasma samples by electrothermal atomic absorption spectrophotometry with Zeeman background correction using a reduced palladium matrix modified. The activities of the Se-dependent enzyme glutathione peroxidase (SeGSHpx) were measured using H{sub 2}O{sub 2} as substrate in all plasma samples and in colonic mucosal biopsies obtained from some patients. The mean plasma Se concentration of patients without polyps was 134 ng/ml. Mean plasma Se levels of patientsmore » with only diminutive or large polyps were 127 ng/ml and 125 ng/ml; while patients with polyps of both sizes had a mean plasma Se level of 121 ng/ml. Patients with no reported history of cancer, neoplastic polyps or prior colonoscopy, showed an inverse association of plasma Se level and risk of benign colonic neoplasms. The age-adjusted odds ratio for neoplastic polyps was 3.8 for patients with plasma Se levels below vs. above the median value. This association was stronger for patients under 68 yrs of age than for older patients. Activities of SeGSHpx in plasma or colonic mucosa were not related to plasma Se level; however, smokers showed greater SeGSHpx activities than non-smokers. This study is the first to detect an association of Se status and risk to neoplastic polyps of the colon.« less
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-02-01
The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.
NASA Astrophysics Data System (ADS)
Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan
2004-05-01
The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.
Production and detection of atomic hexadecapole at Earth's magnetic field.
Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D
2008-07-21
Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.
Origin of excess low-energy states in a disordered superconductor in a Zeeman field.
Loh, Y L; Trivedi, N; Xiong, Y M; Adams, P W; Catelani, G
2011-08-05
Tunneling density of states measurements of disordered superconducting Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The disordered Larkin-Ovchinnikov superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states that lead to distinct spectral signatures at low energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wen, E-mail: wenxiong@cqu.edu.cn; Chen, Wensuo
2013-12-21
The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbandsmore » and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.« less
Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis
2016-12-01
The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.
The location and recognition of anti-counterfeiting code image with complex background
NASA Astrophysics Data System (ADS)
Ni, Jing; Liu, Quan; Lou, Ping; Han, Ping
2017-07-01
The order of cigarette market is a key issue in the tobacco business system. The anti-counterfeiting code, as a kind of effective anti-counterfeiting technology, can identify counterfeit goods, and effectively maintain the normal order of market and consumers' rights and interests. There are complex backgrounds, light interference and other problems in the anti-counterfeiting code images obtained by the tobacco recognizer. To solve these problems, the paper proposes a locating method based on Susan operator, combined with sliding window and line scanning,. In order to reduce the interference of background and noise, we extract the red component of the image and convert the color image into gray image. For the confusing characters, recognition results correction based on the template matching method has been adopted to improve the recognition rate. In this method, the anti-counterfeiting code can be located and recognized correctly in the image with complex background. The experiment results show the effectiveness and feasibility of the approach.
Zhang, Jiulou; Shi, Junwei; Guang, Huizhi; Zuo, Simin; Liu, Fei; Bai, Jing; Luo, Jianwen
2016-06-01
High-intensity background fluorescence is generally encountered in fluorescence molecular tomography (FMT), because of the accumulation of fluorescent probes in nontarget tissues or the existence of autofluorescence in biological tissues. The reconstruction results are affected or even distorted by the background fluorescence, especially when the distribution of fluorescent targets is relatively sparse. The purpose of this paper is to reduce the negative effect of background fluorescence on FMT reconstruction. After each iteration of the Tikhonov regularization algorithm, 3-D discrete cosine transform is adopted to filter the intermediate results. And then, a sparsity constraint step based on L1 regularization is applied to restrain the energy of the objective function. Phantom experiments with different fluorescence intensities of homogeneous and heterogeneous background are carried out to validate the performance of the proposed scheme. The results show that the reconstruction quality can be improved with the proposed iterative correction scheme. The influence of background fluorescence in FMT can be reduced effectively because of the filtering of the intermediate results, the detail preservation, and noise suppression of L1 regularization.
Spin polarized semimagnetic exciton-polariton condensate in magnetic field.
Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara
2018-04-27
Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.
In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS 2 and MoS 2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately –230 μeV T–1 (g-factor ≃–4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS 2,more » from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). Lastly, these results highlight the utility of high magnetic fields for understanding new two-dimensional materials.« less
Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2
NASA Astrophysics Data System (ADS)
Gustafsson, Martin V.; Yankowitz, Matthew; Forsythe, Carlos; Rhodes, Daniel; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Zhu, Xiaoyang; Dean, Cory R.
2018-05-01
Monolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin-orbit coupling and lack of inversion symmetry1-15. Although recent experiments have also identified the critical role of carrier interactions within these materials11,15, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs)16,17 to perform LL spectroscopy in ML WSe2, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes. We find that the LLs differ notably between the two bands, and follow a unique sequence in the valence band (VB) that is dominated by strong Zeeman effects. The Zeeman splitting in the VB is several times higher than the cyclotron energy, far exceeding the predictions of a single-particle model and, moreover, tunes significantly with doping15. This implies exceptionally strong many-body interactions, and suggests that ML WSe2 can serve as a host for new correlated-electron phenomena.
Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR
NASA Astrophysics Data System (ADS)
Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.
2017-02-01
In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.
π Berry phase and Zeeman splitting of Weyl semimetal TaP
Hu, J.; Liu, J. Y.; Graf, D.; ...
2016-01-04
Here, the recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state,more » including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted.« less
Holographic corrections to meson scattering amplitudes
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin
2017-06-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Merkt, Frederic
2016-06-01
Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998). P. Jansen, L. Semeria, and F. Merkt, J. Mol. Spectrosc. 322, 9 (2016)
Exploring the robustness of a noise correlation resonance in a Zeeman EIT system
NASA Astrophysics Data System (ADS)
O'Leary, Shannon; Crescimanno, Michael; Strehlow, Henry; Snider, Chad
2011-05-01
Using a single diode laser with large phase noise (linewidth ~100 MHz) resonant with Zeeman EIT in rubidium vapor, we examine intensity noise correlations of orthogonally-polarized laser components. A sharp correlation feature (~100 Hz) is shown to be power-broadening resistant at low powers. However, the limitations of this resistance are revealed, with the onset of a power-broadening regime once a threshold power is crossed. Possible mechanisms for this broadening, due to decoherence of the ground state superposition, are experimentally explored and results are compared to a model. Understanding the limits of this noise correlation feature is essential to practical applications such as magnetometry.
Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2013-12-13
Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 μs and 78.4% at 4.5 ms, respectively.
NASA Astrophysics Data System (ADS)
Nikolić, S. N.; Radonjić, M.; Lučić, N. M.; Krmpot, A. J.; Jelenković, B. M.
2015-02-01
We investigate, experimentally and theoretically, time development of Zeeman electromagnetically induced transparency (EIT) during propagation of two time separated polarization laser pulses, preparatory and probe, through Rb vapour. The pulses were produced by modifying laser intensity and degree of elliptical polarization. The frequency of the single laser beam is locked to the hyperfine {{F}g}=2\\to {{F}e}=1 transition of the D1 line in 87Rb. Transients in the intensity of {{σ }-} component of the transmitted light are measured or calculated at different values of the external magnetic field, during both preparatory and probe pulse. Zeeman EIT resonances at particular time instants of the pulse propagation are reconstructed by appropriate sampling of the transients. We observe how laser intensity, Ramsey sequence and the Rb cell temperature affect the time dependence of EIT line shapes, amplitudes and linewidths. We show that at early times of the probe pulse propagation, several Ramsey fringes are present in EIT resonances, while at later moments a single narrow peak prevails. Time development of EIT amplitudes are determined by the transmitted intensity of the {{σ }-} component during the pulse propagation.
Effects of ocular aberrations on contrast detection in noise.
Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong
2012-08-06
We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.
HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors
NASA Astrophysics Data System (ADS)
Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.
2015-09-01
At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.
NASA Astrophysics Data System (ADS)
Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu
The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.
NASA Astrophysics Data System (ADS)
Harrison, Neil; Shekhter, Arkady
2015-03-01
We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.
Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc
2015-10-01
Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.
Magneto-optical Effects in the Scattering Polarization Wings of the Ca I 4227 Å Resonance Line
NASA Astrophysics Data System (ADS)
Alsina Ballester, E.; Belluzzi, L.; Trujillo Bueno, J.
2018-02-01
The linear polarization pattern produced by scattering processes in the Ca I 4227 Å resonance line is a valuable observable for probing the solar atmosphere. Via the Hanle effect, the very significant Q/I and U/I line-center signals are sensitive to the presence of magnetic fields in the lower chromosphere with strengths between 5 and 125 G, approximately. On the other hand, partial frequency redistribution (PRD) produces sizable signals in the wings of the Q/I profile, which have always been thought to be insensitive to the presence of magnetic fields. Interestingly, novel observations of this line revealed a surprising behavior: fully unexpected signals in the wings of the U/I profile and spatial variability in the wings of both Q/I and U/I. We show that the magneto-optical (MO) terms of the Stokes-vector transfer equation produce sizable signals in the wings of U/I and a clear sensitivity of the Q/I and U/I wings to the presence of photospheric magnetic fields with strengths similar to those that produce the Hanle effect in the line core. This radiative transfer investigation on the joint action of scattering processes and the Hanle and Zeeman effects in the Ca I 4227 Å line should facilitate the development of more reliable techniques for exploring the magnetism of stellar atmospheres. To this end, we can now exploit the circular polarization produced by the Zeeman effect, the magnetic sensitivity caused by the above-mentioned MO effects in the Q/I and U/I wings, and the Hanle effect in the line core.
The beam stop array method to measure object scatter in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Haeng-hwa; Kim, Ye-seul; Park, Hye-Suk; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook
2014-03-01
Scattered radiation is inevitably generated in the object. The distribution of the scattered radiation is influenced by object thickness, filed size, object-to-detector distance, and primary energy. One of the investigations to measure scatter intensities involves measuring the signal detected under the shadow of the lead discs of a beam-stop array (BSA). The measured scatter by BSA includes not only the scattered radiation within the object (object scatter), but also the external scatter source. The components of external scatter source include the X-ray tube, detector, collimator, x-ray filter, and BSA. Excluding background scattered radiation can be applied to different scanner geometry by simple parameter adjustments without prior knowledge of the scanned object. In this study, a method using BSA to differentiate scatter in phantom (object scatter) from external background was used. Furthermore, this method was applied to BSA algorithm to correct the object scatter. In order to confirm background scattered radiation, we obtained the scatter profiles and scatter fraction (SF) profiles in the directions perpendicular to the chest wall edge (CWE) with and without scattering material. The scatter profiles with and without the scattering material were similar in the region between 127 mm and 228 mm from chest wall. This result indicated that the measured scatter by BSA included background scatter. Moreover, the BSA algorithm with the proposed method could correct the object scatter because the total radiation profiles of object scatter correction corresponded to original image in the region between 127 mm and 228 mm from chest wall. As a result, the BSA method to measure object scatter could be used to remove background scatter. This method could apply for different scanner geometry after background scatter correction. In conclusion, the BSA algorithm with the proposed method is effective to correct object scatter.
NASA Technical Reports Server (NTRS)
Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.
1984-01-01
A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.
40 CFR 1065.650 - Emission calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following sequence of preliminary calculations on recorded concentrations: (i) Correct all THC and CH4.... (iii) Calculate all THC and NMHC concentrations, including dilution air background concentrations, as... NMHC to background corrected mass of THC. If the background corrected mass of NMHC is greater than 0.98...
THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov
2016-12-20
The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less
HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors
NASA Astrophysics Data System (ADS)
Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.
2016-07-01
At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.
Khlifi, Rim; Olmedo, Pablo; Gil, Fernando; Feki-Tounsi, Molka; Hammami, Bouthaina; Rebai, Ahmed; Hamza-Chaffai, Amel
2014-02-01
The human health impact of the historic and current mining and industrial activities in Tunisia is not known. This study assessed the exposure to metals in the population of Southern Tunisia, using biomonitoring. The aim of this pilot study was to evaluate metal exposure on 350 participants living near mining and active industrial areas in the South of Tunisia. Blood specimens were analyzed for metals (Cd, Cr, As, and Ni) by Atomic Absorption Spectrometer equipped with Zeeman background correction and AS-800 auto sampler by graphite furnace and graphite tubes with integrated L'vov platform. The sample population was classified according to different age groups, sex, smoking habit, sea food and water drinking consumption, occupational exposure, amalgam fillings and place of residence. The blood As, Cd, Cr and Ni values expressed as mean ± SD were 1.56 ± 2.49, 0.74 ± 1.15, 35.04 ± 26.02 and 30.56 ± 29.96 μg/l, respectively. Blood Cd and Ni levels in smokers were 2 and 1.2 times, respectively, higher than in non-smokers. Blood Cd levels increase significantly with age (p = 0.002). As, Cd and Ni were significantly correlated with gender and age (p < 0.05). Cd level in blood samples of subjects occupationally exposed was 1.3 times higher than that of non-exposed. Blood metals were not significantly affected by amalgam fillings, place of living and sea food and drinking water consumption. This first biomonitoring study of metal exposure in the South of Tunisia reveals a substantial exposure to several metals. The pathways of exposure and health significance of these findings need to be further investigated.
NASA Astrophysics Data System (ADS)
Parsons, Patrick J.; Geraghty, Ciaran; Verostek, Mary Frances
2001-09-01
The preparation and validation of a number of clinical reference materials for the determination of lead in blood and urine is described. Four candidate blood lead reference materials (Lots, 047-050), and four candidate urine lead reference materials (Lots, 034, 035, 037 and 038), containing physiologically-bound lead at clinically relevant concentrations, were circulated to up to 21 selected laboratories specializing in this analysis. Results from two interlaboratory studies were used to establish certified values and uncertainty estimates for these reference materials. These data also provided an assessment of current laboratory techniques for the measurement of lead in blood and urine. For the blood lead measurements, four laboratories used electrothermal atomization AAS, three used anodic stripping voltammetry and one used both ETAAS and ICP-MS. For the urine lead measurements, 11 laboratories used ETAAS (most with Zeeman background correction) and 10 used ICP-MS. Certified blood lead concentrations, ±S.D., ranged from 5.9±0.4 μg/dl (0.28±0.02 μmol/l) to 76.0±2.2 μg/dl (3.67±0.11 μmol/l) and urine lead concentrations ranged from 98±5 μg/l (0.47±0.02 μmol/l) to 641±36 μg/l (3.09±0.17 μmol/l). The highest concentration blood lead material was subjected to multiple analyses using ETAAS over an extended time period. The data indicate that more stringent internal quality control practices are necessary to improve long-term precision. While the certification of blood lead materials was accomplished in a manner consistent with established practices, the urine lead materials proved more troublesome, particularly at concentrations above 600 μg/l (2.90 μmol/l).
Exposure of children to lead and cadmium from a mining area of Brazil.
Paoliello, Monica Maria Bastos; De Capitani, Eduardo Mello; da Cunha, Fernanda Gonçalves; Matsuo, Tiemi; Carvalho, Maria de Fátima; Sakuma, Alice; Figueiredo, Bernardino Ribeiro
2002-02-01
During the past 50 years the Ribeira river valley, in the southern part of the state of São Paulo, Brazil, had been under the influence of the full activity of a huge lead refinery and mine working by the side of the river. The plant completely stopped all kinds of industrial activities at the end of 1995, and part of the worker population and their families still remain living nearby in small communities. The objective of the study was to assess the exposure of children to lead and cadmium in these areas, where residual environmental contamination from the past industrial activity still exists. Blood samples of 295 children aged 7 to 14 years, residing in rural and urban areas around the mine and the refinery, were collected. A questionnaire was given to gather information on food habits, leisure activities, father's past employment, current and former residential places, and other variables. Blood lead and cadmium concentrations were analyzed by graphite furnace atomic absorption spectrometry using Zeeman background correction. Cadmium values obtained in this population were mostly below established quantification limits (0.5 microg/dl). The median of blood lead level (BLL) obtained in children living close to the lead refinery was 11.25 microg/dl, and the median in other mining regions far from the refinery was 4.4 microg/dl. Logistic regression analysis was conducted to examine the independent contribution of selected variables in predicting BLL in these children. The following variables showed significant association with high BLL: residential area close to the lead refinery [odds ratio (OR)=10.38 (95% confidence interval (Cl)=4.86-23.25)], former father's occupational lead exposure [OR=4.07 (95% Cl=1.82-9.24)], and male gender [OR=2.60 (95% Cl=1.24-5.62)].
NASA Astrophysics Data System (ADS)
Liu, Xingchen; Hu, Zhiyong; He, Qingbo; Zhang, Shangbin; Zhu, Jun
2017-10-01
Doppler distortion and background noise can reduce the effectiveness of wayside acoustic train bearing monitoring and fault diagnosis. This paper proposes a method of combining a microphone array and matching pursuit algorithm to overcome these difficulties. First, a dictionary is constructed based on the characteristics and mechanism of a far-field assumption. Then, the angle of arrival of the train bearing is acquired when applying matching pursuit to analyze the acoustic array signals. Finally, after obtaining the resampling time series, the Doppler distortion can be corrected, which is convenient for further diagnostic work. Compared with traditional single-microphone Doppler correction methods, the advantages of the presented array method are its robustness to background noise and its barely requiring pre-measuring parameters. Simulation and experimental study show that the proposed method is effective in performing wayside acoustic bearing fault diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schurman, D.L.; Datesman, G.H. Jr; Truitt, J.O.
The report presents a system for evaluating and correcting deficiencies in security-force effectiveness in licensed nuclear facilities. There are four checklists which security managers can copy directly, or can use as guidelines for developing their own checklists. The checklists are keyed to corrective-action guides found in the body of the report. In addition to the corrective-action guides, the report gives background information on the nature of security systems and discussions of various special problems of the licensed nuclear industry.
Ordinary matter, dark matter, and dark energy on normal Zeeman space-times
NASA Astrophysics Data System (ADS)
Imre Szabó, Zoltán
2017-01-01
Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].
Anomalous Kondo transport in a single-electron transistor driven by microwave field
NASA Astrophysics Data System (ADS)
Cao, Zhan; Chen, Cheng; Chen, Fu-Zhou; Luo, Hong-Gang
2014-03-01
The Kondo transport in a single-electron transistor continues to provide unexpected physics due to the interplay between magnetic field and microwave applied, as shown in a recent experiment(B. Hemingway et al., arXiv:1304.0037). For a given microwave frequency, the Kondo differential conductance shows an anomalous magnetic field dependence, and a very sharp peak is observed for certain field applied. Additionally, the microwave frequency is found to be larger of about one order than the corresponding Zeeman energy. These two features are not understood in the current theory. Here we propose a phenomenological mechanism to explain these observations. When both magnetic field and microwave are applied in the SET, if the frequency matches the (renormalized) Zeeman energy, it is assumed that the microwave is able to induce spin-ip in the single-electron transistor, which leads to two consequences. One is the dot level shifts down and the other is the renormalization of the Zeeman energy. This picture can not only explain qualitatively the main findings in the experiment but also further stimulate the related experimental study of the Kondo transport. Additional microwave modulation may provide a novel way to explore the functional of the SET in nanotechnology and quantum information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp
This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less
Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy
Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...
2016-03-15
Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.
Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.
Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth
2017-05-26
In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.
Research of spin-orbit interaction in organic conjugated polymers
NASA Astrophysics Data System (ADS)
Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.
2017-06-01
The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.
NASA Astrophysics Data System (ADS)
Hugdal, Henning G.; Sudbø, Asle
2018-01-01
We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.
Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I
NASA Astrophysics Data System (ADS)
Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy
2018-01-01
The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.
21cm Absorption Line Zeeman Observations And Modeling Of Physical Conditions In M16
NASA Astrophysics Data System (ADS)
Kiuchi, Furea; Brogan, C.; Troland, T.
2011-01-01
We present detailed 21 cm HI absorption line observations of M16 using the Very Large Array. The M16 "pillars of creation" are classic examples of the interaction of ISM with radiation from young, hot stars. Magnetic fields can affect these interactions, the 21 cm Zeeman effect reveals magnetic field strengths in the Photodissociation regions associated with the pillars. The present results yield a 3-sigma upper limit upon the line-of-sight magnetic field of about 300 microgauss. This limit is consistent with a total field strength of 500 microgauss, required in the molecular gas if magnetic energies and turbulent energies in the pillars are in equipartition. Most likely, magnetic fields do not play a dominant role in the dynamics of the M16 pillars. Another goal of this study is to determine the distribution of cold HI in the M16 region and to model the physical conditions in the neutral gas in the pillars. We used the spectral synthesis code Cloudy 08.00 for this purpose. We adopted the results of a published Cloudy HII region model and extended this model into the neutral gas to derive physical conditions therein.
Higgs, T D C; Bonetti, S; Ohldag, H; Banerjee, N; Wang, X L; Rosenberg, A J; Cai, Z; Zhao, J H; Moler, K A; Robinson, J W A
2016-07-22
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.
Analysis of the Zeeman effect on D α spectra on the EAST tokamak
NASA Astrophysics Data System (ADS)
Gao, Wei; Huang, Juan; Wu, Chengrui; Xu, Zong; Hou, Yumei; Jin, Zhao; Chen, Yingjie; Zhang, Pengfei; Zhang, Ling; Wu, Zhenwei; EAST Team
2017-04-01
Based on the passive spectroscopy, the {{{D}}}α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis (OSMA) system in EAST tokamak. The Zeeman splitting of the {{{D}}}α spectral lines has been observed. A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and +/- σ components of the {{{D}}}α atomic spectra to acquire the information of the local plasma. The spectral line shape was investigated according to emission spectra from different regions (e.g., low-field side and high-field side) along the viewing chords. Each polarization component was fitted and classified into three energy categories (the cold, warm, and hot components) based on different atomic production processes, in consistent with the transition energy distribution by calculating the gradient of the {{{D}}}α spectral profile. The emission position, magnetic field intensity, and flow velocity of a deuterium atom were also discussed in the context. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275231 and 11575249) and the National Magnetic Confinement Fusion Energy Research Program of China (Grant No. 2015GB110005).
Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; ...
2016-07-22
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using themore » element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.« less
NASA Astrophysics Data System (ADS)
Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.
2016-07-01
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.
Pseudospins and Topological Effects of Phonons in a Kekulé Lattice
NASA Astrophysics Data System (ADS)
Liu, Yizhou; Lian, Chao-Sheng; Li, Yang; Xu, Yong; Duan, Wenhui
2017-12-01
The search for exotic topological effects of phonons has attracted enormous interest for both fundamental science and practical applications. By studying phonons in a Kekulé lattice, we find a new type of pseudospin characterized by quantized Berry phases and pseudoangular momenta, which introduces various novel topological effects, including topologically protected pseudospin-polarized interface states and a phonon pseudospin Hall effect. We further demonstrate a pseudospin-contrasting optical selection rule and a pseudospin Zeeman effect, giving a complete generation-manipulation-detection paradigm of the phonon pseudospin. The pseudospin and topology-related physics revealed for phonons is general and applicable for electrons, photons, and other particles.
Polarized radiation diagnostics of stellar magnetic fields
NASA Astrophysics Data System (ADS)
Mathys, Gautier
The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.
Impact of a primordial magnetic field on cosmic microwave background B modes with weak lensing
NASA Astrophysics Data System (ADS)
Yamazaki, Dai G.
2018-05-01
We discuss the manner in which the primordial magnetic field (PMF) suppresses the cosmic microwave background (CMB) B mode due to the weak-lensing (WL) effect. The WL effect depends on the lensing potential (LP) caused by matter perturbations, the distribution of which at cosmological scales is given by the matter power spectrum (MPS). Therefore, the WL effect on the CMB B mode is affected by the MPS. Considering the effect of the ensemble average energy density of the PMF, which we call "the background PMF," on the MPS, the amplitude of MPS is suppressed in the wave number range of k >0.01 h Mpc-1 . The MPS affects the LP and the WL effect in the CMB B mode; however, the PMF can damp this effect. Previous studies of the CMB B mode with the PMF have only considered the vector and tensor modes. These modes boost the CMB B mode in the multipole range of ℓ>1000 , whereas the background PMF damps the CMB B mode owing to the WL effect in the entire multipole range. The matter density in the Universe controls the WL effect. Therefore, when we constrain the PMF and the matter density parameters from cosmological observational data sets, including the CMB B mode, we expect degeneracy between these parameters. The CMB B mode also provides important information on the background gravitational waves, inflation theory, matter density fluctuations, and the structure formations at the cosmological scale through the cosmological parameter search. If we study these topics and correctly constrain the cosmological parameters from cosmological observations, including the CMB B mode, we need to correctly consider the background PMF.
Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.
Linford, G J
1973-06-01
A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.
NASA Astrophysics Data System (ADS)
Soulié, Edgar; Gaugenot, Jacques
1995-04-01
Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).
Topological properties of a curved spacetime
NASA Astrophysics Data System (ADS)
Agrawal, Gunjan; Shrivastava, Sampada; Godani, Nisha; Sinha, Soami Pyari
2017-12-01
The present paper aims at the study of a topology on Lorentzian manifolds, defined by Göbel [4] using the ideas of Zeeman [16]. Observing that on the Minkowski space it is the same as Zeeman's time topology, it has been found that a Lorentzian manifold with this topology is path connected, nonfirst countable and nonsimply connected while the Minkowski space with time topology is, in addition nonregular and separable. Furthermore, using the notion of Zeno sequences it is obtained that a compact set does not contain a nonempty open set and that a set is compact if and only if each of its infinite subsets has a limit point if and only if each of its sequences has a convergent subsequence.
Stepwise Bose-Einstein Condensation in a Spinor Gas.
Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F
2017-08-04
We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.
Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.
Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz
2012-07-11
An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background emission...
Loop corrections to primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... correction is effective July 7, 2010. FOR FURTHER INFORMATION CONTACT: Dr. Lisa Rotterman (907-271-1692), lisa[email protected] . SUPPLEMENTARY INFORMATION: Background On June 29, 2010, NMFS published a... lion (75 FR 37385). NMFS inadvertently gave incorrect e-mail and fax information. The correct email is...
Quantum corrections for spinning particles in de Sitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu
We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalarmore » Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.« less
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.
Calculation of background effects on the VESUVIO eV neutron spectrometer
NASA Astrophysics Data System (ADS)
Mayers, J.
2011-01-01
The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given.
Simple automatic strategy for background drift correction in chromatographic data analysis.
Fu, Hai-Yan; Li, He-Dong; Yu, Yong-Jie; Wang, Bing; Lu, Peng; Cui, Hua-Peng; Liu, Ping-Ping; She, Yuan-Bin
2016-06-03
Chromatographic background drift correction, which influences peak detection and time shift alignment results, is a critical stage in chromatographic data analysis. In this study, an automatic background drift correction methodology was developed. Local minimum values in a chromatogram were initially detected and organized as a new baseline vector. Iterative optimization was then employed to recognize outliers, which belong to the chromatographic peaks, in this vector, and update the outliers in the baseline until convergence. The optimized baseline vector was finally expanded into the original chromatogram, and linear interpolation was employed to estimate background drift in the chromatogram. The principle underlying the proposed method was confirmed using a complex gas chromatographic dataset. Finally, the proposed approach was applied to eliminate background drift in liquid chromatography quadrupole time-of-flight samples used in the metabolic study of Escherichia coli samples. The proposed method was comparable with three classical techniques: morphological weighted penalized least squares, moving window minimum value strategy and background drift correction by orthogonal subspace projection. The proposed method allows almost automatic implementation of background drift correction, which is convenient for practical use. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abanin, D. A.; Department of Physics, Princeton University, Princeton, New Jersey 08544; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
Quantum Hall states that result from interaction induced lifting of the eightfold degeneracy of the zeroth Landau level in bilayer graphene are considered. We show that at even filling factors electric charge is injected into the system in the form of charge 2e Skyrmions. This is a rare example of binding of charges in a system with purely repulsive interactions. We calculate the Skyrmion energy and size as a function of the effective Zeeman interaction and discuss the signatures of the charge 2e Skyrmions in the scanning probe experiments.
Magnetic Johnson Noise Constraints on Electron Electric Dipole Moment Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, C.
2004-11-18
Magnetic fields from statistical fluctuations in currents in conducting materials broaden atomic linewidths by the Zeeman effect. The constraints so imposed on the design of experiments to measure the electric dipole moment of the electron are analyzed. Contrary to the predictions of Lamoreaux [S.K. Lamoreaux, Phys. Rev. A60, 1717(1999)], the standard material for high-permeability magnetic shields proves to be as significant a source of broadening as an ordinary metal. A scheme that would replace this standard material with ferrite is proposed.
CLASP2: High-Precision Spectro-Polarimetery in Mg II h & k
NASA Technical Reports Server (NTRS)
Ishikawa, R.; McKenzie, D.; Trujillo Bueno, J.; Auchere, F.; Rachmeler, L.; Okamoto, T. J.; Kano, R.; Song, D.; Kubo, M.; Narukage, N.;
2017-01-01
The international team is promoting the CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket experiment, which is the re-flight of CLASP (2015). In this second flight, we will refit the existing CLASP instrument to measure all Stokes parameters in Mg II h k lines, and aim at inferring the magnetic field information in the upper chromosphere combining the Hanle and Zeeman effects. CLASP2 project was approved by NASA in December 2016, and is now scheduled to fly in 2019.
Rotational strain in Weyl semimetals: A continuum approach
NASA Astrophysics Data System (ADS)
Arjona, Vicente; Vozmediano, María A. H.
2018-05-01
We use a symmetry approach to derive the coupling of lattice deformations to electronic excitations in three-dimensional Dirac and Weyl semimetals in the continuum low-energy model. We focus on the effects of rotational strain and show that it can drive transitions from Dirac to Weyl semimetals, gives rise to elastic gauge fields, tilts the cones, and generates pseudo-Zeeman couplings. It also can generate a deformation potential in volume-preserving deformations. The associated pseudoelectric field contributes to the chiral anomaly.
NASA Astrophysics Data System (ADS)
Yao, Rutao; Ma, Tianyu; Shao, Yiping
2008-08-01
This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.
Resonant spin Hall effect in two dimensional electron gas
NASA Astrophysics Data System (ADS)
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes
NASA Astrophysics Data System (ADS)
Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro
2017-08-01
The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.
Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods
NASA Astrophysics Data System (ADS)
Sobolewski, Ł. M.; Windholz, L.; Kwela, J.
2017-11-01
Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.
Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Werbowy, S.; Güney, C.; Windholz, L.
2016-08-01
Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.
Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions
NASA Astrophysics Data System (ADS)
Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke
2016-09-01
We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Motoshi; Morita, Shigeru
Emission lines in the visible/UV wavelength ranges are observed with 80 lines of sight which cover an entire poloidal cross section of the plasma in the Large Helical Device. The emitted light is received with optical fibers having 100 {mu}m diameter and is guided into a 1.33 m Czerny-Turner-type spectrometer based on spherical mirrors for collimating and focusing. A charge-coupled device having 13.3x13.3 mm{sup 2} area size is used as the detector and the spectra from all the lines of sight are recorded perpendicularly to the wavelength dispersion. The spectrometer is equipped with optics located in front of the entrancemore » slit to correct the difference between the meridional and sagittal focal points, and thus the astigmatism, which otherwise causes severe cross talk between adjacent optical fiber images on the detector, is corrected. Consequently, simultaneous spectral measurement with 80 lines of sight is realized. The Zeeman splitting of a neutral helium line, {lambda}667.8 nm (2 {sup 1}P-3 {sup 1}D), which is caused by the magnetic field for plasma confinement, is measured with the spectrometer. Though the obtained line profile is in general a superposition of several components on the same line of sight, they can be separated according to their different splitting widths. The two-dimensional poloidal distribution of the helium line intensity is obtained with the help of a tomographic technique.« less
HST/WFC3: Evolution of the UVIS Channel's Charge Transfer Efficiency
NASA Astrophysics Data System (ADS)
Gosmeyer, Catherine; Baggett, Sylvia M.; Anderson, Jay; WFC3 Team
2016-06-01
The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains both an IR and a UVIS channel. After more than six years on orbit, the UVIS channel performance remains stable; however, on-orbit radiation damage has caused the charge transfer efficiency (CTE) of UVIS's two CCDs to degrade. This degradation is seen as vertical charge 'bleeding' from sources during readout and its effect evolves as the CCDs age. The WFC3 team has developed software to perform corrections that push the charge back to the sources, although it cannot recover faint sources that have been bled out entirely. Observers can mitigate this effect in various ways such as by placing sources near the amplifiers, observing bright targets, and by increasing the total background to at least 12 electrons, either by using a broader filter, lengthening exposure time, or post-flashing. We present results from six years of calibration data to re-evaluate the best level of total background for mitigating CTE loss and to re-verify that the pixel-based CTE correction software is performing optimally over various background levels. In addition, we alert observers that CTE-corrected products are now available for retrieval from MAST as part of the CALWF3 v3.3 pipeline upgrade.
Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv
2012-12-11
Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement in terms of bias, but at the cost of a loss in precision. This paper addresses the lack of fit of the usual normal-exponential model by proposing a more flexible parametrisation of the signal distribution as well as the associated background correction. This new model proves to be considerably more accurate for Illumina microarrays, but the improvement in terms of modeling does not lead to a higher sensitivity in differential analysis. Nevertheless, this realistic modeling makes way for future investigations, in particular to examine the characteristics of pre-processing strategies.
Fluorescence branching ratios and magnetic tuning of the visible spectrum of SrOH
NASA Astrophysics Data System (ADS)
Nguyen, Duc-Trung; Steimle, Timothy C.; Kozyryev, Ivan; Huang, Meng; McCoy, Anne B.
2018-05-01
The magnetic tuning of the low rotational levels in the X ˜ 2Σ+ (0,0,0), A ˜ 2Πr (0,0,0), and B ˜ 2Σ+ (0,0,0) electronic states of strontium hydroxide, SrOH, have been experimentally investigated using high resolution optical field-free and Zeeman spectroscopy of a cold molecular beam sample. The observed Zeeman shifts and splittings are successfully modeled using a traditional effective Hamiltonian approach to account for the interaction between the A ˜ 2Πr and B ˜ 2Σ+ states. The determined magnetic g-factors for the X ˜ 2Σ+ , A ˜ 2Πr , and B ˜ 2Σ+ states are compared to those predicted by perturbation theory. The dispersed fluorescence resulting from laser excitation of rotationally resolved branch features of the 000 B ˜ 2Σ+ ← X ˜ 2Σ+ , 000 A ˜ 2Π3/2 ← X ˜ 2Σ+ and 000 A ˜ 2Π1/2 ← X ˜ 2Σ+ transitions have been recorded and analyzed. The measured fluorescence branching ratios are compared with Franck-Condon calculations. The required bending motion wave functions are derived using a discrete variable representation (DVR) method. Implications for laser slowing and magneto-optical trapping experiments for SrOH are described.
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940
NASA Astrophysics Data System (ADS)
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the topologically trivial phase. Measuring such correlations is the clearest and most straightforward test of topological MZMs in SM-SC heterostructures that can be done in a currently accessible experimental setup.
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Youssef, Joseph El; Engle, Julia M.; Massoud, Ryan G.; Ward, W. Kenneth
2010-01-01
Abstract Background A cause of suboptimal accuracy in amperometric glucose sensors is the presence of a background current (current produced in the absence of glucose) that is not accounted for. We hypothesized that a mathematical correction for the estimated background current of a commercially available sensor would lead to greater accuracy compared to a situation in which we assumed the background current to be zero. We also tested whether increasing the frequency of sensor calibration would improve sensor accuracy. Methods This report includes analysis of 20 sensor datasets from seven human subjects with type 1 diabetes. Data were divided into a training set for algorithm development and a validation set on which the algorithm was tested. A range of potential background currents was tested. Results Use of the background current correction of 4 nA led to a substantial improvement in accuracy (improvement of absolute relative difference or absolute difference of 3.5–5.5 units). An increase in calibration frequency led to a modest accuracy improvement, with an optimum at every 4 h. Conclusions Compared to no correction, a correction for the estimated background current of a commercially available glucose sensor led to greater accuracy and better detection of hypoglycemia and hyperglycemia. The accuracy-optimizing scheme presented here can be implemented in real time. PMID:20879968
Electrovacuum solutions in nonlocal gravity
NASA Astrophysics Data System (ADS)
Fernandes, Karan; Mitra, Arpita
2018-05-01
We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the Einstein-Hilbert action in addition to a nonlocal R □-2R term associated with a mass scale m . We demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the first-order corrections and demonstrate that the higher order corrections are real and perturbative about the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects on curved backgrounds with horizons.
The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca
2017-09-01
The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.
The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.
Grainger, William F; North, Chris E; Ade, Peter A R
2011-06-01
We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics
Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging
NASA Astrophysics Data System (ADS)
Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.
The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.
Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krainov, V. P., E-mail: vpkrainov@mail.ru
2012-07-15
We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeemanmore » splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.« less
Strain manipulation of Majorana fermions in graphene armchair nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing
2018-01-01
Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.
Production and characterization of a dual species magneto-optical trap of cesium and ytterbium.
Kemp, S L; Butler, K L; Freytag, R; Hopkins, S A; Hinds, E A; Tarbutt, M R; Cornish, S L
2016-02-01
We describe an apparatus designed to trap and cool a Yb and Cs mixture. The apparatus consists of a dual species effusive oven source, dual species Zeeman slower, magneto-optical traps in a single ultra-high vacuum science chamber, and the associated laser systems. The dual species Zeeman slower is used to load sequentially the two species into their respective traps. Its design is flexible and may be adapted for other experiments with different mixtures of atomic species. The apparatus provides excellent optical access and can apply large magnetic bias fields to the trapped atoms. The apparatus regularly produces 10(8) Cs atoms at 13.3 μK in an optical molasses, and 10(9) (174)Y b atoms cooled to 22 μK in a narrowband magneto-optical trap.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Bsatee, M.; Jadwisienczak, W. M.
2016-08-01
Systematic investigations of Ga1- x Mn x As grown on InP with different Mn concentrations have been conducted using magnetic circular dichroism (MCD) in reflection mode. The MCD spectrum of Ga0.97Mn0.03As/InP was decomposed into two dispersion curves originating from E 1 and E 1 + Δ1 optical transitions using the energy derivative of a Gaussian function. The Zeeman splitting energy E 1 at the L critical point (0.6 meV) of ferromagnetic Ga0.97Mn0.03As/InP was estimated using a rigid band shift model. Based on the relationship between E 1 and E 0 (Γ critical point) observed in Cd1- x Mn x Te dilute magnetic semiconductor (DMS), the Zeeman splitting energy E 1 (9.6 meV) of ferromagnetic Ga1- x Mn x As/InP was calculated. In addition, it was established that the peaks in the MCD spectra at L critical points shift toward the lower energy side as the Mn concentration is increased, and the observed shift saturates for Mn content of x = 0.001. Furthermore, the measured absorption spectra for Ga1- x Mn x As/InP did not show noticeable peak shifts with increasing Mn content. This suggests that the s, p- d exchange interaction induced in Ga1- x Mn x As/InP has localized nature due to the presence of a Mn rigid sphere of influence.
Electroweak radiative corrections to the top quark decay
NASA Astrophysics Data System (ADS)
Kuruma, Toshiyuki
1993-12-01
The top quark, once produced, should be an important window to the electroweak symmetry breaking sector. We compute electroweak radiative corrections to the decay process t→b+W + in order to extract information on the Higgs sector and to fix the background in searches for a possible new physics contribution. The large Yukawa coupling of the top quark induces a new form factor through vertex corrections and causes discrepancy from the tree-level longitudinal W-boson production fraction, but the effect is of order 1% or less for m H<1 TeV.
Semiclassical theory of Landau levels and magnetic breakdown in topological metals
NASA Astrophysics Data System (ADS)
Alexandradinata, A.; Glazman, Leonid
2018-04-01
The Bohr-Sommerfeld quantization rule lies at the heart of the semiclassical theory of a Bloch electron in a magnetic field. This rule is predictive of Landau levels and de Haas-van Alphen oscillations for conventional metals, as well as for a host of topological metals which have emerged in the recent intercourse between band theory, crystalline symmetries, and topology. The essential ingredients in any quantization rule are connection formulas that match the semiclassical (WKB) wave function across regions of strong quantum fluctuations. Here, we propose (a) a multicomponent WKB wave function that describes transport within degenerate-band subspaces, and (b) the requisite connection formulas for saddle points and type-II Dirac points, where tunneling respectively occurs within the same band, and between distinct bands. (a) and (b) extend previous works by incorporating phase corrections that are subleading in powers of the field; these corrections include the geometric Berry phase, and account for the orbital magnetic moment and the Zeeman coupling. A comprehensive symmetry analysis is performed for such phase corrections occurring in closed orbits, which is applicable to solids in any (magnetic) space group. We have further formulated a graph-theoretic description of semiclassical orbits. This allows us to systematize the construction of quantization rules for a large class of closed orbits (with or without tunneling), as well as to formulate the notion of a topological invariant in semiclassical magnetotransport—as a quantity that is invariant under continuous deformations of the graph. Landau levels in the presence of tunneling are generically quasirandom, i.e., disordered on the scale of nearest-neighbor level spacings but having longer-ranged correlations; we develop a perturbative theory to determine Landau levels in such quasirandom spectra.
Ding, Liang-Hao; Xie, Yang; Park, Seongmi; Xiao, Guanghua; Story, Michael D.
2008-01-01
Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT–PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data. PMID:18450815
Johnston, Roger G.
1988-01-01
Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.
Apparatus and method for detection and characterization of particles using light scattered therefrom
Johnston, R.G.
1987-03-23
Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.
The interpretation of sunspot magnetic field observations
NASA Astrophysics Data System (ADS)
Adam, M. G.
1985-03-01
Magnetic field strengths and directions of the lines of force have been measured over two large sunspots in 1975 and 1976 using Treanor's (cf Adam, 1971, 1975) method. Further refinements in observational technique reduce the effects of instrumental polarization to a small phase change, and the reduction procedure has been made more objective. The new observations confirm the existence of differences between the polarization states of the red and violet Zeeman sigma-components in some regions of the spots. These differences, which are especially associated with light bridges and streamers, are attributed to magnetooptical effects, coupled with Doppler shifts, in extraneous material lying over the spots.
Chiral solitons in spinor polariton rings
NASA Astrophysics Data System (ADS)
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots
NASA Astrophysics Data System (ADS)
Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping
2018-02-01
Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.
Ball, J.W.; Nordstrom, D. Kirk
1994-01-01
Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of the remaining elements, Ba, Be, Ca, Cr, Mg, Mn, Sr, and Zn have roughly equivalent accuracy, precision, and detection limit by ICP and DCP. Cobalt and Ni were determined to be better analyzed by ICP, because of lower detection limits; B, Cu, Mo, and Si were determined to be better analyzed by DCP, because of relative freedom from interferences. The determination oral by DCP was far more sensitive, owing to the use of a more sensitive wavelength, compared with the ICP. However, there is a very serious potential interference from a strong Ca emission line near the 396.15 nanometer DCP wavelength. Thus, there is no clear choice between the plasma techniques tested, for the determination oral. The ICP and DCP detection limits are typically between 0.001 and 0.5 milligrams per liter in acid mine waters. For those metals best analyzed by ICP and/or DCP, but below these limits, GFAAS is the method of choice because of its relatively greater sensitivity and specificity. Six of the elements were not determined by DCP, ICP or Zeeman-corrected GFAAS, and are not discussed in this report. These elements are: Bi, Fe(11), Li, Sb, Se, and TI.
Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system
NASA Astrophysics Data System (ADS)
Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae
2015-05-01
Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.
Long-term magnetic field stability of Vega
NASA Astrophysics Data System (ADS)
Alina, D.; Petit, P.; Lignières, F.; Wade, G. A.; Fares, R.; Aurière, M.; Böhm, T.; Carfantan, H.
2012-05-01
We present new spectropolarimetric observations of the normal A-type star Vega, obtained during the summer of 2010 with NARVAL at Télescope Bernard Lyot (Pic du Midi Observatory). This new time-series is constituted of 615 spectra collected over 6 different nights. We use the Least-Square-Deconvolution technique to compute, from each spectrum, a mean line profile with a signal-to-noise ratio close to 20,000. After averaging all 615 polarized observations, we detect a circularly polarized Zeeman signature consistent in shape and amplitude with the signatures previously reported from our observations of 2008 and 2009. The surface magnetic geometry of the star, reconstructed using the technique of Zeeman-Doppler Imaging, agrees with the maps obtained in 2008 and 2009, showing that most recognizable features of the photospheric field of Vega are only weakly distorted by large-scale surface flows (differential rotation or meridional circulation).
Observations of the 12.3 micron Mg I emission line during a major solar flare
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak
1990-01-01
The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.
NASA Astrophysics Data System (ADS)
Kobayashi, Shinji; Nishimiya, Nobuo; Suzuki, Masao
2017-10-01
The saturated absorption lines of neutral titanium were measured in the region of 9950-14380 cm-1 using a Ti:sapphire ring laser. A facing target sputtering system was used to obtain the gaseous state of a Ti I atom. The Zeeman splitting of 38 transitions was observed under the condition that the electric field component of a linearly polarized laser beam was parallel to the magnetic field. The gJ factors of the odd parity states were determined for 28 states belonging to 3d24s4p and 3d34p using those of the even parity states reported by Stachowska in 1997. The gJ factors of z5P1,2,3 levels were newly determined. gJ of y3F2, y3D2, z3P2, and z5S2 levels were refined.
Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2016-06-01
We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.
Spin polarization transfer by the radical pair mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less
A Zeeman slower for diatomic molecules
NASA Astrophysics Data System (ADS)
Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.
2018-04-01
We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.
The Zeeman splitting of bulk 2H-MoTe2 single crystal in high magnetic field
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhang, Junpei; Ma, Zongwei; Chen, Cheng; Han, Junbo; Chen, Fangchu; Luo, Xuan; Sun, Yuping; Sheng, Zhigao
2017-03-01
A high magnetic field magneto-optical spectrum is utilized to study the A exciton of bulk 2H-MoTe2 single crystal. A clear Zeeman splitting of the A exciton is observed under high magnetic fields up to 41.68 T, and the g-factor (-2.09 ± 0.08) is deduced. Moreover, a high magnetic field enables us to obtain the quadratic diamagnetic shifts of the A exciton (0.486 μeV T-2). Accordingly, the binding energy, reduced mass, and radius of the A exciton were obtained by using both two and three dimensional models. Compared with other transition metal dichalcogenides (TMDs), the A exciton of bulk 2H-MoTe2 has a relatively small binding energy and larger exciton radius, which provide fundamental parameters for comprehensive understanding of excitons in TMDs as well as their future applications.
Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A
2012-05-11
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis
2015-08-05
A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. Copyright © 2015 Elsevier B.V. All rights reserved.
Ozturk, Perihan; Belge Kurutas, Ergul; Ataseven, Arzu
2013-10-01
Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Patients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se-CAT, Se-GPx, and Cu-MDA parameters, but negative correlations between Se-Cu, Se-MDA, Cu-CAT, Cu-SOD1 and Cu-GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.
Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction
Weickert, Franziska; Civale, Leonardo; Maiorov, Boris; ...
2017-06-20
Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less
Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weickert, Franziska; Civale, Leonardo; Maiorov, Boris
Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less
Inversion of Zeeman polarization for solar magnetic field diagnostics
NASA Astrophysics Data System (ADS)
Derouich, M.
2017-05-01
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed "hare and hound" approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D1 line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe Iλ 6302.5 Å observed at IRSOL in Locarno.
THE KEY ROLE OF SOLAR DYNAMICS IN THE CHROMOSPHERIC HANLE POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.ch
The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzlemore » while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.« less
Franzosi, Diogo Buarque; Vryonidou, Eleni; Zhang, Cen
2017-10-13
Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust predictionmore » of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can be used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzosi, Diogo Buarque; Vryonidou, Eleni; Zhang, Cen
Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust predictionmore » of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can be used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.« less
Sea Surface Signature of Tropical Cyclones Using Microwave Remote Sensing
2013-01-01
due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those...and corrections for sun glint, galactic and cosmic background radiation, and Stokes effects of the ionosphere. The accuracy of a given retrieval...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Sea surface signature of tropical cyclones using microwave remote sensing Bumjun Kil
Electroweak Corrections to pp→μ^{+}μ^{-}e^{+}e^{-}+X at the LHC: A Higgs Boson Background Study.
Biedermann, B; Denner, A; Dittmaier, S; Hofer, L; Jäger, B
2016-04-22
The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ^{+}μ^{-}e^{+}e^{-}, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W- or Z-boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular, a sign change between the regions of resonant Z-pair production and the Higgs signal.
Observation-Corrected Precipitation Estimates in GEOS-5
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Liu, Qing
2014-01-01
Several GEOS-5 applications, including the GEOS-5 seasonal forecasting system and the MERRA-Land data product, rely on global precipitation data that have been corrected with satellite and or gauge-based precipitation observations. This document describes the methodology used to generate the corrected precipitation estimates and their use in GEOS-5 applications. The corrected precipitation estimates are derived by disaggregating publicly available, observationally based, global precipitation products from daily or pentad totals to hourly accumulations using background precipitation estimates from the GEOS-5 atmospheric data assimilation system. Depending on the specific combination of the observational precipitation product and the GEOS-5 background estimates, the observational product may also be downscaled in space. The resulting corrected precipitation data product is at the finer temporal and spatial resolution of the GEOS-5 background and matches the observed precipitation at the coarser scale of the observational product, separately for each day (or pentad) and each grid cell.
Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S
2011-11-07
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
Magneto-optical response of InAs lens-shaped self-assembled quantum dots
NASA Technical Reports Server (NTRS)
Klimeck, G.; Oyafuso, F.; Lee, S.; Allmen, P. von
2003-01-01
In this work, we demonstrate a realistic modeling of the electronic structure for InAs self-assembled quantum dots and investigate the magneto-optical response, i.e., Zeeman splitting and transition rates between electron and hole levels.
Experimental observation of carrier-envelope-phase effects by multicycle pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj K.; Scully, Marlan O.; Mechanical and Aerospace Engineering and the Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544
2011-03-15
We present an experimental and theoretical study of carrier-envelope-phase (CEP) effects on the population transfer between two bound atomic states interacting with pulses consisting of many cycles. Using intense radio-frequency pulse with Rabi frequency of the order of the atomic transition frequency, we investigate the influence of the CEP on the control of phase-dependent multiphoton transitions between the Zeeman sublevels of the ground state of {sup 87}Rb. Our scheme has no limitation on the duration of the pulses. Extending the CEP control to longer pulses creates interesting possibilities to generate pulses with accuracy that is better than the period ofmore » optical oscillations.« less
Yamaguchi, Shotaro; Wagatsuma, Kei; Miwa, Kenta; Ishii, Kenji; Inoue, Kazumasa; Fukushi, Masahiro
2018-03-01
The Bayesian penalized-likelihood reconstruction algorithm (BPL), Q.Clear, uses relative difference penalty as a regularization function to control image noise and the degree of edge-preservation in PET images. The present study aimed to determine the effects of suppression on edge artifacts due to point-spread-function (PSF) correction using a Q.Clear. Spheres of a cylindrical phantom contained a background of 5.3 kBq/mL of [ 18 F]FDG and sphere-to-background ratios (SBR) of 16, 8, 4 and 2. The background also contained water and spheres containing 21.2 kBq/mL of [ 18 F]FDG as non-background. All data were acquired using a Discovery PET/CT 710 and were reconstructed using three-dimensional ordered-subset expectation maximization with time-of-flight (TOF) and PSF correction (3D-OSEM), and Q.Clear with TOF (BPL). We investigated β-values of 200-800 using BPL. The PET images were analyzed using visual assessment and profile curves, edge variability and contrast recovery coefficients were measured. The 38- and 27-mm spheres were surrounded by higher radioactivity concentration when reconstructed with 3D-OSEM as opposed to BPL, which suppressed edge artifacts. Images of 10-mm spheres had sharper overshoot at high SBR and non-background when reconstructed with BPL. Although contrast recovery coefficients of 10-mm spheres in BPL decreased as a function of increasing β, higher penalty parameter decreased the overshoot. BPL is a feasible method for the suppression of edge artifacts of PSF correction, although this depends on SBR and sphere size. Overshoot associated with BPL caused overestimation in small spheres at high SBR. Higher penalty parameter in BPL can suppress overshoot more effectively. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
High-energy electrons from the muon decay in orbit: Radiative corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szafron, Robert; Czarnecki, Andrzej
2015-12-07
We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.
Lieb polariton topological insulators
NASA Astrophysics Data System (ADS)
Li, Chunyan; Ye, Fangwei; Chen, Xianfeng; Kartashov, Yaroslav V.; Ferrando, Albert; Torner, Lluis; Skryabin, Dmitry V.
2018-02-01
We predict that the interplay between the spin-orbit coupling, stemming from the transverse electric-transverse magnetic energy splitting, and the Zeeman effect in semiconductor microcavities supporting exciton-polariton quasiparticles, results in the appearance of unidirectional linear topological edge states when the top microcavity mirror is patterned to form a truncated dislocated Lieb lattice of cylindrical pillars. Periodic nonlinear edge states are found to emerge from the linear ones. They are strongly localized across the interface and they are remarkably robust in comparison to their counterparts in honeycomb lattices. Such robustness makes possible the existence of nested unidirectional dark solitons that move steadily along the lattice edge.
The circular polarization inversion in δ〈Mn〉/InGaAs/GaAs light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorokhin, M. V., E-mail: dorokhin@nifti.unn.ru; Danilov, Yu. A.; Zvonkov, B. N.
We investigated light-emitting diodes consisting of an InGaAs/GaAs quantum well adjacent to a ferromagnetic δ〈Mn〉-layer. The magnetic field-dependent circular polarization obtained from both photo- and electroluminescence shows an unusual sign inversion depending on the growth parameters that can be explained by an interplay of the Zeeman splitting and Mn-hole interaction effects. Our results can help to understand the origin and control of the spin polarization on Mn doped GaAs structures, a fundamental step for the development of Mn-based spintronic devices.
Magnetoacoustic Spectroscopy in Superfluid He3-B
NASA Astrophysics Data System (ADS)
Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.
2008-01-01
We have used the acoustic Faraday effect in superfluid He3 to perform high resolution spectroscopy of an excited state of the superfluid condensate, called the imaginary squashing mode. With acoustic cavity interferometry we measure the rotation of the plane of polarization of a transverse sound wave propagating in the direction of the magnetic field from which we determine the Zeeman energy of the mode. We interpret the Landé g factor, combined with the zero-field energies of this excited state, using the theory of Sauls and Serene, to calculate the strength of f-wave interactions in He3.
Huang, Kuo-Chen; Chiu, Tsai-Lan
2007-04-01
This study investigated the effects of color combinations for the figure/icon background, icon shape, and line width of the icon border on visual search performance on a liquid crystal display screen. In a circular stimulus array, subjects had to search for a target item which had a diameter of 20 cm and included one target and 19 distractors. Analysis showed that the icon shape significantly affected search performance. The correct response time was significantly shorter for circular icons than for triangular icons, for icon borders with a line width of 3 pixels than for 1 or 2 pixels, and for 2 pixels than for 1 pixel. The color combination also significantly affected the visual search performance: white/yellow, white/blue, black-red, and black/ yellow color combinations for the figure/icon background had shorter correct response times compared to yellow/blue, red/green, yellow/green, and blue/red. However, no effects were found for the line width of the icon border or the icon shape on the error rate. Results have implications for graphics-based design of interfaces, such as for mobile phones, Web sites, and PDAs, as well as complex industrial processes.
Measuring the fine structure constant with Bragg diffraction and Bloch oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger
2017-04-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
NASA Astrophysics Data System (ADS)
Johnson, Jennifer E.; Rella, Chris W.
2017-08-01
Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.
Thermal corrections to the Casimir energy in a general weak gravitational field
NASA Astrophysics Data System (ADS)
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography
Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.
2007-01-01
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals were estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our observations. PMID:17822018
NASA Astrophysics Data System (ADS)
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
Gilmore, Adam Matthew
2014-01-01
Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.
Item and source memory for emotional associates is mediated by different retrieval processes.
Ventura-Bort, Carlos; Dolcos, Florin; Wendt, Julia; Wirkner, Janine; Hamm, Alfons O; Weymar, Mathias
2017-12-12
Recent event-related potential (ERP) data showed that neutral objects encoded in emotional background pictures were better remembered than objects encoded in neutral contexts, when recognition memory was tested one week later. In the present study, we investigated whether this long-term memory advantage for items is also associated with correct memory for contextual source details. Furthermore, we were interested in the possibly dissociable contribution of familiarity and recollection processes (using a Remember/Know procedure). The results revealed that item memory performance was mainly driven by the subjective experience of familiarity, irrespective of whether the objects were previously encoded in emotional or neutral contexts. Correct source memory for the associated background picture, however, was driven by recollection and enhanced when the content was emotional. In ERPs, correctly recognized old objects evoked frontal ERP Old/New effects (300-500ms), irrespective of context category. As in our previous study (Ventura-Bort et al., 2016b), retrieval for objects from emotional contexts was associated with larger parietal Old/New differences (600-800ms), indicating stronger involvement of recollection. Thus, the results suggest a stronger contribution of recollection-based retrieval to item and contextual background source memory for neutral information associated with an emotional event. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interstellar cyanogen and the temperature of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel
1993-01-01
We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.
Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He2 + and Metastable He2
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric
2015-09-01
Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He2 molecules in the metastable a 3Σu+ state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n =200 and assign their fine structure. The ionization energy of metastable He2 and the lowest rotational interval of the X+ 2Σu+ (ν+=0 ) ground state of 4He2+ have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of 4He2+ [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He2+ .
McInnes, E F; Scudamore, C L
2014-08-17
Pathological evaluation of lesions caused directly by xenobiotic treatment must always take into account the recognition of background (incidental) findings. Background lesions can be congenital or hereditary, histological variations, changes related to trauma or normal aging and physiologic or hormonal changes. This review focuses on the importance and correct approach to recording of background changes and includes discussion on sources of variability in background changes, the correct use of terminology, the concept of thresholds, historical control data, diagnostic drift, blind reading of slides, scoring and artifacts. The review is illustrated with background lesions in Sprague Dawley and Wistar rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Measurement of the Carbon Isotopic Composition of Methane Using Helicoidal Laser Eigenstates
NASA Astrophysics Data System (ADS)
Jacob, D.; Le Floch, A.; Bretenaker, F.; Guenot, P.
1996-06-01
The spatially generalized Jones matrix formalism is used to design a laser cavity to make intracavity measurements of the carbon isotopic composition of methane. the method is based on a double optical lever effect for helicoidally polarized eigenstates, permitting to measure successively the ^{12}CH_4 and ^{13}CH_4 concentrations. To choose the probed isotope, one simply tunes the frequency of the laser by Zeeman effect. The experiment exhibits a good agreement with the predictions and permits to measure the ^{13}CH4/^{12}CH_4 composition ratio of methane with an uncertainty of the order of ± 0.07% for a sample containing only 6× 10^{-9} mole of methane. On utilise le formalisme des matrices de Jones généralisées spatialement pour concevoir une cavité laser permettant la mesure intra-cavité de la composition isotopique du carbone présent dans le méthane. La méthode est fondée sur une double application de l'effet de levier optique pour les états propres hélicoïdaux, permettant de mesurer successivement les concentrations de ^{12}CH_4 et de ^{13}CH_4. Pour passer d'un isotope à l'autre, on ajuste simplement la fréquence du laser par effet Zeeman. L'expérience est en bon accord avec les prédictions et permet d'effectuer la mesure du rapport isotopique ^{13}CH4/^{12}CH_4 avec une fourchette d'incertitude de ± 0,07% pour des échantillons de gaz ne contenant que 6× 10^{-9} mole de méthane.
Quantum corrections for the cubic Galileon in the covariant language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less
Conservation of ζ with radiative corrections from heavy field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takahiro; Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502; Urakawa, Yuko
2016-06-08
In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time.more » Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.« less
A Statistical Comparison between Photospheric Vector Magnetograms Obtained by SDO/HMI and Hinode/SP
NASA Astrophysics Data System (ADS)
Sainz Dalda, Alberto
2017-12-01
Since 2010 May 1, we have been able to study (almost) continuously the vector magnetic field in the Sun, thanks to two space-based observatories: the Solar Dynamics Observatory (SDO) and Hinode. Both are equipped with instruments able to measure the Stokes parameters of Zeeman-induced polarization of photospheric line radiation. But the observation modes; the spectral lines; the spatial, spectral, and temporal sampling; and even the inversion codes used to recover magnetic and thermodynamic information from the Stokes profiles are different. We compare the vector magnetic fields derived from observations with the HMI instrument on board SDO with those observed by the SP instrument on Hinode. We have obtained relationships between components of magnetic vectors in the umbra, penumbra, and plage observed in 14 maps of NOAA Active Region 11084. Importantly, we have transformed SP data into observables comparable to those of HMI, to explore possible influences of the different modes of operation of the two instruments and the inversion schemes used to infer the magnetic fields. The assumed filling factor (fraction of each pixel containing a Zeeman signature) produces the most significant differences in derived magnetic properties, especially in the plage. The spectral and angular samplings have the next-largest effects. We suggest to treat the disambiguation in the same way in the data provided by HMI and SP. That would make the relationship between the vector magnetic field recovered from these data stronger, which would favor the simultaneous or complementary use of both instruments.
Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S
2014-11-17
We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system.
Field-induced superconducting phase of FeSe in the BCS-BEC cross-over
Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji
2014-01-01
Fermi systems in the cross-over regime between weakly coupled Bardeen–Cooper–Schrieffer (BCS) and strongly coupled Bose–Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF∼1(∼0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime. PMID:25378706
Molecular Beam Optical Zeeman Spectroscopy of Vanadium Monoxide, VO
NASA Astrophysics Data System (ADS)
Nguyen, Trung; Zhang, Ruohan; Steimle, Timothy
2016-06-01
Like almost all astronomical studies, exoplanet investigations are observational endeavors that rely primarily on remote spectroscopic sensing to infer the physical properties of planets. Most exoplanet related information is inferred from to temporal variation of luminosity of the parent star. An effective method of monitoring this variation is via Magnetic Doppler Imaging (MDI), which uses optical polarimetry of paramagnetic molecules or atoms. One promising paramagnetic stellar absorption is the near infrared spectrum of VO. With this in mind, we have begun a project to record and analyze the field-free and Zeeman spectrum of the band. A cold (approx. 20 K) beam of VO was probed with a single frequency laser and detected using laser induced fluorescence. The determined spectral parameters will be discussed and compared to those extracted from the analysis of a hot spectrum. Supported by the National Science Foundation under the Grant No. CHE-1265885. O. Kochukhov, N. Rusomarov, J. A. Valenti, H. C. Stempels, F. Snik, M. Rodenhuis, N. Piskunov, V. Makaganiuk, C. U. Keller and C. M. Johns-Krull, Astron. Astrophys. 574 (Pt. 2), A79/71-A79/12 (2015). S. V. Berdyugina, Astron. Soc. Pac. Conf. Ser. 437 (Solar Polarization 6), 219-235 (2011). S. V. Berdyugina, P. A. Braun, D. M. Fluri and S. K. Solanki, Astron. Astrophys. 444 (3), 947-960 (2005). A. S. C. Cheung, P. G. Hajigeorgiou, G. Huang, S. Z. Huang and A. J. Merer, J. Mol. Spectrosc. 163 (2), 443-458 (1994)
Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.
2018-06-01
Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.
Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.
Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo
2017-03-03
Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.
Comment on "Electron spin resonance studies in β-FeSi2 crystals" [J. Appl. Phys. 80, 1678 (1996)
NASA Astrophysics Data System (ADS)
Irmscher, K.; Gehlhoff, W.; Lange, H.
1997-06-01
In a recent article [J. Appl. Phys. 80, 1678 (1996)] Aksenov et al. reported on electron paramagnetic resonance (EPR) studies in β-FeSi2 crystals grown by chemical vapor transport. They did not perform a rigorous measurement of the angular variation of the EPR line positions. Consequently, there has been a drastic loss of information and most of their conclusions turn out to be erroneous. It is shown that the anisotropic signals (Ai,Bi) do not arise from spin triplet states but from centers with S=1/2 and their origins are not Ni2+ ions but Ni+ (Ai) and Cr- (Bi) ions substituting for Fe on one of its two inequivalent lattice sites. The analysis of the line structure of the isotropic signal (C) is incorrect and hence, the structure cannot be attributed to a ligand hyperfine interaction with four iron atoms. Finally, the determination of an acceptor activation energy from the temperature dependence of the C signal is not justified since no correction for the EPR intensity dependence due to the thermal population difference of the Zeeman levels was included.
NASA Astrophysics Data System (ADS)
Bezur, L.; Marshall, J.; Ottaway, J. M.
A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.
Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A
2012-10-01
Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.
CLASP2: The Chromospheric LAyer Spectro-Polarimeter
NASA Astrophysics Data System (ADS)
Rachmeler, Laurel; E McKenzie, David; Ishikawa, Ryohko; Trujillo Bueno, Javier; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; Bethge, Christian; Kano, Ryouhei; Kubo, Masahito; Song, Donguk; Narukage, Noriyuki; Ishikawa, Shin-nosuke; De Pontieu, Bart; Carlsson, Mats; Yoshida, Masaki; Belluzzi, Luca; Stepan, Jiri; del Pino Alemná, Tanausú; Ballester, Ernest Alsina; Asensio Ramos, Andres
2017-08-01
We present the instrument, science case, and timeline of the CLASP2 sounding rocket mission. The successful CLASP (Chromospheric Lyman-Alpha Spectro-Polarimeter) sounding rocket flight in 2015 resulted in the first-ever linear polarization measurements of solar hydrogen Lyman-alpha line, which is sensitive to the Hanle effect and can be used to constrain the magnetic field and geometric complexity of the upper chromosphere. Ly-alpha is one of several upper chromospheric lines that contain magnetic information. In the spring of 2019, we will re-fly the modified CLASP telescope to measure the full Stokes profile of Mg II h & k near 280 nm. This set of lines is sensitive to the upper chromospheric magnetic field via both the Hanle and the Zeeman effects.
NASA Astrophysics Data System (ADS)
Gengler, Jamie J.; Steimle, Timothy C.; Harrison, Jeremy J.; Brown, John M.
2007-02-01
High-resolution (±0.003 cm -1), laser induced fluorescence (LIF) spectra of a supersonic molecular beam sample of manganese monohydride, MnH, have been recorded in the 17500-17800 cm -1 region of the (0, 0) band of the A7Π- X7Σ + system. The low- N branch features were modeled successfully by inclusion of the magnetic hyperfine mixings of spin components within a given low- N rotational level using a traditional 'effective' Hamiltonian approach. An improved set of spectroscopic constants has been extracted and compared with those from previous analyses. The optimum optical features for future optical Stark and Zeeman measurements are identified.
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Magnetic Biasing of a Ferroelectric Hysteresis Loop in a Multiferroic Orthoferrite
NASA Astrophysics Data System (ADS)
Tokunaga, Y.; Taguchi, Y.; Arima, T.; Tokura, Y.
2014-01-01
In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign.
Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms
NASA Astrophysics Data System (ADS)
Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2018-02-01
We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.
NASA Astrophysics Data System (ADS)
Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong
2018-06-01
An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.
Effect of clothing weight on body weight
USDA-ARS?s Scientific Manuscript database
Background: In clinical settings, it is common to measure weight of clothed patients and estimate a correction for the weight of clothing, but we can find no papers in the medical literature regarding the variability in clothing weight with weather, season, and gender. Methods: Fifty adults (35 wom...
Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements
NASA Astrophysics Data System (ADS)
Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.
2017-04-01
High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.
Termination of the spin-resolved integer quantum Hall effect
NASA Astrophysics Data System (ADS)
Wong, L. W.; Jiang, H. W.; Palm, E.; Schaff, W. J.
1997-03-01
We report a magnetotransport study of the termination of the spin-resolved integer quantum Hall effect by controlled disorder in a gated GaAs/AlxGa1-xAs heterostructure. We have found that, for a given Nth Landau level, the difference in filling factors of a pair of spin-split resistivity peaks δνN=\\|νN↑-νN↓\\| changes rapidly from one to zero near a critical density nc. Scaling analysis shows that δνN collapses onto a single curve independent of N when plotted against the parameter (n-nc)/nc for five Landau levels. The effect of increasing the Zeeman energy is also examined by tilting the direction of magnetic field relative to the plane of the two-dimensional electron gas. Our experiment suggests the termination of the spin-resolved quantum Hall effect is a phase transition.
Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard
2016-05-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
NASA Astrophysics Data System (ADS)
Dmytruk, Olesia; Klinovaja, Jelena
2018-04-01
We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
NASA Astrophysics Data System (ADS)
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Raval, P. Y.; Dulera, S. V.
Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.
Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+
NASA Astrophysics Data System (ADS)
Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.
2018-03-01
Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.
Engineering topological superconductors using surface atomic-layer/molecule hybrid materials
NASA Astrophysics Data System (ADS)
Uchihashi, Takashi
2015-08-01
Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.
Erny, Guillaume L; Acunha, Tanize; Simó, Carolina; Cifuentes, Alejandro; Alves, Arminda
2017-04-07
Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Scheidegger, Simon; Merkt, Frederic
2015-06-01
Having only three electrons, He_2^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculation of rovibrational energies in He_2^+ do not include relativistic or QED corrections but claim an accuracy of about 120 MHz The available experimental data on He_2^+, though accurate to 300 MHz, are not precise enough to rigorously test these calculations or reveal the magnitude of the relativistic and QED corrections. We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He_2^+ ion. To this end we have produced samples of helium molecules in the a ^3σ_u^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser systems is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2^+ with unprecedented accuracy, to determine the size of the relativistic and QED corrections by comparison with the results of Ref.~a and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa~et al. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).
Peculiar velocity measurement in a clumpy universe
NASA Astrophysics Data System (ADS)
Habibi, Farhang; Baghram, Shant; Tavasoli, Saeed
Aims: In this work, we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0.5 < z < 2), deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task, we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then, we use the SNe Ia sample of Union 2, to investigate the relativistic effects, we consider. Results: We show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here, we quantify this effect. We show that at low redshifts the lensing effect is negligible compare to the effect of peculiar velocity. From the observational point of view, we show that the uncertainties on luminosity of the present SNe Ia data prevent us from precise measuring the peculiar velocities even at low redshifts (z < 0.2).
Correction of Microplate Data from High-Throughput Screening.
Wang, Yuhong; Huang, Ruili
2016-01-01
High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.
[Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].
Liu, Hui-jun; Ying, Yi-bin
2015-11-01
A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.
NASA Technical Reports Server (NTRS)
Nikityuk, B. A.; Kogan, B. I.; Yermolyev, V. A.; Tindare, L. V.
1980-01-01
Tests were conducted on 100 sexually immature inbred August and Wistar male rats in order to determine the effects hypokinesia, physical load and phenamine on the liver. Weight and linear dimension fell in hypokinesia; total serum protein lowered and aldolase and cholesterol and beta-lipoprotein levels rose. Blood sugar content rose and liver glycogen fell. Interlinear differences of these indices are found. Rehabilitated physical loading against hypokinesia background diminished and at times completely prevented its negative effect. Extent of correction depended on animal species. Evidence of genotypical conditionality of organism adaptation to physical load in hypokinesia was found.
Bryan, Sean A; Montroy, Thomas E; Ruhl, John E
2010-11-10
We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.
Correlates of Condom Use among Male High School Students in Nairobi, Kenya
ERIC Educational Resources Information Center
Kabiru, Caroline W.; Orpinas, Pamela
2009-01-01
Background: Correct and consistent condom use is an effective strategy to reduce the risk of sexually transmitted infections (STIs). This study examines sociodemographic, behavioral, and psychosocial characteristics of 3 groups of adolescent males: consistent, sporadic, and non-condom users. Methods: The sample consisted of 931 sexually…
Background: Simulation studies have previously demonstrated that time-series analyses using smoothing splines correctly model null health-air pollution associations. Methods: We repeatedly simulated season, meteorology and air quality for the metropolitan area of Atlanta from cyc...
The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings
Sun, Peng; Liao, Yuhe; Lin, Jin
2017-01-01
The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock Pulse Index (SPI), is proposed in this paper. It integrates the mutual advantages of both the parameters mentioned above and can help effectively identify fault-related impulse components under conditions of interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the transient information of interest contained in the filtered signal can be highlighted through demodulation with the Teager Energy Operator (TEO). Fault-related impulse components can therefore be extracted accurately. Simulations show the SPI can correctly indicate the fault impulses under the influence of strong background noises, other harmonic components and aperiodic impulse and experiment analyses verify the effectiveness and correctness of the proposed method. PMID:28282883
Holographic corrections to the Veneziano amplitude
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin
2017-08-01
We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.
Elementary review of electron microprobe techniques and correction requirements
NASA Technical Reports Server (NTRS)
Hart, R. K.
1968-01-01
Report contains requirements for correction of instrumented data on the chemical composition of a specimen, obtained by electron microprobe analysis. A condensed review of electron microprobe techniques is presented, including background material for obtaining X ray intensity data corrections and absorption, atomic number, and fluorescence corrections.
A Comparative Study of Gold Bonding via Electronic Spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Ruohan
The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis. First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, mu el. The spectroscopic parameters have been precisely determined for the [17.7]1, [17.8]0+ and X1Sigma + states of AuF, and the [17.07]1, [17.20]0+ and X1Sigma+ states of AuCl. The mu el have been determined for ground and excited states of AuF and AuCl. The results from the hyperfine analysis and Stark measurement support the assignments that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3pi state. Similarly, the analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3pi state of AuCl. Second, my study focused on AuO and AuS because the bonding between gold and sulfur/oxygen is a key component to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. The high-resolution spectra were record and analyzed to obtain the geometric and electronic structural data for the ground and excited states. The electric dipole moment, muel , and the magnetic dipole moment, mum, has been the precisely measured by applying external static electric and magnetic fields. muel and mum are used to give insight into the unusual complex bonding in these molecules. In addition to direct studies on the gold-containing molecules, other studies of related molecules are included here as well. These works contain the pure rotation measurement of PtC, the hyperfine and Stark spectroscopic studies of PtF, and the Stark and Zeeman spectroscopic studies of MgH and MgD. Finally, a perspective discussion and conclusion will summarize the results of AuF, AuCl, AuO, and AuS from this work (bond lengths, dipole moment, etc.). The highly quantitative information derived from this work is the foundation of a chemical description of matter and essential for kinetic energy manipulation via Stark and Zeeman interactions. This data set also establishes a synergism with computation chemists who are developing new methodologies for treating relativistic effects and electron correlation.
Radiated BPF sound measurement of centrifugal compressor
NASA Astrophysics Data System (ADS)
Ohuchida, S.; Tanaka, K.
2013-12-01
A technique to measure radiated BPF sound from an automotive turbocharger compressor impeller is proposed in this paper. Where there are high-level background noises in the measurement environment, it is difficult to discriminate the target component from the background. Since the effort of measuring BPF sound was taken in a room with such condition in this study, no discrete BPF peak was initially found on the sound spectrum. Taking its directionality into consideration, a microphone covered with a parabolic cone was selected and using this technique, the discrete peak of BPF was clearly observed. Since the level of measured sound was amplified due to the area-integration effect, correction was needed to obtain the real level. To do so, sound measurements with and without a parabolic cone were conducted for the fixed source and their level differences were used as correction factors. Consideration is given to the sound propagation mechanism utilizing measured BPF as well as the result of a simple model experiment. The present method is generally applicable to sound measurements conducted with a high level of background noise.
Time-of-day Corrections to Aircraft Noise Metrics
NASA Technical Reports Server (NTRS)
Clevenson, S. (Editor); Shepherd, W. T. (Editor)
1980-01-01
The historical and background aspects of time-of-day corrections as well as the evidence supporting these corrections are discussed. Health, welfare, and economic impacts, needs a criteria, and government policy and regulation, are also reported.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał
2017-06-01
High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation scattering. For LS FAAS, the determination of Pb using the 283 nm line, a 0.1 nm bandpass and a fuel lean flame is strongly recommended. The analysis of certified reference materials, recovery studies and the analysis of real samples with low Pb content supported the satisfactory accuracy of Pb determination in automotive or aviation gasoline when the recommended analytical variants are applied. The studies in this work shed new light on spectral phenomena in air-acetylene flames. The structured background due to absorption by the OH molecules must be taken into account during Pb determination in other materials as well as in some other elemental determinations, especially at low absorbance levels. The usefulness of HR-CS FAAS for revealing and investigating a structured background was demonstrated. HR-CS FAAS does not reveal fully corrected spectral effects with a continuous character, which can be found in LS FAAS.
Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity
NASA Astrophysics Data System (ADS)
Sauvé, A.; Couchot, F.; Patanchon, G.; Montier, L.
2016-07-01
The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.
NASA Astrophysics Data System (ADS)
He, L.-C.; Diao, L.-J.; Sun, B.-H.; Zhu, L.-H.; Zhao, J.-W.; Wang, M.; Wang, K.
2018-02-01
A Monte Carlo method based on the GEANT4 toolkit has been developed to correct the full-energy peak (FEP) efficiencies of a high purity germanium (HPGe) detector equipped with a low background shielding system, and moreover evaluated using summing peaks in a numerical way. It is found that the FEP efficiencies of 60Co, 133Ba and 152Eu can be improved up to 18% by taking the calculated true summing coincidence factors (TSCFs) correction into account. Counts of summing coincidence γ peaks in the spectrum of 152Eu can be well reproduced using the corrected efficiency curve within an accuracy of 3%.
Research on correction algorithm of laser positioning system based on four quadrant detector
NASA Astrophysics Data System (ADS)
Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia
2018-02-01
This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.
Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas
NASA Astrophysics Data System (ADS)
Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon
2016-04-01
Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.
NASA Astrophysics Data System (ADS)
Benetis, N. P.; Sjöqvist, L.; Lund, A.; Maruani, J.
The nuclear Zeeman and the electronic nonsecular parts of the spin Hamiltonian complicate the ESR lineshape of exchanging anisotropic spin systems by introducing, at high field, "forbidden" transitions and, at low field, additional shift and splitting. We compare the nonperturbative with the secular approach for such systems. The exchange is treated within the Kaplan-Alexander limit and both A and g tensors are included, resulting in spectrum asymmetry, in contrast to previous separate treatments. The two approaches are then used to simulate the powder spectrum of OCH 2COO - and compare the results to experimental spectra of an irradiated powder of ZnAc. The powder X-band spectra simulations using the secular approach appear to be accurate. For both the low-field (20 to 200 G) and the high-field (Q-band) regions, however, the nonsecular part of the electronic term and the nuclear Zeeman term, respectively, cannot be neglected. On the other hand, the approximate approach is much faster and consequently more appropriate for treating large, multisite exchanging systems.
Understanding Zeeman EIT Noise Correlation Spectra in Buffered Rb Vapor
NASA Astrophysics Data System (ADS)
O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael
2014-05-01
Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. During laser light's propagation through a resonant medium, interaction with the medium converts laser phase noise into intensity noise. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. Using a single diode laser with large phase noise, we examine laser intensity noise and noise correlations from Zeeman EIT in a buffered Rb vapor. Of particular interest is a narrow noise correlation feature, resonant with EIT, that has been shown in earlier work to be power-broadening resistant at low powers. We report here on our recent experimental work and complementary theoretical modeling on EIT noise spectra, including a study of power broadening of the narrow noise correlation feature. Understanding the nature of the noise correlation spectrum is essential for optimizing EIT-noise applications.
NASA Astrophysics Data System (ADS)
Zhou, Minchuan; Zhou, Zifan; Shahriar, Selim M.
2017-11-01
Previously, we had proposed an optically-pumped five-level Gain EIT (GEIT) system, which has a transparency dip superimposed on a gain profile and exhibits a negative dispersion suitable for the white-light-cavity signal-recycling (WLC-SR) scheme of the interferometric gravitational wave detector (Zhou et al., 2015). Using this system as the negative dispersion medium (NDM) in the WLC-SR, we get an enhancement in the quantum noise (QN) limited sensitivity-bandwidth product by a factor of ∼ 18. Here, we show how to realize this GEIT system in a realistic platform, using non-degenerate Zeeman sublevels in cold Rb atoms, employing anomalous dispersion at 795 nm. Using the Caves model for a phase insensitive linear amplifier, we show that an enhancement of the sensitivity-bandwidth product by a factor of ∼ 17 is possible for potentially realizable experimental parameters. While the current LIGO apparatus uses light at 1064 nm, a future embodiment thereof may operate at a wavelength that is consistent with the wavelength considered here.
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
Lu, T. M.; Tracy, L. A.; Laroche, D.; ...
2017-06-01
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
Decaying spectral oscillations in a Majorana wire with finite coherence length
NASA Astrophysics Data System (ADS)
Fleckenstein, C.; Domínguez, F.; Traverso Ziani, N.; Trauzettel, B.
2018-04-01
Motivated by recent experiments, we investigate the excitation energy of a proximitized Rashba wire in the presence of a position dependent pairing. In particular, we focus on the spectroscopic pattern produced by the overlap between two Majorana bound states that appear for values of the Zeeman field smaller than the value necessary for reaching the bulk topological superconducting phase. The two Majorana bound states can arise because locally the wire is in the topological regime. We find three parameter ranges with different spectral properties: crossings, anticrossings, and asymptotic reduction of the energy as a function of the applied Zeeman field. Interestingly, all these cases have already been observed experimentally. Moreover, since an increment of the magnetic field implies the increase of the distance between the Majorana bound states, the amplitude of the energy oscillations, when present, gets reduced. The existence of the different Majorana scenarios crucially relies on the fact that the two Majorana bound states have distinct k -space structures. We develop analytical models that clearly explain the microscopic origin of the predicted behavior.
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, T. M.; Tracy, L. A.; Laroche, D.
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
NASA Astrophysics Data System (ADS)
Huang, J. G.; Slavcheva, G.; Hess, O.
2008-04-01
We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.
Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.
Simonis, Frank F J; Petersen, Esben T; Bartels, Lambertus W; Lagendijk, Jan J W; van den Berg, Cornelis A T
2015-03-01
MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used for radio frequency (RF) safety monitoring. This application requires measuring absolute temperature. In this study, a multigradient-echo (mGE) MRT sequence was used for that purpose. A drawback of this sequence, however, is that its accuracy is affected by background gradients. In this article, we present a method to minimize this effect and to improve absolute temperature measurements using MRI. By determining background gradients using a B0 map or by combining data acquired with two opposing readout directions, the error can be removed in a homogenous phantom, thus improving temperature maps. All scans were performed on a 3T system using ethylene glycol-filled phantoms. Background gradients were varied, and one phantom was uniformly heated to validate both compensation approaches. Independent temperature recordings were made with optical probes. Errors correlated closely to the background gradients in all experiments. Temperature distributions showed a much smaller standard deviation when the corrections were applied (0.21°C vs. 0.45°C) and correlated well with thermo-optical probes. The corrections offer the possibility to measure RF heating in phantoms more precisely. This allows mGE MRT to become a valuable tool in RF safety assessment. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Lousada, M.; Jesus, Luis M. T.; Hall, A.; Joffe, V.
2014-01-01
Background: The effectiveness of two treatment approaches (phonological therapy and articulation therapy) for treatment of 14 children, aged 4;0-6;7 years, with phonologically based speech-sound disorder (SSD) has been previously analysed with severity outcome measures (percentage of consonants correct score, percentage occurrence of phonological…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... the Halibut Act. The IFQ Program's principal management measures, with certain exceptions, were: to... Conservation and Management Act (Magnuson-Stevens Act), and other applicable law. DATES: Effective April 20...: Background The IFQ Program, a limited access management system for the fixed gear Pacific halibut...
Berry phase jumps and giant nonreciprocity in Dirac quantum dots
NASA Astrophysics Data System (ADS)
Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.
2016-12-01
We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.
Higher derivatives in Type II and M-theory on Calabi-Yau threefolds
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Mayer, Kilian; Weissenbacher, Matthias
2018-02-01
The four- and five-dimensional effective actions of Calabi-Yau threefold compactifications are derived with a focus on terms involving up to four space-time derivatives. The starting points for these reductions are the ten- and eleven-dimensional supergravity actions supplemented with the known eight-derivative corrections that have been inferred from Type II string amplitudes. The corrected background solutions are determined and the fluctuations of the Kähler structure of the compact space and the form-field back-ground are discussed. It is concluded that the two-derivative effective actions for these fluctuations only takes the expected supergravity form if certain additional ten- and eleven-dimensional higher-derivative terms for the form-fields are included. The main results on the four-derivative terms include a detailed treatment of higher-derivative gravity coupled to Kähler structure deformations. This is supplemented by a derivation of the vector sector in reductions to five dimensions. While the general result is only given as an expansion in the fluctuations, a complete treatment of the one-Kähler modulus case is presented for both Type II theories and M-theory.
Compton suppression gamma-counting: The effect of count rate
Millard, H.T.
1984-01-01
Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.
ERIC Educational Resources Information Center
California State Board of Corrections, Sacramento.
This package consists of an information booklet for job candidates preparing to take California's Corrections Officer Examination and a user's manual intended for those who will administer the examination. The candidate information booklet provides background information about the development of the Corrections Officer Examination, describes its…
Exposed and Embedded Corrections in Aphasia Therapy: Issues of Voice and Identity
ERIC Educational Resources Information Center
Simmons-Mackie, Nina; Damico, Jack S.
2008-01-01
Background: Because communication after the onset of aphasia can be fraught with errors, therapist corrections are pervasive in therapy for aphasia. Although corrections are designed to improve the accuracy of communication, some corrections can have social and emotional consequences during interactions. That is, exposure of errors can potentially…
Halin, Niklas
2016-01-01
The purpose of this study was to investigate the distractive effects of background speech, aircraft noise and road traffic noise on text memory and particularly to examine if displaying the texts in a hard-to-read font can shield against the detrimental effects of these types of background sounds. This issue was addressed in an experiment where 56 students read shorter texts about different classes of fictitious creatures (i.e., animals, fishes, birds, and dinosaurs) against a background of the aforementioned background sounds respectively and silence. For half of the participants the texts were displayed in an easy-to-read font (i.e., Times New Roman) and for the other half in a hard-to-read font (i.e., Haettenschweiler). The dependent measure was the proportion correct answers on the multiple-choice tests that followed each sound condition. Participants’ performance in the easy-to-read font condition was significantly impaired by all three background sound conditions compared to silence. In contrast, there were no effects of the three background sound conditions compared to silence in the hard-to-read font condition. These results suggest that an increase in task demand—by displaying the text in a hard-to-read font—shields against various types of distracting background sounds by promoting a more steadfast locus-of-attention and by reducing the processing of background sound. PMID:27555834
Independent effects of colour on object identification and memory.
Lloyd-Jones, Toby J; Nakabayashi, Kazuyo
2009-02-01
We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.
Rydberg Spectroscopy of Zeeman-Decelerated Beams of Metastable Helium Molecules
NASA Astrophysics Data System (ADS)
Jansen, Paul; Motsch, Michael; Sprecher, Daniel; Merkt, Frederic
2014-06-01
Having three and four electrons, respectively, He_2^+ and He_2 represent systems for which highly accurate ab-initio calculations might become feasible in the near future. With the goal of performing accurate measurements of the rovibrational energy-level structure of He_2^+ by Rydberg spectroscopy of He_2 and multichannel quantum-defect theory extrapolation techniques, we have produced samples of helium molecules in the a ^3Σu^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The molecules are formed at an initial velocity of 500 m/s by striking a discharge in the pulsed expansion of helium gas from a reservoir kept at a cryogenic temperature of 10 K. Using rotationally-resolved PFI-ZEKE (pulsed-field-ionization zero-kinetic-energy) photoelectron spectroscopy, we have probed the rotational-state distribution of the molecules produced in the discharge and found vibrational levels up to ν" = 2 and rotational levels up to N"=21 to be populated. The molecular beam is coupled to a multistage Zeeman decelerator that employs pulsed inhomogeneous magnetic fields to further reduce the beam velocity. By measuring the quantum-state distribution of the decelerated sample using photoelectron and photoionization spectroscopy we observed no rotational or vibrational state-selectivity of the deceleration process, but found that one of the three spin-rotation components of the He_2 a ^3Σu^+ rotational levels is eliminated. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, arXiv:1401.7774. N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, Phys. Rev. A 75, 031402(R) (2007).
NASA Technical Reports Server (NTRS)
Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.
1990-01-01
Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.
Relativistic electron plasma oscillations in an inhomogeneous ion background
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2018-06-01
The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi
2015-03-21
Rotationally resolved high-resolution fluorescence excitation spectra of the 0–0 band of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080–15 103 cm{sup −1} region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm{sup −1} spacing were assigned to the transitions from the X{supmore » ~2}A{sub 2}{sup ′} (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the {sup 2}E{sub 3/2}{sup ′} (J′ = 1.5), {sup 2}E{sub 1/2}{sup ′} (J′ = 0.5), and {sup 2}E{sub 1/2}{sup ′} (J′ = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B{sup ~2}E{sup ′} (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X{sup ~2}A{sub 2}{sup ′} (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B{sup ~2}E{sub 1/2}{sup ′} (υ = 0) state were estimated by a deperturbed analysis to be T{sub 0} = 15 098.20(4) cm{sup −1}, B = 0.4282(7) cm{sup −1}, and D{sub J} = 4 × 10{sup −4} cm{sup −1}. In the observed region, both the {sup 2}E{sub 1/2}{sup ′} and {sup 2}E{sub 3/2}{sup ′} spin-orbit components were identified, and the spin-orbit interaction constant of the B{sup ~2}E{sup ′} (υ = 0) state was estimated to be −12 cm{sup −1} as the lower limit.« less
Parallel Low-Loss Measurement of Multiple Atomic Qubits
NASA Astrophysics Data System (ADS)
Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.
2017-11-01
We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.
Matching Microscopic and Macroscopic Responses in Glasses.
Baity-Jesi, M; Calore, E; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz-Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2017-04-14
We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly, we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)].PRLTAO0031-900710.1103/PhysRevLett.118.157203 The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, nonlinear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E G; Sorokin, V A; Shalagin, A M
Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less
Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.
2010-10-01
A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.
Circular polarization in a non-magnetic resonant tunneling device.
Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J
2011-01-25
We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.
Circular polarization in a non-magnetic resonant tunneling device
2011-01-01
We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613
Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.
2014-01-01
Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662
2008112500 2008112400 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias
A semi-analytic dynamical friction model for cored galaxies
NASA Astrophysics Data System (ADS)
Petts, J. A.; Read, J. I.; Gualandris, A.
2016-11-01
We present a dynamical friction model based on Chandrasekhar's formula that reproduces the fast inspiral and stalling experienced by satellites orbiting galaxies with a large constant density core. We show that the fast inspiral phase does not owe to resonance. Rather, it owes to the background velocity distribution function for the constant density core being dissimilar from the usually assumed Maxwellian distribution. Using the correct background velocity distribution function and our semi-analytic model from previous work, we are able to correctly reproduce the infall rate in both cored and cusped potentials. However, in the case of large cores, our model is no longer able to correctly capture core-stalling. We show that this stalling owes to the tidal radius of the satellite approaching the size of the core. By switching off dynamical friction when rt(r) = r (where rt is the tidal radius at the satellite's position), we arrive at a model which reproduces the N-body results remarkably well. Since the tidal radius can be very large for constant density background distributions, our model recovers the result that stalling can occur for Ms/Menc ≪ 1, where Ms and Menc are the mass of the satellite and the enclosed galaxy mass, respectively. Finally, we include the contribution to dynamical friction that comes from stars moving faster than the satellite. This next-to-leading order effect becomes the dominant driver of inspiral near the core region, prior to stalling.
Blindness to background: an inbuilt bias for visual objects.
O'Hanlon, Catherine G; Read, Jenny C A
2017-09-01
Sixty-eight 2- to 12-year-olds and 30 adults were shown colorful displays on a touchscreen monitor and trained to point to the location of a named color. Participants located targets near-perfectly when presented with four abutting colored patches. When presented with three colored patches on a colored background, toddlers failed to locate targets in the background. Eye tracking demonstrated that the effect was partially mediated by a tendency not to fixate the background. However, the effect was abolished when the targets were named as nouns, whilst the change to nouns had little impact on eye movement patterns. Our results imply a powerful, inbuilt tendency to attend to objects, which may slow the development of color concepts and acquisition of color words. A video abstract of this article can be viewed at: https://youtu.be/TKO1BPeAiOI. [Correction added on 27 January 2017, after first online publication: The video abstract link was added.]. © 2016 John Wiley & Sons Ltd.
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
Electron transport through magnetic quantum point contacts
NASA Astrophysics Data System (ADS)
Day, Timothy Ellis
Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.
Saur, Sigrun; Frengen, Jomar
2008-07-01
Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Manning, David; Donovan, Tim; Dix, Alan
2010-02-01
Aim: To investigate the impact on visual sampling strategy and pulmonary nodule recognition of image-based properties of background locations in dwelled regions where the first overt decision was made. . Background: Recent studies in mammography show that the first overt decision (TP or FP) has an influence on further image reading including the correctness of the following decisions. Furthermore, the correlation between the spatial frequency properties of the local background following decision sites and the first decision correctness has been reported. Methods: Subjects with different radiological experience were eye tracked during detection of pulmonary nodules from PA chest radiographs. Number of outcomes and the overall quality of performance are analysed in terms of the cases where correct or incorrect decisions were made. JAFROC methodology is applied. The spatial frequency properties of selected local backgrounds related to a certain decisions were studied. ANOVA was used to compare the logarithmic values of energy carried by non redundant stationary wavelet packet coefficients. Results: A strong correlation has been found between the number of TP as a first decision and the JAFROC score (r = 0.74). The number of FP as a first decision was found negatively correlated with JAFROC (r = -0.75). Moreover, the differential spatial frequency profiles outcomes depend on the first choice correctness.
Wagner, John H; Miskelly, Gordon M
2003-05-01
The combination of photographs taken at wavelengths at and bracketing the peak of a narrow absorbance band can lead to enhanced visualization of the substance causing the narrow absorbance band. This concept can be used to detect putative bloodstains by division of a linear photographic image taken at or near 415 nm with an image obtained by averaging linear photographs taken at or near 395 and 435 nm. Nonlinear images can also be background corrected by substituting subtraction for the division. This paper details experimental applications and limitations of this technique, including wavelength selection of the illuminant and at the camera. Characterization of a digital camera to be used in such a study is also detailed. Detection limits for blood using the three wavelength correction method under optimum conditions have been determined to be as low as 1 in 900 dilution, although on strongly patterned substrates blood diluted more than twenty-fold is difficult to detect. Use of only the 435 nm photograph to estimate the background in the 415 nm image lead to a twofold improvement in detection limit on unpatterned substrates compared with the three wavelength method with the particular camera and lighting system used, but it gave poorer background correction on patterned substrates.
Lead in Drinking Water in Schools and Non-Residential Buildings.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual demonstrates how drinking water in schools and non-residential buildings can be tested for lead and how contamination problems can be corrected when found. The manual also provides background information concerning the sources and health effects of lead, how lead gets into drinking water, how lead in drinking water is regulated, and…
Micro-Pulse Lidar Signals: Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)
2002-01-01
Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.
NASA Astrophysics Data System (ADS)
Ribeiro, P. O.; Alho, B. P.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. Magnus G.; Caldas, A.; Lopes, P. H. O.; von Ranke, P. J.
2017-11-01
We report the anisotropy of magnetic field-induced entropy change in rare earth Er1-yTbyAl2 compounds (y = 0.00, 0.25, 0.50, 0.75 and 1.00). In the present work, we use a model Hamiltonian that includes the crystalline electrical field anisotropy in both Er and Tb magnetic sublattices, chemical disorder in exchange interactions among Er-Er, Tb-Tb and Er-Tb magnetic ions and the Zeeman effect. We investigated the isothermal magnetic entropy change ΔST for a magnetic field of 1 T rotating from a hard 〈0 0 1〉 to the easy 〈1 1 1〉 direction. We also performed a systematic analysis of the reorientation temperature as a function of the magnetic field intensity. The anisotropic magnetocaloric effect highlights the applicability of this effect on the rotating magnetic refrigeration.
Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization.
Can, T V; McKay, J E; Weber, R T; Yang, C; Dubroca, T; van Tol, J; Hill, S; Griffin, R G
2018-06-21
We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S 2 E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S 2 E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S 2 E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.
A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; ...
2015-07-14
We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less
Akdeniz, Ceren; Tost, Heike; Streit, Fabian; Haddad, Leila; Wüst, Stefan; Schäfer, Axel; Schneider, Michael; Rietschel, Marcella; Kirsch, Peter; Meyer-Lindenberg, Andreas
2014-06-01
Relative risk for the brain disorder schizophrenia is more than doubled in ethnic minorities, an effect that is evident across countries and linked to socially relevant cues such as skin color, making ethnic minority status a well-established social environmental risk factor. Pathoepidemiological models propose a role for chronic social stress and perceived discrimination for mental health risk in ethnic minorities, but the neurobiology is unexplored. To study neural social stress processing, using functional magnetic resonance imaging, and associations with perceived discrimination in ethnic minority individuals. Cross-sectional design in a university setting using 3 validated paradigms to challenge neural social stress processing and, to probe for specificity, emotional and cognitive brain functions. Healthy participants included those with German lineage (n = 40) and those of ethnic minority (n = 40) from different ethnic backgrounds matched for sociodemographic, psychological, and task performance characteristics. Control comparisons examined stress processing with matched ethnic background of investigators (23 Turkish vs 23 German participants) and basic emotional and cognitive tasks (24 Turkish vs 24 German participants). Blood oxygenation level-dependent response, functional connectivity, and psychological and physiological measures. There were significant increases in heart rate (P < .001), subjective emotional response (self-related emotions, P < .001; subjective anxiety, P = .006), and salivary cortisol level (P = .004) during functional magnetic resonance imaging stress induction. Ethnic minority individuals had significantly higher perceived chronic stress levels (P = .02) as well as increased activation (family-wise error-corrected [FWE] P = .005, region of interest corrected) and increased functional connectivity (PFWE = .01, region of interest corrected) of perigenual anterior cingulate cortex (ACC). The effects were specific to stress and not explained by a social distance effect. Ethnic minority individuals had significant correlations between perceived group discrimination and activation in perigenual ACC (PFWE = .001, region of interest corrected) and ventral striatum (PFWE = .02, whole brain corrected) and mediation of the relationship between perceived discrimination and perigenual ACC-dorsal ACC connectivity by chronic stress (P < .05). Epidemiologists proposed a causal role of social-evaluative stress, but the neural processes that could mediate this susceptibility effect were unknown. Our data demonstrate the potential of investigating associations from epidemiology with neuroimaging, suggest brain effects of social marginalization, and highlight a neural system in which environmental and genetic risk factors for mental illness may converge.
Publisher Correction: Cluster richness-mass calibration with cosmic microwave background lensing
NASA Astrophysics Data System (ADS)
Geach, James E.; Peacock, John A.
2018-03-01
Owing to a technical error, the `Additional information' section of the originally published PDF version of this Letter incorrectly gave J.A.P. as the corresponding author; it should have read J.E.G. This has now been corrected. The HTML version is correct.
Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection
NASA Astrophysics Data System (ADS)
Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun
2015-04-01
The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the multipass cell and photochemical reactor chamber for real time in-situ measurement of OH radical concentration in the chamber.
The recondite intricacies of Zeeman Doppler mapping
NASA Astrophysics Data System (ADS)
Stift, M. J.; Leone, F.; Cowley, C. R.
2012-02-01
We present a detailed analysis of the reliability of abundance and magnetic maps of Ap stars obtained by Zeeman Doppler mapping (ZDM). It is shown how they can be adversely affected by the assumption of a mean stellar atmosphere instead of appropriate 'local' atmospheres corresponding to the actual abundances in a given region. The essence of the difficulties was already shown by Chandrasekhar's picket-fence model. The results obtained with a suite of Stokes codes written in the ADA programming language and based on modern line-blanketed atmospheres are described in detail. We demonstrate that the high metallicity values claimed to have been found in chemically inhomogeneous (horizontally and vertically) Ap star atmospheres would lead to local temperature structures, continuum and line intensities, and line shapes that differ significantly from those predicted by a mean stellar atmosphere. Unfortunately, past applications of ZDM have consistently overlooked the intricate aspects of metallicity with their all-pervading effects. The erroneous assumption of a mean atmosphere for a spotted star can lead to phase-dependent errors of uncomfortably large proportions at varying wavelengths both in the Stokes I and V profiles, making precise mapping of abundances and magnetic field vectors largely impossible. The relation between core and wings of the Hβ line changes, too, with possible repercussions on the determination of gravity and effective temperature. Finally, a ZDM analysis of the synthetic Stokes spectra of a spotted star reveals the disturbing differences between the respective abundance maps based on a mean atmosphere on the one hand, and on appropriate 'local' atmospheres on the other. We then discuss what this all means for published ZDM results. Our discussion makes it clear that realistic local atmospheres must be used, especially if credible small-scale structures are to be obtained. Recondite: dealing with very profound, difficult or abstruse subject matter; requiring special knowledge to be understood ().
NASA Astrophysics Data System (ADS)
Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.
2012-11-01
We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies within the typical analytical precision at sufficiently low water concentrations (<0.7% for CO2 and <0.6% for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with the isotopic correction.
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
Kong, Yong-Ku; Lee, Inseok; Jung, Myung-Chul; Song, Young-Woong
2011-05-01
This study evaluated the effects of age (20s and 60s), viewing distance (50 cm, 200 cm), display type (paper, monitor), font type (Gothic, Ming), colour contrast (black letters on white background, white letters on black background) and number of syllables (one, two) on the legibility of Korean characters by using the four legibility measures (minimum letter size for 100% correctness, maximum letter size for 0% correctness, minimum letter size for the least discomfort and maximum letter size for the most discomfort). Ten subjects in each age group read the four letters presented on a slide (letter size varied from 80 pt to 2 pt). Subjects also subjectively rated the reading discomfort of the letters on a 4-point scale (1 = no discomfort, 4 = most discomfort). According to the ANOVA procedure, age, viewing distance and font type significantly affected the four dependent variables (p < 0.05), while the main effect of colour contrast was not statistically significant for any measures. Two-syllable letters had smaller letters than one-syllable letters in the two correctness measures. The younger group could see letter sizes two times smaller than the old group could and the viewing distance of 50 cm showed letters about three times smaller than those at a 200 cm viewing distance. The Gothic fonts were smaller than the Ming fonts. Monitors were smaller than paper for correctness and maximum letter size for the most discomfort. From a comparison of the results for correctness and discomfort, people generally preferred larger letter sizes to those that they could read. The findings of this study may provide basic information for setting a global standard of letter size or font type to improve the legibility of characters written in Korean. STATEMENT OF RELEVANCE: Results obtained in this study will provide basic information and guidelines for setting standards of letter size and font type to improve the legibility of characters written in Korean. Also, the results might offer useful information for people who are working on design of visual displays.
Phase-space methods for the spin dynamics in condensed matter systems
Hurst, Jérôme; Manfredi, Giovanni
2017-01-01
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903
76 FR 56949 - Biomass Crop Assistance Program; Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
.... ACTION: Interim rule; correction. SUMMARY: The Commodity Credit Corporation (CCC) is amending the Biomass... funds in favor of the ``project area'' portion of BCAP. CCC is also correcting errors in the regulation... INFORMATION: Background CCC published a final rule on October 27, 2010 (75 FR 66202-66243) implementing BCAP...
Kuligowski, J; Quintás, G; Garrigues, S; de la Guardia, M
2010-03-15
A new background correction method for the on-line coupling of gradient liquid chromatography and Fourier transform infrared spectrometry has been developed. It is based on the use of a point-to-point matching algorithm that compares the absorption spectra of the sample data set with those of a previously recorded reference data set in order to select an appropriate reference spectrum. The spectral range used for the point-to-point comparison is selected with minimal user-interaction, thus facilitating considerably the application of the whole method. The background correction method has been successfully tested on a chromatographic separation of four nitrophenols running acetonitrile (0.08%, v/v TFA):water (0.08%, v/v TFA) gradients with compositions ranging from 35 to 85% (v/v) acetonitrile, giving accurate results for both, baseline resolved and overlapped peaks. Copyright (c) 2009 Elsevier B.V. All rights reserved.
COBE ground segment gyro calibration
NASA Technical Reports Server (NTRS)
Freedman, I.; Kumar, V. K.; Rae, A.; Venkataraman, R.; Patt, F. S.; Wright, E. L.
1991-01-01
Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics.
Neyman Pearson detection of K-distributed random variables
NASA Astrophysics Data System (ADS)
Tucker, J. Derek; Azimi-Sadjadi, Mahmood R.
2010-04-01
In this paper a new detection method for sonar imagery is developed in K-distributed background clutter. The equation for the log-likelihood is derived and compared to the corresponding counterparts derived for the Gaussian and Rayleigh assumptions. Test results of the proposed method on a data set of synthetic underwater sonar images is also presented. This database contains images with targets of different shapes inserted into backgrounds generated using a correlated K-distributed model. Results illustrating the effectiveness of the K-distributed detector are presented in terms of probability of detection, false alarm, and correct classification rates for various bottom clutter scenarios.
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-01-01
Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332
Scalar and tensor perturbations in loop quantum cosmology: high-order corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tao; Wang, Anzhong; Wu, Qiang
2015-10-01
Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratiomore » is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.« less
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
NASA Astrophysics Data System (ADS)
Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong
2018-04-01
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.
Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds
NASA Astrophysics Data System (ADS)
Mitra, Arpita
2017-12-01
The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.
CMB-lensing beyond the Born approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth
2016-09-01
We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussianmore » nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.« less
Pregnancy and Parenting Support for Incarcerated Women: Lessons Learned
Shlafer, Rebecca J.; Gerrity, Erica; Duwe, Grant
2017-01-01
Background There are more than 200,000 incarcerated women in U.S. prisons and jails, and it is estimated that 6% to 10% are pregnant. Pregnant incarcerated women experience complex risks that can compromise their health and the health of their offspring. Objectives Identify lessons learned from a community–university pilot study of a prison-based pregnancy and parenting support program. Methods A community–university–corrections partnership was formed to provide education and support to pregnant incarcerated women through a prison-based pilot program. Evaluation data assessed women’s physical and mental health concerns and satisfaction with the program. Between October 2011 and December 2012, 48 women participated. Lessons Learned We learned that providing services for pregnant incarcerated women requires an effective partnership with the Department of Corrections, adaptations to traditional community-based participatory research (CBPR) approaches, and resources that support both direct service and ongoing evaluation. Conclusions Effective services for pregnant incarcerated women can be provided through a successful community– university–corrections partnership. PMID:26548788
Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330
NASA Astrophysics Data System (ADS)
Khalack, V.; Gallant, G.; Thibeault, C.
2017-10-01
A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.
Vector magnetic field and vector current density in and around the δ-spot NOAA 10808†
NASA Astrophysics Data System (ADS)
Bommier, Véronique; Landi Degl'Innocenti, Egidio; Schmieder, Brigitte; Gelly, Bernard
2011-08-01
The context is that of the so-called ``fundamental ambiguity'' (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the ``simulated annealing'' algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line (Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).
NASA Astrophysics Data System (ADS)
Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.
2011-04-01
The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).
NASA Astrophysics Data System (ADS)
Vickers, H.; Baddeley, L.
2011-11-01
RF heating of the F region plasma at high latitudes has long been known to produce electron temperature increases that can vary from tens to hundreds of percent above the background, unperturbed level. In contrast, artificial ionospheric modification experiments conducted using the Space Plasma Exploration by Active Radar (SPEAR) heating facility on Svalbard have often failed to produce obvious enhancements in the electron temperatures when measured using the European Incoherent Scatter Svalbard radar (ESR), colocated with the heater. Contamination of the ESR ion line spectra by the zero-frequency purely growing mode (PGM) feature is known to persist at varying amplitudes throughout SPEAR heating, and such spectral features can lead to significant temperature underestimations when the incoherent scatter spectra are analyzed using conventional methods. In this study, we present the first results of applying a recently developed technique to correct the PGM-contaminated spectra to SPEAR-enhanced ESR spectra and derive an alternative estimate of the SPEAR-heated electron temperature. We discuss how the effectiveness of the spectrum corrections can be affected by the data variance, estimated over the integration period. The subsequent electron temperatures, inferred from corrected spectra, range from a few tens to a few hundred Kelvin above the average background temperature. These temperatures are found to be in reasonable agreement with the theoretical “enhanced” temperature, calculated for the peak of the stationary temperature perturbation profile, when realistic absorption effects are accounted for.
Lewis, Ashley Glen; Schriefers, Herbert; Bastiaansen, Marcel; Schoffelen, Jan-Mathijs
2018-05-21
Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.
Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Boehnen, Chris Bensing; Ernst, Joseph
2013-09-30
Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections aremore » most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.« less
A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leone, Francesco; Scalia, Cesare; Gangi, Manuele
Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transversemore » component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.« less
Electrical and optical transport properties of single layer WSe2
NASA Astrophysics Data System (ADS)
Tahir, M.
2018-03-01
The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.
Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases
NASA Astrophysics Data System (ADS)
Huang, Bei-Bing; Yang, Xiao-Sen
2018-02-01
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143
Spin-valley skyrmions in graphene at filling factor ν =-1
NASA Astrophysics Data System (ADS)
Lian, Yunlong; Goerbig, Mark O.
2017-06-01
We model quantum Hall skyrmions in graphene monolayer at quarter filling by a theory of CP3 fields and study the energy minimizing skyrmions in the presence of valley pseudospin anisotropy and Zeeman coupling. We present a diagram of all types of skyrmions in a wide range of the anisotropy parameters. For each type of skyrmion, we visualize it on three Bloch spheres, and present the profiles of its texture on the graphene honeycomb lattice, thus providing references for the scanning-tunneling microscopy and spectroscopy imaging of spin-pseudospin textures in graphene monolayer in the quantum Hall regime. Besides the spin and pseudospin skyrmions for the corresponding degrees of freedom of an electron in the N =0 Landau level, we discuss two unusual types—the "entanglement skyrmion", the texture of which lies in the space of the entanglement of spin and pseudospin, as well as the "deflated pseudospin skyrmion" with partial entanglement. For all skyrmion types, we study the dependence of the energy and the size of a skyrmion on the anisotropy parameters and perpendicular magnetic field. We also propose three ways to modify the anisotropy energy, namely, the sample tilting, the substrate anisotropy, and the valley pseudospin analog of Zeeman coupling.
Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin
2015-01-01
Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility.
ERIC Educational Resources Information Center
Clarke, Jason; Prescott, Katherine; Milne, Rebecca
2013-01-01
Background: The cognitive interview (CI) has been shown to increase correct memory recall of a diverse range of participant types, without an increase in the number of incorrect or confabulated details. However, it has rarely been examined for use with adults with intellectual disability. Measures and Method: This study compared the memory recall…
ERIC Educational Resources Information Center
Pereira, Valerie J.; Sell, Debbie; Tuomainen, Jyrki
2013-01-01
Background: Abnormal facial growth is a well-known sequelae of cleft lip and palate (CLP) resulting in maxillary retrusion and a class III malocclusion. In 10-50% of cases, surgical correction involving advancement of the maxilla typically by osteotomy methods is required and normally undertaken in adolescence when facial growth is complete.…
ERIC Educational Resources Information Center
FESHBACH, NORMA D.
TO STUDY THE EFFECTS OF DIFFERING TEACHER REINFORCEMENT BEHAVIOR ON STUDENTS, 21 MIDDLE-CLASS AND 12 LOWER-CLASS MALE NINTH- AND 10TH-GRADE REMEDIAL READING STUDENTS WERE SHOWN TWO FILMS. THE FIRST DEPICTED A "POSITIVE" TEACHER WHO CONSISTENTLY REWARDED CORRECT RESPONSES WHILE NEGLECTING INCORRECT ONES, AND THE SECOND SHOWED A…
ERIC Educational Resources Information Center
Krause, Fritz
The effectiveness of a behavior modification program combining cooperative learning with peer and self-evaluation was field tested with a group of 20 students in a 9th-grade class in beginning small engines. The students represented a mix of racial/cultural and economic backgrounds, were of average intelligence, and exhibited a variety of poor…
ERIC Educational Resources Information Center
Kaltakci-Gurel, Derya; Eryilmaz, Ali; McDermott, Lillian Christie
2017-01-01
Background: Correct identification of misconceptions is an important first step in order to gain an understanding of student learning. More recently, four-tier multiple choice tests have been found to be effective in assessing misconceptions. Purpose: The purposes of this study are (1) to develop and validate a four-tier misconception test to…
Analytical-Based Partial Volume Recovery in Mouse Heart Imaging
NASA Astrophysics Data System (ADS)
Dumouchel, Tyler; deKemp, Robert A.
2011-02-01
Positron emission tomography (PET) is a powerful imaging modality that has the ability to yield quantitative images of tracer activity. Physical phenomena such as photon scatter, photon attenuation, random coincidences and spatial resolution limit quantification potential and must be corrected to preserve the accuracy of reconstructed images. This study focuses on correcting the partial volume effects that arise in mouse heart imaging when resolution is insufficient to resolve the true tracer distribution in the myocardium. The correction algorithm is based on fitting 1D profiles through the myocardium in gated PET images to derive myocardial contours along with blood, background and myocardial activity. This information is interpolated onto a 2D grid and convolved with the tomograph's point spread function to derive regional recovery coefficients enabling partial volume correction. The point spread function was measured by placing a line source inside a small animal PET scanner. PET simulations were created based on noise properties measured from a reconstructed PET image and on the digital MOBY phantom. The algorithm can estimate the myocardial activity to within 5% of the truth when different wall thicknesses, backgrounds and noise properties are encountered that are typical of healthy FDG mouse scans. The method also significantly improves partial volume recovery in simulated infarcted tissue. The algorithm offers a practical solution to the partial volume problem without the need for co-registered anatomic images and offers a basis for improved quantitative 3D heart imaging.
Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A
2017-03-14
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Contribution functions for Zeeman-split lines, and line formation in photospheric faculae
NASA Technical Reports Server (NTRS)
Vanballegooijen, A. A.
1985-01-01
The transfer of polarized light in an inhomogeneous stellar atmosphere, and the formation of magnetically sensitive spectral lines, are discussed. A new method for the solution of the transfer equations is proposed. The method gives a natural definition of the contribution functions for Stokes' parameters, i.e., functions describing the contributions from different parts along the line-of-sight (LOS). The formalism includes all magneto-optical effects, and allows for an arbitrary variation of magnetic field, velocity field, temperature, density, etc., along the LOS. The formation of FeI lambda 5250.2 in photospheric faculae is described. A potential-field model of a facular element is presented, and spectra profiles and contribution functions are computed for the Stokes parameters I, Q, and V.
Magnetic-field-dependent slow light in strontium atom-cavity system
NASA Astrophysics Data System (ADS)
Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying
2018-03-01
Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.
A new family of magnetic stars: the Am stars
NASA Astrophysics Data System (ADS)
Blazère, A.; Neiner, C.; Petit, P.; Lignières, F.
2016-12-01
We presented the discovery of an ultra-weak field in three Am stars, β UMa, θ Leo, and Alhena, thanks to ultra-deep spectropolarimetric observations. Two of the three stars of this study shown peculiar magnetic signatures with prominent positive lobes like the one of Sirius A that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, show normal signatures. These detections of ultra-weak fields in Am stars suggest the existence of a new family of magnetic intermediate-mass stars: the Am stars. However the various shapes of the signatures required further observation to identify the physical processes at work in these stars. A preliminary explanation is based on microturbulence.
Coherent Radiation in Atomic Systems
NASA Astrophysics Data System (ADS)
Sutherland, Robert Tyler
Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.
Long-range Kitaev chains via planar Josephson junctions
NASA Astrophysics Data System (ADS)
Liu, Dillon T.; Shabani, Javad; Mitra, Aditi
2018-06-01
We show how a recently proposed solid-state Majorana platform comprising a planar Josephson junction proximitized to a 2D electron gas (2DEG) with Rashba spin-orbit coupling and Zeeman field can be viewed as an effectively one-dimensional (1D) Kitaev chain with long-range pairing and hopping terms. We highlight how the couplings of the 1D system may be tuned by changing experimentally realistic parameters. We also show that the mapping is robust to disorder by computing the Clifford pseudospectrum index in real space for the long-range Kitaev chain across several topological phases. This mapping opens up the possibility of using current experimental setups to explore 1D topological superconductors with nonstandard and tunable couplings.
Magnetochromic effect in multiferroic R In 1 ₋ x Mn x O 3 ( R = Tb , Dy)
Chen, P.; Holinsworth, B. S.; O'Neal, K. R.; ...
2015-05-26
We combined high field magnetization and magneto-optical spectroscopy to investigate spin-charge coupling in Mn-substituted rare-earth indium oxides of chemical formula RIn₁₋ xMn xO₃ (R=Tb, Dy). The edge states, on-site Mn³⁺d to d excitations, and rare-earth f-manifold excitations all track the magnetization energy due to dominant Zeeman interactions. The field-induced modifications to the rare-earth excitations are quite large because spin-orbit coupling naturally mixes spin and charge, suggesting that the next logical step in the design strategy should be to bring spin-orbit coupling onto the trigonal bipyramidal chromophore site with a 4 or 5d center.
Effective g-factors of carriers in inverted InAs/GaSb bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Xiaoyang; Collaborative Innovation Center of Quantum Matter, Beijing 100871; Sullivan, Gerard
2016-01-04
We perform tilt-field transport experiment on inverted InAs/GaSb, which hosts quantum spin Hall insulator. By means of coincidence method, Landau level (LL) spectra of electron and hole carriers are systematically studied at different carrier densities tuned by gate voltages. When Fermi level stays in the conduction band, we observe LL crossing and anti-crossing behaviors at odd and even filling factors, respectively, with a corresponding g-factor of 11.5. It remains nearly constant for varying filling factors and electron densities. On the contrary, for GaSb holes, only a small Zeeman splitting is observed even at large tilt angles, indicating a g-factor ofmore » less than 3.« less
Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; ...
2016-05-13
The authors describe recent experimental efforts to perform polarization-resolved optical spectroscopy of monolayer transition-metal dichalcogenide semiconductors in very large pulsed magnetic fields to 65 T. The experimental setup and technical challenges are discussed in detail, and temperature-dependent magnetoreflection spectra from atomically thin tungsten disulphide are presented. The data clearly reveal not only the valley Zeeman effect in these two-dimensional semiconductors but also the small quadratic exciton diamagnetic shift from which the very small exciton size can be directly inferred. Lastly, the authors present model calculations that demonstrate how the measured diamagnetic shifts can be used to constrain estimates of themore » exciton binding energy in this new family of monolayer semiconductors.« less
Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5
NASA Astrophysics Data System (ADS)
Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2018-03-01
We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.
Assessing Feedback in a Mobile Videogame
Brand, Leah; Beltran, Alicia; Hughes, Sheryl; O'Connor, Teresia; Baranowski, Janice; Nicklas, Theresa; Chen, Tzu-An; Dadabhoy, Hafza R.; Diep, Cassandra S.; Buday, Richard
2016-01-01
Abstract Background: Player feedback is an important part of serious games, although there is no consensus regarding its delivery or optimal content. “Mommio” is a serious game designed to help mothers motivate their preschoolers to eat vegetables. The purpose of this study was to assess optimal format and content of player feedback for use in “Mommio.” Materials and Methods: The current study posed 36 potential “Mommio” gameplay feedback statements to 20 mothers using a Web survey and interview. Mothers were asked about the meaning and helpfulness of each feedback statement. Results: Several themes emerged upon thematic analysis, including identifying an effective alternative in the case of corrective feedback, avoiding vague wording, using succinct and correct grammar, avoiding provocation of guilt, and clearly identifying why players' game choice was correct or incorrect. Conclusions: Guidelines are proposed for future feedback statements. PMID:27058403
Number-counts slope estimation in the presence of Poisson noise
NASA Technical Reports Server (NTRS)
Schmitt, Juergen H. M. M.; Maccacaro, Tommaso
1986-01-01
The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.
NASA Astrophysics Data System (ADS)
Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon
2017-12-01
The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed
Purpose: To characterize and correct for radiation-induced background (RIB) observed in the signals from a class of scanning water tanks. Methods: A method was developed to isolate the RIB through detector measurements in the background-free linac console area. Variation of the RIB against a large number of parameters was characterized, and its impact on basic clinical data for photon and electron beams was quantified. Different methods to minimize and/or correct for the RIB were proposed and evaluated. Results: The RIB is due to the presence of the electrometer and connection box in a low background radiation field (by design). Themore » absolute RIB current with a biased detector is up to 2 pA, independent of the detector size, which is 0.6% and 1.5% of the central axis reference signal for a standard and a mini scanning chamber, respectively. The RIB monotonically increases with field size, is three times smaller for detectors that do not require a bias (e.g., diodes), is up to 80% larger for positive (versus negative) polarity, decreases with increasing photon energy, exhibits a single curve versus dose rate at the electrometer location, and is negligible for electron beams. Data after the proposed field-size correction method agree with point measurements from an independent system to within a few tenth of a percent for output factor, head scatter, depth dose at depth, and out-of-field profile dose. Manufacturer recommendations for electrometer placement are insufficient and sometimes incorrect. Conclusions: RIB in scanning water tanks can have a non-negligible effect on dosimetric data.« less
Bipolar Spintronics: From magnetic diodes to magnetic bipolar transistors
NASA Astrophysics Data System (ADS)
Zutic, Igor
2004-03-01
We develop a theory of bipolar (electrons and holes) spin-polarized transport [1,2] in semiconductors and discuss its implications for spintronic devices [3]. In our proposal for magnetic bipolar transistors [4,5] we show how bipolar spintronics can lead to spin and magnetic field controlled active devices, not limited by the magnetoresistive effects used in all-metallic structures [3]. We focus on magnetic p-n diodes [1,2] with spatially dependent spin splitting (Zeeman or exchange) of carrier bands. An exchange splitting can be provided by ferromagnetic semiconductors [6], while a large Zeeman splitting can be realized in the presence of magnetic field in magnetically doped or narrow band gap semiconductors [3]. Our theory of magnetic diodes [1,2] can be directly applied to magnetic bipolar transistors--the three-terminal devices which consist of two magnetic p-n diodes connected in series [4,5]. Predictions of exponentially large magnetoresistance [1] and a strong coupling between the spin and charge transport leading to the spin-voltaic effect [1,7] for magnetic diodes are also relevant for magnetic bipolar transistors. In particular, in n-p-n transistors, we show the importance of considering the nonequilibrium spin leading to the spin-voltaic effect. In addition to the applied magnetic filed, the injected nonequilibrium spin can be used to dynamically control the current amplification (gain). Recent experimental progress [8,9] supports the viability of our theoretical proposals. [1] I. Zutic, J. Fabian, S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002). [2] J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B 66, 165301 (2002). [3] I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys., in press. [4] J. Fabian, I. Zutic, S. Das Sarma, cond-mat/0211639; cond-mat/0307014, Appl. Phys. Lett., in press. [5] J. Fabian and I. Zutic, cond-mat/0311456. [6] H. Ohno, Science 281, 951 (1998). [7] I. Zutic, J. Fabian, S. Das Sarma, Appl. Phys. Lett. 82, 221 (2003). [8] N. Samarth, S. H. Chun, K. C. Ku, S. J. Potashnik, P. Schiffer, Solid State Commun. 127, 173 (2003). [9] F. Tsui, L. Ma, L. He, Appl. Phys. 83, 954 (2003).
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.
2017-07-01
Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarisation is due to Zeeman splitting, it indicates a magnetic field strength of 1-3 Gauss, consistent with previous maser observations.
Landau quantization in the spinning cosmic string spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B.; Cunha, M.S.
2014-11-15
We analyze the quantum phenomenon arising from the interaction of a spinless charged particle with a rotating cosmic string, under the action of a static and uniform magnetic field parallel to the string. We calculate the energy levels of the particle in the non-relativistic approach, showing how these energies depend on the parameters involved in the problem. In order to do this, we solve the time independent Schrödinger equation in the geometry of the spinning cosmic string, taking into account that the coupling between the rotation of the spacetime and the angular momentum of the particle is very weak, suchmore » that makes sense to apply the Schrödinger equation in a curved background whose metric has an off diagonal term which involves time and space. It is also assumed that the particle orbits sufficiently far from the boundary of the region of closed timelike curves which exist around this topological defect. Finally, we find the Landau levels of the particle in the presence of a spinning cosmic string endowed with internal structure, i.e., having a finite width and uniformly filled with both material and vacuum energies. - Highlights: • Solution of the wave equation characterizing the problem. • Energy levels of the particle in spacetime of the structureless string. • Expression for an analogous of the quadratic Zeeman effect. • Energy levels of the particle in spacetime of the string with internal structure. • Evidence of the string structure by the internal existence of the vacuum energy.« less
Pigeons Exhibit Contextual Cueing to Both Simple and Complex Backgrounds
Wasserman, Edward A.; Teng, Yuejia; Castro, Leyre
2014-01-01
Repeated pairings of a particular visual context with a specific location of a target stimulus facilitate target search in humans. We explored an animal model of this contextual cueing effect using a novel Cueing-Miscueing design. Pigeons had to peck a target which could appear in one of four possible locations on four possible color backgrounds or four possible color photographs of real-world scenes. On 80% of the trials, each of the contexts was uniquely paired with one of the target locations; on the other 20% of the trials, each of the contexts was randomly paired with the remaining target locations. Pigeons came to exhibit robust contextual cueing when the context preceded the target by 2 s, with reaction times to the target being shorter on correctly-cued trials than on incorrectly-cued trials. Contextual cueing proved to be more robust with photographic backgrounds than with uniformly colored backgrounds. In addition, during the context-target delay, pigeons predominately pecked toward the location of the upcoming target, suggesting that attentional guidance contributes to contextual cueing. These findings confirm the effectiveness of animal models of contextual cueing and underscore the important part played by associative learning in producing the effect. PMID:24491468
Coupé, Veerle M. H.; Knottnerus, Bart J.; Geerlings, Suzanne E.; Moll van Charante, Eric P.; ter Riet, Gerben
2017-01-01
Background Uncomplicated Urinary Tract Infections (UTIs) are common in primary care resulting in substantial costs. Since antimicrobial resistance against antibiotics for UTIs is rising, accurate diagnosis is needed in settings with low rates of multidrug-resistant bacteria. Objective To compare the cost-effectiveness of different strategies to diagnose UTIs in women who contacted their general practitioner (GP) with painful and/or frequent micturition between 2006 and 2008 in and around Amsterdam, The Netherlands. Methods This is a model-based cost-effectiveness analysis using data from 196 women who underwent four tests: history, urine stick, sediment, dipslide, and the gold standard, a urine culture. Decision trees were constructed reflecting 15 diagnostic strategies comprising different parallel and sequential combinations of the four tests. Using the decision trees, for each strategy the costs and the proportion of women with a correct positive or negative diagnosis were estimated. Probabilistic sensitivity analysis was used to estimate uncertainty surrounding costs and effects. Uncertainty was presented using cost-effectiveness planes and acceptability curves. Results Most sequential testing strategies resulted in higher proportions of correctly classified women and lower costs than parallel testing strategies. For different willingness to pay thresholds, the most cost-effective strategies were: 1) performing a dipstick after a positive history for thresholds below €10 per additional correctly classified patient, 2) performing both a history and dipstick for thresholds between €10 and €17 per additional correctly classified patient, 3) performing a dipstick if history was negative, followed by a sediment if the dipstick was negative for thresholds between €17 and €118 per additional correctly classified patient, 4) performing a dipstick if history was negative, followed by a dipslide if the dipstick was negative for thresholds above €118 per additional correctly classified patient. Conclusion Depending on decision makers’ willingness to pay for one additional correctly classified woman, the strategy consisting of performing a history and dipstick simultaneously (ceiling ratios between €10 and €17) or performing a sediment if history and subsequent dipstick are negative (ceiling ratios between €17 and €118) are the most cost-effective strategies to diagnose a UTI. PMID:29186185
NASA Astrophysics Data System (ADS)
Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe
2017-10-01
Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Tellgren, Erik I.
2018-05-01
External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.
Effect of sample stratification on dairy GWAS results
2012-01-01
Background Artificial insemination and genetic selection are major factors contributing to population stratification in dairy cattle. In this study, we analyzed the effect of sample stratification and the effect of stratification correction on results of a dairy genome-wide association study (GWAS). Three methods for stratification correction were used: the efficient mixed-model association expedited (EMMAX) method accounting for correlation among all individuals, a generalized least squares (GLS) method based on half-sib intraclass correlation, and a principal component analysis (PCA) approach. Results Historical pedigree data revealed that the 1,654 contemporary cows in the GWAS were all related when traced through approximately 10–15 generations of ancestors. Genome and phenotype stratifications had a striking overlap with the half-sib structure. A large elite half-sib family of cows contributed to the detection of favorable alleles that had low frequencies in the general population and high frequencies in the elite cows and contributed to the detection of X chromosome effects. All three methods for stratification correction reduced the number of significant effects. EMMAX method had the most severe reduction in the number of significant effects, and the PCA method using 20 principal components and GLS had similar significance levels. Removal of the elite cows from the analysis without using stratification correction removed many effects that were also removed by the three methods for stratification correction, indicating that stratification correction could have removed some true effects due to the elite cows. SNP effects with good consensus between different methods and effect size distributions from USDA’s Holstein genomic evaluation included the DGAT1-NIBP region of BTA14 for production traits, a SNP 45kb upstream from PIGY on BTA6 and two SNPs in NIBP on BTA14 for protein percentage. However, most of these consensus effects had similar frequencies in the elite and average cows. Conclusions Genetic selection and extensive use of artificial insemination contributed to overlapped genome, pedigree and phenotype stratifications. The presence of an elite cluster of cows was related to the detection of rare favorable alleles that had high frequencies in the elite cluster and low frequencies in the remaining cows. Methods for stratification correction could have removed some true effects associated with genetic selection. PMID:23039970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.
The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherentmore » to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.« less
On the condensation of exciton polaritons in microcavities induced by a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochereshko, V. P., E-mail: Vladimir.Kochereshko@mail.ioffe.ru; Avdoshina, D. V.; Savvidis, P.
2016-11-15
The photoluminescence spectra of exciton polaritons in microcavities under conditions of three-dimensional quantization are studied as a factor of the density of the optical excitation and magnetic field. The behavior of the degree of circular polarization of the exciton luminescence in a magnetic field shows that, when the concentration of excitons increases, they condense at the lowest Zeeman sublevel.
Resuscitator’s perceptions and time for corrective ventilation steps during neonatal resuscitation☆
Sharma, Vinay; Lakshminrusimha, Satyan; Carrion, Vivien; Mathew, Bobby
2016-01-01
Background The 2010 neonatal resuscitation program (NRP) guidelines incorporate ventilation corrective steps (using the mnemonic – MRSOPA) into the resuscitation algorithm. The perception of neonatal providers, time taken to perform these maneuvers or the effectiveness of these additional steps has not been evaluated. Methods Using two simulated clinical scenarios of varying degrees of cardiovascular compromise –perinatal asphyxia with (i) bradycardia (heart rate – 40 min−1) and (ii) cardiac arrest, 35 NRP certified providers were evaluated for preference to performing these corrective measures, the time taken for performing these steps and time to onset of chest compressions. Results The average time taken to perform ventilation corrective steps (MRSOPA) was 48.9 ± 21.4 s. Providers were less likely to perform corrective steps and proceed directly to endotracheal intubation in the scenario of cardiac arrest as compared to a state of bradycardia. Cardiac compressions were initiated significantly sooner in the scenario of cardiac arrest 89 ± 24 s as compared to severe bradycardia 122 ± 23 s, p < 0.0001. There were no differences in the time taken to initiation of chest compressions between physicians or mid-level care providers or with the level of experience of the provider. Conclusions Effective ventilation of the lungs with corrective steps using a mask is important in most cases of neonatal resuscitation. Neonatal resuscitators prefer early endotracheal intubation and initiation of chest compressions in the presence of asystolic cardiac arrest. Corrective ventilation steps can potentially postpone initiation of chest compressions and may delay return of spontaneous circulation in the presence of severe cardiovascular compromise. PMID:25796996
Lochbuehler, Kirsten; Tang, Kathy Z.; Souprountchouk, Valentina; Campetti, Dana; Cappella, Joseph N.; Kozlowski, Lynn T.; Strasser, Andrew A.
2016-01-01
Background Tobacco companies have deliberately used explicit and implicit misleading information in marketing campaigns. The aim of the current study was to experimentally investigate whether the editing of explicit and implicit content of a print advertisement improves smokers’ risk beliefs and smokers’ knowledge of explicit and implicit information. Methods Using a 2(explicit/implicit) x 2(accurate/misleading) between-subject design, 203 smokers were randomly assigned to one of four advertisement conditions. The manipulation of graphic content was examined as an implicit factor to convey product harm. The inclusion of a text corrective in the body of the ad was defined as the manipulated explicit factor. Participants’ eye movements and risk beliefs/recall were measured during and after ad exposure, respectively. Results Results indicate that exposure to a text corrective decreases false beliefs about the product (p < .01) and improves correct recall of information provided by the corrective (p < .05). Accurate graphic content did not alter the harmfulness of the product. Independent of condition, smokers who focused longer on the warning label made fewer false inferences about the product (p = .01) and were more likely to correctly recall the warning information (p < .01). Nonetheless, most smokers largely ignored the text warning. Conclusions Embedding a corrective statement in the body of the ad is an effective strategy to convey health information to consumers, which can be mandated under the Tobacco Control Act (2009). Eye-tracking results objectively demonstrate that text-only warnings are not viewed by smokers, thus minimizing their effectiveness for conveying risk information. PMID:27160034
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050
2008073000 2008072900 2008072800 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias | NAEFS Products | NAEFS | EMC Ensemble Products EMC | NCEP | National Weather Service
A BCool survey of the magnetic fields of planet-hosting solar-type stars
NASA Astrophysics Data System (ADS)
Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration
2017-03-01
We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.
NASA Astrophysics Data System (ADS)
Nakhmedov, E.; Mammadova, S.; Alekperov, O.
2016-01-01
A time-reversal invariant topological superconductivity is suggested to be realized in a quasi-one-dimensional structure on a plane, which is fabricated by filling the superconducting materials into the periodic channel of dielectric matrices like zeolite and asbestos under high pressure. The topological superconducting phase sets up in the presence of large spin-orbit interactions when intra-wire s-wave and inter-wire d-wave pairings take place. Kramers pairs of Majorana bound states emerge at the edges of each wire. We analyze effects of the Zeeman magnetic field on Majorana zero-energy states. In-plane magnetic field was shown to make asymmetric the energy dispersion, nevertheless Majorana fermions survive due to protection of a particle-hole symmetry. Tunneling of Majorana quasiparticle from the end of one wire to the nearest-neighboring one yields edge fractional Josephson current with 4π-periodicity.
Chromospheric LAyer SpectroPolarimeter (CLASP2)
NASA Technical Reports Server (NTRS)
Narukage, Noriyuki; Cirtain, Jonathan W.; Ishikawa, Ryoko; Trujillo-Bueno, Javier; De Pontieu, Bart; Kubo, Masahito; Ishikawa, Shinnosuke; Kano, Ryohei; Suematsu, Yoshinori; Yoshida, Masaki;
2016-01-01
The sounding rocket Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) was launched on September 3rd, 2015, and successfully detected (with a polarization accuracy of 0.1 %) the linear polarization signals (Stokes Q and U) that scattering processes were predicted to produce in the hydrogen Lyman-alpha line (Ly; 121.567 nm). Via the Hanle effect, this unique data set may provide novel information about the magnetic structure and energetics in the upper solar chromosphere. The CLASP instrument was safely recovered without any damage and we have recently proposed to dedicate its second ight to observe the four Stokes profiles in the spectral region of the Mg II h and k lines around 280 nm; in these lines the polarization signals result from scattering processes and the Hanle and Zeeman effects. Here we describe the modifications needed to develop this new instrument called the "Chromospheric LAyer SpectroPolarimeter" (CLASP2).
Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport
NASA Astrophysics Data System (ADS)
Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning
2016-09-01
We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.
Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M
2012-11-01
Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.
Magnetic field affects enzymatic ATP synthesis.
Buchachenko, Anatoly L; Kuznetsov, Dmitry A
2008-10-01
The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saur, Sigrun; Frengen, Jomar; Department of Oncology and Radiotherapy, St. Olavs University Hospital, N-7006 Trondheim
Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scansmore » of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.« less
Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC
NASA Astrophysics Data System (ADS)
Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu
2017-10-01
The process pp → μ +ν μ e+νejj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ +ν μ e+νejj final state should be preferably measured together.
Esquinas, Pedro L; Uribe, Carlos F; Gonzalez, M; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna
2017-07-20
The main applications of 188 Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188 Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188 Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188 Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188 Re, although practical, yields only approximate estimates of the true scatter.
Three site Higgsless model at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya
2007-04-01
In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less
Superhorizon electromagnetic field background from Higgs loops in inflation
NASA Astrophysics Data System (ADS)
Kaya, Ali
2018-03-01
If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.
Photometry of the 'Seyfert Sextet' /VV 115/ and the anonymous galaxy 1558.2 + 2100
NASA Technical Reports Server (NTRS)
Martins, D. H.; Chincarini, G.
1976-01-01
Photometric observations of the Seyfert Sextet (VV 115) are analyzed. Apparent integrated magnitudes are derived relative to the sky brightness, and isophotal maps are given for the field. No evidence for interaction between NGC 6027 and d is found. Luminosity profiles are given for NGC 6027, a, b, and d, with the d profile having been corrected for seeing effects in one dimension. The corrected profile parameters favor the interpretation of d as a highly luminous background galaxy at its cosmological distance. The nearby anonymous galaxy 1558.2 + 2100 is similarly studied, with no clear evidence of photometric peculiarities detected. Its interaction with the Seyfert Sextet appears to be excluded.
PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, M.; Walsh, S.J.; Daly, D.S.
2009-01-01
Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The twomore » predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.« less
Nonlinear responses of chiral fluids from kinetic theory
NASA Astrophysics Data System (ADS)
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.