Science.gov

Sample records for zeldovich-von neumann-doring theory

  1. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  2. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  3. A note on derivations of Murray-von Neumann algebras.

    PubMed

    Kadison, Richard V; Liu, Zhe

    2014-02-11

    A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.

  4. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique

  5. Von Neumann was not a Quantum Bayesian.

    PubMed

    Stacey, Blake C

    2016-05-28

    Wikipedia has claimed for over 3 years now that John von Neumann was the 'first quantum Bayesian'. In context, this reads as stating that von Neumann inaugurated QBism, the approach to quantum theory promoted by Fuchs, Mermin and Schack. This essay explores how such a claim is, historically speaking, unsupported. © 2016 The Author(s).

  6. (Never) Mind your p's and q's: Von Neumann versus Jordan on the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Duncan, A.; Janssen, M.

    2013-03-01

    In 1927, in two papers entitled "On a new foundation [Neue Begründung] of quantum mechanics," Pascual Jordan presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. Jordan and Paul Dirac arrived at essentially the same theory independently of one another at around the same time. Later in 1927, partly in response to Jordan and Dirac and avoiding the mathematical difficulties facing their approach, John von Neumann developed the modern Hilbert space formalism of quantum mechanics. We focus on Jordan and von Neumann. Central to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identification of sets of canonically conjugate variables, i.e., p's and q's. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identification of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p's and q's. Jordan and von Neumann also stated the characteristic new rules for probabilities in quantum mechanics somewhat differently. Jordan and Dirac were the first to state those rules in full generality. Von Neumann rephrased them and, in a paper published a few months later, sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by Hilbert, von Neumann, and Nordheim. We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics. This paper was written as part of a joint project in the history of quantum physics of the Max Planck

  7. Von Neumann's impossibility proof: Mathematics in the service of rhetorics

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis

    2017-11-01

    According to what has become a standard history of quantum mechanics, in 1932 von Neumann persuaded the physics community that hidden variables are impossible as a matter of principle, after which leading proponents of the Copenhagen interpretation put the situation to good use by arguing that the completeness of quantum mechanics was undeniable. This state of affairs lasted, so the story continues, until Bell in 1966 exposed von Neumann's proof as obviously wrong. The realization that von Neumann's proof was fallacious then rehabilitated hidden variables and made serious foundational research possible again. It is often added in recent accounts that von Neumann's error had been spotted almost immediately by Grete Hermann, but that her discovery was of no effect due to the dominant Copenhagen Zeitgeist. We shall attempt to tell a story that is more historically accurate and less ideologically charged. Most importantly, von Neumann never claimed to have shown the impossibility of hidden variables tout court, but argued that hidden-variable theories must possess a structure that deviates fundamentally from that of quantum mechanics. Both Hermann and Bell appear to have missed this point; moreover, both raised unjustified technical objections to the proof. Von Neumann's argument was basically that hidden-variables schemes must violate the ;quantum principle; that physical quantities are to be represented by operators in a Hilbert space. As a consequence, hidden-variables schemes, though possible in principle, necessarily exhibit a certain kind of contextuality. As we shall illustrate, early reactions to Bohm's theory are in agreement with this account. Leading physicists pointed out that Bohm's theory has the strange feature that pre-existing particle properties do not generally reveal themselves in measurements, in accordance with von Neumann's result. They did not conclude that the ;impossible was done; and that von Neumann had been shown wrong.

  8. A double commutant theorem for Murray–von Neumann algebras

    PubMed Central

    Liu, Zhe

    2012-01-01

    Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165

  9. Clarifying the link between von Neumann and thermodynamic entropies

    NASA Astrophysics Data System (ADS)

    Deville, Alain; Deville, Yannick

    2013-01-01

    The state of a quantum system being described by a density operator ρ, quantum statistical mechanics calls the quantity - kTr( ρln ρ), introduced by von Neumann, its von Neumann or statistical entropy. A 1999 Shenker's paper initiated a debate about its link with the entropy of phenomenological thermodynamics. Referring to Gibbs's and von Neumann's founding texts, we replace von Neumann's 1932 contribution in its historical context, after Gibbs's 1902 treatise and before the creation of the information entropy concept, which places boundaries into the debate. Reexamining von Neumann's reasoning, we stress that the part of his reasoning implied in the debate mainly uses thermodynamics, not quantum mechanics, and identify two implicit postulates. We thoroughly examine Shenker's and ensuing papers, insisting upon the presence of open thermodynamical subsystems, imposing us the use of the chemical potential concept. We briefly mention Landau's approach to the quantum entropy. On the whole, it is shown that von Neumann's viewpoint is right, and why Shenker's claim that von Neumann entropy "is not the quantum-mechanical correlate of thermodynamic entropy" can't be retained.

  10. Koopman-von Neumann formulation of classical Yang-Mills theories: I

    NASA Astrophysics Data System (ADS)

    Carta, P.; Gozzi, E.; Mauro, D.

    2006-03-01

    In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.

  11. Measurements in Quantum Mechanics and von NEUMANN's Model

    NASA Astrophysics Data System (ADS)

    Mello, Pier A.; Johansen, Lars M.

    2010-12-01

    Many textbooks on Quantum Mechanics are not very precise as to the meaning of making a measurement: as a consequence, they frequently make assertions which are not based on a dynamical description of the measurement process. A model proposed by von Neumann allows a dynamical description of measurement in Quantum Mechanics, including the measuring instrument in the formalism. In this article we apply von Neumann's model to illustrate the measurement of an observable by means of a measuring instrument and show how various results, which are sometimens postulated without a dynamical basis, actually emerge. We also investigate the more complex, intriguing and fundamental problem of two successive measurements in Quantum Mechanics, extending von Neumann's model to two measuring instruments. We present a description which allows obtaining, in a unified way, various results that have been given in the literature.

  12. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  13. Design and Testing of an H2/O2 Predetonator for a Simulated Rotating Detonation Engine Channel

    DTIC Science & Technology

    2013-03-01

    Diameter PDE Pulse Detonation Engines RDE Rotating Detonation Engine WPAFB Wright Patterson Air Force Base ZND Zeldovich, von Neumann and Doring xv...DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL THESIS Stephen J. Miller, 2Lt, USAF AFIT-ENY-13-M-23...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-M-23 DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL Stephen

  14. Molecular quantum control landscapes in von Neumann time-frequency phase space

    NASA Astrophysics Data System (ADS)

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J.

    2010-10-01

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  15. Molecular quantum control landscapes in von Neumann time-frequency phase space.

    PubMed

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J

    2010-10-28

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  16. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  17. The smooth entropy formalism for von Neumann algebras

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  18. The smooth entropy formalism for von Neumann algebras

    SciTech Connect

    Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  19. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    NASA Astrophysics Data System (ADS)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present

  20. Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan

    2017-06-01

    Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.

  1. Contiguity and Entire Separability of States on von Neumann Algebras

    NASA Astrophysics Data System (ADS)

    Haliullin, Samigulla

    2017-12-01

    We introduce the notions of the contiguity and entirely separability for two sequences of states on von Neumann algebras. The ultraproducts technique allows us to reduce the study of the contiguity to investigation of the equivalence for two states. Here we apply the Ocneanu ultraproduct and the Groh-Raynaud ultraproduct (see Ocneanu (1985), Groh (J. Operator Theory, 11, 2, 395-404 1984), Raynaud (J. Operator Theory, 48, 1, 41-68, 2002), Ando and Haagerup (J. Funct. Anal., 266, 12, 6842-6913, 2014)), as well as the technique developed in Mushtari and Haliullin (Lobachevskii J. Math., 35, 2, 138-146, 2014).

  2. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  3. Spin torque oscillator neuroanalog of von Neumann's microwave computer.

    PubMed

    Hoppensteadt, Frank

    2015-10-01

    Frequency and phase of neural activity play important roles in the behaving brain. The emerging understanding of these roles has been informed by the design of analog devices that have been important to neuroscience, among them the neuroanalog computer developed by O. Schmitt and A. Hodgkin in the 1930s. Later J. von Neumann, in a search for high performance computing using microwaves, invented a logic machine based on crystal diodes that can perform logic functions including binary arithmetic. Described here is an embodiment of his machine using nano-magnetics. Electrical currents through point contacts on a ferromagnetic thin film can create oscillations in the magnetization of the film. Under natural conditions these properties of a ferromagnetic thin film may be described by a nonlinear Schrödinger equation for the film's magnetization. Radiating solutions of this system are referred to as spin waves, and communication within the film may be by spin waves or by directed graphs of electrical connections. It is shown here how to formulate a STO logic machine, and by computer simulation how this machine can perform several computations simultaneously using multiplexing of inputs, that this system can evaluate iterated logic functions, and that spin waves may communicate frequency, phase and binary information. Neural tissue and the Schmitt-Hodgkin, von Neumann and STO devices share a common bifurcation structure, although these systems operate on vastly different space and time scales; namely, all may exhibit Andronov-Hopf bifurcations. This suggests that neural circuits may be capable of the computational functionality as described by von Neumann. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. zeldovich-PLT: Zel'dovich approximation initial conditions generator

    NASA Astrophysics Data System (ADS)

    Eisenstein, Daniel; Garrison, Lehman

    2016-05-01

    zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.

  5. Interpolatability distinguishes LOCC from separable von Neumann measurements

    SciTech Connect

    Childs, Andrew M.; Leung, Debbie; Mančinska, Laura

    2013-11-15

    Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.

  6. Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case

    USGS Publications Warehouse

    Haney, M.M.

    2007-01-01

    Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.

  7. Gravity Effects in Diffusive Coarsening of Bubble Lattices: von Neumann's Law

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    von Neumann modelled the evolution of two-dimensional soap froths as a purely diffusive phenomenon; the area growth of a given cell was found to depend only on the geometry of the bubble lattice. In the model, hexagons are stable, pentagons shrink and heptagons grow. The simplest equivalent to the area growth law is / approximately t(sub beta). The result depends on assuming (1) an incompressible gas; (2) bubble walls which meet at 120 deg and (3) constant wall thickness and curvature. Each assumption is borne out in experiments except the last one: bubble wall thickness between connecting cells varies in unit gravity because of gravity drainage. The bottom part of the soap membrane is thickened, the top part is thinned, such that gas diffusion across the membrane shows a complex dependence on gravity. As a result, experimental tests of von Neumann's law have been influenced by effects of gravity; fluid behavior along cell borders can give non-uniform wall thicknesses and thus alter the effective area and gas diffusion rates between adjacent bubbles. For area plotted as a function of time, Glazier (J.A. Glazier, S.P. Gross, and I. Stavans, Phys. Rev. A. 36, 306 (1987); J. Stavans, J.A, Glazier, Phys. Rev. Lett. 62, 1318 (1989).) suggest that in some cases their failure to observe von Neumann's predicted growth exponent ((sup beta)theor(sup =1; beta)exp(sup =0.70 + 0.10)) may have been the result of such "fluid drainage onto the lower glass plate". Additional experiments which varied plate spacing gave different beta exponents in a fashion consistent with this suggestion. During preliminary long duration experiments (approximately 100 h) aboard Spacelab-J, a low-gravity test of froth coarsening has examined (1) power law scaling of von Neumann's law (beta values) in the appropriate diffusive limits; (2) new bubble lattice dynamics such as greater fluid wetting behavior on froth membranes in low gravity; and (3) explicit relations for the gravity

  8. From Quantum Fields to Local Von Neumann Algebras

    NASA Astrophysics Data System (ADS)

    Borchers, H. J.; Yngvason, Jakob

    The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.

  9. Book Review: John von Neumann and the foundations of quantum physics. (Vienna Circle Institute yearbook (2000), 8) Miklos Redei and Michael Stoltzner (Eds.); Kluwer Academic Publishers, Dordrecht, 2001, pp., US 125, ISBN 0792368126

    NASA Astrophysics Data System (ADS)

    Lupher, Tracy

    2003-12-01

    Some people may be surprised to learn that John von Neumann's work on the foundations of quantum physics went far beyond what is contained within the pages of his Mathematical Foundations of Quantum Mechanics (MFQM) (von Neumann, 1955). However, this narrow focus often ignores von Neumann's later work on quantum logic and what are now called in his honor, von Neumann algebras. This volume honoring von Neumann's contributions to physics is unique in that, while it contains 12 papers that examine various aspects of von Neumann's work, it also contains two of his previously unpublished papers and some of his previously unpublished correspondence.

  10. Quantitative conditions for time evolution in terms of the von Neumann equation

    NASA Astrophysics Data System (ADS)

    Wang, WenHua; Cao, HuaiXin; Chen, ZhengLi; Wang, Lie

    2018-07-01

    The adiabatic theorem describes the time evolution of the pure state and gives an adiabatic approximate solution to the Schödinger equation by choosing a single eigenstate of the Hamiltonian as the initial state. In quantum systems, states are divided into pure states (unite vectors) and mixed states (density matrices, i.e., positive operators with trace one). Accordingly, mixed states have their own corresponding time evolution, which is described by the von Neumann equation. In this paper, we discuss the quantitative conditions for the time evolution of mixed states in terms of the von Neumann equation. First, we introduce the definitions for uniformly slowly evolving and δ-uniformly slowly evolving with respect to mixed states, then we present a necessary and sufficient condition for the Hamiltonian of the system to be uniformly slowly evolving and we obtain some upper bounds for the adiabatic approximate error. Lastly, we illustrate our results in an example.

  11. von Neumann's Law: Theoretical and Microgravity Experimental Comparison for Coarsening Diffusion in Bubble Lattices

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    The effects of gravity in influencing the theoretical limit for bubble lattice coarsening and aging behavior, otherwise called von Neumann's law, is examined theoretically and experimentally. Preliminary microgravity results will be discussed.

  12. Identification of Langmuir wave turbulence-supercontinuum transition by application of von Neumann entropy

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou

    2017-09-01

    A transition from Langmuir wave turbulence (LWT) to coherent Langmuir wave supercontinuum (LWSC) is identified in one-dimensional particle-in-cell simulations as the emergence of a broad frequency band showing significant temporal coherence of a wave field accompanied by a decrease in the von Neumann entropy of classical wave fields. The concept of the von Neumann entropy is utilized for evaluation of the phase-randomizing degree of the classical wave fields, together with introduction of the density matrix of the wave fields. The transition from LWT to LWSC takes place when the energy per one plasmon (one wave quantum) exceeds a certain threshold. The coherent nature, which Langmuir wave systems acquire through the transition, is created by four wave mixings of the plasmons. The emergence of temporal coherence and the decrease in the phase randomization are considered as the development of long-range order and spontaneous symmetry breaking, respectively, indicating that the LWT-LWSC transition is a second order phase transition phenomenon.

  13. John von Neumann and Klaus Fuchs: an Unlikely Collaboration

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    2010-03-01

    I discuss the origin of the idea of making a fusion (hydrogen) bomb and the physics involved in it, and then turn to the design proposed for one by the unlikely collaborators John von Neumann and Klaus Fuchs in a patent application they filed at Los Alamos in May 1946, which Fuchs passed on to the Russians in March 1948, and which with substantial modifications was tested on the island of Eberiru on the Eniwetok atoll in the South Pacific on May 8, 1951. This test showed that the fusion of deuterium and tritium nuclei could be ignited, but that the ignition would not propagate because the heat produced was rapidly radiated away. Meanwhile, Stanislaw Ulam and C.J. Everett had shown that Edward Teller’s Classical Super could not work, and at the end of December 1950, Ulam had conceived the idea of super compression, using the energy of a fission bomb to compress the fusion fuel to such a high density that it would be opaque to the radiation produced. Once Teller understood this, he invented a greatly improved, new method of compression using radiation, which then became the heart of the Ulam-Teller bomb design, which was tested, also in the South Pacific, on November 1, 1952. The Russians have freely acknowledged that Fuchs gave them the fission bomb, but they have insisted that no one gave them the fusion bomb, which grew out of design involving a fission bomb surrounded by alternating layers of fusion and fission fuels, and which they tested on November 22, 1955. Part of the irony of this story is that neither the American nor the Russian hydrogen-bomb programs made any use of the brilliant design that von Neumann and Fuchs had conceived as early as 1946, which could have changed the entire course of development of both programs.

  14. Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space

    SciTech Connect

    Loubenets, Elena R.

    We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence ofmore » this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)].« less

  15. The von Neumann model of measurement in quantum mechanics

    SciTech Connect

    Mello, Pier A.

    2014-01-08

    We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The vonmore » Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.« less

  16. Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems

    DOE PAGES

    Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei; ...

    2017-03-02

    A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less

  17. Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems

    SciTech Connect

    Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei

    A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less

  18. The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Mariantoni, Matteo

    2012-02-01

    Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).

  19. Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Käppeli, Roger

    2017-05-01

    In this paper we focus on the numerical solution of the induction equation using Runge-Kutta Discontinuous Galerkin (RKDG)-like schemes that are globally divergence-free. The induction equation plays a role in numerical MHD and other systems like it. It ensures that the magnetic field evolves in a divergence-free fashion; and that same property is shared by the numerical schemes presented here. The algorithms presented here are based on a novel DG-like method as it applies to the magnetic field components in the faces of a mesh. (I.e., this is not a conventional DG algorithm for conservation laws.) The other two novel building blocks of the method include divergence-free reconstruction of the magnetic field and multidimensional Riemann solvers; both of which have been developed in recent years by the first author. Since the method is linear, a von Neumann stability analysis is carried out in two-dimensions to understand its stability properties. The von Neumann stability analysis that we develop in this paper relies on transcribing from a modal to a nodal DG formulation in order to develop discrete evolutionary equations for the nodal values. These are then coupled to a suitable Runge-Kutta timestepping strategy so that one can analyze the stability of the entire scheme which is suitably high order in space and time. We show that our scheme permits CFL numbers that are comparable to those of traditional RKDG schemes. We also analyze the wave propagation characteristics of the method and show that with increasing order of accuracy the wave propagation becomes more isotropic and free of dissipation for a larger range of long wavelength modes. This makes a strong case for investing in higher order methods. We also use the von Neumann stability analysis to show that the divergence-free reconstruction and multidimensional Riemann solvers are essential algorithmic ingredients of a globally divergence-free RKDG-like scheme. Numerical accuracy analyses of the RKDG

  20. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  1. Boundaries, kinetic properties, and final domain structure of plane discrete uniform Poisson-Voronoi tessellations with von Neumann neighborhoods.

    PubMed

    Korobov, A

    2009-03-01

    Discrete random tessellations appear not infrequently in describing nucleation and growth transformations. Generally, several non-Euclidean metrics are possible in this case. Previously [A. Korobov, Phys. Rev. B 76, 085430 (2007)] continual analogs of such tessellations have been studied. Here one of the simplest discrete varieties of the Kolmogorov-Johnson-Mehl-Avrami model, namely, the model with von Neumann neighborhoods, has been examined per se, i.e., without continualization. The tessellation is uniform in the sense that domain boundaries consist of tiles. Similarities and distinctions between discrete and continual models are discussed.

  2. Logo and Von Neumann Ideas [and] Towards a Humanistic Use of Computers in Education = Hacia una insercion humanista de las computadoras en la educacion.

    ERIC Educational Resources Information Center

    Reggini, Horacio C.

    The first article, "LOGO and von Neumann Ideas," deals with the creation of new procedures based on procedures defined and stored in memory as LOGO lists of lists. This representation, which enables LOGO procedures to construct, modify, and run other LOGO procedures, is compared with basic computer concepts first formulated by John von…

  3. Measurement theory in local quantum physics

    SciTech Connect

    Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp

    In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less

  4. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    PubMed

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical and computer models of detonation in solid explosives

    SciTech Connect

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  6. Accessible Information Without Disturbing Partially Known Quantum States on a von Neumann Algebra

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    This paper addresses the problem of how much information we can extract without disturbing a statistical experiment, which is a family of partially known normal states on a von Neumann algebra. We define the classical part of a statistical experiment as the restriction of the equivalent minimal sufficient statistical experiment to the center of the outcome space, which, in the case of density operators on a Hilbert space, corresponds to the classical probability distributions appearing in the maximal decomposition by Koashi and Imoto (Phys. Rev. A 66, 022,318 2002). We show that we can access by a Schwarz or completely positive channel at most the classical part of a statistical experiment if we do not disturb the states. We apply this result to the broadcasting problem of a statistical experiment. We also show that the classical part of the direct product of statistical experiments is the direct product of the classical parts of the statistical experiments. The proof of the latter result is based on the theorem that the direct product of minimal sufficient statistical experiments is also minimal sufficient.

  7. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  8. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  9. The Osher scheme for non-equilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.

  10. Ergodic theorem, ergodic theory, and statistical mechanics

    PubMed Central

    Moore, Calvin C.

    2015-01-01

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  11. Towards a wave theory of charged beam transport: A collection of thoughts

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Mari, C.; Torre, A.

    1992-01-01

    We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.

  12. Hydrazine vapor detonations

    NASA Technical Reports Server (NTRS)

    Pedley, M. D.; Bishop, C. V.; Benz, F. J.; Bennett, C. A.; Mcclenagan, R. D.

    1988-01-01

    The detonation velocity and cell widths for hydrazine decomposition were measured over a wide range of temperatures and pressures. The detonation velocity in pure hydrazine was within 5 percent of the calculated C-J velocity. The detonation cell width measurements were interpreted using the Zeldovich-Doering-von Neumann model with a detailed reaction mechanism for hydrazine decomposition. Excellent agreement with experimental data for pure hydrazine was obtained using the empirical relation that detonation cell width was equal to 29 times the kinetically calculated reaction zone length.

  13. Detonation waves in pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Breithaupt, R. Don; Kury, John W.

    1997-06-01

    Fabry-Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry-Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman-Jouguet (C-J) model of detonation, and the reaction product Jones-Wilkins-Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich-von Neumann-Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure.

  14. Cosmological collapse and the improved Zel'dovich approximation.

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.

    Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.

  15. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  16. Ya.B. Zel''dovich (1914-1987). Chemist, Nuclear Physicist, Cosmologist

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2011-06-01

    A scientific biography of the outstanding Soviet Chemist, Physicist and Cosmologist Yakov Borisovich Zeldovich (1914-1987) has been given by one of his pupils. A special concern has been given to cosmological works by Zel'dovich. Figures 4,Bibliography: 9.

  17. Detonability of hydrocarbon fuels in air

    NASA Technical Reports Server (NTRS)

    Beeson, H. D.; Mcclenagan, R. D.; Bishop, C. V.; Benz, F. J.; Pitz, W. J.; Westbrook, C. K.; Lee, J. H. S.

    1991-01-01

    Studies were conducted of the detonation of gas-phase mixtures of n-hexane and JP-4, with oxidizers as varied as air and pure oxygen, measuring detonation velocities and cell sizes as a function of stoichiometry and diluent concentration. The induction length of a one-dimensional Zeldovich-von Neumann-Doering detonation was calculated on the basis of a theoretical model that employed the reaction kinetics of the hydrocarbon fuels used. Critical energy and critical tube diameter are compared for a relative measure of the heavy hydrocarbon fuels studied; detonation sensitivity appears to increase slightly with increasing carbon number.

  18. Detonation waves in pentaerythritol tetranitrate

    SciTech Connect

    Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.

    1997-06-01

    Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguetmore » (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}« less

  19. On the Restricted Toda and c-KdV Flows of Neumann Type

    NASA Astrophysics Data System (ADS)

    Zhou, RuGuang; Qiao, ZhiJun

    2000-09-01

    It is proven that on a symplectic submanifold the restricted c-KdV flow is just the interpolating Hamiltonian flow of invariant for the restricted Toda flow, which is an integrable symplectic map of Neumann type. They share the common Lax matrix, dynamical r-matrix and system of involutive conserved integrals. Furthermore, the procedure of separation of variables is considered for the restricted c-KdV flow of Neumann type. The project supported by the Chinese National Basic Research Project "Nonlinear Science" and the Doctoral Programme Foundation of Institution of High Education of China. The first author also thanks the National Natural Science Foundation of China (19801031) and "Qinglan Project" of Jiangsu Province of China; and the second author also thanks the Alexander von Humboldt Fellowships, Deutschland, the Special Grant of Excellent Ph. D Thesis of China, the Science & Technology Foundation (Youth Talent Foundation) and the Science Research Foundation of Education Committee of Liaoning Province of China.

  20. Non-von Neumann computing using plasmon particles interacting with phase change materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saiki, Toshiharu

    2016-09-01

    Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.

  1. Gregory Bateson and the mathematicians: from interdisciplinary interaction to societal functions.

    PubMed

    Heims, S P

    1977-04-01

    An instance of fruitful cross-disciplinary contacts is examined in detail. The ideas involved include (1) the double-blind hypothesis for schizophrenia, (2) the critique of game theory from the viewpoint of anthropology and psychiatry, and (3) the application of concepts of communication theory and theory of logical types to an interpretation of psychoanalytic practice. The protagonists of the interchange are Gregory Bateson and the two mathematicians Norbert Wiener and John von Neumann; the date, March 1946. This interchange and its sequels are described. While the interchanges between Bateson and Wiener were fruitful, those between Bateson and von Neumann were much less so. The latter two held conflicting premises concerning what is significant in science; Bateson's and Wiener's were compatible. In 1946, Wiener suggested that information and communication might be appropriate central concepts for psychoanalytic theory--a vague general idea which Bateson (with Ruesch) related to contemporary clinical practice. For Bateson, Wiener, and von Neumann, the cross-disciplinary interactions foreshadowed a shift in activities and new roles in society, to which the post World War II period was conducive. Von Neumann became a high-level government advisor; Wiener, an interpreter of science and technology for the general public; and Bateson a counter-culture figure.

  2. Toward an Extension of Decision Analysis to Competitive Situations.

    DTIC Science & Technology

    1985-12-01

    order to deal with competition may ease the use of non- von Neumann-Morgenstern utility. This leads to our secondary goal of questioning expected...While von WInterfeldt [1980] attempted a 5 (more detailed analysis using three separate decision trees, one for each side In the dispute, he felt that...rationality generally used In game theory derives from the same roots as the calculated rationality of Decision Analysis, von Neumann and

  3. Dynamics of open quantum systems by interpolation of von Neumann and classical master equations, and its application to quantum annealing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Tadashi

    2018-02-01

    We propose a method to interpolate dynamics of von Neumann and classical master equations with an arbitrary mixing parameter to investigate the thermal effects in quantum dynamics. The two dynamics are mixed by intervening to continuously modify their solutions, thus coupling them indirectly instead of directly introducing a coupling term. This maintains the quantum system in a pure state even after the introduction of thermal effects and obtains not only a density matrix but also a state vector representation. Further, we demonstrate that the dynamics of a two-level system can be rewritten as a set of standard differential equations, resulting in quantum dynamics that includes thermal relaxation. These equations are equivalent to the optical Bloch equations at the weak coupling and asymptotic limits, implying that the dynamics cause thermal effects naturally. Numerical simulations of ferromagnetic and frustrated systems support this idea. Finally, we use this method to study thermal effects in quantum annealing, revealing nontrivial performance improvements for a spin glass model over a certain range of annealing time. This result may enable us to optimize the annealing time of real annealing machines.

  4. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  5. Yakov Zeldovich and the Cosmic Web Paradigm

    NASA Astrophysics Data System (ADS)

    Einasto, Jaan

    2016-10-01

    I discuss the formation of the modern cosmological paradigm. In more detail I describe the early study of dark matter and cosmic web and the role of Yakov Zeldovich in the formation of the present concepts on these subjects.

  6. Pauli-Zeldovich cancellation of the vacuum energy divergences, auxiliary fields and supersymmetry

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Starobinsky, Alexei A.; Tronconi, Alessandro; Vardanyan, Tereza; Venturi, Giovanni

    2018-03-01

    We have considered the Pauli-Zeldovich mechanism for the cancellation of the ultraviolet divergences in vacuum energy. This mechanism arises because bosons and fermions give contributions of the opposite signs. In contrast with the preceding papers devoted to this topic wherein mainly free fields were studied, here we have taken their interactions into account to the lowest order of perturbation theory. We have constructed some simple toy models having particles with spin 0 and spin 1 / 2, where masses of the particles are equal while the interactions can be quite non-trivial.

  7. Fuglede–Kadison determinant: theme and variations

    PubMed Central

    de la Harpe, Pierre

    2013-01-01

    We review the definition of determinants for finite von Neumann algebras, due to Fuglede and Kadison [Fuglede B, Kadison R (1952) Ann Math 55:520–530], and a generalization for appropriate groups of invertible elements in Banach algebras, from a paper by Skandalis and the author (1984). After some discussion of K-theory and Whitehead torsion, we indicate the relevance of these determinants to the study of -torsion in topology. Contents are as follows:1. The classical setting.2. On von Neumann algebras and traces.3. Fuglede–Kadison determinant for finite von Neumann algebras.4. Motivating question.5. Brief reminder of , , , and Bott periodicity.6. Revisiting the Fuglede–Kadison and other determinants.7. On Whitehead torsion.8. A few lines on -torsion. PMID:24082099

  8. The Zeldovich approximation and wide-angle redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.

  9. Ya B Zeldovich and nuclear power

    NASA Astrophysics Data System (ADS)

    Ponomarev, L. I.

    2014-03-01

    The idea on a homogeneous nuclear reactor, first suggested by Ya B Zeldovich and Yu B Khariton in 1939, has since had its ups and downs and is now re-emerging, enriched with the knowledge and experience accumulated over the years having past. One of the current versions of the idea, the fast molten-salt reactor with a U-Pu fuel cycle, is presented in this paper.

  10. Miracles Take a Little Longer: Science, Commercialisation, Cures and the Dore Program

    ERIC Educational Resources Information Center

    Stephenson, Jennifer; Wheldall, Kevin

    2008-01-01

    In this article, the evidence regarding a proposed "cure" for dyslexia and other, arguably related, conditions is examined critically. The origins and history of the Dore program and its progenitors, its introduction to Australia and its advertising claims are reviewed, with a focus on the claims made with regard to dyslexia, and…

  11. The correspondence between Erich Neumann and C.G. Jung on the occasion of the November, progroms 1938 [corrected].

    PubMed

    Löwe, Angelica

    2015-06-01

    In the light of recently-published correspondence between Jung and Neumann, this paper considers and connects two aspects of their relationship: Jung's theory of an ethno-specific differentiation of the unconscious as formulated in 1934, and the relationship between Jung and Neumann at the beginning of the Holocaust in 1938-with Jung as the wise old man and a father figure on one hand, and Neumann as the apprentice and dependent son on the other. In examining these two issues, a detailed interpretation of four letters, two by Neumann and two by Jung, written in 1938 and 1939, is given. Neumann's reflections on the collective Jewish determination in the face of the November pogroms in 1938 led Jung to modify his view, with relativization and secularization of his former position. This shift precipitated a deep crisis with feelings of disorientation and desertion in Neumann; the paper discusses how a negative father complex was then constellated and imaged in a dream. After years of silence, the two men were able to renew the deep bonds that characterized their lifelong friendship. © 2015, The Society of Analytical Psychology.

  12. Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. III. Polarization Effect

    NASA Astrophysics Data System (ADS)

    Itoh, Naoki; Nozawa, Satoshi; Kohyama, Yasuharu

    2000-04-01

    We extend the formalism of relativistic thermal and kinematic Sunyaev-Zeldovich effects and include the polarization of the cosmic microwave background photons. We consider the situation of a cluster of galaxies moving with a velocity β≡v/c with respect to the cosmic microwave background radiation. In the present formalism, polarization of the scattered cosmic microwave background radiation caused by the proper motion of a cluster of galaxies is naturally derived as a special case of the kinematic Sunyaev-Zeldovich effect. The relativistic corrections are also included in a natural way. Our results are in complete agreement with the recent results of relativistic corrections obtained by Challinor, Ford, & Lasenby with an entirely different method, as well as the nonrelativistic limit obtained by Sunyaev & Zeldovich. The relativistic correction becomes significant in the Wien region.

  13. Harmonic oscillator representation in the theory of scattering and nuclear reactions

    NASA Technical Reports Server (NTRS)

    Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.

    1995-01-01

    The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.

  14. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  15. Elisabeth Noelle-Neumann's "Spiral of Silence" and the Historical Context of Communication Theory.

    ERIC Educational Resources Information Center

    Simpson, Christopher

    1996-01-01

    Examines the work and the life of German public opinion expert Elisabeth Noelle-Neumann. Shows that the attitudes and analytic tools she forged during her youth and brought to bear in her work as a Nazi Collaborator and apologist shaped her later thinking, including her articulation of the "spiral of silence" model of mass communication…

  16. Prof. Hanna Neumann's Inaugural Presidential Address, 1966

    ERIC Educational Resources Information Center

    Neumann, Hanna

    2017-01-01

    Prof. Hanna Neumann gave the Presidential Address at Australian Association of Mathematics Teachers inaugural conference in 1966. The conference was held at Monash University and had the theme of "mathematical unity". In this address, Prof. Neumann described some features of the teaching of mathematics in schools. While she did not know…

  17. Thermodynamics and the structure of quantum theory

    NASA Astrophysics Data System (ADS)

    Krumm, Marius; Barnum, Howard; Barrett, Jonathan; Müller, Markus P.

    2017-04-01

    Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference.

  18. Zeldovich pancakes in observational data are cold

    SciTech Connect

    Brinckmann, Thejs; Lindholmer, Mikkel; Hansen, Steen

    The present day universe consists of galaxies, galaxy clusters, one-dimensional filaments and two-dimensional sheets or pancakes, all of which combine to form the cosmic web. The so called ''Zeldovich pancakes' are very difficult to observe, because their overdensity is only slightly greater than the average density of the universe. Falco et al. [1] presented a method to identify Zeldovich pancakes in observational data, and these were used as a tool for estimating the mass of galaxy clusters. Here we expand and refine that observational detection method. We study two pancakes on scales of 10 Mpc, identified from spectroscopically observed galaxiesmore » near the Coma cluster, and compare with twenty numerical pancakes.We find that the observed structures have velocity dispersions of about 100 km/sec, which is relatively low compared to typical groups and filaments. These velocity dispersions are consistent with those found for the numerical pancakes. We also confirm that the identified structures are in fact two-dimensional structures. Finally, we estimate the stellar to total mass of the observational pancakes to be 2 · 10{sup −4}, within one order of magnitude, which is smaller than that of clusters of galaxies.« less

  19. [Award of the Salomon-Neumann-Medal 2017 - Speech of the Laureate Prof. Bernt-Peter Robra, 5 September 2017, St. Peter´s Church Lübeck].

    PubMed

    Robra, Bernt-Peter

    2018-02-19

    The Salomon-Neumann-Medal 2017 of the German Society for Social Medicine and Prevention (DGSMP) was awarded to Bernt-Peter Robra, Institute for Social Medicine and Health Economics (ISMG) of the Otto von Guericke University Magdeburg. The person and scientific merits of Manfred Pflanz are valued and topics of the masterplan2020-process are highlighted, that offer chances for developments in medicine and public health. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  1. A Neumann boundary term for gravity

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-05-01

    The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well-defined, but no such general term seems to be known for Neumann boundary conditions. In this paper, we view Neumann not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions, this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions, the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We argue that in light of AdS/CFT, ours is a natural approach for defining a “microcanonical” path integral for gravity in the spirit of the (pre-AdS/CFT) work of Brown and York.

  2. Analyzing Von Neumann machines using decentralized symmetries

    NASA Astrophysics Data System (ADS)

    Fang, Jie

    2013-10-01

    The artificial intelligence method to e-business is defined not only by the study of fiber-optic cables, but also by the unproven need for vacuum tubes. Given the current status of virtual archetypes, theorists clearly desire the exploration of semaphores, which embodies the compelling principles of cryptoanalysis. We present an algorithm for probabilistic theory (Buck), which we use to disprove that write-back caches can be made decentralized, lossless, and reliable.

  3. Jacobi spectral Galerkin method for elliptic Neumann problems

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.; Abd-Elhameed, W.

    2009-01-01

    This paper is concerned with fast spectral-Galerkin Jacobi algorithms for solving one- and two-dimensional elliptic equations with homogeneous and nonhomogeneous Neumann boundary conditions. The paper extends the algorithms proposed by Shen (SIAM J Sci Comput 15:1489-1505, 1994) and Auteri et al. (J Comput Phys 185:427-444, 2003), based on Legendre polynomials, to Jacobi polynomials with arbitrary α and β. The key to the efficiency of our algorithms is to construct appropriate basis functions with zero slope at the endpoints, which lead to systems with sparse matrices for the discrete variational formulations. The direct solution algorithm developed for the homogeneous Neumann problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.

  4. Detonation initiation of heterogeneous melt-cast high explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, V.; Baudin, G.; Lefrançois, A.; Genetier, M.; Barbarin, Y.; Jacquet, L.; Lhopitault, J.-L.; Peix, J.; Boulanger, R.; Catoire, L.

    2017-01-01

    2,4,6-trinitrotoluene (TNT) is widely used in conventional and insensitive munitions as a fusible binder, commonly melt-cast with other explosives such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) or 3-nitro-1,2,4-triazol-one (NTO). In this paper, we study the shock-to-detonation transition phenomenon in two melt-cast high explosives (HE). We have performed plate impact tests on wedge samples to measure run-distance and time-to-detonation in order to establish the Pop-plot relation for several melt-cast HE. Highlighting the existence of the single curve buildup, we propose a two phase model based on a Zeldovich, Von-Neumann, Döring (ZND) approach where the deflagration fronts grow from the explosive grain boundaries. Knowing the grain size distribution, we calculate the deflagration velocities of the explosive charges as a function of shock pressure and explore the possible grain fragmentation.

  5. Boundary Korn Inequality and Neumann Problems in Homogenization of Systems of Elasticity

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Shen, Zhongwei; Song, Liang

    2017-06-01

    This paper is concerned with a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients, arising in the theory of homogenization. We establish uniform optimal regularity estimates for solutions of Neumann problems in a bounded Lipschitz domain with L 2 boundary data. The proof relies on a boundary Korn inequality for solutions of systems of linear elasticity and uses a large-scale Rellich estimate obtained in Shen (Anal PDE, arXiv:1505.00694v2).

  6. Infinite index extensions of local nets and defects

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Simone; Giorgetti, Luca

    The subfactor theory provides a tool to analyze and construct extensions of Quantum Field Theories, once the latter are formulated as local nets of von Neumann algebras. We generalize some of the results of [62] to the case of extensions with infinite Jones index. This case naturally arises in physics, the canonical examples are given by global gauge theories with respect to a compact (non-finite) group of internal symmetries. Building on the works of Izumi-Longo-Popa [44] and Fidaleo-Isola [30], we consider generalized Q-systems (of intertwiners) for a semidiscrete inclusion of properly infinite von Neumann algebras, which generalize ordinary Q-systems introduced by Longo [58] to the infinite index case. We characterize inclusions which admit generalized Q-systems of intertwiners and define a braided product among the latter, hence we construct examples of QFTs with defects (phase boundaries) of infinite index, extending the family of boundaries in the grasp of [7].

  7. Game theory in epigenetic reprogramming. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Hsu, Fei-Man; Chen, Pao-Yang

    2017-03-01

    Von Neumann and Morgenstern published the Theory of Games and Economic Behavior in 1944, describing game theory as a model in which intelligent rational decision-makers manage to find their best strategies in conflict, cooperative or other mutualistic relationships to acquire the greatest benefit [1]. This model was subsequently incorporated in ecology to simulate the ;fitness; of a species during natural selection, designated evolutionary game theory (EGT) [2]. Wang et al. proposed ;epiGame;, taking paternal and maternal genomes as ;intelligent; players that compete, cooperate or both during embryogenesis to maximize the fitness of the embryo [3]. They further extended game theory to an individual or single cell environment. During early zygote development, DNA methylation is reprogrammed such that the paternal genome is demethylated before the maternal genome. After the reset, the blastocyst is re-methylated during embryogenesis. At that time, the paternal and maternal genomes have a conflict of interest related to the expression of their own genes. The proposed epiGame models such interactive regulation between the parental genomes to reach a balance for embryo development (equation (2)).

  8. A Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2014-09-01

    In quantum mechanics, the selfadjoint Hilbert space operators play a triple role as observables, generators of the dynamical groups and statistical operators defining the mixed states. One might expect that this is typical of Hilbert space quantum mechanics, but it is not. The same triple role occurs for the elements of a certain ordered Banach space in a much more general theory based upon quantum logics and a conditional probability calculus (which is a quantum logical model of the Lueders-von Neumann measurement process). It is shown how positive groups, automorphism groups, Lie algebras and statistical operators emerge from one major postulate - the non-existence of third-order interference (third-order interference and its impossibility in quantum mechanics were discovered by R. Sorkin in 1994). This again underlines the power of the combination of the conditional probability calculus with the postulate that there is no third-order interference. In two earlier papers, its impact on contextuality and nonlocality had already been revealed.

  9. Theory of Mach reflection of detonation at glancing incidence

    SciTech Connect

    Bdzil, John Bohdan; Short, Mark

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  10. Theory of Mach reflection of detonation at glancing incidence

    DOE PAGES

    Bdzil, John Bohdan; Short, Mark

    2016-12-06

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  11. A learnable parallel processing architecture towards unity of memory and computing

    NASA Astrophysics Data System (ADS)

    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.

    2015-08-01

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  12. A learnable parallel processing architecture towards unity of memory and computing.

    PubMed

    Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J

    2015-08-14

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  13. Ludwig von Bertalanffy's organismic view on the theory of evolution.

    PubMed

    Drack, Manfred

    2015-03-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.

  14. Topos quantum theory on quantization-induced sheaves

    SciTech Connect

    Nakayama, Kunji, E-mail: nakayama@law.ryukoku.ac.jp

    2014-10-15

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-basedmore » expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.« less

  15. Determination of Cluster Distances from Chandra Imaging Spectroscopy and Sunyaev-Zeldovich Effect Measurements. I; Analysis Methods and Initial Results

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.

  16. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  17. Universal Local Symmetries and Nonsuperposition in Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Gozzi, Ennio; Pagani, Carlo

    2010-10-01

    In the Hilbert space formulation of classical mechanics, pioneered by Koopman and von Neumann, there are potentially more observables than in the standard approach to classical mechanics. In this Letter, we show that actually many of those extra observables are not invariant under a set of universal local symmetries which appear once the Koopman and von Neumann formulation is extended to include the evolution of differential forms. Because of their noninvariance, those extra observables have to be removed. This removal makes the superposition of states in the Koopman and von Neumann formulation, and as a consequence also in classical mechanics, impossible.

  18. Optical Identifications of High-Redshift Galaxy Clusters from the Planck Sunyaev-Zeldovich Survey

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Bikmaev, I. F.; Khamitov, I. M.; Zaznobin, I. A.; Khorunzhev, G. A.; Eselevich, M. V.; Afanasiev, V. L.; Dodonov, S. N.; Rubiño-Martín, J.-A.; Aghanim, N.; Sunyaev, R. A.

    2018-05-01

    We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev-Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7-0.9. We used the data of optical observations with the Russian-Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, z ≈ 0.8.

  19. Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster

    NASA Astrophysics Data System (ADS)

    Hughes, John

    2011-10-01

    We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift {z=0.870} counterpart to the famous A?A?bulletA?A? cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.

  20. Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster

    NASA Astrophysics Data System (ADS)

    Hughes, John

    2011-09-01

    We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift (z=0.870) counterpart to the famous ``bullet'' cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.

  1. Singularities at the contact point of two kissing Neumann balls

    NASA Astrophysics Data System (ADS)

    Nazarov, Sergey A.; Taskinen, Jari

    2018-02-01

    We investigate eigenfunctions of the Neumann Laplacian in a bounded domain Ω ⊂Rd, where a cuspidal singularity is caused by a cavity consisting of two touching balls, or discs in the planar case. We prove that the eigenfunctions with all of their derivatives are bounded in Ω ‾, if the dimension d equals 2, but in dimension d ≥ 3 their gradients have a strong singularity O (| x - O|-α), α ∈ (0 , 2 -√{ 2 } ] at the point of tangency O. Our study is based on dimension reduction and other asymptotic procedures, as well as the Kondratiev theory applied to the limit differential equation in the punctured hyperplane R d - 1 ∖ O. We also discuss other shapes producing thinning gaps between touching cavities.

  2. Introduction to Digital Logic Systems for Energy Monitoring and Control Systems.

    DTIC Science & Technology

    1985-05-01

    computer were first set down by Charles Babbage in 1830. An additional criteria was proposed by Von Neumann in 1947. These criteria state: (1) An input means...criteria requirements as set down by Babbage and Von Neumann. The computer equipment ("hardware") and internal operating system ("software

  3. The challenges of editorship: a reflection on editing the Jung-Neumann correspondence.

    PubMed

    Liebscher, Martin

    2016-04-01

    The complete correspondence between C.G. Jung and Erich Neumann was published in 2015. This article attempts to provide insight into the practical task, as well as the theoretical background, of the editing process. The advantages and possibilities of an unabridged edition with an extensive historical contextualization are demonstrated, and compared to the approach of the editors of the Jung Letters and their selection therein of Jung's letters to Neumann. The practical points under consideration include the establishment of the letter corpus, the ascertainment of dates and the chronological arrangement of the letter exchange, as well as the deciphering of handwritten letters. Theoretical aspects under discussion involve the question of the merits of a critical contextualisation and the position of the editor vis-à-vis the research object. The example of the selecting and editing of Jung's letters to Neumann by Aniela Jaffé and Gerhard Adler reveals how drastically the close ties of those editors with Jung, Neumann, and members of the Zurich analytical circles compromised their editorial work at times. The advantage for an editor being able to work from an historical distance is appreciated. © 2016, The Society of Analytical Psychology.

  4. Ludwig von Bertalanffy's Organismic View on the Theory of Evolution

    PubMed Central

    Drack, Manfred

    2015-01-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 77–90, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:25727202

  5. A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics

    SciTech Connect

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-08-26

    In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less

  6. Standing in the gap: ref lections on translating the Jung-Neumann correspondence.

    PubMed

    McCartney, Heather

    2016-04-01

    This paper considers the experience of translating the correspondence between C.G. Jung and Erich Neumann as part of the Philemon series. The translator explores the similarities between analytical work and the task of translation by means of the concepts of the dialectical third and the interactional field. The history and politics of the translation of analytic writing and their consequences for the lingua franca of analysis are discussed. Key themes within the correspondence are outlined, including Jung and Neumann's pre-war exploration of Judaism and the unconscious, the post-war difficulties around the publication of Neumann's Depth Psychology and a New Ethic set against the early years of the C.G. Jung Institute in Zurich, and the development of the correspondents' relationship over time. © 2016, The Society of Analytical Psychology.

  7. Pressure-coupled combustion response model for solid propellants based on Zeldovich-Novozhilov approach

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.; Strand, L. D.

    1987-01-01

    An exact analytical solution is given to the problem of long-time propellant thermal response to a specified pressure oscillation. Coupling to the gas phase is made using the quasisteady Zeldovich-Novozhilov approximation. Explicit linear and lowest order (quadratic) nonlinear expressions for propellant response are obtained from the implicit nonlinear solutions. Using these expressions, response curves are presented for an ammonium perchlorate composite propellant and HMX monopropellant.

  8. The Zel'dovich approximation: key to understanding cosmic web complexity

    NASA Astrophysics Data System (ADS)

    Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien

    2014-02-01

    We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.

  9. The Zeldovich & Adhesion approximations and applications to the local universe

    NASA Astrophysics Data System (ADS)

    Hidding, Johan; van de Weygaert, Rien; Shandarin, Sergei

    2016-10-01

    The Zeldovich approximation (ZA) predicts the formation of a web of singularities. While these singularities may only exist in the most formal interpretation of the ZA, they provide a powerful tool for the analysis of initial conditions. We present a novel method to find the skeleton of the resulting cosmic web based on singularities in the primordial deformation tensor and its higher order derivatives. We show that the A 3 lines predict the formation of filaments in a two-dimensional model. We continue with applications of the adhesion model to visualise structures in the local (z < 0.03) universe.

  10. Quantum leaps in philosophy of mind: Reply to Bourget'scritique

    SciTech Connect

    Stapp, Henry P.

    2004-07-26

    David Bourget has raised some conceptual and technical objections to my development of von Neumann's treatment of the Copenhagen idea that the purely physical process described by the Schroedinger equation must be supplemented by a psychophysical process called the choice of the experiment by Bohr and Process 1 by von Neumann. I answer here each of Bourget's objections.

  11. Carl Neumann versus Rudolf Clausius on the propagation of electrodynamic potentials

    NASA Astrophysics Data System (ADS)

    Archibald, Thomas

    1986-09-01

    In the late 1860's, German electromagnetic theorists employing W. Weber's velocity-dependent force law were forced to confront the issue of energy conservation. One attempt to formulate a conservation law for such forces was due to Carl Neumann, who introduced a model employing retarded potentials in 1868. Rudolf Clausius quickly pointed out certain problems with the physical interpretation of Neumann's mathematical formalism. The debate between the two men continued until the 1880's and illustrates the strictures facing mathematical approaches to physical problems during this prerelativistic, pre-Maxwellian period.

  12. Regular and chaotic dynamics of non-spherical bodies. Zeldovich's pancakes and emission of very long gravitational waves

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-10-01

    > In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.

  13. The Sunyaev-Zeldovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.

    2000-01-01

    We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).

  14. Networked Workstations and Parallel Processing Utilizing Functional Languages

    DTIC Science & Technology

    1993-03-01

    program . This frees the programmer to concentrate on what the program is to do, not how the program is...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially pro- grammed, single processor approach to problem...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially programmed , single processor approach to

  15. Schwarzschild, Martin (1912-97)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astrophysicist, born in Potsdam, Germany, the son of KARL SCHWARZSCHILD, left Germany, became professor at Princeton University. Working with John von Neumann, Schwarzschild used the powers of the newly developed electronic digital computers to work on the theory of stellar structure and evolution. He uncovered phenomena in red giant stars, including how they evolve off the main sequence in the H...

  16. Measuring the World: How theory follows observation (Alexander von Humboldt Medal)

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2015-04-01

    I started my professional career as a hydrologist working for the government of Mozambique. I was responsible for overseeing the hydrological network, the operational hydrology and answering specific questions related to water resources availability and the occurrence of floods. In the late 1970s and early 1980s, the use of telecommunication and computers was still very limited. We had to work with handbooks, lecture notes and consultancy reports, but mostly with our brains. The key to answering a specific question was to go into the field and observe. We measured as much as we could to understand the processes that we observed. I didn't know it at the time, but this perfectly fits in the tradition of Von Humboldt. During my time in Mozambique I surveyed during and after extreme floods, such as the 1984 flood caused by the tropical cyclone Demoina. I surveyed the geometry, hydraulics and salt intrusion of 4 major Mozambican estuaries. And I measured the quality and the quantity of the flows draining onto these estuaries. Having only limited access to the literature, it was a survey without much theoretical guidance. This maybe slowed us down a bit, and sometimes led to inefficient approaches, but scientifically it was a gold mine. Not being biased by established theories is a great advantage. One does not follow onto the well-trodden, but sometimes erroneous, paths of others. After working for 6 years in Mozambique I joined an international consultant, for whom I worked for 6 years in many different countries in Asia, Africa and South America. Although the access to literature and other people's experience was better, I continued the practice of observing before believing. These 12 years of doing hydrology in practice formed the basis for the development of my own theories on hydrological processes, salt intrusion in estuaries, tidal hydraulics and even atmospheric moisture recycling. So when I started on my PhD at the age of 38, I made a completely different start

  17. Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Hamhalter, Jan; Turilova, Ekaterina

    2014-10-01

    It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.

  18. Entanglement entropy between virtual and real excitations in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2018-05-01

    The aim of this work is to introduce the entanglement entropy of real and virtual excitations of fermion and photon fields. By rewriting the generating functional of quantum electrodynamics theory as an inner product between quantum operators, it is possible to obtain quantum density operators representing the propagation of real and virtual particles. These operators are partial traces, where the degrees of freedom traced out are unobserved excitations. Then the von Neumann definition of entropy can be applied to these quantum operators and in particular, for the partial traces taken over by the internal or external degrees of freedom. A universal behavior is obtained for the entanglement entropy for different quantum fields at zeroth order in the coupling constant. In order to obtain numerical results at different orders in the perturbation expansion, the Bloch-Nordsieck model is considered, where it is shown that for some particular values of the electric charge, the von Neumann entropy increases or decreases with respect to the noninteracting case.

  19. Applying the Zel'dovich approximation to general relativity

    NASA Astrophysics Data System (ADS)

    Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.

  20. Metrics for Uncertainty in Organizational Decision-Making

    DTIC Science & Technology

    2006-06-01

    measurement and computational agents. Computational Economics : A Perspective from Computational Intelligence book. S.- H. Chen, Jain, Lakhmi, & Tai...change and development." Annual Review of Psychology 50: 361-386. Von Neumann, J., and Morgenstern, O. (1953). Theory of games and economic ...2006 Interviews versus Field data MI MPU Hanford/HAB (CR: cooperation) Savannah River Site/SAB (MR: competition) ER ER about 7.1% in 2002 ER

  1. Die Kosmogonie Anton von Zachs.

    NASA Astrophysics Data System (ADS)

    Brosche, P.

    In his "Cosmogenische Betrachtungen" (1804), Anton von Zach rediscovered - probably independently - some aspects of the theories of Kant and Laplace. More originally, he envisaged also the consequences of an era of heavy impacts in the early history of the Earth.

  2. Entanglement entropy between real and virtual particles in ϕ4 quantum field theory

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2015-04-01

    The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4 theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln (m0). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a ϕr theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where an interaction occurs.

  3. Quantification of correlations in quantum many-particle systems.

    PubMed

    Byczuk, Krzysztof; Kuneš, Jan; Hofstetter, Walter; Vollhardt, Dieter

    2012-02-24

    We introduce a well-defined and unbiased measure of the strength of correlations in quantum many-particle systems which is based on the relative von Neumann entropy computed from the density operator of correlated and uncorrelated states. The usefulness of this general concept is demonstrated by quantifying correlations of interacting electrons in the Hubbard model and in a series of transition-metal oxides using dynamical mean-field theory.

  4. Cosmological perturbation theory in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew; White, Martin

    2016-01-01

    Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an Script O( 1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth-order Eulerian perturbation theory converges to the Zeldovich approximation as narrow ∞. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.

  5. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  6. Polarized Sunyaev Zel'dovich tomography

    NASA Astrophysics Data System (ADS)

    Deutsch, Anne-Sylvie; Johnson, Matthew C.; Münchmeyer, Moritz; Terrana, Alexandra

    2018-04-01

    Secondary CMB polarization is induced by the late-time scattering of CMB photons by free electrons on our past light cone. This polarized Sunyaev Zel'dovich (pSZ) effect is sensitive to the electrons' locally observed CMB quadrupole, which is sourced primarily by long wavelength inhomogeneities. By combining the remote quadrupoles measured by free electrons throughout the Universe after reionization, the pSZ effect allows us to obtain additional information about large scale modes beyond what can be learned from our own last scattering surface. Here we determine the power of pSZ tomography, in which the pSZ effect is cross-correlated with the density field binned at several redshifts, to provide information about the long wavelength Universe. The signal we explore here is a power asymmetry in the cross-correlation between E or B mode CMB polarization and the density field. We compare this to the cosmic variance limited noise: the random chance to get a power asymmetry in the absence of a large scale quadrupole field. By computing the necessary transfer functions and cross-correlations, we compute the signal-to-noise ratio attainable by idealized next generation CMB experiments and galaxy surveys. We find that a signal-to-noise ratio of ~ 1‑10 is in principle attainable over a significant range of power multipoles, with the strongest signal coming from the first multipoles in the lowest redshift bins. These results prompt further assessment of realistically measuring the pSZ signal and the potential impact for constraining cosmology on large scales.

  7. The Analytic Methods of Operations Research

    DTIC Science & Technology

    1977-01-01

    stock market behavior (Fama, 1970), but few other applications . A 2*1 - --- 41 12. QUEUEING THEORY The study of congestion in service...Behavior," by T. von Neumann and 0. MHrgenstern, and an esoteric j - 2 paperbrtk by Charnes. Cooper, and Henderson on the optimal mixing of peanuKs and...2nd-order conditions, then i X is also globally optimal . This enables one to use local exploration to lead to the global

  8. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  9. Integral Method of Boundary Characteristics: Neumann Condition

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  10. Interpreting quantum coherence through a quantum measurement process

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  11. A Theory of the von Weimarn Rules Governing the Average Size of Crystals Precipitated from a Supersaturated Solution

    NASA Technical Reports Server (NTRS)

    Barlow, Douglas A.; Baird, James K.; Su, Ching-Hua

    2003-01-01

    More than 75 years ago, von Weimarn summarized his observations of the dependence of the average crystal size on the initial relative concentration supersaturation prevailing in a solution from which crystals were growing. Since then, his empirically derived rules have become part of the lore of crystal growth. The first of these rules asserts that the average crystal size measured at the end of a crystallization increases as the initial value of the relative supersaturation decreases. The second rule states that for a given crystallization time, the average crystal size passes through a maximum as a function of the initial relative supersaturation. Using a theory of nucleation and growth due to Buyevich and Mansurov, we calculate the average crystal size as a function of the initial relative supersaturation. We confirm the von Weimarn rules for the case where the nucleation rate is proportional to the third power or higher of the relative supersaturation.

  12. Stability estimate for the aligned magnetic field in a periodic quantum waveguide from Dirichlet-to-Neumann map

    SciTech Connect

    Mejri, Youssef, E-mail: josef-bizert@hotmail.fr; Dép. des Mathématiques, Faculté des Sciences de Bizerte, 7021 Jarzouna; Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur, ENIT BP 37, Le Belvedere, 1002 Tunis

    In this article, we study the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindrical waveguide, by knowledge of the Dirichlet-to-Neumann map. We prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by means of the geometrical optics solutions of the magnetic Schrödinger equation.

  13. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  14. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  15. [Scientific theoretical founding of medicine as a natural science by Hermann von Helmholtz (1821-1894)].

    PubMed

    Neumann, J N

    1994-01-01

    In this study an attempt will be made to discuss the epistemological problems in the theory and practice of modern technical medicine in the writings of Hermann von Helmholz. An inquiry into the relationship between von Helmholtz' thinking and the critical philosophy of Immanuel Kant is followed by the characteristics of von Helmholtz' philosophy of science which he himself called "empirical theory". The question of medicine as a science finally leads to the main problem of medical epistemology, viz., the relationship between theoretical knowledge and practice in medicine. In this context the anthropological dimension is brought into consideration.

  16. Poincaré resonances and the limits of trajectory dynamics.

    PubMed Central

    Petrosky, T; Prigogine, I

    1993-01-01

    In previous papers we have shown that the elimination of the resonance divergences in large Poincare systems leads to complex irreducible spectral representations for the Liouville-von Neumann operator. Complex means that time symmetry is broken and irreducibility means that this representation is implementable only by statistical ensembles and not by trajectories. We consider in this paper classical potential scattering. Our theory applies to persistent scattering. Numerical simulations show quantitative agreement with our predictions. PMID:11607428

  17. Large-scale structure perturbation theory without losing stream crossing

    NASA Astrophysics Data System (ADS)

    McDonald, Patrick; Vlah, Zvonimir

    2018-01-01

    We suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel'dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel'dovich power spectrum (which is exact in 1D up to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.

  18. Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters

    NASA Technical Reports Server (NTRS)

    Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan

    2000-01-01

    We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.

  19. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  20. An Alternate Approach to Axiomatizations of the Von Neumann/Morgenstern Characteristic Function.

    DTIC Science & Technology

    1987-03-01

    I ~Nh/N OROENSTERN C.. CU) STANFORD UNIY CA INST FOR I MATHEMTICAL STUDIES IN THE SOCIAL S.. U0CASFEA A LEWIS ET AL. MAR 87 TR-569 F/0 12/3 M 1111...Research NATIONAL SCIENCE FOUNDATION GRANT DMS-84-10456 THE ECONOMICS SERIES INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES Fourth Floor, Encina...characteristic function of a game - that gives us an intuitive idea of the value of a coalition - is of central importance in the theory of N- person

  1. Maximum and minimum entropy states yielding local continuity bounds

    NASA Astrophysics Data System (ADS)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  2. Early History of BELL'S Theorem Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Clauser, John F.

    Before 1980 it was unfashionable for a physicist to admit that he either did not understand and/or doubted the Truth and/or Orthodoxy of Quantum Mechanics (QM). Contemporary wisdom deemed it impossible that it may lead to incorrect predictions. Thus, it was foolish to suggest that it warranted further testing. Said wisdom proclaimed that nothing would ever be gained by any such pursuit. Bohr had won his debates with Einstein. Von Neumann had proven all other interpretations wrong. That was the end to it! Only an iconoclast dared think otherwise. Here I provide a brief history of some of my encounters with a few fellow iconoclasts, past denizens of a QM doubter's subculture.

  3. Effective theory and breakdown of conformal symmetry in a long-range quantum chain

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Vodola, D.; Pupillo, G.; Gori, G.; Trombettoni, A.

    2016-11-01

    We deal with the problem of studying the symmetries and the effective theories of long-range models around their critical points. A prominent issue is to determine whether they possess (or not) conformal symmetry (CS) at criticality and how the presence of CS depends on the range of the interactions. To have a model, both simple to treat and interesting, where to investigate these questions, we focus on the Kitaev chain with long-range pairings decaying with distance as power-law with exponent α. This is a quadratic solvable model, yet displaying non-trivial quantum phase transitions. Two critical lines are found, occurring respectively at a positive and a negative chemical potential. Focusing first on the critical line at positive chemical potential, by means of a renormalization group approach we derive its effective theory close to criticality. Our main result is that the effective action is the sum of two terms: a Dirac action SD, found in the short-range Ising universality class, and an "anomalous" CS breaking term SAN. While SD originates from low-energy excitations in the spectrum, SAN originates from the higher energy modes where singularities develop, due to the long-range nature of the model. At criticality SAN flows to zero for α > 2, while for α < 2 it dominates and determines the breakdown of the CS. Out of criticality SAN breaks, in the considered approximation, the effective Lorentz invariance (ELI) for every finite α. As α increases such ELI breakdown becomes less and less pronounced and in the short-range limit α → ∞ the ELI is restored. In order to test the validity of the determined effective theory, we compared the two-fermion static correlation functions and the von Neumann entropy obtained from them with the ones calculated on the lattice, finding agreement. These results explain two observed features characteristic of long-range models, the hybrid decay of static correlation functions within gapped phases and the area-law violation

  4. N-point statistics of large-scale structure in the Zel'dovich approximation

    SciTech Connect

    Tassev, Svetlin, E-mail: tassev@astro.princeton.edu

    2014-06-01

    Motivated by the results presented in a companion paper, here we give a simple analytical expression for the matter n-point functions in the Zel'dovich approximation (ZA) both in real and in redshift space (including the angular case). We present numerical results for the 2-dimensional redshift-space correlation function, as well as for the equilateral configuration for the real-space 3-point function. We compare those to the tree-level results. Our analysis is easily extendable to include Lagrangian bias, as well as higher-order perturbative corrections to the ZA. The results should be especially useful for modelling probes of large-scale structure in the linear regime,more » such as the Baryon Acoustic Oscillations. We make the numerical code used in this paper freely available.« less

  5. Trotter's limit formula for the Schrödinger equation with singular potential

    NASA Astrophysics Data System (ADS)

    Nathanson, Ekaterina S.; Jørgensen, Palle E. T.

    2017-12-01

    We discuss the Schrödinger equation with singular potentials. Our focus is non-relativistic Schrödinger operators H with scalar potentials V defined on R d, hence covering such quantum systems as atoms, molecules, and subatomic particles whether free, bound, or localized. By a "singular potential" V, we refer to the case when the corresponding Schrödinger operators H, with their natural minimal domain in L2(R d), are not essentially self-adjoint. Since V is assumed real valued, the corresponding Hermitian symmetric operator H commutes with the conjugation in L2(R d), and so (by von Neumann's theorem), H has deficiency indices (n, n). The case of singular potentials V refers to when n > 0. Hence, by von Neumann's theory, we know the full variety of all the self-adjoint extensions. Since the Trotter formula is restricted to the case when n = 0, and here n > 0, two questions arise: (i) existence of the Trotter limit and (ii) the nature of this limit. We answer (i) affirmatively. Our answer to (ii) is that when n > 0, the Trotter limit is a strongly continuous contraction semigroup; so it is not time-reversible.

  6. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  7. Paulo Freire and the Politics of Education: A Response to Neumann

    ERIC Educational Resources Information Center

    Roberts, Peter

    2016-01-01

    Jacob Neumann provides a thoughtful reading of "Paulo Freire in the 21st century: Education, dialogue, and transformation" [v48 n6 p634-644 2016]. His comments on the importance of contextualising Freire's work and the value of openness in engaging Freirean ideas are insightful and helpful. His use of the term "apolitical" is,…

  8. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    SciTech Connect

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  9. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    DOE PAGES

    Aghanim, N.; Arnaud, M.; Ashdown, M.; ...

    2016-09-20

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  10. An Algebraic Formulation of Level One Wess-Zumino Models

    NASA Astrophysics Data System (ADS)

    Böckenhauer, Jens

    The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.

  11. Compatible quantum theory

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The

  12. Bare Quantum Null Energy Condition

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald

    2018-02-01

    The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.

  13. Bare Quantum Null Energy Condition.

    PubMed

    Fu, Zicao; Marolf, Donald

    2018-02-16

    The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.

  14. GENERAL A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities

    NASA Astrophysics Data System (ADS)

    Gerd, Niestegge

    2010-12-01

    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lüders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.

  15. Alexander von Humboldt and the Origins of Landscape Archaeology.

    ERIC Educational Resources Information Center

    Mathewson, Kent

    1986-01-01

    Reviews the life, theories, and influence of Alexander von Humboldt, the early nineteenth century founder of modern geography. Maintains that Humboldt's novel approaches to the study of landscape antiquities have value for contemporary students in cultural and historical geography. (JDH)

  16. Wick Product for Commutation Relations Connected with Yang-Baxter Operators and New Constructions of Factors

    NASA Astrophysics Data System (ADS)

    Krsolarlak, Ilona

    We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations: Such algebras can be continuously embedded into some closure of the set of finite linear combinations of vectors , where is an orthonormal basis of a Hilbert space . The operator which represents the vector is denoted by and called the ``Wick product'' of the operators . We describe explicitly the form of this product. Also, we estimate the operator norm of for . Finally we apply these two results and prove that under the assumption all the von Neumann algebras considered are II1 factors.

  17. Causal holographic information does not satisfy the linearized quantum focusing condition

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald; Qi, Marvin

    2018-04-01

    The Hubeny-Rangamani causal holographic information (CHI) defined by a region R of a holographic quantum field theory (QFT) is a modern version of the idea that the area of event horizons might be related to an entropy. Here the event horizon lives in a dual gravitational bulk theory with Newton's constant G bulk, and the relation involves a factor of 4 G bulk. The fact that CHI is bounded below by the von Neumann entropy S suggests that CHI is coarse-grained. Its properties could thus differ markedly from those of S. In particular, recent results imply that when d ≤ 4 holographic QFTs are perturbatively coupled to d-dimensional gravity, the combined system satisfies the so-called quantum focusing condition (QFC) at leading order in the new gravitational coupling G d when the QFT entropy is taken to be that of von Neumann. However, by studying states dual to spherical bulk (anti-de Sitter) Schwarschild black holes in the conformal frame for which the boundary is a (2 + 1)-dimensional de Sitter space, we find the QFC defined by CHI is violated even when perturbing about a Killing horizon and using a single null congruence. Since it is known that a generalized second law (GSL) holds in this context, our work demonstrates that the QFC is not required in order for an entropy, or an entropy-like quantity, to satisfy such a GSL.

  18. Von Hippel-Lindau Disease

    MedlinePlus

    What is Von Hippel-Lindau disease (VHL)? Von Hippel-Lindau disease (VHL) is a rare disease that causes tumors and cysts to grow in your body. They ... can become cancerous. What causes Von Hippel-Lindau disease (VHL)? Von Hippel-Lindau disease (VHL) is a ...

  19. Diagonal couplings of quantum Markov chains

    NASA Astrophysics Data System (ADS)

    Kümmerer, Burkhard; Schwieger, Kay

    2016-05-01

    In this paper we extend the coupling method from classical probability theory to quantum Markov chains on atomic von Neumann algebras. In particular, we establish a coupling inequality, which allow us to estimate convergence rates by analyzing couplings. For a given tensor dilation we construct a self-coupling of a Markov operator. It turns out that the coupling is a dual version of the extended dual transition operator studied by Gohm et al. We deduce that this coupling is successful if and only if the dilation is asymptotically complete.

  20. Search for Candidate Objects with the Sunyaev–Zeldovich Effect in the Radio Source Vicinities—galaxies: clusters: general

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Verkhodanova, N. V.; Ulakhovich, O. S.; Solovyov, D. I.; Khabibullina, M. L.

    2018-01-01

    Based on the data from the Westerbork Northern Sky Survey performed at a frequency of 325 MHz in the range of right ascensions 0h ≤ α < 2h and declinations 29° < δ < 78° and using multi-frequency Planck maps, we selected candidate objects with the Sunyaev-Zeldovich effect. The list of the most probable candidates includes 381 sources. It is shown that the search for such objects can be accelerated by using a priori data on the negative level of fluctuations in the CMB map with removed low multipoles in the direction to radio sources.

  1. Thermodynamic analogies in economics and finance: instability of markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2003-11-01

    Interest in thermodynamic analogies in economics is older than the idea of von Neumann to look for market entropy in liquidity, advice that was not taken in any thermodynamic analogy presented so far in the literature. In this paper, we go further and use a standard strategy from trading theory to pinpoint why thermodynamic analogies necessarily fail to describe financial markets, in spite of the presence of liquidity as the underlying basis for market entropy. Market liquidity of frequently traded assets does play the role of the ‘heat bath‘, as anticipated by von Neumann, but we are able to identify the no-arbitrage condition geometrically as an assumption of translational and rotational invariance rather than (as finance theorists would claim) an equilibrium condition. We then use the empirical market distribution to introduce an asset's entropy and discuss the underlying reason why real financial markets cannot behave thermodynamically: financial markets are unstable, they do not approach statistical equilibrium, nor are there any available topological invariants on which to base a purely formal statistical mechanics. After discussing financial markets, we finally generalize our result by proposing that the idea of Adam Smith's Invisible Hand is a falsifiable proposition: we suggest how to test nonfinancial markets empirically for the stabilizing action of The Invisible Hand.

  2. Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 <ℓ< 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.

  3. Medicine vs. prayer: the case of Kara Neumann.

    PubMed

    O'Mathúna, Dónal P; Lang, Kellie

    2008-01-01

    Religious beliefs and the use of complementary and alternative medicine can help or hinder health care and the well being of children, who are often unable to make informed decisions for themselves, but instead, depend on their parents or caregivers to make health care decisions for them. Tragically, this can sometimes result in prolonged suffering and death when parents or caregivers refuse treatment due to their own personal beliefs. This two-part article explores the case of Kara Neumann, an 11-year-old girl who died after her parents denied her medical care in lieu of prayer to cure her "spiritual attack," and the role pediatric nurses can play in educating patients and their families.

  4. Time dependence of Hawking radiation entropy

    SciTech Connect

    Page, Don N., E-mail: profdonpage@gmail.com

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its originalmore » Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.« less

  5. Software Techniques for Non-Von Neumann Architectures

    DTIC Science & Technology

    1990-01-01

    Commtopo programmable Benes net.; hypercubic lattice for QCD Control CENTRALIZED Assign STATIC Memory :SHARED Synch UNIVERSAL Max-cpu 566 Proessor...boards (each = 4 floating point units, 2 multipliers) Cpu-size 32-bit floating point chips Perform 11.4 Gflops Market quantum chromodynamics ( QCD ...functions there should exist a capability to define hierarchies and lattices of complex objects. A complex object can be made up of a set of simple objects

  6. Conditional steering under the von Neumann scenario

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kaushiki; Paul, Biswajit; Karmakar, Sumana; Sarkar, Debasis; Mukherjee, Amit; Bhattacharya, Some Sankar; Roy, Arup

    2017-08-01

    In Phys. Lett. A 166, 293 (1992), 10.1016/0375-9601(92)90711-T, Popescu and Rohrlich characterized nonlocality of pure n -partite entangled systems by studying bipartite violation of local realism when n -2 number of parties perform projective measurements on their particles. A pertinent question in this scenario is whether similar characterization is possible for n -partite mixed entangled states also. In the present work we have followed an analogous approach so as to explore whether given a tripartite mixed entangled state the conditional bipartite states obtained by performing projective measurement on the third party demonstrate a weaker form of nonlocality, quantum steering. We also compare this phenomenon of conditional steering with existing notions of tripartite correlations.

  7. An international conference in honour of the centennial of the birth of Ya.B. Zeldovich, "Subatomic Particles, Nucleons, Atoms, the Universe: Processes and Structure"

    NASA Astrophysics Data System (ADS)

    Kilin, S. Ya.; Ruffini, R.; Vereshchagin, G.

    2015-06-01

    An international conference in honour of the centennial of the birth of Ya.B. Zeldovich, "Subatomic Particles, Nucleons, Atoms, the Universe: Processes and Structure" was held in Minsk, Belarus on March 10-14, 2014. Scientific papers based on plenary presentations made at this conference are being published in Volumes 6 and 7, 2015 of "Astronomy Reports."

  8. Displacements Of Brownian Particles In Terms Of Marian Von Smoluchowski's Heuristic Model

    ERIC Educational Resources Information Center

    Klein, Hermann; Woermann, Dietrich

    2005-01-01

    Albert Einstein's theory of the Brownian motion, Marian von Smoluchowski's heuristic model, and Perrin's experimental results helped to bring the concept of molecules from a state of being a useful hypothesis in chemistry to objects existing in reality. Central to the theory of Brownian motion is the relation between mean particle displacement and…

  9. Wernher von Braun

    NASA Image and Video Library

    1959-01-01

    This photograph of Dr. von Braun, shown here to the left of General Bruce Medaris, was taken in the fall of 1959, immediately prior to Medaris' retirement from the Army. At the time, von Braun and his associates worked for the Army Ballistics Missile Agency in Huntsville, Alabama. Those in the photograph have been identified as Ernst Stuhlinger, Frederick von Saurma, Fritz Mueller, Hermarn Weidner, E.W. Neubert (partially hidden), W.A. Mrazek, Karl Heimburg, Arthur Rudolph, Otto Hoberg, von Braun, Oswald Lange, Medaris, Helmut Hoelzer, Hans Maus, E.D. Geissler, Hans Heuter, and George Constan.

  10. Wernher von Braun

    NASA Image and Video Library

    1977-06-16

    Dr. Wernher von Braun served as Marshall Space Flight Center's first director from July 1, 1960 until January 27, 1970, when he was appointed NASA Deputy Associate Administrator for Planning. Following World War II, Dr. von Braun and his German colleagues arrived in the United States under Project Paper Clip to continue their rocket development work. In 1950, von Braun and his rocket team were transferred from Ft. Bliss, Texas to Huntsville, Alabama to work for the Army's rocket program at Redstone Arsenal and later, NASA's Marshall Space Flight Center. Under von Braun's leadership, Marshall developed the Saturn V launch vehicle which took Apollo astronauts to the moon. Dr. von Braun died in Alexandria, Va., on June 16, 1977, seven years after his NASA appointment. This photo was taken at the site where he was laid to rest.

  11. The second law of thermodynamics under unitary evolution and external operations

    SciTech Connect

    Ikeda, Tatsuhiko N., E-mail: ikeda@cat.phys.s.u-tokyo.ac.jp; Physics Department, Boston University, Boston, MA 02215; Sakumichi, Naoyuki

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed withoutmore » reference to the microscopic state of the system.« less

  12. On-chip phase-change photonic memory and computing

    NASA Astrophysics Data System (ADS)

    Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish

    2017-08-01

    The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).

  13. Assigning values to intermediate health states for cost-utility analysis: theory and practice.

    PubMed

    Cohen, B J

    1996-01-01

    Cost-utility analysis (CUA) was developed to guide the allocation of health care resources under a budget constraint. As the generally stated goal of CUA is to maximize aggregate health benefits, the philosophical underpinning of this method is classic utilitarianism. Utilitarianism has been criticized as a basis for social choice because of its emphasis on the net sum of benefits without regard to the distribution of benefits. For example, it has been argued that absolute priority should be given to the worst off when making social choices affecting basic needs. Application of classic utilitarianism requires use of strength-of-preference utilities, assessed under conditions of certainty, to assign quality-adjustment factors to intermediate health states. The two methods commonly used to measure strength-of-preference utility, categorical scaling and time tradeoff, produce rankings that systematically give priority to those who are better off. Alternatively, von Neumann-Morgenstern utilities, assessed under conditions of uncertainty, could be used to assign values to intermediate health states. The theoretical basis for this would be Harsanyi's proposal that social choice be made under the hypothetical assumption that one had an equal chance of being anyone in society. If this proposal is accepted, as well as the expected-utility axioms applied to both individual choice and social choice, the preferred societal arrangement is that with the highest expected von Neumann-Morgenstern utility. In the presence of risk aversion, this will give some priority to the worst-off relative to classic utilitarianism. Another approach is to raise the values obtained by time-tradeoff assessments to a power a between 0 and 1. This would explicitly give priority to the worst off, with the degree of priority increasing as a decreases. Results could be presented over a range of a. The results of CUA would then provide useful information to those holding a range of philosophical points

  14. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  15. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    NASA Astrophysics Data System (ADS)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction

  16. Bi-Exact Groups, Strongly Ergodic Actions and Group Measure Space Type III Factors with No Central Sequence

    NASA Astrophysics Data System (ADS)

    Houdayer, Cyril; Isono, Yusuke

    2016-12-01

    We investigate the asymptotic structure of (possibly type III) crossed product von Neumann algebras {M = B rtimes Γ} arising from arbitrary actions {Γ \\curvearrowright B} of bi-exact discrete groups (e.g. free groups) on amenable von Neumann algebras. We prove a spectral gap rigidity result for the central sequence algebra {N' \\cap M^ω} of any nonamenable von Neumann subalgebra with normal expectation {N subset M}. We use this result to show that for any strongly ergodic essentially free nonsingular action {Γ \\curvearrowright (X, μ)} of any bi-exact countable discrete group on a standard probability space, the corresponding group measure space factor {L^∞(X) rtimes Γ} has no nontrivial central sequence. Using recent results of Boutonnet et al. (Local spectral gap in simple Lie groups and applications, 2015), we construct, for every {0 < λ ≤ 1}, a type {III_λ} strongly ergodic essentially free nonsingular action {F_∞ \\curvearrowright (X_λ, μ_λ)} of the free group {{F}_∞} on a standard probability space so that the corresponding group measure space type {III_λ} factor {L^∞(X_λ, μ_λ) rtimes F_∞} has no nontrivial central sequence by our main result. In particular, we obtain the first examples of group measure space type {III} factors with no nontrivial central sequence.

  17. Wernher von Braun

    NASA Image and Video Library

    1960-01-01

    Dr. Wernher von Braun served as Marshall Space Flight Center's first director from July 1, 1960 until January 27, 1970, when he was appointed NASA Deputy Associate Administrator for Plarning. Following World War II, Dr. von Braun and his German colleagues arrived in the United States under Project Paperclip to continue their rocket development work. In 1950, von Braun and his rocket team were transferred from Ft. Bliss, Texas to Huntsville, Alabama to work for the Army's rocket program at Redstone Arsenal and later, NASA's Marshall Space Flight Center. Under von Braun's leadership, Marshall developed the Saturn V launch vehicle which took Apollo astronauts to the moon.

  18. Comparing Theory and Practice: An Application of Complexity Theory to General Ridgway’s Success in Korea

    DTIC Science & Technology

    2010-12-02

    Theory Defined 48 Doctrine 48 Interwar Doctrine a Historical Perspective 52 Adaptive Campaigning 53 Carl von Clausewitz 53 Comparative Analysis of...order effects that may be traced through an understanding of the environment. Carl von Clausewitz suggested using history as a tool, to provide a lens...Cworks/Works.htm (accessed 10/2, 2010). 6 Carl von Clausewitz, On War, trans. Ed. Michael Howard and Peter Paret (Princeton: Princeton University

  19. Information loss in effective field theory: Entanglement and thermal entropies

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2018-03-01

    Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.

  20. [Carl Friedrich von Weizsäcker and the interpretations of quantum theory].

    PubMed

    Stöckler, Manfred

    2014-01-01

    What are 'interpretations' of quantum theory? What are the differences between Carl Friedrich von Weizsäkcker's approach and contemporary views? The various interpretations of quantum mechanics give diverse answers to questions concerning the relation between measuring process and standard time development, the embedding of quantum objects in space ('wave-particle-dualism'), and the reference of state vectors. Does the wave function describe states in the real world or does it refer to our knowledge about nature? First, some relevant conceptions in Weizsäcker's book The Structure of Physics (Der Aufbau der Physik, 1985) are introduced. In a second step I point out why his approach is not any longer present in contemporary debates. One reason is that Weizsäcker is mainly affected by classical philosophy (Platon, Aristoteles, Kant). He could not esteem the philosophy of science that was developed in the spirit of logical empiricism. So he lost interest in disputes with Anglo-Saxon philosophy of quantum mechanics. Especially his interpretation of probability and his analysis of the collapse of the state function as change in knowledge differ from contemporary standard views. In recent years, however, epistemic interpretations of quantum mechanics are proposed that share some of Weizsäcker's intuitions.

  1. Pregnancy and delivery in women with von Willebrand's disease and different von Willebrand factor mutations.

    PubMed

    Castaman, Giancarlo; Tosetto, Alberto; Rodeghiero, Francesco

    2010-06-01

    Pregnancy in von Willebrand's disease may carry a significant risk of bleeding. Information on changes in factor VIII and von Willebrand factor and pregnancy outcome in relation to von Willebrand factor gene mutations are very scanty. We examined biological response to desmopressin, changes in factor VIII and von Willebrand factor and pregnancy outcome in a cohort of 23 women with von Willebrand's disease characterized at molecular level and prospectively followed during 2000-2007. Thirty-one pregnancies occurred during the study period. Remarkably, similar changes of factor VIII and von Willebrand factor were observed after desmopressin and during pregnancy in nine women with R854Q, R1374H, V1665E, V1822G and C2362F mutations. Women with von Willebrand's disease and R1205H and C1130F mutations (17 pregnancies in 12 women) had only a slight increase of factor VIII and von Willebrand factor during pregnancy while their response to desmopressin was marked but short-lived. For these women, two to three desmopressin administrations within the first 48 hours were sufficient to successfully manage vaginal delivery. Two women with recessive von Willebrand's disease due to compound heterozygosity for different gene mutations had a spontaneous, major increase in factor VIII while von Willebrand factor remained severely reduced. Desmopressin increased factor VIII and was clinically useful in the first case, while a factor VIII/von Willebrand factor concentrate was required in the second patient not responsive to the compound. Factor VIII/von Willebrand factor concentrate was also required for two women with type 2 A von Willebrand's disease with V1665E mutations who had no von Willebrand factor activity change during pregnancy. In one of them, delayed bleeding occurred 15 days later requiring treatment with Factor VIII/von Willebrand factor concentrate. No miscarriages or stillbirths occurred. Close follow-up and detailed guidelines for the management of parturition have

  2. Global smooth solutions of 3-D null-form wave equations in exterior domains with Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Jun, Li; Huicheng, Yin

    2018-05-01

    The paper is devoted to investigating long time behavior of smooth small data solutions to 3-D quasilinear wave equations outside of compact convex obstacles with Neumann boundary conditions. Concretely speaking, when the surface of a 3-D compact convex obstacle is smooth and the quasilinear wave equation fulfills the null condition, we prove that the smooth small data solution exists globally provided that the Neumann boundary condition on the exterior domain is given. One of the main ingredients in the current paper is the establishment of local energy decay estimates of the solution itself. As an application of the main result, the global stability to 3-D static compressible Chaplygin gases in exterior domain is shown under the initial irrotational perturbation with small amplitude.

  3. Wernher von Braun

    NASA Image and Video Library

    1970-02-24

    In 1970 Marshall Space Flight Center (MSFC) Director Dr. Wernher von Braun (right) was reassigned to NASA Headquarters to serve as Deputy Associate Administrator for Plarning. Prior to his transfer, Dr. von Braun was honored for his career in Huntsville, Alabama, with the celebration of "Wernher von Braun Day." Among those participating were Alabama Governor Albert Brewer (left) and Alabama Senator John Sparkman (center). (Courtesy of Huntsville/Madison County Public library)

  4. On the making of a system theory of life: Paul A Weiss and Ludwig von Bertalanffy's conceptual connection.

    PubMed

    Drack, Manfred; Apfalter, Wilfried; Pouvreau, David

    2007-12-01

    In this article, we review how two eminent Viennese system thinkers, Paul A Weiss and Ludwig von Bertalanffy, began to develop their own perspectives toward a system theory of life in the 1920s. Their work is especially rooted in experimental biology as performed at the Biologische Versuchsanstalt, as well as in philosophy, and they converge in basic concepts. We underline the conceptual connections of their thinking, among them the organism as an organized system, hierarchical organization, and primary activity. With their system thinking, both biologists shared a strong desire to overcome what they viewed as a "mechanistic" approach in biology. Their interpretations are relevant to the renaissance of system thinking in biology--"systems biology." Unless otherwise noted, all translations are our own.

  5. Optimal spinneret layout in Von Koch curves of fractal theory based needleless electrospinning process

    NASA Astrophysics Data System (ADS)

    Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo

    2016-06-01

    Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.

  6. SciTech Connect

    Furukawa, Shunsuke; Kim, Yong Baek; School of Physics, Korea Institute for Advanced Study, Seoul 130-722

    We consider a system of two coupled Tomonaga-Luttinger liquids (TLL's) on parallel chains and study the Renyi entanglement entropy S{sub n} between the two chains. Here the entanglement cut is introduced between the chains, not along the perpendicular direction, as has been done in previous studies of one-dimensional systems. The limit n{yields}1 corresponds to the von Neumann entanglement entropy. The system is effectively described by two-component bosonic field theory with different TLL parameters in the symmetric and antisymmetric channels as far as the coupled system remains in a gapless phase. We argue that in this system, S{sub n} is amore » linear function of the length of the chains (boundary law) followed by a universal subleading constant {gamma}{sub n} determined by the ratio of the two TLL parameters. The formulas of {gamma}{sub n} for integer n{>=}2 are derived using (a) ground-state wave functionals of TLL's and (b) boundary conformal field theory, which lead to the same result. These predictions are checked in a numerical diagonalization analysis of a hard-core bosonic model on a ladder. Although the analytic continuation of {gamma}{sub n} to n{yields}1 turns out to be a difficult problem, our numerical result suggests that the subleading constant in the von Neumann entropy is also universal. Our results may provide useful characterization of inherently anisotropic quantum phases such as the sliding Luttinger liquid phase via qualitatively different behaviors of the entanglement entropy with the entanglement partitions along different directions.« less

  7. Comparison of two equation-of-state models for partially ionized aluminum: Zel'dovich and Raizer's model versus the activity expansion code

    NASA Astrophysics Data System (ADS)

    Harrach, Robert J.; Rogers, Forest J.

    1981-09-01

    Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.

  8. Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Cvetič, Mirjam; Papadimitriou, Ioannis

    2018-04-01

    We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter θ. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity ρ ˜ T corresponds to z = 4 /3.

  9. Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces

    NASA Astrophysics Data System (ADS)

    Mantile, Andrea; Posilicano, Andrea; Sini, Mourad

    2016-07-01

    The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.

  10. Complexion of forces in an anisotropic self-gravitating system

    SciTech Connect

    Kandrup, H.E.

    Chandrasekhar and von Neumann developed a completely stochastic formalism to analyze the complexion of forces acting upon a test star situated in an infinite, homogeneous distribution of field stars. This formalism is generalized here to allow for more realistic inhomogeneous and anisotropic systems. It is demonstrated that the forces acting upon a test star decompose ''naturally'' into the incoherent sum of a mean force associated with the average spatial inhomogeneity and a fluctuating force associated with stochastic deviations from these mean conditions. Moreover, as in the special case considered by Chandrasekhar and von Neumann, one can apparently associate the fluctuatingmore » forces with the effects of particularly proximate field stars, thereby motivating the ''nearest neighbor'' interpretation first introduced by Chandrasekhar.« less

  11. All quantum observables in a hidden-variable model must commute simultaneously

    SciTech Connect

    Malley, James D.

    Under a standard set of assumptions for a hidden-variable model for quantum events we show that all observables must commute simultaneously. This seems to be an ultimate statement about the inapplicability of the usual hidden-variable model for quantum events. And, despite Bell's complaint that a key condition of von Neumann's was quite unrealistic, we show that these conditions, under which von Neumann produced the first no-go proof, are entirely equivalent to those introduced by Bell and Kochen and Specker. As these conditions are also equivalent to those under which the Bell-Clauster-Horne inequalities are derived, we see that the experimental violationsmore » of the inequalities demonstrate only that quantum observables do not commute.« less

  12. Quantum entangled dark solitons formed by ultracold atoms in optical lattices.

    PubMed

    Mishmash, R V; Carr, L D

    2009-10-02

    Inspired by experiments on Bose-Einstein condensates in optical lattices, we study the quantum evolution of dark soliton initial conditions in the context of the Bose-Hubbard Hamiltonian. An extensive set of quantum measures is utilized in our analysis, including von Neumann and generalized quantum entropies, quantum depletion, and the pair correlation function. We find that quantum effects cause the soliton to fill in. Moreover, soliton-soliton collisions become inelastic, in strong contrast to the predictions of mean-field theory. These features show that the lifetime and collision properties of dark solitons in optical lattices provide clear signals of quantum effects.

  13. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    SciTech Connect

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  14. Driven-dissipative quantum Monte Carlo method for open quantum systems

    NASA Astrophysics Data System (ADS)

    Nagy, Alexandra; Savona, Vincenzo

    2018-05-01

    We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville-von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate the efficiency of our approach by applying it to the driven-dissipative two-dimensional X Y Z spin-1/2 model on a lattice.

  15. Planck intermediate results: XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-02-09

    By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present in this paper a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8–2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individualPlanck raw frequency maps, although lower than found inmore » the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0–3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80–100 h -1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. Finally, we find τT = (1.4 ± 0.5) × 10 -4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.« less

  16. Wernher von Braun

    NASA Image and Video Library

    1954-01-01

    Marshall Center Director Dr. Wernher Von Braun is pictured with Walt Disney during a visit to the Marshall Space Flight Center in 1954. In the 1950s, Dr. Von Braun while working in California on the Saturn project, also worked with Disney studios as a technical director in making three films about Space Exploration for television. Disney's tour of Marshall in 1965 was Von Braun's hope for a renewed public interest in the future of the Space Program at NASA.

  17. Quantum processes: A Whiteheadian interpretation of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan

    Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field

  18. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  19. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems.

    PubMed

    Pellacci, Benedetta; Verzini, Gianmaria

    2018-05-01

    We study the positive principal eigenvalue of a weighted problem associated with the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the survival threshold in population dynamics. Our main result concerns the optimization of such threshold with respect to the fractional order [Formula: see text], the case [Formula: see text] corresponding to the standard Neumann Laplacian: when the habitat is not too fragmented, the principal positive eigenvalue can not have local minima for [Formula: see text]. As a consequence, the best strategy for survival is either following the diffusion with [Formula: see text] (i.e. Brownian diffusion), or with the lowest possible s (i.e. diffusion allowing long jumps), depending on the size of the domain. In addition, we show that analogous results hold for the standard fractional Laplacian in [Formula: see text], in periodic environments.

  20. Dr. Wernher von Braun

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. von Braun is looking out from a 10th floor window of building 4200 at the Marshall Space Flight Center (MSFC). He was the first Center Director and served as the Director from July 1960 through February 1970. Following World War II, Dr. von Braun and his German colleagues arrived in the United States under the Project Paperclip (American acquisition of German rocket experts) to continue their rocket development work. In 1950, von Braun and his German Rocket Team (also called the Peenemuende Team) were transferred from Ft. Bliss, Texas to Huntsville, Alabama to work for the Army's rocket program at Redstone Arsenal and later, NASA's Marshall Space Flight Center (MSFC). Under Dr. von Braun's leadership, MSFC developed the Saturn V launch vehicle, which placed the first men, two American astronauts, on the Moon. Wernher von Braun's life was dedicated to expanding man's knowledge through the exploration of space.

  1. Electrical Conductivity of Charged Particle Systems and Zubarev's Nonequilibrium Statistical Operator Method

    NASA Astrophysics Data System (ADS)

    Röpke, G.

    2018-01-01

    One of the fundamental problems in physics that are not yet rigorously solved is the statistical mechanics of nonequilibrium processes. An important contribution to describing irreversible behavior starting from reversible Hamiltonian dynamics was given by D. N. Zubarev, who invented the method of the nonequilibrium statistical operator. We discuss this approach, in particular, the extended von Neumann equation, and as an example consider the electrical conductivity of a system of charged particles. We consider the selection of the set of relevant observables. We show the relation between kinetic theory and linear response theory. Using thermodynamic Green's functions, we present a systematic treatment of correlation functions, but the convergence needs investigation. We compare different expressions for the conductivity and list open questions.

  2. SciTech Connect

    Alcaraz, Francisco Castilho; Ibanez Berganza, Miguel; Sierra, German

    In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX andmore » XXZ chains. This result uncovers a new link between quantum information theory and CFT.« less

  3. A short review of game theory for neurosurgeons.

    PubMed

    Steiger, H-J; Steiger, U R

    2011-02-01

    Neurosurgery and medicine in general are increasingly dominated by economic factors and considerations. Physicians themselves have partially adopted economic terminology, although they rarely have a profound knowledge of economics. Today game theory is one of the most important factors driving microeconomics, which is the competition for limited resources within a small group of individuals. The purpose of this article is to give a short introduction to game theory and its application to the healthcare system. The Prisoner's Dilemma considers strategies between two persons. In the classic version two burglars are caught. Each could confess and be released from jail if the other does not confess--who will then get a long term in prison. If both confess, both get an intermediate time in jail, and if no one confesses, both get a mild sentence. Wanting to be released from jail, they both confess and get the intermediate term in prison. This remarkable result, initially described by John von Neumann in 1928 and showing that individually rational actions can result in both persons becoming worse off, had a great impact on modern social science. Other scenarios are more complex. The Nash Equilibrium is a wider concept. If there is a set of strategies with the property that no player can benefit by changing his strategy while the other players keep their strategies unchanged, then that set of strategies and the corresponding payoffs constitute the Nash Equilibrium. Another concept particularly important in sociology is the Pareto criterion. If no one can be made better off without making somebody else worse off, then that outcome is Pareto optimal. Respecting these basic principles is a necessary precondition for successful deals and cooperative projects. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Wernher von Braun

    NASA Image and Video Library

    1959-01-01

    Five of the seven original astronauts are seen with Dr. von Braun inspecting the Mercury-Redstone hardware in the Fabrication Laboratory of Army Ballistic Missile Agency (ABMA) in 1959. Left to right: Astronauts Walter Schirra, Alan Shepard, John Glenn, Scott Carpenter, Gordon Cooper, and Dr. von Braun.

  5. ON THE MAKING OF A SYSTEM THEORY OF LIFE: PAUL A WEISS AND LUDWIG VON BERTALANFFY’S CONCEPTUAL CONNECTION

    PubMed Central

    Drack, Manfred; Apfalter, Wilfried; Pouvreau, David

    2010-01-01

    In this article, we review how two eminent Viennese system thinkers, Paul A Weiss and Ludwig von Bertalanffy, began to develop their own perspectives toward a system theory of life in the 1920s. Their work is especially rooted in experimental biology as performed at the Biologische Versuchsanstalt, as well as in philosophy, and they converge in basic concepts. We underline the conceptual connections of their thinking, among them the organism as an organized system, hierarchical organization, and primary activity. With their system thinking, both biologists shared a strong desire to overcome what they viewed as a “mechanistic” approach in biology. Their interpretations are relevant to the renaissance of system thinking in biology—“systems biology.” Unless otherwise noted, all translations are our own. PMID:18217527

  6. Exobiology, SETI, von Neumann and geometric phase control.

    PubMed

    Hansson, P A

    1995-11-01

    The central difficulties confronting us at present in exobiology are the problems of the physical forces which sustain three-dimensional organisms, i.e., how one dimensional systems with only nearest interaction and two dimensional ones with its regular vibrations results in an integrated three-dimensional functionality. For example, a human lung has a dimensionality of 2.9 and thus should be measured in m2.9. According to thermodynamics, the first life-like system should have a small number of degrees of freedom, so how can evolution, via cycles of matter, lead to intelligence and theoretical knowledge? Or, more generally, what mechanisms constrain and drive this evolution? We are now on the brink of reaching an understanding below the photon level, into the domain where quantum events implode to the geometric phase which maintains the history of a quantum object. Even if this would exclude point to point communication, it could make it possible to manipulate the molecular level from below, in the physical scale, and result in a new era of geometricised engineering. As such, it would have a significant impact on space exploration and exobiology.

  7. Non-Markovian optimal sideband cooling

    NASA Astrophysics Data System (ADS)

    Triana, Johan F.; Pachon, Leonardo A.

    2018-04-01

    Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical methods, is briefly discussed.

  8. Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei

    NASA Astrophysics Data System (ADS)

    Gallone, Matteo; Michelangeli, Alessandro

    2018-02-01

    We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the Kreĭn-Višik-Birman extension scheme, or also on Grubb's universal classification theory, as opposite to previous works within the standard von Neumann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the extension, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension.

  9. Construction and Analysis of Multi-Rate Partitioned Runge-Kutta Methods

    DTIC Science & Technology

    2012-06-01

    ANALYSIS OF MULTI-RATE PARTITIONED RUNGE-KUTTA METHODS by Patrick R. Mugg June 2012 Thesis Advisor: Francis Giraldo Second Reader: Hong...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Construction and Analysis of Multi-Rate Partitioned Runge-Kutta Methods 5. FUNDING NUMBERS 6. AUTHOR...The most widely known and used procedure for analyzing stability is the Von Neumann Method , such that Von Neumann’s stability analysis looks at

  10. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  11. Titanisierung von Implantatoberflächen

    NASA Astrophysics Data System (ADS)

    Zimmermann, Hanngörg; Heinlein, Markus; Guldner, Norbert W.

    Titan gilt seit Jahrzehnten als einer der wichtigsten Implantatwerkstoffe in der Medizin. Neben den guten mechanischen Eigenschaften (Leichtigkeit, hohe Festigkeit etc.), besitzen Titanimplantate vor allem eine hervorragende Körperverträglichkeit, so dass die Implantate optimal in den humanen Organismus integriert werden [1]. Ist jedoch aufgrund der Anforderungen an das Implantat eine hohe Flexibilität und/ oder Elastizität gefragt, so scheidet der Werkstoff Titan aufgrund seiner spröden und unflexiblen Materialeigenschaften aus. Die Folge ist der Einsatz von Implantatmaterialien, sowohl künstlichen als auch biologischen Ursprungs, welche nicht selten eine unzureichende Biokompatibilität aufweisen und somit zu Fremdköper- und immunologischen Reaktionen und Einkapselung des Implantates führen können. Die Erhöhung der Körperverträglichkeit, eine Adaption an das biologische Umfeld und eine hohe Biokompatibilität sind demzufolge die wichtigsten Eigenschaften bei der bedarfsgerechten Herstellung von Implantaten und Implantatoberflächen. Zur Gestaltung von innovativen, biokompatiblen Oberflächen stehen unterschiedliche technische Lösungsansätze zur Verfügung. Zum einen besteht die Möglichkeit, geeignete Oberflächeneigenschaften aus dem Grundmaterial selbst zu optimieren. Dies geschieht unter anderem durch Modifikation der Werkstoffoberflächen in Form von Texturierungen und Oberflächenrauhigkeiten. Zum anderen können die Oberflächeneigenschaften unabhängig von denen des Trägermaterials gestaltet werden. Durch Funktionalisierung der Oberflächen mit geeigneten Beschichtungen oder der Zugabe von Medikamenten (Drug Eluting) werden die Kunststoffimplantate dahingehend verändert, dass eine Steigerung der Körperakzeptanz erreicht wird. Die Titanbeschichtung von Implantatoberflächen kombiniert die positiven Materialeigenschaften von Titan und Polymer.

  12. Programmable hardware for reconfigurable computing systems

    NASA Astrophysics Data System (ADS)

    Smith, Stephen

    1996-10-01

    In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.

  13. Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy.

    PubMed

    Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve

    2017-11-07

    Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.

  14. SciTech Connect

    Zhou Huanqiang; School of Physical Sciences, University of Queensland, Brisbane, Queensland 4072; Barthel, Thomas

    We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S{sub {alpha}}, which includes the von Neumann entropy ({alpha}{yields}1) and the single-copy entanglement ({alpha}{yields}{infinity}) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also pointmore » out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.« less

  15. Quantum Discord for d⊗2 Systems

    PubMed Central

    Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming

    2015-01-01

    We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 106 two-qubit random density matrices, we obtain an average deviation of order 10−4. Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771

  16. Wernher von Braun

    NASA Image and Video Library

    1968-01-22

    Dr. Wernher Von Braun, stands in front of a Saturn IB Launch Vehicle at Kennedy Space Center (KSC). Dr. Von Braun was Marshall's first Center Director (1960-1970). Under his leadership Marshall was responsible for the development of the Saturn rockets, the Skylab project and getting the United States into Space and landing on the moon with the Apollo missions.

  17. Gesellschaft, Lebensgemeinschaft, Ökosystem - Über die Kongruenz von politischen und ökologischen Theorien der Entwicklung

    NASA Astrophysics Data System (ADS)

    Voigt, Annette

    Im Jahr 1859 veröffentlichte Charles Darwin "On the Origin of Species“. Seine Evolutionstheorie ist das wohl spektakulärste Beispiel einer naturwissenschaftlichen Theorie großer gesellschaftlicher Relevanz. Ihre verschiedenen Facetten wurden in der Öffentlichkeit kontrovers diskutiert, unter anderem auch ihre Anwendung zur Erklärung von Zuständen und Prozessen menschlicher Gesellschaften. Zum Teil wurde die Seiensweise der Natur - scheinbar unabhängig von gesellschaftlichen Interessen - für die Erklärung und Legitimation gesellschaftlicher Zustände oder die Legitimation von politischen Ideologien herangezogen (Sozialdarwinismus). Denn Gesellschaft funktioniere ja so, wie Darwin die Natur erklärt habe: es herrsche z. B. Konkurrenzkampf, Auslese und Arbeitsteilung, Erfolg hätten diejenigen, die sich an die Bedingungen am Besten anpassten.

  18. Boundary reflection matrices for nonsimply laced affine Toda field theories

    SciTech Connect

    Kim, J.D.

    The boundary reflection matrices for nonsimply laced affine Toda field theories defined on a half line with the Neumann boundary condition are investigated. The boundary reflection matrices for some pairs of the models are evaluated up to one loop order by perturbation theory. Then the exact boundary reflection matrices which are consistent with the one loop result are found under the assumption of {open_quote}{open_quote}duality{close_quote}{close_quote} and tested against algebraic consistency such as the boundary bootstrap equation and boundary crossing-unitarity relation. {copyright} {ital 1996 The American Physical Society.}

  19. Wernher von Braun

    NASA Image and Video Library

    1970-02-24

    Dr. von Braun was honored with a series of farewell events and ceremonies prior to his reassignment to NASA Headquarters in Washington, D.C. Alabama Governor Brewer greets Dr. von Braun following his speech at the front of the Madison County Courthouse in Huntsville, Alabama on February 24, 1970. Behind are Madison County Commissioner James Record, Huntsville Mayor Joe Davis, and U.S. Senator Sparkman.

  20. Wernher von Braun

    NASA Image and Video Library

    1969-07-24

    Apollo 11 splashdown celebration in Huntsville, Alabama, on July 24, 1969. Huntsville Alabama is the home of the Marshall Space Flight Center which developed the Saturn vehicles under the direction of Dr. von Braun. The photo shows Dr. von Braun speaking to the crowd at the Madison County Courthouse as Mayor Joe Davis, Madison County Commissioner James Record and City Council President Ken Johnson look on.

  1. Wernher von Braun

    NASA Image and Video Library

    1969-07-24

    Dr. von Braun is carried aloft on the shoulders of Huntsville city officials during the Apollo 11 celebration in Huntsville, Alabama, on July 24, 1969. Huntsville, Alabama is the home of the Marshall Space Flight Center which developed the Saturn vehicles under the direction of Dr. von Braun. The Apollo 11 lifted off in July and made the first marned lunar landing on the Moon.

  2. Diagnosis and management of von Willebrand's syndrome.

    PubMed

    Rick, M E

    1994-05-01

    von Willebrand's disease is the most common of the inherited bleeding disorders. It is caused by quantitative and/or qualitative abnormalities of von Willebrand factor, and it usually presents with bleeding from mucosal surfaces. The diagnosis is confirmed by measuring von Willebrand factor activity and antigen levels, factor VIII activity, and performing a multimer analysis of von Willebrand factor. Treatment may require plasma-derived concentrates, but can often be accomplished with DDAVP, a vasopressin analogue that causes transient release of von Willebrand factor from body storage sites.

  3. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Johnson, Matthew C.

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.

  4. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  5. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    SciTech Connect

    Zhang, Pengjie; Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in themore » diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.« less

  6. Population Control of Self-Replicating Systems: Option C

    NASA Technical Reports Server (NTRS)

    Mccord, R. L.

    1983-01-01

    From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.

  7. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  8. Weather Forecasting From Woolly Art to Solid Science

    NASA Astrophysics Data System (ADS)

    Lynch, P.

    THE PREHISTORY OF SCIENTIFIC FORECASTING Vilhelm Bjerknes Lewis Fry Richardson Richardson's Forecast THE BEGINNING OF MODERN NUMERICAL WEATHER PREDICTION John von Neumann and the Meteorology Project The ENIAC Integrations The Barotropic Model Primitive Equation Models NUMERICAL WEATHER PREDICTION TODAY ECMWF HIRLAM CONCLUSIONS REFERENCES

  9. SciTech Connect

    Levay, Peter; Nagy, Szilvia; Pipek, Janos

    An elementary formula for the von Neumann and Renyi entropies describing quantum correlations in two-fermionic systems having four single-particle states is presented. An interesting geometric structure of fermionic entanglement is revealed. A connection with the generalized Pauli principle is established.

  10. Process, System, Causality, and Quantum Mechanics: A Psychoanalysis of Animal Faith

    NASA Astrophysics Data System (ADS)

    Etter, Tom; Noyes, H. Pierre

    We shall argue in this paper that a central piece of modern physics does not really belong to physics at all but to elementary probability theory. Given a joint probability distribution J on a set of random variables containing x and y, define a link between x and y to be the condition x=y on J. Define the {\\it state} D of a link x=y as the joint probability distribution matrix on x and y without the link. The two core laws of quantum mechanics are the Born probability rule, and the unitary dynamical law whose best known form is the Schrodinger's equation. Von Neumann formulated these two laws in the language of Hilbert space as prob(P) = trace(PD) and D'T = TD respectively, where P is a projection, D and D' are (von Neumann) density matrices, and T is a unitary transformation. We'll see that if we regard link states as density matrices, the algebraic forms of these two core laws occur as completely general theorems about links. When we extend probability theory by allowing cases to count negatively, we find that the Hilbert space framework of quantum mechanics proper emerges from the assumption that all D's are symmetrical in rows and columns. On the other hand, Markovian systems emerge when we assume that one of every linked variable pair has a uniform probability distribution. By representing quantum and Markovian structure in this way, we see clearly both how they differ, and also how they can coexist in natural harmony with each other, as they must in quantum measurement, which we'll examine in some detail. Looking beyond quantum mechanics, we see how both structures have their special places in a much larger continuum of formal systems that we have yet to look for in nature.

  11. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field [rapid communication

    NASA Astrophysics Data System (ADS)

    Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.

    2005-10-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.

  12. Identifikationsverfahren zur Analyse von EEG-Signalen bei Epilepsie mit Reaktions-Diffusions Netzwerken

    NASA Astrophysics Data System (ADS)

    Gollas, F.; Tetzlaff, R.

    2007-06-01

    Partielle Differentialgleichungen des Reaktions-Diffusions-Typs beschreiben Phänomene wie Musterbildung, nichtlineare Wellenausbreitung und deterministisches Chaos und werden oft zur Untersuchung komplexer Vorgänge auf den Gebieten der Biologie, Chemie und Physik herangezogen. Zellulare Nichtlineare Netzwerke (CNN) sind eine räumliche Anordnung vergleichsweise einfacher dynamischer Systeme, die eine lokale Kopplung untereinander aufweisen. Durch eine Diskretisierung der Ortsvariablen können Reaktions-Diffusions-Gleichungen häufig auf CNN mit nichtlinearen Gewichtsfunktionen abgebildet werden. Die resultierenden Reaktions-Diffusions-CNN (RD-CNN) weisen dann in ihrer Dynamik näherungsweise gleiches Verhalten wie die zugrunde gelegten Reaktions-Diffusions-Systeme auf. Werden RD-CNN zur Identifikation neuronaler Strukturen anhand von EEG-Signalen herangezogen, so besteht die Möglichkeit festzustellen, ob das gefundene Netzwerk lokale Aktivität aufweist. Die von Chua eingeführte Theorie der lokalen Aktivität Chua (1998); Dogaru und Chua (1998) liefert eine notwendige Bedingung für das Auftreten von emergentem Verhalten in zellularen Netzwerken. Änderungen in den Parametern bestimmter RD-CNN könnten auf bevorstehende epileptische Anfälle hinweisen. In diesem Beitrag steht die Identifikation neuronaler Strukturen anhand von EEG-Signalen durch Reaktions-Diffusions-Netzwerke im Vordergrund der dargestellten Untersuchungen. In der Ergebnisdiskussion wird insbesondere auch die Frage nach einer geeigneten Netzwerkstruktur mit minimaler Komplexität behandelt.

  13. Kants Theorie der Sonne: Physikgeschichte

    NASA Astrophysics Data System (ADS)

    Jacobi, Manfred

    2005-01-01

    Im Rahmen seiner Kosmogonie entwickelte der junge Immanuel Kant eine Theorie der Sonne. Sie ist ein einzigartiges Zeugnis seiner intuitiven Vorstellungskraft und beweist auch die Leistungsfähigkeit der damaligen, vorwiegend von Newton geprägten Weltsicht. Entstehung, Aufbau und Dynamik der Sonne werden in Kants Theorie ebenso erklärt wie etwa das Phänomen der Sonnenflecken.

  14. Wernher von Braun

    NASA Image and Video Library

    1964-03-24

    Marshall Space Flight Center Director Dr. Wernher von Braun presents Lady Bird Johnson with an inscribed hard hat during the First Lady's March 24, 1964 visit. While at the Marshall Center, Mrs. Johnson addressed Center employees, toured facilities and witnessed test firings of a Saturn I first stage and an F-1 engine. Dr. von Braun is wearing a Texas hat presented to him months earlier by Lyndon Johnson during a visit to the Johnson ranch in Texas.

  15. Measurement-induced randomness and state-merging

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Indranil; Deshpande, Abhishek; Chatterjee, Sourav

    In this work we introduce the randomness which is truly quantum mechanical in nature arising as an act of measurement. For a composite classical system, we have the joint entropy to quantify the randomness present in the total system and that happens to be equal to the sum of the entropy of one subsystem and the conditional entropy of the other subsystem, given we know the first system. The same analogy carries over to the quantum setting by replacing the Shannon entropy by the von Neumann entropy. However, if we replace the conditional von Neumann entropy by the average conditional entropy due to measurement, we find that it is different from the joint entropy of the system. We call this difference Measurement Induced Randomness (MIR) and argue that this is unique of quantum mechanical systems and there is no classical counterpart to this. In other words, the joint von Neumann entropy gives only the total randomness that arises because of the heterogeneity of the mixture and we show that it is not the total randomness that can be generated in the composite system. We generalize this quantity for N-qubit systems and show that it reduces to quantum discord for two-qubit systems. Further, we show that it is exactly equal to the change in the cost quantum state merging that arises because of the measurement. We argue that for quantum information processing tasks like state merging, the change in the cost as a result of discarding prior information can also be viewed as a rise of randomness due to measurement.

  16. Pyroclastic chronology of the Sancy stratovolcano (Mont-Dore, French Massif Central): New high-precision 40Ar/39Ar constraints

    NASA Astrophysics Data System (ADS)

    Nomade, Sébastien; Scaillet, Stéphane; Pastre, Jean-François; Nehlig, Pierre

    2012-05-01

    The Sancy (16 km2) is the youngest of the two stratovolcanoes that constitute the Mont-Dore Massif (Massif Central, France). The restricted number of high precision radio-isotopic ages currently limits our knowledge of the pyroclastic chronology of this edifice which is the source of many tephra layers detected in middle Pleistocene sequences in southeast Europe. To improve our knowledge of the building phases of this stratovolcano, we collected thirteen pyroclastic units covering the entire proximal record. We present 40Ar/39Ar single grain laser dating performed in the facility hosted at the LSCE (Gif-sur-Yvette, France). The 40Ar/39Ar ages range from 1101 ± 11 ka to 392 ± 7 ka (1σ external). Four pyroclastic cycles lasting on average 100 ka were identified (C. I to C. IV). C. I corresponds to the earlier explosive phase between 1101 ka and 1000 ka and starts about 100 ka earlier than previously thought. The second pyroclastic cycle (C. II) is the main pyroclastic episode spanning from 818 to 685 ka. This cycle is constituted of a minimum of 8 major pyroclastic eruptions and includes a major event that corresponds to a large plinian eruption at 719 ± 10 ka (1σ external) and recorded as a 1.4 m thick layer 60 km south-east of the Sancy volcano. The link between this large eruption and formation of a caldera stays however, hypothetical. The third pyroclastic cycle (C. III) found in the northeastern part of the Sancy (Mont-Dore valley) spanned from 642 to 537 ka. Finally, the youngest pyroclastic cycle (C. IV) starts at 392 ka and probably ends around 280 ka. The age versus geographic location of each pyroclastic cycle indicates three preferential directions of channeling of the pyroclastic events and/or collapse of the volcanic edifice: northwest to west (C. I), southeast (C. II) and finally north to northeast (C. III and IV). The new high precision 40Ar/39Ar age for the Queureuilh bas pyroclastic unit (642 ± 9 ka) is identical within error with the U/Pb age

  17. Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Feroz, F.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rozo, E.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Rykoff, E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.

  18. Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-09-01

    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14

  19. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  20. Motion of particles in solar and galactic systems by using Neumann boundary condition

    NASA Astrophysics Data System (ADS)

    Shenavar, Hossein

    2016-12-01

    A new equation of motion, which is derived previously by imposing Neumann boundary condition on cosmological perturbation equations (Shenavar in Astrophys. Space Sci., 2016a, doi: 10.1007/s10509-016-2676-5), is investigated. By studying the precession of perihelion, it is shown that the new equation of motion suggests a small, though detectable, correction in orbits of solar system objects. Then a system of particles is surveyed to have a better understanding of galactic structures. Also the general form of the force law is introduced by which the rotation curve and mass discrepancy of axisymmetric disks of stars are derived. In addition, it is suggested that the mass discrepancy as a function of centripetal acceleration becomes significant near a constant acceleration 2c1a0 where c1 is the Neumann constant and a0 = 6.59 ×10^{-10} m/s2 is a fundamental acceleration. Furthermore, it is shown that a critical surface density equal to σ0=a0/G, in which G is the Newton gravitational constant, has a significant role in rotation curve and mass discrepancy plots. Also, the specific form of NFW mass density profile at small radii, ρ∝1/r, is explained too. Finally, the present model will be tested by using a sample of 39 LSB galaxies for which we will show that the rotation curve fittings are generally acceptable. The derived mass to light ratios too are found within the plausible bound except for the galaxy F571-8.

  1. Dark energy constraints from the thermal Sunyaev-Zeldovich power spectrum

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-07-01

    We constrain the dark energy equation of state parameter, {w}, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalizing over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e. not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6 per cent precision, F = 0.460 ± 0.012 (68 per cent CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck cosmic microwave background (CMB) data, we find {w} = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68 per cent CL). Our limit on {w} is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ cold dark matter model, the mass bias of B = 1.71 ± 0.17, i.e. 1 - b = 0.58 ± 0.06 (68 per cent CL).

  2. A fuzzy-theory-based method for studying the effect of information transmission on nonlinear crowd dispersion dynamics

    NASA Astrophysics Data System (ADS)

    Fu, Libi; Song, Weiguo; Lo, Siuming

    2017-01-01

    Emergencies involved in mass events are related to a variety of factors and processes. An important factor is the transmission of information on danger that has an influence on nonlinear crowd dynamics during the process of crowd dispersion. Due to much uncertainty in this process, there is an urgent need to propose a method to investigate the influence. In this paper, a novel fuzzy-theory-based method is presented to study crowd dynamics under the influence of information transmission. Fuzzy functions and rules are designed for the ambiguous description of human states. Reasonable inference is employed to decide the output values of decision making such as pedestrian movement speed and directions. Through simulation under four-way pedestrian situations, good crowd dispersion phenomena are achieved. Simulation results under different conditions demonstrate that information transmission cannot always induce successful crowd dispersion in all situations. This depends on whether decision strategies in response to information on danger are unified and effective, especially in dense crowds. Results also suggest that an increase in drift strength at low density and the percentage of pedestrians, who choose one of the furthest unoccupied Von Neumann neighbors from the dangerous source as the drift direction at high density, is helpful in crowd dispersion. Compared with previous work, our comprehensive study improves an in-depth understanding of nonlinear crowd dynamics under the effect of information on danger.

  3. Wernher von Braun

    NASA Image and Video Library

    1958-01-31

    Jet Propulsion Laboratory Director Dr. James Pickering, Dr. James van Allen of the State University of Iowa, and Army Ballistic missionile Agency Technical Director Dr. Wernher von Braun triumphantly display a model of the Explorer I, America's first satellite, shortly after the satellite's launch on January 31, 1958. The Jet Propulsion Laboratory packed and tested the payload, a radiation detection experiment designed by Dr. van Allen. Dr. von Braun's rocket team at Redstone Arsenal in Huntsville, Alabama, developed the Juno I launch vehicle, a modified Jupiter-C.

  4. Is the von Kármán constant affected by sediment suspension?

    NASA Astrophysics Data System (ADS)

    Castro-Orgaz, Oscar; GiráLdez, Juan V.; Mateos, Luciano; Dey, Subhasish

    2012-12-01

    Is the von Kármán constant affected by sediment suspension? The presence of suspended sediment in channels and fluvial streams has been known for decades to affect turbulence transfer mechanism in sediment-laden flows, and, therefore, the transport and fate of sediments that determine the bathymetry of natural water courses. This study explores the density stratification effects on the turbulent velocity profile and its impact on the transport of sediment. There is as yet no consensus in the scientific community on the effect of sediment suspension on the von Kármán parameter,κ. Two different theories based on the empirical log-wake velocity profile are currently under debate: One supports a universal value ofκ = 0.41 and a strength of the wake, Π, that is affected by suspended sediment. The other suggests that both κ and Π could vary with suspended sediment. These different theories result in a conceptual problem regarding the effect of suspended sediment on κ, which has divided the research area. In this study, a new mixing length theory is proposed to describe theoretically the turbulent velocity profile. The analytical approach provides added insight defining κas a turbulent parameter which varies with the distance to the bed in sediment-laden flows. The theory is compared with previous experimental data and simulations using ak-ɛturbulence closure to the Reynolds averaged Navier Stokes equations model. The mixing length model indicates that the two contradictory theories incorporate the stratified flow effect into a different component of the log-wake law. The results of this work show that the log-wake fit with a reducedκ is the physically coherent approximation.

  5. Ellipticity angle of electromagnetic signals and its use for non-energetic detection optimal by the Neumann-Pearson criterion

    NASA Astrophysics Data System (ADS)

    Gromov, V. A.; Sharygin, G. S.; Mironov, M. V.

    2012-08-01

    An interval method of radar signal detection and selection based on non-energetic polarization parameter - the ellipticity angle - is suggested. The examined method is optimal by the Neumann-Pearson criterion. The probability of correct detection for a preset probability of false alarm is calculated for different signal/noise ratios. Recommendations for optimization of the given method are provided.

  6. Liquid Biopsy zur Überwachung von Melanompatienten.

    PubMed

    Gaiser, Maria Rita; von Bubnoff, Nikolas; Gebhardt, Christoffer; Utikal, Jochen Sven

    2018-04-01

    In den letzten sechs Jahren wurden verschiedene innovative systemische Therapien zur Behandlung des metastasierten malignen Melanoms (MM) entwickelt. Die konventionelle Chemotherapie wurde durch neuartige Primärtherapien abgelöst, darunter systemische Immuntherapien (Anti-CTLA4- und Anti-PD1-Antikörper; Zulassung von Anti-PDL1-Antikörpern erwartet) und Therapien, die gegen bestimmte Mutationen gerichtet sind (BRAF, NRAS und c-KIT). Daher stehen die behandelnden Ärzte neuen Herausforderungen gegenüber, beispielsweise der Stratifizierung von Patienten für geeignete Behandlungen und der Überwachung von Langzeit-Respondern auf Progression. Folglich werden zuverlässige Methoden zur Überwachung von Krankheitsprogression oder Behandlungsresistenz benötigt. Lokalisierte und fortgeschrittene Krebserkrankungen können zur Bildung zirkulierender Tumorzellen und Tumor-DNA (ctDNA) führen, die sich in Proben von peripherem Blut nachweisen und quantifizieren lassen (Liquid Biopsy). Im Fall von Melanompatienten können die Ergebnisse von Liquid Biopsy als neuartige prädiktive Biomarker bei therapeutischen Entscheidungen hilfreich sein, insbesondere im Zusammenhang mit mutationsbasierten zielgerichteten Therapien. Die Herausforderungen bei der Anwendung der Liquid Biopsy beinhalten strikte Kriterien für den Phänotyp der zirkulierenden MM-Zellen oder ihrer Fragmente und die Instabilität von ctDNA im Blut. In diesem Übersichtsartikel diskutieren wir die Beschränkungen der Liquid Biopsy hinsichtlich ihrer Anwendung in der Routinediagnostik. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  7. Dr. von Braun Briefing Walt Disney

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. von Braun began his association with Walt Disney in the 1950s when the rocket scientist appeared in three Disney television productions related to the exploration of space. Years later, Dr. von Braun invited Disney and his associates to tour the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This photograph is dated April 13, 1965. From left are R.J. Schwinghamer from the MSFC, Disney, B.J. Bernight, and Dr. von Braun.

  8. Wernher von Braun

    NASA Image and Video Library

    1970-06-27

    This photograph was taken after Dr. von Braun moved from his post as Director of the Marshall Space Flight Center (MSFC) to Deputy Associate Administrator for Planning at NASA Headquarters. On June 27, 1970, he visited the MSFC again during the center’s 10th anniversary to look at a mockup of the spacecraft that would later be known as Skylab. With von Braun are (left to right): Herman K. Weidner, director of Science and Engineering at MSFC, and James R. Thompson of the center’s Astrionics Laboratory.

  9. Accuracy of topological entanglement entropy on finite cylinders.

    PubMed

    Jiang, Hong-Chen; Singh, Rajiv R P; Balents, Leon

    2013-09-06

    Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z2 topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n≥2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.

  10. Weak values, 'negative probability', and the uncertainty principle

    SciTech Connect

    Sokolovski, D.

    2007-10-15

    A quantum transition can be seen as a result of interference between various pathways (e.g., Feynman paths), which can be labeled by a variable f. An attempt to determine the value of f without destroying the coherence between the pathways produces a weak value of f. We show f to be an average obtained with an amplitude distribution which can, in general, take negative values, which, in accordance with the uncertainty principle, need not contain information about the actual range of f which contributes to the transition. It is also demonstrated that the moments of such alternating distributions have amore » number of unusual properties which may lead to a misinterpretation of the weak-measurement results. We provide a detailed analysis of weak measurements with and without post-selection. Examples include the double-slit diffraction experiment, weak von Neumann and von Neumann-like measurements, traversal time for an elastic collision, phase time, and local angular momentum.« less

  11. Local modular Hamiltonians from the quantum null energy condition

    NASA Astrophysics Data System (ADS)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  12. Verbesserung der Symmetrie von Hirnaufnahmen entlang der Sagittalebene

    NASA Astrophysics Data System (ADS)

    Ens, Konstantin; Wenzel, Fabian; Fischer, Bernd

    Die lokale Symmetrie von Hirnscans entlang der Sagittalebene zu ermitteln und zu modizifieren, ist für eine Reihe neurologischer Anwendungen interessant. Beispielsweise kann der voxelweise Vergleich von rechter und linker Hirnhälfte nur dann Aufschluss über die Lokalisierung von Läsionen geben, wenn durch Transformation ein Hirnscan eine möglichst hohe Symmetrie aufweist. Ein weiteres Anwendungsgebiet ist die Visualisierung von medialen Hirnschnitten, für die die Trennfläche beider Hirnhälfte möglichst eben sein sollte. Diese Arbeit stellt die Entwicklung eines Verfahrens vor, mit dessen Hilfe die Symmetrie von Hirnaufnahmen entlang der Sagittalebene verbessert werden kann. Dies geschieht unter Verwendung von aktiven Konturen, die mit Hilfe einer neuartigen Kostenfunktion gesteuert werden. Experimente am Ende der Arbeit mit strukturellen Kernspinaufnahmen demonstrieren die Leistungsfähigkeit des Verfahrens.

  13. Ferdinand von Mueller's interactions with Charles Darwin and his response to Darwinism.

    PubMed

    Lucas, A M

    2010-01-01

    Although Ferdinand Mueller (later von Mueller), Government Botanist of Victoria, opposed Darwin's theories when "On the origin of species" was published, there has been little detailed study of the nature of Mueller's opposition from 1860, when he received a presentation copy of "Origin," to his death in 1896. Analysis of Mueller's correspondence and publications shows that he remained a theist and misunderstood key aspects of Darwin's theory. However, Mueller did come to accept that natural selection could operate within a species, although never accepting it could produce speciation. Despite these differences he retained a cordial relationship with Darwin.

  14. Planck's view on the spectrum of the Sunyaev-Zeldovich effect

    NASA Astrophysics Data System (ADS)

    Erler, Jens; Basu, Kaustuv; Chluba, Jens; Bertoldi, Frank

    2018-05-01

    We present a detailed analysis of the stacked frequency spectrum of a large sample of galaxy clusters using Planck data, together with auxiliary data from the AKARI and IRAS missions. Our primary goal is to search for the imprint of relativistic corrections to the thermal Sunyaev-Zeldovich effect (tSZ) spectrum, which allow to measure the temperature of the intracluster medium. We remove Galactic and extragalactic foregrounds with a matched filtering technique, which is validated using simulations with realistic mock data sets. The extracted spectra show the tSZ signal at high significance and reveal an additional far-infrared (FIR) excess, which we attribute to thermal emission from the galaxy clusters themselves. This excess FIR emission from clusters is accounted for in our spectral model. We are able to measure the tSZ relativistic corrections at 2.2σ by constraining the mean temperature of our cluster sample to 4.4^{+2.1}_{-2.0} keV. We repeat the same analysis on a subsample containing only the 100 hottest clusters, for which we measure the mean temperature to be 6.0^{+3.8}_{-2.9} keV, corresponding to 2.0σ. The temperature of the emitting dust grains in our FIR model is constrained to ≃20 K, consistent with previous studies. Control for systematic biases is done by fitting mock clusters, from which we also show that using the non-relativistic spectrum for SZ signal extraction will lead to a bias in the integrated Compton parameter Y, which can be up to 14% for the most massive clusters. We conclude by providing an outlook for the upcoming CCAT-prime telescope, which will improve upon Planck with lower noise and better spatial resolution.

  15. Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1-b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1-b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.

  16. Planck 2015 results: XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this work, we present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing ofmore » background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1-b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1-b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. In conclusion, improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.« less

  17. Planck 2015 results: XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

    SciTech Connect

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    In this work, we present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing ofmore » background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1-b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1-b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. In conclusion, improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.« less

  18. Planck 2015 results: XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that themore » estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.« less

  19. One Measure Does Not a Construct Make: Directions toward Reinvigorating Psychopathy Research--Reply to Hare and Neumann (2010)

    ERIC Educational Resources Information Center

    Skeem, Jennifer L.; Cooke, David J.

    2010-01-01

    In our article (J. L. Skeem & D. J. Cooke, 2010), we outlined the dangers inherent in conflating the Psychopathy Checklist-Revised (PCL-R; R. Hare, 1991) with psychopathy itself. In their response, R. Hare and C. Neumann (2010) seemed to agree with key points that the PCL-R should not be confused with psychopathy and that criminal behavior is not…

  20. A Planar Calculus for Infinite Index Subfactors

    NASA Astrophysics Data System (ADS)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  1. Otto von Guericke and 17th century cosmology

    NASA Astrophysics Data System (ADS)

    Knobloch, Eberhard

    Otto von Guericke's scientific method was based on reason and experimental science. His cosmology was embedded in theology and can be interpreted as a refutation of Descartes' worldview. He used Nicolaus Cusanus' theory of quantities in order to characterize space. The notion of space has to be distinguished from that of world or heaven. Forces play a crucial role in this respect described by Athanasius Kircher in his "Celestial Journey". Guericke read this work very diligently. In spite of some obvious similarities between Guericke's and Newton's scientific aims and methods there are crucial differences between the scientific convictions and results of these scholars.

  2. On the decay of solutions to the 2D Neumann exterior problem for the wave equation

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo; Shibata, Yoshihiro

    We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition and study the asymptotic behavior of the solution for large times. For possible application we are interested to show a decay estimate which does not involve weighted norms of the initial data. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.

  3. Analyse der pharmazeutischen Versorgungssituation von Patienten mit Psoriasis-Arthritis auf Basis von Routinedaten der Gesetzlichen Krankenversicherung.

    PubMed

    Sondermann, Wiebke; Ventzke, Julia; Matusiewicz, David; Körber, Andreas

    2018-03-01

    Die Psoriasis-Arthritis (PsA) gehört zu den chronisch entzündlichen Gelenkerkrankungen. Trotz zahlreicher versorgungswissenschaftlicher Studien in Deutschland liegen zur pharmazeutischen Versorgungssituation von PsA-Patienten bisher kaum aktuelle Ergebnisse vor. Mit Hilfe einer systematischen Literaturrecherche sowie anhand von Routinedaten der Allgemeinen Ortskrankenkasse (AOK) Rheinland/Hamburg wird ein aktueller Überblick über die pharmazeutische Versorgung von PsA-Patienten in Deutschland gegeben. Selektiert wurden Versicherte aus dem ambulanten und stationären Bereich, die im 1. und 2. Quartal des Jahres 2014 die gesicherte Abrechnungsdiagnose Psoriasis-Arthritis L40.5+ aufwiesen. Anschließend wurden auf Basis dieser "vorab definierten" Kohorte die Arzneimitteldaten für 5 Jahre (01.01.2010-31.12.2014) abgerufen. Es konnten insgesamt n  =  3205 Versicherte (45 % männlich, 55 % weiblich) der AOK Rheinland/Hamburg mit einer gesicherten PsA-Diagnose selektiert werden. Das Durchschnittsalter betrug 58,9 Jahre. 53,7 % der PsA-Patienten wurden mit systemischen PsA-relevanten Arzneimitteln versorgt. Nichtsteroidale Antirheumatika (NSAR) wurden am häufigsten verordnet, gefolgt von systemischen Glucocorticoiden. Von den selektierten PsA-Patienten, die eine Systemtherapie erhielten, wurden 72,1 % mittels einer Disease-modifying-antirheumatic-Drug (DMARD)-Monotherapie behandelt, gefolgt von der Kombinationstherapie aus DMARDs und Biologika (20,9 %). Die pharmakologische Therapie der PsA muss eine Gewährleistung zwischen adäquater Versorgung der PsA mit Verhinderung der Krankheitsprogression und ökonomischer Verantwortung darstellen. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  4. A sub-ensemble theory of ideal quantum measurement processes

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2017-01-01

    run of the ensemble and von Neumann's reduction, are thereby recovered with economic interpretations. The status of Born's rule involving both A and S is re-evaluated, and contextuality of quantum measurements is made obvious.

  5. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  6. Zu einer inhaltsorientierten Theorie des Lernens und Lehrens der biologischen Evolution

    NASA Astrophysics Data System (ADS)

    Wallin, Anita

    Der Zweck dieser Studie (zwecks Überblick siehe dazu Abb. 9.1) war zu untersuchen, wie die Schüler der Sekundarstufe II ein Verständnis von der Theorie der biologischen Evolution entwickeln. Vom Ausgangspunkt "Vorurteile der Schüler“ ausgehend wurden Unterrichtssequenzen entwickelt und drei verschiedene Lernexperimente in einem zyklischen Prozess durchgeführt. Das Wissen der Schüler wurde vor, während und nach den Unterrichtssequenzen mit Hilfe von schriftlichen Tests, Interviews und Diskussionsrunden in kleinen Gruppen abgefragt. Etwa 80 % der Schüler hatten vor dem Unterricht alternative Vorstellungen von Evolution, und in dem Nachfolgetest erreichten circa 75 % ein wissenschaftliches Niveau. Die Argumentation der Schüler in den verschiedenen Tests wurde sorgfältig unter Rücksichtnahme auf Vorurteile, der konzeptionellen Struktur der Theorie der Evolution und den Zielen des Unterrichts analysiert. Daraus konnten Einsichten in solche Anforderungen an Lehren und Lernen gewonnen werden, die Herausforderungen an Schüler und Lehrer darstellen, wenn sie anfangen, evolutionäre Biologie zu lernen oder zu lehren. Ein wichtiges Ergebnis war, dass das Verständnis existierender Variation in einer Population der Schlüssel zum Verständnis von natürlicher Selektion ist. Die Ergebnisse sind in einer inhaltsorientierten Theorie zusammengefasst, welche aus drei verschiedenen Aspekten besteht: 1) den inhaltsspezifischen Aspekten, die einzigartig für jedes wissenschaftliche Feld sind; 2) den Aspekten, die die Natur der Wissenschaft betreffen; und 3) den allgemeinen Aspekten. Diese Theorie kann in neuen Experimenten getestet und weiter entwickelt werden.

  7. Beller Lecture: The Roots of Leo Szilard and his Interdisciplinarity

    NASA Astrophysics Data System (ADS)

    Marx, George

    1998-04-01

    A Central European among the whites was said about Leo Szilard who originated from a polycultural family. In the early 20th century he grew up in Hungary, at the crossroads of history, where political regimes, national borders, ideological doctrines, ``final truths'' changed in a dizzying cavalcade. Instead of conservative dogmatism this social environment required critical thinking in order to survive. World War I was the school of Theodore von Kármán, John von Neumann, Eugene P. Wigner and Leo Szilard; each of them learned trespassing political and disciplinary boundaries without inhibition. Their sensitivity for trends had been utilized by the United States when war efforts and high tech required orientation under new horizons. Szilard's interest ranged from statistical physics through information theory to biological evolution, from life phenomena through hot atoms to nuclear strategy. His intellectual adventures might look crazy jumps for specialists. But now, looking back to the political and technological history of the 20th century one can see than it was a consequent progress of a future-sensitive mind.

  8. On the history of Ludwig von Bertalanffy's "general systemology", and on its relationship to cybernetics - Part II: Contexts and developments of the systemological hermeneutics instigated by von Bertalanffy

    NASA Astrophysics Data System (ADS)

    Pouvreau, David

    2014-02-01

    The history of "general system theory" is investigated in order to clarify its meanings, vocations, foundations and achievements. It is characterized as the project of a science of the systemic interpretation of the "real", renamed here "general systemology". The contexts and modes of its elaboration, publication and implementation are discussed. The paper mostly focuses on the works of its instigator: Ludwig von Bertalanffy. However, general systemology was a collective project: the main contributions of other "systemologists", from the 1950s until the 1970s, are hence also considered. Its solidarity with the history of the Society for General Systems Research is notably discussed. A reconstruction of the systemological hermeneutics is undertaken on this basis. It finds out the potential systematic unity underlying the diversity of the contributions to this both scientific and philosophical project. Light is thus shed on the actual scope of von Bertalanffy's works.

  9. A history of the Allais paradox.

    PubMed

    Heukelom, Floris

    2015-03-01

    This article documents the history of the Allais paradox, and shows that underneath the many discussions of the various protagonists lay different, irreconcilable epistemological positions. Savage, like his mentor von Neumann and similar to economist Friedman, worked from an epistemology of generalized characterizations. Allais, on the other hand, like economists Samuelson and Baumol, started from an epistemology of exact descriptions in which every axiom was an empirical claim that could be refuted directly by observations. As a result, the two sides failed to find a common ground. Only a few decades later was the now so-called Allais paradox rediscovered as an important precursor when a new behavioural economic subdiscipline started to adopt the epistemology of exact descriptions and its accompanying falsifications of rational choice theory.

  10. On the reduced dynamics of a subset of interacting bosonic particles

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  11. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    PubMed

    Fradkin, Eduardo; Moore, Joel E

    2006-08-04

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.

  12. Data Structures in Natural Computing: Databases as Weak or Strong Anticipatory Systems

    NASA Astrophysics Data System (ADS)

    Rossiter, B. N.; Heather, M. A.

    2004-08-01

    Information systems anticipate the real world. Classical databases store, organise and search collections of data of that real world but only as weak anticipatory information systems. This is because of the reductionism and normalisation needed to map the structuralism of natural data on to idealised machines with von Neumann architectures consisting of fixed instructions. Category theory developed as a formalism to explore the theoretical concept of naturality shows that methods like sketches arising from graph theory as only non-natural models of naturality cannot capture real-world structures for strong anticipatory information systems. Databases need a schema of the natural world. Natural computing databases need the schema itself to be also natural. Natural computing methods including neural computers, evolutionary automata, molecular and nanocomputing and quantum computation have the potential to be strong. At present they are mainly at the stage of weak anticipatory systems.

  13. The Distance and Mass of the Galaxy Cluster Abell 1995 Derived from Sunyaev-Zeldovich Effect and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.

    2000-01-01

    We present multiwavelength observations of the Abell 1995 galaxy cluster. From an analysis of X-ray spectroscopy and imaging data, we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the Sunyaev-Zeldovich effect toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster. The X-ray and Sunyaev-Zeldovich effect observations are combined to determine the angular diameter distance to the cluster of D(sub A) = 1294(sup +294 +438, sub -283 -458) Mpc (Statistical followed by systematic uncertainty), implying a Hubble constant of H(sub 0) = 52.2(sup +11.4 +18.5, sub -11.9 -17.7) km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.7. We find a best-fit H(sub 0) of 46 km/s.Mpc for the Omega(sub M) = 1 and Omega(sub lambda) = 0 cosmology, and 48 km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.0. The X-ray data are also used to derive a total cluster mass of M(sup HSE, sub tot)(r(sub 500)) = 5.18(sup +0.62, sub -0.48) x 10(exp 14)/h solar mass; the optical velocity dispersion yields an independent and consistent estimate of M(sup virial, sub tot)(r(sub 500)) = 6.35(sup +1.51, sub -1.19) X 10(exp 14) /h solar mass. Both of the total mass estimates are evaluated at a fiducial radius, r(sub 500) = 830 /h kpc, where the overdensity is 500 times the critical density. The total cluster mass is then combined with gas mass measurements to determine a cluster gas mass fraction of F(sub g) = 0.056(sup +0.010, sub -0.013) /h(sup 3/2) in combination with recent baryon density constraints, the measured gas mass fraction yields an upper limit on the mass density parameter of Omega(sub M) h(sup 1/2) <= 0.34(sup +/0.06, sub 0.05.

  14. The integrated bispectrum in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.

  15. Two Fundamental Issues in Multiprocessing.

    DTIC Science & Technology

    1987-10-01

    Structural Model of a Multiprocessor 6 Figure 5: Operational Model of a Multiprocessor 7 Figure 6: The von Neumann Processor (from Gajski and Peir [201) 10...Computer Society, June, 1983. 20. Gajski , D. D. & J-K. Peir. "Essential Issues in Multiprocessor Systems". Computer 18, 6 (June 1985), 9-27. 21. Gurd

  16. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    SciTech Connect

    Valkenburg, Wessel; Hu, Bin, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: hu@lorentz.leidenuniv.nl

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravitymore » outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.« less

  17. Functional level-set derivative for a polymer self consistent field theory Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic

    2017-09-01

    We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.

  18. An MRI Von Economo - Koskinas atlas.

    PubMed

    Scholtens, Lianne H; de Reus, Marcel A; de Lange, Siemon C; Schmidt, Ruben; van den Heuvel, Martijn P

    2018-04-15

    The cerebral cortex displays substantial variation in cellular architecture, a regional patterning that has been of great interest to anatomists for centuries. In 1925, Constantin von Economo and George Koskinas published a detailed atlas of the human cerebral cortex, describing a cytoarchitectonic division of the cortical mantle into over 40 distinct areas. Von Economo and Koskinas accompanied their seminal work with large photomicrographic plates of their histological slides, together with tables containing for each described region detailed morphological layer-specific information on neuronal count, neuron size and thickness of the cortical mantle. Here, we aimed to make this legacy data accessible and relatable to in vivo neuroimaging data by constructing a digital Von Economo - Koskinas atlas compatible with the widely used FreeSurfer software suite. In this technical note we describe the procedures used for manual segmentation of the Von Economo - Koskinas atlas onto individual T1 scans and the subsequent construction of the digital atlas. We provide the files needed to run the atlas on new FreeSurfer data, together with some simple code of how to apply the atlas to T1 scans within the FreeSurfer software suite. The digital Von Economo - Koskinas atlas is easily applicable to modern day anatomical MRI data and is made publicly available online. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The solution of the sixth Hilbert problem: the ultimate Galilean revolution

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro

    2018-04-01

    I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.

  20. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    SciTech Connect

    Cook, Jeanine

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less

  1. Adaptive detection of noise signal according to Neumann-Pearson criterion

    NASA Astrophysics Data System (ADS)

    Padiryakov, Y. A.

    1985-03-01

    Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.

  2. Entropy for quantum pure states and quantum H theorem

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2015-06-01

    We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.

  3. Laguerre-polynomial-weighted squeezed vacuum: generation and its properties of entanglement

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhang, Kuizheng; Zhang, Haoliang; Xu, Xuexiang; Hu, Liyun

    2018-02-01

    We theoretically prepare a kind of two-mode entangled non-Gaussian state generated by combining quantum catalysis and parametric-down amplifier operated on the two-mode squeezing vacuum state. We then investigate the entanglement properties by examining Von Neumann entropy, EPR correlation, squeezing effect and the fidelity of teleportation. It is shown that only Von Neumann entropy can be enhanced by both single- and two-mode catalysis in a small squeezing region, while the other properties can be enhanced only by two-mode catalysis including symmetrical and asymmetrical cases. A comparison among these properties shows that the squeezing and the EPR correlation definitely lead to the improvement of both the entanglement and the fidelity, and the region of enhanced fidelity can be seen as a sub-region of the enhanced entanglement which indicates that the entanglement is not always beneficial for the fidelity. In addition, the effect of photon-loss after catalysis on the fidelity is considered and the symmetrical two-photon catalysis may present better behavior than the symmetrical single-photon case against the decoherence in a certain region.

  4. Spatial patterns and scale freedom in Prisoner's Dilemma cellular automata with Pavlovian strategies

    NASA Astrophysics Data System (ADS)

    Fort, H.; Viola, S.

    2005-01-01

    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple 'win—stay, lose—shift' strategy is studied. Individuals with binary behaviour, such that they can either cooperate (C) or defect (D), play repeatedly with their neighbours (Von Neumann's and Moore's neighbourhoods). Their utilities in each round of the game are given by a rescaled pay-off matrix described by a single parameter τ, which measures the ratio of temptation to defect to reward for cooperation. Depending on the region of the parameter space τ, the system self-organizes—after a transient—into dynamical equilibrium states characterized by different definite fractions of C agents \\bar {c}_\\infty (two states for the von Neumann neighbourhood and four for the Moore neighbourhood). For some ranges of τ the cluster size distributions, the power spectra P(f) and the perimeter-area curves follow power law scalings. Percolation below threshold is also found for D agent clusters. We also analyse the asynchronous dynamics version of this model and compare results.

  5. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  6. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel

    2009-06-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the features (von Neumann spike and sonic locus) of the reaction zone make these measurements difficult. Here, we report results obtained from using and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating HE (nitromethane)/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments, in either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation systems and the velocimetry systems were different. Some differences were observed in the von Neumann spike height because of the approximately 2 nanosecond time resolution of the techniques -- in some or all cases the spike top was truncated.

  7. Generalized Entanglement Entropy and Holography

    NASA Astrophysics Data System (ADS)

    Obregón, O.

    2018-04-01

    A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ 2) distribution that depends on β and also on pl . The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2dCFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV (for c = 1) ones and also than those due to the area dependent AdS 3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS 3 area dependent entropy.

  8. [Albert Reder Ritter von Schellmann (1826-1904)].

    PubMed

    Schmidt, G; Holubar, K

    1990-01-01

    Albert Reder von Schellmann (1826-1904) was an important syphilidologist of the Vienna Medical School in the second half of the nineteenth century. He went in for the dualistic concept of the origin of syphilis and ulcer caused by soft chancre. In 1870 - Reder became head of a third dermato-syphilidologic department in the "Josephinum" in Vienna, where military surgeons got their medical education. At the same time the two full professorships of dermatosyphilidology in the Vienna General Hospital were held by Ferdinand von Hebra (1816-1880) and Carl Ludwig Sigmund von Ilanor (1810-1883).

  9. [Carl Friedrich von Weizsäcker's design of a unity of physics].

    PubMed

    Görnitz, Thomas

    2014-01-01

    As I learned in many conversations with Carl Friedrich von Weizsäcker, he saw his place in the history of science deriving from his "Theory of Urs". This theory will establish the unity of science on the basis of quantum bits. Any attempts to find some "fundamental bricks"--of whatever kind--must fail because of the antinomies of atomism. An abstract quantum bit is a structure quantum that cannot be conceived as a particle in space and time. However, it is clear, solely for logical reasons, that a quantum bit is an ultimate and indecomposable entity. Weizsäcker's revolutionary goal was--already 50 years ago--to unite quantum theory with cosmology and, on these grounds, proceed to a theory of elementary particles. The article gives a short overview of Weizsäcker's approach to the unity of physics, ending with a brief summary of what has been achieved in that endeavour up to now.

  10. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  11. von Willebrand's disease antigen II. A new plasma and platelet antigen deficient in severe von Willebrand's disease.

    PubMed Central

    Montgomery, R R; Zimmerman, T S

    1978-01-01

    Factor VIII-related antigen (VIIIag) is deficient in plasma and platelets of patients with severe von Willebrand's disease. This study reports a second von Willebrand's disease antigen (vWagII), distinct from VIIIag, that is also deficient in the platelets and plasma of patients with severe von Willebrand's disease. VIIIag and vWagII are separable by molecular exclusion chromatography, sucrose density gradient ultracentrifugation, and crossed immunoelectrophoresis. They show reactions of immunologic nonidentity with each other, and thus, do not share a precursor-product relationship. vWagII is released from normal platelets during blood clotting, accounting for a fourfold higher concentration of vWagII in serum over plasma. Images PMID:307007

  12. Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations

    SciTech Connect

    Hojjati, Alireza; Harnois-Deraps, Joachim; Waerbeke, Ludovic Van

    2015-10-01

    We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξ{sub yκ}(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ ∼< 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ{sub 8}, Ω{sub m} andmore » Ω{sub b}). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (M{sub halo} ∼< 10{sup 14} M{sub ⊙}) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (∼> 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.« less

  13. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.

    PubMed

    Sedghi, Aliasghar; Rezaei, Behrooz

    2016-11-20

    Using the Dirichlet-to-Neumann map method, we have calculated the photonic band structure of two-dimensional metallodielectric photonic crystals having the square and triangular lattices of circular metal rods in a dielectric background. We have selected the transverse electric mode of electromagnetic waves, and the resulting band structures showed the existence of photonic bandgap in these structures. We theoretically study the effect of background dielectric on the photonic bandgap.

  14. Tsirelson's bound from a generalized data processing inequality

    NASA Astrophysics Data System (ADS)

    Dahlsten, Oscar C. O.; Lercher, Daniel; Renner, Renato

    2012-06-01

    The strength of quantum correlations is bounded from above by Tsirelson's bound. We establish a connection between this bound and the fact that correlations between two systems cannot increase under local operations, a property known as the data processing inequality (DPI). More specifically, we consider arbitrary convex probabilistic theories. These can be equipped with an entropy measure that naturally generalizes the von Neumann entropy, as shown recently in Short and Wehner (2010 New J. Phys. 12 033023) and Barnum et al (2010 New J. Phys. 12 033024). We prove that if the DPI holds with respect to this generalized entropy measure then the underlying theory necessarily respects Tsirelson's bound. We, moreover, generalize this statement to any entropy measure satisfying certain minimal requirements. A consequence of our result is that not all the entropic relations used for deriving Tsirelson's bound via information causality in Pawlowski et al (2009 Nature 461 1101-4) are necessary.

  15. The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.

    PubMed

    Jobe, Thomas H.; Helgason, Cathy M.

    1998-04-01

    Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.

  16. Entropy-driven phase transitions of entanglement

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya

    2013-05-01

    We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.

  17. Wernher von Braun

    NASA Image and Video Library

    1962-12-20

    Dr. von Braun, Major General Francis McMorrow, and Alabama Governor, John Patterson (far left) participated in the ground breaking ceremony for the University of Alabama Research Institute in Huntsville, December 20, 1962.

  18. Wernher von Braun

    NASA Image and Video Library

    1965-11-05

    In this photograph, Marshall Space Flight Center Director, Dr. Wernher von Braun, presents a Co-Inventor’s award to MSFC employee Martin Hall of the Mechanical Engineering Laboratory during the NASA Anniversary ceremony.

  19. Dr. Wernher Von Braun Memorial Dinner

    NASA Image and Video Library

    2017-10-26

    The annual Dr. Wernher Von Braun Memorial Dinner was held at the U.S. Space and Rocket Center's Davidson Center on October 26, 2017 with Keynote speaker General John Hyten, Commander of U.S. Strategic Command. Emcee was Mark Larson of Mark Larson Media Services, Inc. Dr. Wernher Von Braun Memorial Scholarships were presented to 8 college students by the National Space Club. Educator of the Year was awarded to Tammy Thorpe; Community Service award was presented to Huntsville, Al. Mayor Tommy Battle. The Communications Award was presented to retired astronaut Dr. Mike Massimino. The Distinguished Science Award was presented to Dr. Martin Weisskopf. The Astronautics Engineer Award was presented to Douglas R. Cooke. The Dr. Wernher Von Braun Space Flight Trophy was presented to Robert Lightfoot.

  20. Free boundary problems in shock reflection/diffraction and related transonic flow problems

    PubMed Central

    Chen, Gui-Qiang; Feldman, Mikhail

    2015-01-01

    Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection–diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws. PMID:26261363

  1. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    PubMed

    Gambarota, Giulio

    2017-07-15

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Wernher von Braun

    NASA Image and Video Library

    1967-08-28

    Marshall Space Flight Center’s (MSFC) director, Dr. Wernher von Braun (right), inspects a component of a laser experiment being conducted in MSFC’s Space Sciences Laboratory during a tour on August 28, 1967.

  3. Wernher von Braun

    NASA Image and Video Library

    1962-09-11

    Marshall Space Flight Center Director Dr. Wernher von Braun explains a detail from a Saturn IB mockup and engine to President John F. Kennedy, Vice President Lyndon Johnson and other guests, September 11, 1962.

  4. The Martians of Science - Five Physicists Who Changed the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Hargittai, István

    2006-07-01

    If science has the equivalent of a Bloomsbury group, it is the five men born at the turn of the twentieth century in Budapest: Theodore von Kármán, Leo Szilard, Eugene Wigner, John von Neumann, and Edward Teller. From Hungary to Germany to the United States, they remained friends and continued to work together and influence each other throughout their lives. As a result, their work was integral to some of the most important scientific and political developments of the twentieth century. They were an extraordinary group of talents: Wigner won a Nobel Prize in theoretical physics; Szilard was the first to see that a chain reaction based on neutrons was possible, initiated the Manhattan Project, but left physics to try to restrict nuclear arms; von Neumann could solve difficult problems in his head and developed the modern computer for more complex problems; von Kármán became the first director of NASA's Jet Propulsion Laboratory, providing the scientific basis for the U.S. Air Force; and Teller was the father of the hydrogen bomb, whose name is now synonymous with the controversial "Star Wars" initiative of the 1980s. Each was fiercely opinionated, politically active, and fought against all forms of totalitarianism. István Hargittai, as a young Hungarian physical chemist, was able to get to know some of these great men in their later years, and the depth of information and human interest in The Martians of Science is the result of his personal relationships with the subjects, their families, and their contemporaries.

  5. Two-cylinder entanglement entropy under a twist

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Witczak-Krempa, William; Faulkner, Thomas; Fradkin, Eduardo

    2017-04-01

    We study the von Neumann and Rényi entanglement entropy (EE) of the scale-invariant theories defined on the tori in 2  +  1 and 3  +  1 spacetime dimensions. We focus on the spatial bi-partitions of the torus into two cylinders, and allow for twisted boundary conditions along the non-contractible cycles. Various analytical and numerical results are obtained for the universal EE of the relativistic boson and Dirac fermion conformal field theories (CFTs), the fermionic quadratic band touching and the boson with z  =  2 Lifshitz scaling. The shape dependence of the EE clearly distinguishes these theories, although intriguing similarities are found in certain limits. We also study the evolution of the EE when a mass is introduced to detune the system from its scale-invariant point, by employing a renormalized EE that goes beyond a naive subtraction of the area law. In certain cases we find the non-monotonic behavior of the torus EE under RG flow, which distinguishes it from the EE of a disk.

  6. Bewertung von Fahrzeuggeräuschen

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus; Schulte-Fortkamp, Brigitte; Fiebig, André; Haverkamp, Michael

    Bei der Wahrnehmung und Beurteilung eines Automobils sind unzählige Merkmale und Eigenschaften von Bedeutung. Dabei können Merkmale objektiv-technisch beschrieben werden, wie Angaben zur Motorisierung, Höchstgeschwindigkeit, Drehmoment, zulässige Zuladung, Verbrauch usw. Daneben sind weitere Eigenschaften von Bedeutung, die sich einer einfachen objektiv-technischen Beschreibung entziehen. Hier sind Begriffe zu nennen, wie Sicherheit, allgemeine Qualitätsanmutung, Design, Ergonomie, Komfort, Haptik, Fahrdynamik, Zuverlässigkeit, die deutlich schwieriger objektiv erfassbar und beschreibbar sind (Abb. 4.1).

  7. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  8. Baron von Zach's business relations with the Munich entrepreneur Joseph von Utzschneider (German Title: Geschäftsbeziehungen des Barons von Zach zu dem Münchner Unternehmer Joseph von Utzschneider)

    NASA Astrophysics Data System (ADS)

    Schneider, Ivo

    The relationship between the astronomer von Zach on the one side and the entrepreneur Joseph von Utzschneider and his partner Georg von Reichenbach on the other dates presumably from the year 1807 when Zach spent two months in Munich. Already in the same year Zach had ordered an instrument for himself and began to solicit business for the institute of Reichenbach, Utzschneider, and Liebherr, which was founded in 1804. One of the clients canvassed by Zach was the director of the observatory in Naples Zuccari. Zuccari had ordered the whole equipment for the new observatory from this institute in 1813. The instruments for Naples, which were completed in 1814, were sent accompanied by Reichenbach by land and sea to their destination where Reichenbach supervised their setup. At that time Reichenbach had separated from Utzschneider who kept the optical institute in Benediktbeuern with his new partner Joseph von Fraunhofer whereas Reichenbach became owner of the mathematical-mechanical institute in Munich. For personal and economical reasons Utzschneider began soon after to produce not only optical glass but also optical devices similar to those offered by Reichenbach. As soon as two institutes in Munich competed against each other on the market for sophisticated geodetical and astronomical instruments Zach sided with Utzschneider. Zach's main professional argument for this decision was that both competitors got the optical glass for their instruments from Utzschneider's optical institute in Benediktbeuern. This meant that Utzschneider had first choice and so the optical part of his instruments could be considered as better than that of Reichenbach`s instruments. Zach's role as an agent in Italy and France for the sale of products coming from Utzschneider's manufactories is highlighted by three of Zach's letters to Utzschneider from 1817 and 1818, two of which are reproduced here for the first time.

  9. The integrated bispectrum in modified gravity theories

    SciTech Connect

    Munshi, Dipak, E-mail: D.Munshi@sussex.ac.uk

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze and Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormenmore » (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.« less

  10. Wernher von Braun

    NASA Image and Video Library

    1962-01-01

    Dr. Wernher von Braun, Director of the Marshall Space Flight Center (MSFC), during his tour of the Space information Division of North American Aviation (NAA) in Downey, California, where the Saturn SII stage was developed.

  11. Wernher von Braun

    NASA Image and Video Library

    1964-10-14

    This photograph, dated October 14, 1964, was taken at the Marned Spacecraft Center, now the Johnson Space Center in Houston, Texas. Dr. von Braun is shown looking over consoles in the Manned Spaceflight Control Center.

  12. Wernher von Braun

    NASA Image and Video Library

    1959-03-03

    Dr. von Braun, Director of the Development Operations Divisons, and Dr. Debus, Director of the Missile Firing Laboratory; Army Ballistic Missile Agency (ABMA), in the blockhouse during the launch of the Pioneer IV, March 3, 1959.

  13. Wernher von Braun

    NASA Image and Video Library

    1960-11-03

    Marshall Space Flight Center’s (MSFC) Director, Dr. Wernher von Braun, is pictured here with Army Ballistic Missile Agency’s (ABMA) Commanding General, J.B. Medaris, before a display of Army missles at the ABMA test lab.

  14. The Linear Bias in the Zeldovich Approximation and a Relation between the Number Density and the Linear Bias of Dark Halos

    NASA Astrophysics Data System (ADS)

    Fan, Zuhui

    2000-01-01

    The linear bias of the dark halos from a model under the Zeldovich approximation is derived and compared with the fitting formula of simulation results. While qualitatively similar to the Press-Schechter formula, this model gives a better description for the linear bias around the turnaround point. This advantage, however, may be compromised by the large uncertainty of the actual behavior of the linear bias near the turnaround point. For a broad class of structure formation models in the cold dark matter framework, a general relation exists between the number density and the linear bias of dark halos. This relation can be readily tested by numerical simulations. Thus, instead of laboriously checking these models one by one, numerical simulation studies can falsify a whole category of models. The general validity of this relation is important in identifying key physical processes responsible for the large-scale structure formation in the universe.

  15. Childhood Picture of Dr. von Braun

    NASA Technical Reports Server (NTRS)

    1912-01-01

    This is a childhood picture of Dr. von Braun (center) with his brothers. Dr. Wernher von Braun was born in Wirsitz, Germany, March 23, 1912. His childhood dreams of marned space flight were fulfilled when giant Saturn rockets, developed under his direction at NASA's Marshall Space Flight Center, boosted the manned Apollo spacecraft to the Moon. His life was dedicated to expanding man's knowledge through the exploration of space.

  16. Laboratory diagnosis of von Willebrand's disease.

    PubMed

    Rick, M E

    1994-12-01

    The diagnosis of von Willebrand's disease is becoming complex as more is understood about the disease. Clinical information and laboratory data are necessary for the diagnosis because of the overlap of normal and abnormal laboratory values. A complete evaluation including von Willebrand factor multimers, ristocetin-induced platelet aggregation, factor VIII activity level, and a template bleeding time is necessary to correctly classify the patient so that optimal treatment may be given.

  17. Wernher von Braun

    NASA Image and Video Library

    1959-01-01

    Marshall Space Flight Center Director Wernher von Braun presents General J.B. Medaris with a new golf bag. General Medaris, (left) was a Commander of the Army Ballistic Missile Agency (ABMA) in Redstone Arsenal, Alabama during 1955 to 1958.

  18. Dr. von Braun Tries Out the NBS

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown fitted with suit and diving equipment as he prepares for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  19. Wernher von Braun

    NASA Image and Video Library

    1950-01-01

    Dr. von Braun stands beside a model of the upper stage (Earth-returnable stage) of the three-stage launch vehicle built for the series of the motion picture productions of space flight produced by Walt Disney in the mid-1950's.

  20. Wernher von Braun

    NASA Image and Video Library

    1959-01-01

    In this picture, Dr. Wernher von Braun, who was serving as Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, is shown posed with his Mercedes 220SE automobile in front of Redstone Building 4488, which houses the ABMA.

  1. Herstellung von Chitosan und einige Anwendungen

    NASA Astrophysics Data System (ADS)

    Struszczyk, Marcin Henryk

    2001-05-01

    1. Die Deacetylierung von crabshell - Chitosan führte gleichzeitig zu einem drastischen Abfall der mittleren viscosimetrischen Molmasse ( Mv), insbesondere wenn die Temperatur und die Konzentration an NaOH erhöht werden. Diese Parameter beeinflussten jedoch nicht den Grad der Deacetylierung (DD). Wichtig ist jedoch die Quelle des Ausgangsmaterials: Chitin aus Pandalus borealis ist ein guter Rohstoff für die Herstellung von Chitosan mit niedrigem DD und gleichzeitig hoher mittlerer Mv, während Krill-Chitin (Euphausia superba) ein gutes Ausgangsmaterial zur Herstellung von Chitosan mit hohem DD und niedrigem Mv ist. Chitosan, das aus Insekten (Calliphora erythrocephala), unter milden Bedingungen (Temperatur: 100°C, NaOH-Konzentration: 40 %, Zeit: 1-2h ) hergestellt wurde, hatte die gleichen Eigenschaften hinsichtlich DD und Mv wie das aus Krill hergestellte Chitosan. Der Bedarf an Zeit, Energie und NaOH ist für die Herstellung von Insekten-Chitosan geringer als für crabshell-Chitosan vergleichbare Resultaten für DD und Mv. 2. Chitosan wurde durch den Schimmelpilz Aspergillus fumigatus zu Chitooligomeren fermentiert. Die Ausbeute beträgt 25%. Die Chitooligomere wurden mit Hilfe von HPLC und MALDI-TOF-Massenspektrmetrie identifiziert. Die Fermentationsmischung fördert die Immunität von Pflanzen gegen Bakterien und Virusinfektion. Die Zunahme der Immunität schwankt jedoch je nach System Pflanze-Pathogen. Die Fermentation von Chitosan durch Aspergillus fumigatus könnte eine schnelle und billige Methode zur Herstellung von Chitooligomeren mit guter Reinheit und Ausbeute sein. Eine partiell aufgereinigte Fermentationsmischung dieser Art könnte in der Landwirtschaft als Pathogeninhibitor genutzt werden. Durch kontrollierte Fermentation, die Chitooligomere in definierter Zusammensetzung (d.h. definierter Verteilung des Depolymerisationsgrades) liefert, könnte man zu Mischungen kommen, die für die jeweilige Anwendung eine optimale Bioaktivität besitzen. 3

  2. Entropy, a Unifying Concept: from Physics to Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino; Tsallis, Alexandra C.

    Together with classical, relativistic and quantum mechanics, as well as Maxwell electromagnetism, Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the main theories of contemporary physics. This theory primarily concerns inanimate matter, and at its generic foundation we find nonlinear dynamical systems satisfying the ergodic hypothesis. This hypothesis is typically guaranteed for systems whose maximal Lyapunov exponent is positive. What happens when this crucial quantity is zero instead? We suggest here that, in what concerns thermostatistical properties, we typically enter what in some sense may be considered as a new world — the world of living systems — . The need emerges, at least for many systems, for generalizing the basis of BG statistical mechanics, namely the Boltzmann-Gibbs-von Neumann-Shannon en-tropic functional form, which connects the oscopic, thermodynamic quantity, with the occurrence probabilities of microscopic configurations. This unifying approach is briefly reviewed here, and its widespread applications — from physics to cognitive psychology — are overviewed. Special attention is dedicated to the learning/memorizing process in humans and computers. The present observations might be related to the gestalt theory of visual perceptions and the actor-network theory.

  3. Theory of multicolor lattice gas - A cellular automaton Poisson solver

    NASA Technical Reports Server (NTRS)

    Chen, H.; Matthaeus, W. H.; Klein, L. W.

    1990-01-01

    The present class of models for cellular automata involving a quiescent hydrodynamic lattice gas with multiple-valued passive labels termed 'colors', the lattice collisions change individual particle colors while preserving net color. The rigorous proofs of the multicolor lattice gases' essential features are rendered more tractable by an equivalent subparticle representation in which the color is represented by underlying two-state 'spins'. Schemes for the introduction of Dirichlet and Neumann boundary conditions are described, and two illustrative numerical test cases are used to verify the theory. The lattice gas model is equivalent to a Poisson equation solution.

  4. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c 500 = 1.00 +0.18 -0.15 . This indicates that infrared galaxies in the outskirtsmore » of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is A tSZ-CIB = 1.2 ± 0.3. Finally, this result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.« less

  5. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (I) using a catalogue of confirmed clusters detected in Planck data; (II) using an all-sky tSZ map built from Planck frequency maps; and (III) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (I) 6σ; (II) 3σ; and (III) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  6. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    SciTech Connect

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    In this paper, we use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c 500 = 1.00 +0.18 -0.15 . This indicates that infrared galaxies in the outskirtsmore » of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is A tSZ-CIB = 1.2 ± 0.3. Finally, this result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.« less

  7. [Weizsäcker's cosmogony, Farm Hall and the origin of modern turbulence theory].

    PubMed

    Eckert, Michael

    2014-01-01

    The modem statistical theory of turbulence was originated by Andrey Nikolaevich Kolmogorov (1903-1987), Lars Onsager (1903-1976), Ludwig Prandtl (1875-1953), Werner Heisenberg (1901-1976) und Carl Friedrich von Weizsäcker (1912-2007). With the exception of Kolmogorovs theory which was published in 1941 but became widely known only after the war, these contributions emerged largely independently from another in a "remarkable series of coincidences" (Batchelor 1946). Heisenberg and Weizäscker developed their theories during their detention at Farm Hall. Their work was motivated by von Weizsäcker's interest in astrophysics. Weizsäcker aimed at an understanding of the role of turbulence for the motion of interstellar matter for his theory about the origin of the planetary system which he had published in 1943. Weizsäcker's work on cosmogony and turbulence illustrates an early interaction between the disciplines of astronomy and fluid mechanics that became characteristic for astrophysics in the second half of the twentieth century.

  8. Dr. von Braun and Army Ballistics Missile Agency (ABMA) Group

    NASA Technical Reports Server (NTRS)

    1959-01-01

    This photograph of Dr. von Braun, shown here to the left of General Bruce Medaris, was taken in the fall of 1959, immediately prior to Medaris' retirement from the Army. At the time, von Braun and his associates worked for the Army Ballistics Missile Agency in Huntsville, Alabama. Those in the photograph have been identified as Ernst Stuhlinger, Frederick von Saurma, Fritz Mueller, Hermarn Weidner, E.W. Neubert (partially hidden), W.A. Mrazek, Karl Heimburg, Arthur Rudolph, Otto Hoberg, von Braun, Oswald Lange, Medaris, Helmut Hoelzer, Hans Maus, E.D. Geissler, Hans Heuter, and George Constan.

  9. The solution of the sixth Hilbert problem: the ultimate Galilean revolution.

    PubMed

    D'Ariano, Giacomo Mauro

    2018-04-28

    I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  10. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  11. Color constancy: enhancing von Kries adaption via sensor transformations

    NASA Astrophysics Data System (ADS)

    Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.

    1993-09-01

    Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.

  12. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.

    PubMed

    Graziani, F R; Bauer, J D; Murillo, M S

    2014-09-01

    Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD

  13. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  14. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    SciTech Connect

    Potok, Thomas; Schuman, Catherine; Patton, Robert

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less

  15. Dr. von Braun With Management Team

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Dr. von Braun is shown in this photograph, which was probably taken in the early 1960s, with members of his management team. Pictured from left to right are, Werner Kuers, Director of the Manufacturing Engineering Division; Dr. Walter Haeussermarn, Director of the Astrionics Division; Dr. William Mrazek, Propulsion and Vehicle Engineering Division; Dr. von Braun; Dieter Grau, Director of the Quality Assurance Division; Dr. Oswald Lange, Director of the Saturn Systems Office; and Erich Neubert , Associate Deputy Director for Research and Development.

  16. Portrait of Dr. Von Braun with Walt Disney, 1954.

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Marshall Center Director Dr. Wernher Von Braun is pictured with Walt Disney during a visit to the Marshall Space Flight Center in 1954. In the 1950s, Dr. Von Braun while working in California on the Saturn project, also worked with Disney studios as a technical director in making three films about Space Exploration for television. Disney's tour of Marshall in 1965 was Von Braun's hope for a renewed public interest in the future of the Space Program at NASA.

  17. Alexander von Humboldt and the concept of animal electricity.

    PubMed

    Kettenmann, H

    1997-06-01

    More than two hundred years ago, Alexander von Humboldt helped to establish Galvani's view that muscle and nerve tissue are electrically excitable. His 1797 publication was a landmark for establishing the concept of animal electricity. Almost half a century later, von Humboldt became the mentor of the young du Bois-Reymond. With the help of von Humboldt's promotion, du Bois-Reymond demonstrated convincingly that animal tissue has the intrinsic capacity to generate electrical activity, and thus laid the ground for modern electrophysiology.

  18. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  19. Quantum mechanics on phase space and the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  20. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  1. von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Aryesh; Steinberg, Victor

    2018-01-01

    Precise measurements of the torque in a von Kármán swirling flow between a rotating and a stationary smooth disk in three Newtonian fluids with different dynamic viscosities are reported. From these measurements the dependence of the normalized torque, called the friction coefficient, on Re is found to be of the form Cf=1.17 (±0.03 ) Re-0.46±0.003 where the scaling exponent and coefficient are close to that predicted theoretically for an infinite, unshrouded, and smooth rotating disk which follows from an exact similarity solution of the Navier-Stokes equations, obtained by von Kármán. An error analysis shows that deviations from the theory can be partially caused by background errors. Measurements of the azimuthal Vθ and axial velocity profiles along radial and axial directions reveal that the flow core rotates at Vθ/r Ω ≃0.22 (up to z ≈4 cm from the rotating disk and up to r0/R ≃0.25 in the radial direction) in spite of the small aspect ratio of the vessel. Thus the friction coefficient shows scaling close to that obtained from the von Kármán exact similarity solution, but the observed rotating core provides evidence of the Batchelor-like solution [Q. J. Mech. Appl. Math. 4, 29 (1951), 10.1093/qjmam/4.1.29] different from the von Kármán [Z. Angew. Math. Mech. 1, 233 (1921), 10.1002/zamm.19210010401] or Stewartson [Proc. Camb. Philos. Soc. 49, 333 (1953), 10.1017/S0305004100028437] one.

  2. Dr. von Braun With German Rocket Experimenters

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Dr. von Braun was among a famous group of rocket experimenters in Germany in the 1930s. This photograph is believed to be made on the occasion of Herman Oberth's Kegelduese liquid rocket engine being certified as to performance during firing. From left to right are R. Nebel, Dr. Ritter, Mr. Baermueller, Kurt Heinish, Herman Oberth, Klaus Riedel, Wernher von Braun, and an unidentified person.

  3. Von Glaserfeld`s Radical Constructivism: A Critical Review

    NASA Astrophysics Data System (ADS)

    Hardy, Michael D.

    We explore Ernst von Glaserfelds radical constructivism, its criticisms, and our own thoughts on what it promises for the reform of science and mathematics teaching. Our investigation reveals that many criticisms of radical constructivism are unwarranted; nevertheless, in its current cognitivist form radical constructivism may be insufficient to empower teachers to overcome objectivist cultural traditions. Teachers need to be empowered with rich understandings of philosophies of science and mathematics that endorse relativist epistemologies; for without such they are unlikely to be prepared to reconstruct their pedagogical practices. More importantly, however, is a need for a powerful social epistemology to serve as a referent for regenerating the culture of science education. We recommend blending radical constructivism with Habermas theory of communicative action to provide science teachers with a moral imperative for adopting a constructivist epistemology.

  4. Wernher von Braun

    NASA Image and Video Library

    1964-10-14

    This photograph is dated October 14, 1964, and shows Dr. von Braun, left, during a tour of the NASA Marned Spacecraft Center, now the Johnson Space Center. He is with Dr. J.P. Kuettner, center, from the Marshall Space Flight Center, and Warren J. North from the Manned Spacecraft Center.

  5. Dr. von Braun with Seven Original Mercury Astronauts

    NASA Technical Reports Server (NTRS)

    1959-01-01

    In this photo, Dr. Wernher von Braun, Director of the U.S. Army Ballistic Missile Agency's (ABMA) Development Operations Division, is shown briefing the seven original Mercury astronauts in ABMA's Fabrication Laboratory. (Left to right) Guss Grissom, Walter Schirra, Alan Shepard, John Glenn, Scott Carpenter, Gordon Cooper, Donald Slayton, and Dr. von Braun.

  6. Long period perturbations of earth satellite orbits. [Von Zeipel method and zonal harmonics

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1979-01-01

    All the equations involved in extending the PS phi solution to include the long periodic and second order secular effects of the zonal harmonics are presented. Topics covered include DSphi elements and relations for their conconical transformation into the PS phi elements; the solution algorithm based on the Von Zeipel method; and the elimination of long periodic terms and analytical integration of primed variables. The equations were entered into the ASOP program, checked out, and verified. Comparisons with numerical integrations show the long period theory to be accurate within several meters after 800 revolutions.

  7. Ein Konzept für den energieeffizienten Betrieb von Mobilfunknetzen

    NASA Astrophysics Data System (ADS)

    Bayer, N.; von Hugo, D.

    2015-11-01

    Der flächendeckende Betrieb mehrerer Mobilfunknetze unterschiedlicher Technologie in einem Land sorgt aufgrund der ständigen Bereithaltung von Übertragungskapazität für Dienste mit zunehmend höherem Datenvolumenbedarf für einen erheblichen Energieverbrauch. Das Forschungsförderungsprojekt ComGreen hat sich zur Aufgabe gesetzt, durch lastadaptiven Betrieb und intelligente dynamische Rekonfiguration des Funkzugangsnetzes zur Energieeinsparung beizutragen. Konzept, Herausforderungen, ausgewählte Ergebnisse von Simulationen und prototypischem Betrieb werden ebenso wie typische Erwartungswerte des künftigen Energieverbrauchs im Mobilfunkbereich vorgestellt. Sowohl Berechnungen als auch Messungen zeigen, dass durch kontext-basierte dynamische Rekonfiguration von zellularen Funknetzen Energieeinsparungen im Bereich von 25-40 % ermöglicht werden.

  8. Measurement of the pairwise kinematic Sunyaev-Zeldovich effect with Planck and BOSS data

    NASA Astrophysics Data System (ADS)

    Li, Yi-Chao; Ma, Yin-Zhe; Remazeilles, Mathieu; Moodley, Kavilan

    2018-01-01

    We present a new measurement of the kinetic Sunyaev-Zeldovich effect (kSZ) using Planck cosmic microwave background (CMB) and Baryon Oscillation Spectroscopic Survey (BOSS) data. Using the "LowZ North/South" galaxy catalogue from BOSS DR12, and the group catalogue from BOSS DR13, we evaluate the mean pairwise kSZ temperature associated with BOSS galaxies. We construct a "Central Galaxies Catalogue" (CGC) which consists of isolated galaxies from the original BOSS data set, and apply the aperture photometry (AP) filter to suppress the primary CMB contribution. By constructing a halo model to fit the pairwise kSZ function, we constrain the mean optical depth to be τ ¯=(0.53 ±0.32 )×10-4(1.65 σ ) for LowZ North CGC, τ ¯ =(0.30 ±0.57 )×10-4(0.53 σ ) for LowZ South CGC, and τ ¯ =(0.43 ±0.28 )×10-4(1.53 σ ) for DR13 Group. In addition, we vary the radius of the AP filter and find that the AP size of 7 arcmin gives the maximum detection for τ ¯. We also investigate the dependence of the signal with halo mass and find τ ¯ =(0.32 ±0.36 )×10-4(0.8 σ ) and τ ¯ =(0.67 ±0.46 )×10-4(1.4 σ ) for DR13 Group with halo mass restricted to, respectively, less and greater than its median halo mass, 1 012 h-1M⊙ . For the LowZ North CGC sample restricted to Mh≳1014 h-1M⊙ there is no detection of the kSZ signal because these high mass halos are associated with the high-redshift galaxies of the LowZ North catalogue, which have limited contribution to the pairwise kSZ signals.

  9. Multi-agent simulation of the von Thunen model formation mechanism

    NASA Astrophysics Data System (ADS)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  10. Wernher von Braun

    NASA Image and Video Library

    1959-03-04

    Dr. Wernher von Braun, Director of the U.S. Army Ballistic Missile Agency's (ABMA) Development Operations Division, talks to Huntsville Mayor R. B. "Speck" Searcy, center, and Army Ordnance Missile Command (ARMC) Major General John B. Medaris, right, during "Moon Day" celebrations in downtown Huntsville, Alabama. (Courtesy of Huntsville/Madison County Public Library)

  11. Wernher von Braun

    NASA Image and Video Library

    1965-05-25

    In this photo, Dr. von Braun anxiously awaits the launch of the Saturn I vehicle (SA-8) in the Launch Complex Control Center at the Kennedy Space Center in Florida on May 25, 1965. The SA-8 mission made the first night launch and deployed the Pegasus II micro meteoroid detection satellite.

  12. Exact and approximate many-body dynamics with stochastic one-body density matrix evolution

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis

    2005-06-01

    We show that the dynamics of interacting fermions can be exactly replaced by a quantum jump theory in the many-body density matrix space. In this theory, jumps occur between densities formed of pairs of Slater determinants, Dab=|Φa><Φb|, where each state evolves according to the stochastic Schrödinger equation given by O. Juillet and Ph. Chomaz [Phys. Rev. Lett. 88, 142503 (2002)]. A stochastic Liouville-von Neumann equation is derived as well as the associated. Bogolyubov-Born-Green-Kirwood-Yvon hierarchy. Due to the specific form of the many-body density along the path, the presented theory is equivalent to a stochastic theory in one-body density matrix space, in which each density matrix evolves according to its own mean-field augmented by a one-body noise. Guided by the exact reformulation, a stochastic mean-field dynamics valid in the weak coupling approximation is proposed. This theory leads to an approximate treatment of two-body effects similar to the extended time-dependent Hartree-Fock scheme. In this stochastic mean-field dynamics, statistical mixing can be directly considered and jumps occur on a coarse-grained time scale. Accordingly, numerical effort is expected to be significantly reduced for applications.

  13. Dr. von Braun with Original Mercury Astronauts

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.

  14. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  15. Wernher von Braun

    NASA Image and Video Library

    1965-04-13

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  16. Planck intermediate results. XL. The Sunyaev-Zeldovich signal from the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Soler, J. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Weller, J.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find good agreement between the SZ signal (or Compton parameter, yc) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusivewarm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. Finally, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of approximately 18 Mpc, in good

  17. Galaxy Cluster Gas Mass Fractions From Sunyaev-Zeldovich Effect Measurements: Constraints on Omega(M)

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Reese, Erik D.; Holder, Gilbert P.; Holzapfel, William L.; Joy, Marshall K.; Mohr, Joseph J.; Patel, Sandeep

    2001-01-01

    Using sensitive centimeter-wave receivers mounted on the Owens Valley Radio Observatory and Berkeley-Illinois-Maryland-Association millimeter arrays, we have obtained interferometric measurements of the Sunyaev-Zeldovich(SZ) effect toward massive galaxy clusters. We use the SZ data to determine the pressure distribution of the cluster gas and, in combination with published X-ray temperatures, to infer the gas mass and total gravitational mass of 18 clusters. The gas mass fraction, f(g), is calculated for each cluster and is extrapolated to the fiducial radius r(500) using the results of numerical simulations. The mean f(g) within r(500) is 0.081(+ 0.009 / - 0.011) per h(100) (statistical uncertainty at 68% confidence level, assuming Omega(M) = 0.3, Omega(Lambda) = 0.7). We discuss possible sources of systematic errors in the mean f(sub g) measurement. We derive an upper limit for Omega(M) from this sample under the assumption that the mass composition of clusters within r(500) reflects the universal mass composition: Omega(M)h is less than or equal to Omega(B)/f(g). The gas mass fractions depend on cosmology through the angular diameter distance and the r(500) correction factors. For a flat universe (Omega(Lambda) is identical with 1 - Omega(M)) and h = 0.7, we find the measured gas mass fractions are consistent with Omega(M) is less than 0.40, at 68% confidence. Including estimates of the baryons contained in galaxies and the baryons which failed to become bound during the cluster formation process, we find Omega(M) is approximately equal to 0.25.

  18. Fusion of Positive Energy Representations of LSpin(2n)

    NASA Astrophysics Data System (ADS)

    Toledano-Laredo, V.

    2004-09-01

    Building upon the Jones-Wassermann program of studying Conformal Field Theory using operator algebraic tools, and the work of A. Wassermann on the loop group of LSU(n) (Invent. Math. 133 (1998), 467-538), we give a solution to the problem of fusion for the loop group of Spin(2n). Our approach relies on the use of A. Connes' tensor product of bimodules over a von Neumann algebra to define a multiplicative operation (Connes fusion) on the (integrable) positive energy representations of a given level. The notion of bimodules arises by restricting these representations to loops with support contained in an interval I of the circle or its complement. We study the corresponding Grothendieck ring and show that fusion with the vector representation is given by the Verlinde rules. The computation rests on 1) the solution of a 6-parameter family of Knizhnik-Zamolodchikhov equations and the determination of its monodromy, 2) the explicit construction of the primary fields of the theory, which allows to prove that they define operator-valued distributions and 3) the algebraic theory of superselection sectors developed by Doplicher-Haag-Roberts.

  19. The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science

    NASA Astrophysics Data System (ADS)

    Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.

    2017-12-01

    Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.

  20. Decision Support Systems: Theory.

    DTIC Science & Technology

    1976-01-01

    Ko tt r, 1.. "Toward an Explicit Model for Media Selection," ,J. Advertising Res. 4, 14-41 , Mar. 1964. Kriebel, C. tt., "MIS Technology - A View of...Research Study of Sales Re- sponse to Advertising ," Opns. Res. 5, 370-381 ,1957. Von Bertalanffy, Ludwig , General Systems Theory. New York: George...Zangwill, W. I., " Media Slection by Decision Programming," J. Advertising Res. 5.30-36 , Sept. 1964. Zeleny, M., Linear Multiobjective Programming

  1. Theoretical Mathematics

    NASA Astrophysics Data System (ADS)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  2. Symmetry aspects in emergent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2009-06-01

    We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

  3. Wernher von Braun

    NASA Image and Video Library

    1961-10-19

    Dr. Wernher von Braun holds the coveted Hermarn Oberth award presented to him by Professor Oberth during the banquet hosted by the Alabama Section of the American Rocket Society (ARS), on October 19, 1961. The Oberth award was given for outstanding technical contributions to the field of astronautics or for the promotion and advancement of astronautical sciences.

  4. Dr. von Braun With Five of the Original Astronauts

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Five of the seven original astronauts are seen with Dr. von Braun inspecting the Mercury-Redstone hardware in the Fabrication Laboratory of Army Ballistic Missile Agency (ABMA) in 1959. Left to right: Astronauts Walter Schirra, Alan Shepard, John Glenn, Scott Carpenter, Gordon Cooper, and Dr. von Braun.

  5. Von Kármán between Aachen and Pasadena

    NASA Astrophysics Data System (ADS)

    Krause, Egon; Kalkmann, Ulrich

    2013-05-01

    In the Introduction the reader is referred back to the academic ceremonials held after Theodore von Kármán's death in Aachen in May 1963. His work as the first director of the Aerodynamisches Institut (Institute of Aerodynamics) of the RWTH Aachen University of Technology from 1913 on and his initiative to re-establish international cooperation after World War I, resulting in the International Union of Theoretical and Applied Mechanics (IUTAM), are commented on. The following chapter describes von Kármán's relation to his former teacher Ludwig Prandtl. Some of von Kármán's scientific contributions during his time in Aachen are briefly reviewed. Thereafter, his first contacts to the California Institute of Technology are covered. Finally, the scientific and political circumstances, which led to von Kármán's decision to leave Germany in the early thirties, are elucidated in some detail. The English translation of the titles of the Aachen papers is given in Appendix I.

  6. Mittelwert- und Arbeitstaktsynchrone Simulation von Dieselmotoren

    NASA Astrophysics Data System (ADS)

    Zahn, Sebastian

    Getrieben durch die immer restriktiveren Anforderungen an das Emissions- und Verbrauchsverhalten moderner Verbrennungsmotoren steigt die Komplexität von Motormanagementsystemen mit jeder Modellgeneration an. Damit geht nicht nur eine Zunahme des Softwareumfangs von Steuergeräten sondern zugleich ein deutlicher Anstieg des Applikations-, Vermessungs- und Testaufwandes einher. Zur Effizienzsteigerung des Software- und Funktionsentwicklungsprozesses haben sich daher in der Automobilindustrie sowie in Forschungsinstituten verschiedene modell- und simulationsbasierte Methoden wie die Model-in-the-Loop (MiL) Simulation, die Software-in-the-Loop (SiL) Simulation, das Rapid Control Prototyping (RCP) sowie die Hardware-in-the-Loop (HiL) Simulation etabliert.

  7. Topological and Orthomodular Modeling of Context in Behavioral Science

    NASA Astrophysics Data System (ADS)

    Narens, Louis

    2017-02-01

    Two non-boolean methods are discussed for modeling context in behavioral data and theory. The first is based on intuitionistic logic, which is similar to classical logic except that not every event has a complement. Its probability theory is also similar to classical probability theory except that the definition of probability function needs to be generalized to unions of events instead of applying only to unions of disjoint events. The generalization is needed, because intuitionistic event spaces may not contain enough disjoint events for the classical definition to be effective. The second method develops a version of quantum logic for its underlying probability theory. It differs from Hilbert space logic used in quantum mechanics as a foundation for quantum probability theory in variety of ways. John von Neumann and others have commented about the lack of a relative frequency approach and a rational foundation for this probability theory. This article argues that its version of quantum probability theory does not have such issues. The method based on intuitionistic logic is useful for modeling cognitive interpretations that vary with context, for example, the mood of the decision maker, the context produced by the influence of other items in a choice experiment, etc. The method based on this article's quantum logic is useful for modeling probabilities across contexts, for example, how probabilities of events from different experiments are related.

  8. von Braun and German Publisher

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In this photograph, Guenter Ogger of Capitol Magazine, West Germany, greets Marshall Space Flight Center Director, Dr. Wernher von Braun. Mr. Ogger interviewed the famous rocket scientist for his magazine.

  9. Classical and quantum entropy of parton distributions

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2018-05-01

    We introduce the semiclassical Wehrl entropy for the nucleon as a measure of complexity of the multiparton configuration in phase space. This gives a new perspective on the nucleon tomography. We evaluate the entropy in the small-x region and compare with the quantum von Neumann entropy. We also argue that the growth of entropy at small x is eventually slowed down due to the Pomeron loop effect.

  10. Memristor-Based Synapse Design and Training Scheme for Neuromorphic Computing Architecture

    DTIC Science & Technology

    2012-06-01

    system level built upon the conventional Von Neumann computer architecture [2][3]. Developing the neuromorphic architecture at chip level by...SCHEME FOR NEUROMORPHIC COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-11-2-0046 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...creation of memristor-based neuromorphic computing architecture. Rather than the existing crossbar-based neuron network designs, we focus on memristor

  11. Eine selbstkonsistente Carleman Linearisierung zur Analyse von Oszillatoren

    NASA Astrophysics Data System (ADS)

    Weber, Harry; Mathis, Wolfgang

    2017-09-01

    Die Analyse nichtlinearer dynamischer Schaltungen ist bis heute eine herausfordernde Aufgabe, da nur selten analytische Lösungen angegeben werden können. Daher wurden eine Vielzahl von Methoden entwickelt, um eine qualitative oder quantitative Näherung für die Lösungen der Netzwerkgleichung zu erhalten. Oftmals wird beispielsweise eine Kleinsignalanalyse mit Hilfe einer Taylorreihe in einem Arbeitspunkt durchgeführt, die nach den Gliedern erster Ordnung abgebrochen wird. Allerdings ist diese Linearisierung nur in der Nähe des stabilen Arbeitspunktes für hyperbolische Systeme gültig. Besonders für die Analyse des dynamischen Verhaltens von Oszillatoren treten jedoch nicht-hyperbolische Systeme auf, sodass diese Methode nicht angewendet werden kann Mathis (2000). Carleman hat gezeigt, dass nichtlineare Differentialgleichungen mit polynomiellen Nichtlinearitäten in ein unendliches System von linearen Differentialgleichungen transformiert werden können Carleman (1932). Wird das unendlichdimensionale Gleichungssystem für numerische Zwecke abgebrochen, kann bei Oszillatoren der Übergang in eine stationäre Schwingung (Grenzzyklus) nicht wiedergegeben werden. In diesem Beitrag wird eine selbstkonsistente Carleman Linearisierung zur Untersuchung von Oszillatoren vorgestellt, die auch dann anwendbar ist, wenn die Nichtlinearitäten keinen Polynomen entsprechen. Anstelle einer linearen Näherung um einen Arbeitspunkt, erfolgt mit Hilfe der Carleman Linearisierung eine Approximation auf einem vorgegebenen Gebiet. Da es jedoch mit der selbstkonsistenten Technik nicht möglich ist, das stationäre Verhalten von Oszillatoren zu beschreiben, wird die Berechnung einer Poincaré-Abbildung durchgeführt. Mit dieser ist eine anschließende Analyse des Oszillators möglich.

  12. The Spectral Shift Function and Spectral Flow

    NASA Astrophysics Data System (ADS)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  13. Monte Carlo turbulence simulation using rational approximations to von Karman spectra

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1986-01-01

    Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational approximations to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good approximation to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational approximation should roll off as the -2 power at high frequencies. Rational approximations to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.

  14. Wernher von Braun

    NASA Image and Video Library

    1959-01-21

    In this photo, (left to right) Army Ballistic Missile Agency (ABMA) Missile Firing Laboratory Chief Dr. Kurt Debus, Director of the ABMA Development Operations Division, Dr. von Braun and an unidentified individual in blockhouse during the CM-21 (Jupiter) firing. The Jupiter missile CM-21 became the first Chrysler production qualification missile to be fired and in March 1959 launched the Pioneer IV.

  15. Von Karman Vortices

    NASA Image and Video Library

    2017-12-08

    July 4th, 2002: Description: As air flows over and around objects in its path, spiraling eddies, known as Von Karman vortices, may form. The vortices in this image were created when prevailing winds sweeping east across the northern Pacific Ocean encountered Alaska’s Aleutian Islands. Source: Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/

  16. Wernher von Braun

    NASA Image and Video Library

    1954-07-01

    Dr. Wernher von Braun (center), then Chief of the Guided Missile Development Division at Redstone Arsenal, Alabama, discusses a "bottle suit" model with Dr. Heinz Haber (left), an expert on aviation medicine, and Willey Ley, a science writer on rocketry and space exploration. The three men were at the Disney studios appearing in the motion picture, entitled "Man in Space."

  17. Weak-Lensing Mass Calibration of the Atacama Cosmology Telescope Equatorial Sunyaev-Zeldovich Cluster Sample with the Canada-France-Hawaii Telescope Stripe 82 Survey

    NASA Technical Reports Server (NTRS)

    Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasseleld, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; hide

    2016-01-01

    Mass calibration uncertainty is the largest systematic effect for using clustersof galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five, the average weak lensing mass is (4.8 plus or minus 0.8) times 10 (sup 14) solar mass, consistent with the tSZ mass estimate of (4.7 plus or minus 1.0) times 10 (sup 14) solar mass, which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  18. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    SciTech Connect

    Battaglia, N.; Miyatake, H.; Hasselfield, M.

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10{sup 14} M{sub ⊙}, consistent with the tSZ mass estimate of (4.70±1.0) ×10{sup 14} M{sub ⊙} which assumes a universal pressure profile for the cluster gas. Our results are consistentmore » with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.« less

  19. The Gibbs paradox and the physical criteria for indistinguishability of identical particles

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. S.

    2016-08-01

    Gibbs paradox in the context of statistical mechanics addresses the issue of additivity of entropy of mixing gases. The usual discussion attributes the paradoxical situation to classical distinguishability of identical particles and credits quantum theory for enabling indistinguishability of identical particles to solve the problem. We argue that indistinguishability of identical particles is already a feature in classical mechanics and this is clearly brought out when the problem is treated in the language of information and associated entropy. We pinpoint the physical criteria for indistinguishability that is crucial for the treatment of the Gibbs’ problem and the consistency of its solution with conventional thermodynamics. Quantum mechanics provides a quantitative criterion, not possible in the classical picture, for the degree of indistinguishability in terms of visibility of quantum interference, or overlap of the states as pointed out by von Neumann, thereby endowing the entropy expression with mathematical continuity and physical reasonableness.

  20. Effect of Shock Precompression on the Critical Diameter of Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan

    2006-07-01

    The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.

  1. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  2. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  3. An ensemble of paired spin(-1/2) nuclei in a rotating solid: Polarization evolution and NMR spectrum in a wobbling frame.

    PubMed

    Kundla, Enn

    2007-04-01

    The evolution of the magnetic polarization of an ensemble of paired spin(-1/2) nuclei in an MAS NMR (nuclear magnetic resonance) experiment and the induced spectrum are described theoretically by means of a Liouville-von Neumann equation representation in a wobbling rotating frame in combination with the averaged Hamiltonian theory. In this method, the effect of a high-intensity external static magnetic field and the effects of the leftover interaction components of the Hamiltonian that commute with the approximate Hamiltonian are taken into account simultaneously and equivalently. This method reproduces details that really exist in the recorded spectra, caused by secular terms in the Hamiltonian, which might otherwise be smoothed out owing to the approximate treatment of the effects of the secular terms. Complete analytical expressions, which describe the whole NMR spectrum including the rotational sideband sets, and which consider all the relevant intermolecular interactions, are obtained.

  4. Dr. Wernher Von Braun

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Shown viewing the Apollo telescope mockup are, from left to right, Charles Donlan, deputy associate administrator for manned space flight; Dr. Wernher Von Braun, Marshall Space Flight Center director; William Horton, astrionics lab; Dr. Thomas Paine, NASA deputy administrator; Warner Kuers, director of the ME lab.

  5. Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease

    PubMed Central

    Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R; Vortmeyer, Alexander O

    2011-01-01

    There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli. PMID:21499240

  6. Hilbert space structure in quantum gravity: an algebraic perspective

    SciTech Connect

    Giddings, Steven B.

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  7. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE PAGES

    Giddings, Steven B.

    2015-12-16

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  8. Nonvolatile Memory Materials for Neuromorphic Intelligent Machines.

    PubMed

    Jeong, Doo Seok; Hwang, Cheol Seong

    2018-04-18

    Recent progress in deep learning extends the capability of artificial intelligence to various practical tasks, making the deep neural network (DNN) an extremely versatile hypothesis. While such DNN is virtually built on contemporary data centers of the von Neumann architecture, physical (in part) DNN of non-von Neumann architecture, also known as neuromorphic computing, can remarkably improve learning and inference efficiency. Particularly, resistance-based nonvolatile random access memory (NVRAM) highlights its handy and efficient application to the multiply-accumulate (MAC) operation in an analog manner. Here, an overview is given of the available types of resistance-based NVRAMs and their technological maturity from the material- and device-points of view. Examples within the strategy are subsequently addressed in comparison with their benchmarks (virtual DNN in deep learning). A spiking neural network (SNN) is another type of neural network that is more biologically plausible than the DNN. The successful incorporation of resistance-based NVRAM in SNN-based neuromorphic computing offers an efficient solution to the MAC operation and spike timing-based learning in nature. This strategy is exemplified from a material perspective. Intelligent machines are categorized according to their architecture and learning type. Also, the functionality and usefulness of NVRAM-based neuromorphic computing are addressed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    PubMed

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  10. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  11. Ultrafast shock compression of an oxygen-balanced mixture of nitromethane and hydrogen peroxide.

    PubMed

    Armstrong, Michael R; Zaug, Joseph M; Grant, Christian D; Crowhurst, Jonathan C; Bastea, Sorin

    2014-08-14

    We apply ultrafast optical interferometry to measure the Hugoniot of an oxygen-balanced mixture of nitromethane and hydrogen peroxide (NM/HP) and compare with Hugoniot data for pure nitromethane (NM) and a 90% hydrogen peroxide/water mixture (HP), as well as theoretical predictions. We observe a 2.1% percent mean pairwise difference between the measured shockwave speed (at the measured piston speed) in unreacted NM/HP and the corresponding "universal" liquid Hugoniot, which is larger than the average standard deviation of our data, 1.4%. Unlike the Hugoniots of both HP and NM, in which measured shock speeds deviate to values greater than the unreacted Hugoniot for piston speeds larger than the respective reaction thresholds, in the NM/HP mixture we observe shock speed deviations to values lower than the unreacted Hugoniot well below the von Neumann pressure (≈28 GPa). Although the trend should reverse for high enough piston speeds, the initial behavior is unexpected. Possible explanations range from mixing effects to a complex index of refraction in the reacted solution. If this is indeed a signature of chemical initiation, it would suggest that the process may not be kinetically limited (on a ~100 ps time scale) between the initiation threshold and the von Neumann pressure.

  12. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  13. Border-Crossing Model for the Diffusive Coarsening of Wet Foams

    NASA Astrophysics Data System (ADS)

    Durian, Douglas; Schimming, Cody

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called ``border-blocking'' models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet/unjamming limit where the bubbles become close-packed spheres. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We argue that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling and the numerical prefactor by numerical solution of the diffusion equation. Then we show how the dA / dt =K0 (n - 6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scale. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble, which is not constant.

  14. PT2385 for the Treatment of Von Hippel-Lindau Disease-Associated Clear Cell Renal Cell Carcinoma

    ClinicalTrials.gov

    2017-08-23

    VHL Gene Mutation; VHL; VHL Syndrome; VHL Gene Inactivation; Von Hippel; Von Hippel-Lindau Disease; Von Hippel's Disease; Von Hippel-Lindau Syndrome, Modifiers of; Clear Cell Renal Cell Carcinoma; Clear Cell RCC; ccRCC

  15. Wernher von Braun

    NASA Image and Video Library

    1963-03-28

    Dr. von Braun, Director of the Marshall Space Flight Center (MSFC), and Dr. Debus, Director of the Launch Operations Center, at Complex 34 prior to the Launch of the SA-4 (the fourth flight of Saturn I), March 28, 1963. The mission conducted the second "Project Highwater" experiment, which the upper stage ejected 30,000 gallons of ballast water in the upper atmosphere for a physics experiment.

  16. Wernher von Braun

    NASA Image and Video Library

    1968-10-01

    Dr. von Braun, Director of the Marshall Space Flight Center (MSFC), greets Commander of Apollo 7 mission, Walter M. Schirra, Jr., during the mission briefing at Kennedy Space Center (KSC). The Apollo 7 mission, boosted by a Saturn IB launch vehicle on October 11, 1968, was the first flight of the Apollo spacecraft with crew. Other crew members were Astronaut Donn Eisele and Astronaut Walter Cunningham.

  17. Test of Von Baer's law of the conservation of early development.

    PubMed

    Poe, Steven

    2006-11-01

    One of the oldest and most pervasive ideas in comparative embryology is the perceived evolutionary conservation of early ontogeny relative to late ontogeny. Karl Von Baer first noted the similarity of early ontogeny across taxa, and Ernst Haeckel and Charles Darwin gave evolutionary interpretation to this phenomenon. In spite of a resurgence of interest in comparative embryology and the development of mechanistic explanations for Von Baer's law, the pattern itself has been largely untested. Here, I use statistical phylogenetic approaches to show that Von Baer's law is an unnecessarily complex explanation of the patterns of ontogenetic timing in several clades of vertebrates. Von Baer's law suggests a positive correlation between ontogenetic time and amount of evolutionary change. I compare ranked position in ontogeny to frequency of evolutionary change in rank for developmental events and find that these measures are not correlated, thus failing to support Von Baer's model. An alternative model that postulates that small changes in ontogenetic rank are evolutionarily easier than large changes is tentatively supported.

  18. Complete annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono).

    PubMed

    Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo

    2015-01-01

    We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, submerges after spending some time under water in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  20. On a third-order shear deformation theory for laminated composite shells

    NASA Technical Reports Server (NTRS)

    Liu, C. F.; Reddy, J. N.

    1986-01-01

    A higher-order theory based on an assumed displacement field in which the surface displacements are expanded in powers of the thickness coordinate up to the third order is presented. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for small strains but moderately large displacements (i.e., von Karman strains). A finite-element model based on independent approximations of the displacements and bending moments (i.e., mixed formulation) is developed. The element is used to analyze cross-ply and angle-ply laminated shells for bending.

  1. The Neumann Type of Pemphigus Vegetans Treated with Combination of Dapsone and Steroid

    PubMed Central

    Son, Young-Min; Kang, Hong-Kyu; Yun, Jeong-Hwan; Roh, Joo-Young

    2011-01-01

    Pemphigus vegetans is a rare variant of pemphigus vulgaris and is characterized by vegetating lesions in the inguinal folds and mouth and by the presence of autoantibodies against desmoglein 3. Two clinical subtypes of pemphigus vegetans exist, which are initially characterized by flaccid bullae and erosions (the Neumann subtype) or pustules (the Hallopeau subtype). Both subtypes subsequently develop into hyperpigmented vegetative plaques with pustules and hypertrophic granulation tissue at the periphery of the lesions. Oral administration of corticosteroids alone does not always induce disease remission in patients with pemphigus vegetans. We report here on a 63-year-old woman with pemphigs vegetans. She had a 2-year history of vegetating, papillomatous plaques on the inguinal folds and erosions of the oral mucosa. The enzyme-linked immunosorbent assay was positive for anti-desmoglein 3, but it was negative for anti-desmoglein 1. She was initially treated with systemic steroid, but no improvement was observed. The patient was then successfully treated with a combination of systemic steroid and dapsone with a good clinical response. PMID:22346265

  2. Localization and Regulation of Fluorescence-Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice

    PubMed Central

    Scherrer, Gregory; Evans, Christopher J.; Kieffer, Brigitte L.; Bunnett, Nigel W.

    2015-01-01

    Background & Aims Opioids and opiates inhibit gastrointestinal functions via μ, δ, and κ receptors. Although agonists of the δ opioid receptor (DOR) suppress motility and secretion, little is known about the localization and regulation of DOR in the gastrointestinal tract. Methods We studied mice in which the gene that encodes the enhanced green fluorescent protein (eGFP) was inserted into Oprd1, which encodes DOR, to express an ~80 kDa product (DOReGFP). We used these mice to examine how agonists of DOR regulate the subcellular distribution of the DOR. Results DOReGFP was expressed in all regions but confined to enteric neurons and fibers within the muscularis externa. In the submucosal plexus, DOReGFP was detected in neuropeptide Y-positive secretomotor and vasodilator neurons of the small intestine, but was rarely observed in the large bowel. In the myenteric plexus of the small intestine, DOReGFP was present in similar proportions of excitatory motoneurons and interneurons that expressed choline acetyltransferase and substance P, and in inhibitory motoneurons and interneurons that contained nitric oxide synthase. DOReGFP was mostly present in nitrergic myenteric neurons of colon. DOReGFP and μ opioid receptors were often co-expressed. DOReGFP-expressing neurons were associated with enkephalin-containing varicosities and enkephalin-induced, clathrin- and dynamin-mediated endocytosis and lysosomal trafficking of DOReGFP. DOReGFP replenishment at the plasma membrane was slow, requiring de novo synthesis, rather than recycling. Conclusions DOR localizes specifically to submucosal and myenteric neurons, which might account for the ability of DOR agonists to inhibit gastrointestinal secretion and motility. Sustained down-regulation of DOReGFP at the plasma membrane of activated could induce long-lasting tolerance to DOR agonists. PMID:21699782

  3. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-07-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  4. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  5. Design of Arithmetic Circuits for Complex Binary Number System

    NASA Astrophysics Data System (ADS)

    Jamil, Tariq

    2011-08-01

    Complex numbers play important role in various engineering applications. To represent these numbers efficiently for storage and manipulation, a (-1+j)-base complex binary number system (CBNS) has been proposed in the literature. In this paper, designs of nibble-size arithmetic circuits (adder, subtractor, multiplier, divider) have been presented. These circuits can be incorporated within von Neumann and associative dataflow processors to achieve higher performance in both sequential and parallel computing paradigms.

  6. Entangled Dynamics in Macroscopic Quantum Tunneling of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Alcala, Diego A.; Glick, Joseph A.; Carr, Lincoln D.

    2017-05-01

    Tunneling of a quasibound state is a nonsmooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling. While the escape time scales exponentially with small interactions, the maximization time of the von Neumann entanglement entropy between the remaining quasibound and escaped atoms scales quadratically. Stronger interactions require higher-order corrections. Entanglement entropy is maximized when about half the atoms have escaped.

  7. The Modeling, Simulation and Comparison of Interconnection Networks for Parallel Processing.

    DTIC Science & Technology

    1987-12-01

    performs better at a lower hardware cost than do the single stage cube and mesh networks. As a result, the designer of a paralll pro- cessing system is...attempted, and in most cases succeeded, in designing and implementing faster. more powerful systems. Due to design innovations and technological advances...largely to the computational complexity of the algorithms executed. In the von Neumann machine, instructions must be executed in a sequential manner. Design

  8. Wernher von Braun with German Officers and Others

    NASA Technical Reports Server (NTRS)

    1942-01-01

    General Erich Fellgiebel, head of the German Army Information Service during World War II, congratulates members of the von Braun rocket team from Peenemunde for their October 3, 1942 A4 flight. Pictured front center is General Erich Fellgiebel. Shaking hands are General Walter Dornberger (left) and General Janssen, commanding officer of Peenemuende with Rudolph Hermarn to their right. Picture left to right in the back row are Wernher von Braun, Captain Stoelzel, Luftwaffe, and Dr. Gerhard Reisig.

  9. "Was it something I said?" "No, it was something you posted!" A study of the spiral of silence theory in social media contexts.

    PubMed

    Gearhart, Sherice; Zhang, Weiwu

    2015-04-01

    New media technologies make it necessary for scholars to reassess mass communication theories developed among legacy media. One such theory is the spiral of silence theory originally proposed by Noelle-Neumann in the 1970s. Increasing diversity of media content, selectivity, social networking site (SNS) interactivity, and the potential for anonymity have posed various challenges to its theoretical assumptions. While application of the spiral of silence in SNS contexts has been theorized, its empirical testing is scarce. To fill this void, the Pew 2012 Search, Social Networks, and Politics survey is used to test the theory. Results reveal that encountering agreeable political content predicts speaking out, while encountering disagreeable postings stifles opinion expression, supporting the spiral of silence theory in the SNS environment. However, certain uses of SNSs and psychological factors demonstrate a liberating effect on opinion expression.

  10. Planck intermediate results: XL. The Sunyaev-Zeldovich signal from the Virgo cluster

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-12-12

    The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck’s wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find good agreement between the SZ signal (or Compton parameter, y c) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models.more » Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. In this paper, we study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusivewarm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. In conclusion, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of

  11. The association between multiple intestinal helminth infections and blood group, anaemia and nutritional status in human populations from Dore Bafeno, southern Ethiopia.

    PubMed

    Degarege, A; Animut, A; Medhin, G; Legesse, M; Erko, B

    2014-06-01

    In this cross-sectional study, the associations between helminth infections and ABO blood group, anaemia and undernutrition were investigated in 480 febrile outpatients who visited Dore Bafeno Health Centre, southern Ethiopia, in December 2010. Stool specimens were processed using the Kato-Katz method and examined for intestinal helminth infections. Haemoglobin level was measured using a HemoCue machine and blood group was determined using an antisera haemagglutination test. Nutritional status of the study participants was assessed using height and weight measurements. Among the study participants, 50.2% were infected with intestinal helminths. Ascaris lumbricoides (32.7%), Trichuris trichiura (12.7%), Schistosoma mansoni (11.9%) and hookworm (11.0%) were the most frequently diagnosed helminths. The odds of infection and mean eggs per gram of different intestinal helminth species were comparable between the various blood groups. Among individuals who were infected with intestinal helminth(s), the mean haemoglobin level was significantly lower in individuals harbouring three or more helminth species and blood type AB compared to cases with double or single helminth infection and blood type O, respectively. The odds of being underweight was significantly higher in A. lumbricoides and T. trichiura infected individuals of age ≤ 5 and ≥ 20 years, respectively, when compared to individuals of the matching age group without intestinal helminths. In conclusion, infection with multiple intestinal helminths was associated with lower haemoglobin level, which was more severe in individuals with blood type AB. Future studies should focus on mechanisms by which blood group AB exacerbates the helminth-related reduction in mean haemoglobin level.

  12. A Model to Demonstrate the Place Theory of Hearing

    ERIC Educational Resources Information Center

    Ganesh, Gnanasenthil; Srinivasan, Venkata Subramanian; Krishnamurthi, Sarayu

    2016-01-01

    In this brief article, the authors discuss Georg von Békésy's experiments showing the existence of traveling waves in the basilar membrane and that maximal displacement of the traveling wave was determined by the frequency of the sound. The place theory of hearing equates the basilar membrane to a frequency analyzer. The model described in this…

  13. Testing approximations for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.

  14. PREFACE: EmerQuM 11: Emergent Quantum Mechanics 2011 (Heinz von Foerster Congress)

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2012-05-01

    Pascasio, the latter in particular for his invaluable technical help with these proceedings. Funds made available by the Federal Ministry of Science and Research (BMWF), the City of Vienna MA7 Science Funding, the Faculty of Historical and Cultural Studies, Blaha Office Furniture, and Padma AG Zurich are gratefully acknowledged. As for the nature of the search for a 'deeper level' foundation of quantum mechanics, a first difficulty already arises with respect to the question: Where do we start? One may look for quite different points of departure, such as an encompassing theory of quantum gravity. Or one may find arguments for the necessity to base one's approach at least on a relativistic formulation of the problem. Or one may discard searching for general principles for the time being, and develop an explicit physical model first. And so on. In fact, this is actually what is happening today in different research programs for emergent quantum mechanics, a fact which is also reflected in the rich variety of approaches presented at our meeting. This may be considered a very welcome situation, reminding us of Heinz von Foerster's dictum: 'Act always so as to increase the number of choices.' However, some may view this variety also as a drawback: There is not (yet?) a single, definite alternative theory that would challenge orthodox positions, for example, by providing different experimental predictions. However, the prevailing orthodoxy has shown throughout the 20th century to the present day, that a too restrictive attitude towards theoretical alternatives can lead to almost a standstill in coping with the serious shortcomings and contradictions of present-day physics. Many of us remember famous quantum physicists repeating in an almost mantra-like fashion that quantum theory, or experimental evidence, 'excludes hidden variables as a possibility', along with a reference to some or other newly found 'impossibility proof'. Yet we also recall John Bell's famous counter

  15. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  16. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown leaving the suiting-up van wearing a pressure suit prepared for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  17. Dr. Wernher Von Braun

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Marshall Space Flight Center director Wernher Von Braun and his family were honored with a series of events prior to his relocation to Washington, D.C. where he was assigned duties at NASA headquarters as deputy associate administrator for planning. Here he is shown with General Richard Drury and Hazel Toftoy, widow of General H.N. Toftoy.

  18. Evaluation of the Utility of von Willebrand Factor Propeptide in the Differential Diagnosis of von Willebrand Disease and Acquired von Willebrand Syndrome.

    PubMed

    Stufano, Francesca; Boscarino, Marco; Bucciarelli, Paolo; Baronciani, Luciano; Maino, Alberto; Cozzi, Giovanna; Peyvandi, Flora

    2018-06-18

    An increased von Willebrand factor propeptide (VWFpp) to VWF antigen (VWF:Ag) ratio (VWFpp/VWF:Ag) indicates an enhanced clearance of VWF. This finding has been described in von Willebrand disease (VWD) and in acquired von Willebrand syndrome (AVWS). A distinction between these two diseases, one congenital and the other acquired, is primarily based on family and personal history of bleeding. However, if this information is scanty, the diagnosis might be challenging due to the lack of an effective diagnostic biomarker. In this cross-sectional study, we assessed the ability of VWFpp/VWF:Ag for the differential diagnosis between VWD and AVWS. VWFpp/VWF:Ag was measured in a group of 153 patients (125 with VWD and 28 with AVWS). Most patients with AVWS and VWD showed an increased VWFpp/VWF:Ag, although to variable degrees. A marked increase of VWFpp/VWF:Ag was mainly associated with the diagnosis of AVWS and VWD type 1 Vicenza. A receiver operating characteristic curve was used to identify the optimal cutoff of VWFpp/VWF:Ag for discrimination of patients with a modestly increased (most VWD cases) versus those with a markedly increased clearance (AVWS and VWD type 1 Vicenza), and this cutoff was identified at the value of 3.9 (sensitivity: 0.70, specificity: 0.97). The ROC curve sorting from a logistic model containing VWFpp/VWF:Ag, age, and sex had an area under the curve (AUC) of 0.88 (95% confidence interval: 0.80-0.95). A subsequent molecular evaluation discriminated VWD type 1 Vicenza from AVWS. In conclusion, VWFpp/VWF:Ag appears helpful to discriminate patients with a markedly increase VWF clearance (AVWS or VWD type 1 Vicenza) from those with a modestly increased clearance (most VWD patients). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Zuverlässigkeit digitaler Schaltungen unter Einfluss von intrinsischem Rauschen

    NASA Astrophysics Data System (ADS)

    Kleeberger, V. B.; Schlichtmann, U.

    2011-08-01

    Die kontinuierlich fortschreitende Miniaturisierung in integrierten Schaltungen führt zu einem Anstieg des intrinsischen Rauschens. Um den Einfluss von intrinsischem Rauschen auf die Zuverlässigkeit zukünftiger digitaler Schaltungen analysieren zu können, werden Methoden benötigt, die auf CAD-Verfahren wie Analogsimulation statt auf abschätzenden Berechnungen beruhen. Dieser Beitrag stellt eine neue Methode vor, die den Einfluss von intrinsischem Rauschen in digitalen Schaltungen für eine gegebene Prozesstechnologie analysieren kann. Die Amplituden von thermischen, 1/f und Schrotrauschen werden mit Hilfe eines SPICE Simulators bestimmt. Anschließend wird der Einfluss des Rauschens auf die Schaltungszuverlässigkeit durch Simulation analysiert. Zusätzlich zur Analyse werden Möglichkeiten aufgezeigt, wie die durch Rauschen hervorgerufenen Effekte im Schaltungsentwurf mit berücksichtigt werden können. Im Gegensatz zum Stand der Technik kann die vorgestellte Methode auf beliebige Logikimplementierungen und Prozesstechnologien angewendet werden. Zusätzlich wird gezeigt, dass bisherige Ansätze den Einfluss von Rauschen bis um das Vierfache überschätzen.

  20. mRNAs for PRPs, statherin, and histatins in von Ebner's gland tissues.

    PubMed

    Azen, E A; Hellekant, G; Sabatini, L M; Warner, T F

    1990-11-01

    A search was made for expression of genes for proline-rich proteins (PRPs) and other salivary-type proteins, including statherin and histatins, in taste-bud tissues of mice and primates because of previous genetic findings in mice (Azen et al., 1986) that Prp and taste genes for certain bitter substances are either the same or closely linked. Taste-bud tissues and other tissues were tested for specific mRNAs with labeled DNA probes by Northern blotting and in situ hybridization. It was found that PRP mRNAs were present in von Ebner's glands of mice and macaques, and that there was a much greater degree of PRP mRNA induction in mouse parotid (16-fold) than in von Ebner's gland (two-fold) after in vivo isoproterenol stimulation. This difference may be due, in part, to differences in autonomic nerve innervation. Statherin and histatin mRNAs were found in macaque taste-bud tissues containing von Ebner's gland, and statherin protein was found in human von Ebner's gland by immunohistochemistry. The finding of PRP gene expression in von Ebner's gland, whose secretions have been suggested to play a role in taste stimulation, adds further support to a possible function of PRPs in bitter tasting. The possible functions of statherin and histatins in von Ebner's gland secretions may be related to statherin's regulation of salivary calcium and histatins' antibacterial and antifungal properties.

  1. Victor or Villain? Wernher von Braun and the Space Race

    ERIC Educational Resources Information Center

    O'Brien, Jason L.; Sears, Christine E.

    2011-01-01

    Set during the Cold War and space race, this historical role-play focuses on Wernher von Braun's involvement in and culpability for the use of slave laborers to produce V-2 rockets for Nazi Germany. Students will grapple with two central questions. Should von Braun have been allowed to emigrate to the United States given his affiliation with the…

  2. Link between von-Karman energy decay and reconnection heating in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Haggerty, C. C.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Cassak, P.; Wu, P.

    2016-12-01

    Coherent structures such as current sheets are prevalent in many turbulent plasmas and have been shown to be correlated with dissipation and heating in observations of solar wind turbulence and dissipation in kinetic particle-in-cell (PIC) simulations. However, the role that they play in the dissipation of turbulent energy and ultimately the heating of the plasma are still not well understood. A recent study [1] using kinetic PIC simulations of turbulence found that the total heating in the plasma is consistent with a von-Karman scaling of the cascade rate, and that the proton to electron heating ratio was proportional to the total heating rate and linked to the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales. We review recent findings regarding the rate of heating in outflow jets during laminar reconnection and apply it to kinetic PIC simulations of turbulence, employing some reasonable assumptions to connect the two theories. The goal is to determine if reconnection is a primary heating mechanism or plays less of a role. Conversely, we also apply the new understanding of the von-Karman cascade to isolated reconnection events to determine if a cascade-like process is controlling the heating rate. [1] W. Matthaeus et al., ApJ Letters, 827, L7, 2016, doi:10.3847/2041-8205/827/1/L7

  3. Ultimate computing. Biomolecular consciousness and nano Technology

    SciTech Connect

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  4. Private algebras in quantum information and infinite-dimensional complementarity

    SciTech Connect

    Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca

    We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.

  5. Entanglement and purity of two-mode Gaussian states in noisy channels

    SciTech Connect

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio

    2004-02-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

  6. Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol.

    PubMed

    Branciard, Cyril; Gisin, Nicolas

    2011-07-08

    The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.

  7. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.

    PubMed

    Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  8. Spin-phase-space-entropy production

    NASA Astrophysics Data System (ADS)

    Santos, Jader P.; Céleri, Lucas C.; Brito, Frederico; Landi, Gabriel T.; Paternostro, Mauro

    2018-05-01

    Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging results in the limit of zero temperature and are also not readily extended to nonequilibrium reservoirs, such as dephasing baths. Aimed at filling this gap, in this paper we introduce a phase-space-entropy production framework for quantifying the irreversibility of spin systems undergoing Lindblad dynamics. The theory is based on the spin Husimi-Q function and its corresponding phase-space entropy, known as Wehrl entropy. Unlike the von Neumann entropy production rate, we show that in our framework, the Wehrl entropy production rate remains valid at any temperature and is also readily extended to arbitrary nonequilibrium baths. As an application, we discuss the irreversibility associated with the interaction of a two-level system with a single-photon pulse, a problem which cannot be treated using the conventional approach.

  9. An efficient method for quantum transport simulations in the time domain

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.

    2011-11-01

    An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.

  10. Modeling arson - An exercise in qualitative model building

    NASA Technical Reports Server (NTRS)

    Heineke, J. M.

    1975-01-01

    A detailed example is given of the role of von Neumann and Morgenstern's 1944 'expected utility theorem' (in the theory of games and economic behavior) in qualitative model building. Specifically, an arsonist's decision as to the amount of time to allocate to arson and related activities is modeled, and the responsiveness of this time allocation to changes in various policy parameters is examined. Both the activity modeled and the method of presentation are intended to provide an introduction to the scope and power of the expected utility theorem in modeling situations of 'choice under uncertainty'. The robustness of such a model is shown to vary inversely with the number of preference restrictions used in the analysis. The fewer the restrictions, the wider is the class of agents to which the model is applicable, and accordingly more confidence is put in the derived results. A methodological discussion on modeling human behavior is included.

  11. Topologies on quantum topoi induced by quantization

    SciTech Connect

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less

  12. The Entangled Histories of Physics and Computation

    NASA Astrophysics Data System (ADS)

    Rodriguez, Cesar

    2007-03-01

    The history of physics and computation intertwine in a fascinating manner that is relevant to the field of quantum computation. This talk focuses of the interconnections between both by examining their rhyming philosophies, recurrent characters and common themes. Leibniz not only was one of the lead figures of calculus, but also left his footprint in physics and invented the concept of a universal computational language. This last idea was further developed by Boole, Russell, Hilbert and G"odel. Physicists such as Boltzmann and Maxwell also established the foundation of the field of information theory later developed by Shannon. The war efforts of von Neumann and Turing can be juxtaposed to the Manhattan Project. Professional and personal connections of these characters to the development of physics will be emphasized. Recently, new cryptographic developments lead to a reexamination of the fundamentals of quantum mechanics, while quantum computation is discovering a new perspective on the nature of information itself.

  13. Wernher von Braun

    NASA Image and Video Library

    1966-06-21

    Dr. Joseph Randall, a laser expert at Marshall Space Flight Center (MSFC), explains one of the projects he is working on to a group composed of Federal Republic of Germany and MSFC officials. From left are: Dr. Randall; Minister for Scientific Research of Federal Republic of Germany, Dr. Gerhard Stolenberg; Director of MSFC Astrionics Lab, Dr. Walter Haeusserman; Head of Space Research Federal Republic of Germany, Max Mayer; MSFC Director Dr. von Braun; MSFC Deputy Director Dr. Elberhard Rees.

  14. Wernher von Braun

    NASA Image and Video Library

    1968-10-01

    Dr. von Braun inside the KC-135 in flight. The KC-135 provide NASA's Reduced-Gravity Program the unique weightlessness or zero-g environment of space flight for testing and training of human and hardware reactions. The recent version, KC-135A, is a specially modified turbojet transport which flies parabolic arcs to produce weightlessness periods of 20 to 25 seconds and its cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high.

  15. Physik gestern und heute Von der Metallstange zum Hochenergielaser

    NASA Astrophysics Data System (ADS)

    Heering, Peter

    2002-05-01

    Im Mai 1752 wurde in Marly bei Paris auf Anregung des amerikanischen Forschers und Politikers Benjamin Franklin erstmals die elektrische Natur des Blitzes nachgewiesen. Damals beschrieb Franklin auch eine technische Vorrichtung, die als Schutz von Gebäuden vor Blitzschlägen dienen sollte: den Blitzableiter. Diese aus heutiger Sicht scheinbar triviale Vorrichtung wurde aber keineswegs unmittelbar akzeptiert. Und bis heute ist die Forschung zum Schutz von Einrichtungen vor Blitzschlägen nicht abgeschlossen.

  16. von Baer's law for the ages: lost and found principles of developmental evolution.

    PubMed

    Abzhanov, Arhat

    2013-12-01

    In 1828, Karl Ernst von Baer formulated a series of empirically defined rules, which became widely known as the 'Law of Development' or 'von Baer's law of embryology'. This was one the most significant attempts to define the principles that connected morphological complexity and embryonic development. Understanding this relation is central to both evolutionary biology and developmental genetics. Von Baer's ideas have been both a source of inspiration to generations of biologists and a target of continuous criticism over many years. With advances in multiple fields, including paleontology, cladistics, phylogenetics, genomics, and cell and developmental biology, it is now possible to examine carefully the significance of von Baer's law and its predictions. In this review, I argue that, 185 years after von Baer's law was first formulated, its main concepts after proper refurbishing remain surprisingly relevant in revealing the fundamentals of the evolution-development connection, and suggest that their explanation should become the focus of renewed research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Locality of the Thomas-Fermi-von Weizsäcker Equations

    NASA Astrophysics Data System (ADS)

    Nazar, F. Q.; Ortner, C.

    2017-06-01

    We establish a pointwise stability estimate for the Thomas-Fermi-von Weiz-säcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.

  18. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Astronaut L. Gordon Cooper checks the neck ring of a space suit worn by Marshall Space Flight Center (MSFC) Director, Dr. von Braun before he submerges into the water of the MSFC Neutral Buoyancy Simulator (NBS). Wearing a pressurized suit and weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  19. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    NASA Technical Reports Server (NTRS)

    Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.

  20. Wernher von Braun

    NASA Image and Video Library

    1960-01-01

    In this photo, Director of the US Army Ballistic Missile Agency (ABMA) Development Operations Division, Dr. Wernher von Braun, is standing before a display of Army missiles celebrating ABMA's Fourth Open House. The missiles in the background include (left to right) a satellite on a Juno II shroud with a Nike Ajax pointing left in front of a Jupiter missile. The Lacrosse is in front of the Juno II. The Nike Hercules points skyward in front of the Juno II and the Redstone.

  1. Comparison of dynamical approximation schemes for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1994-01-01

    We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of approximation by truncation, i.e., smoothing the initial conditions by various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was crosscorrelation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(exp 2, sub G)) where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. All other schemes, including those proposed as generalizations of the Zel'dovich approximation created by adding forces, were in fact generally worse by this measure. By explicitly checking, we verified that the success of our best-choice was a result of the best treatment of the phases of nonlinear Fourier components. Of all schemes tested, the adhesion approximation produced the most accurate nonlinear power spectrum and density distribution, but its phase errors suggest mass condensations were moved to slightly the wrong location. Due to its better reproduction of the mass density distribution function and power spectrum, it might be preferred for some uses. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even

  2. Universality of quantum information in chaotic CFTs

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong

    2018-03-01

    We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.

  3. Quench action and Rényi entropies in integrable systems

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-09-01

    Entropy is a fundamental concept in equilibrium statistical mechanics, yet its origin in the nonequilibrium dynamics of isolated quantum systems is not fully understood. A strong consensus is emerging around the idea that the stationary thermodynamic entropy is the von Neumann entanglement entropy of a large subsystem embedded in an infinite system. Also motivated by cold-atom experiments, here we consider the generalization to Rényi entropies. We develop a new technique to calculate the diagonal Rényi entropy in the quench action formalism. In the spirit of the replica treatment for the entanglement entropy, the diagonal Rényi entropies are generalized free energies evaluated over a thermodynamic macrostate which depends on the Rényi index and, in particular, is not the same state describing von Neumann entropy. The technical reason for this perhaps surprising result is that the evaluation of the moments of the diagonal density matrix shifts the saddle point of the quench action. An interesting consequence is that different Rényi entropies encode information about different regions of the spectrum of the postquench Hamiltonian. Our approach provides a very simple proof of the long-standing issue that, for integrable systems, the diagonal entropy is half of the thermodynamic one and it allows us to generalize this result to the case of arbitrary Rényi entropy.

  4. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    PubMed Central

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired “blackboards.” The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing. PMID:27242504

  5. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    PubMed

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  6. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams

    NASA Astrophysics Data System (ADS)

    Schimming, C. D.; Durian, D. J.

    2017-09-01

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

  7. In the eye of the beholder: Helmholtzian perception and the origins of Freud's 1900 theory of transference.

    PubMed

    Makari, G J

    1994-01-01

    Freud's 1900 theory of transference was indebted to the convergence of philosophy and physiology found in nineteenth-century theories of visual perception. The author maps out the post-Kantian philosophical and German physiological currents that gave rise to Hermann von Helmholtz's influential work on perception, and proposes that Freud's 1900 theory of transference was a creative synthesis of novel notions like unconscious wishing and psychic defense with a Helmholtzian model of visual illusion.

  8. [Precocious puberty and von Recklinghausen's disease].

    PubMed

    Barg, Ewa; Wikiera, Beata; Basiak, Aleksander; Głab, Ewa

    2006-01-01

    Von Recklinghausen's disease belongs to a group of neurocutaneous syndromes and is characterised by skin, nerve and bone abnormalities. We present a case of von Recklinghausen's disease and precocious puberty in 7-year-old boy. At the age of three café au lait spots on the skin and an incranial tumour situated near the optic chiasm--qualified as inoperable--were discovered. At the age of 7 first signs of precocious puberty appeared (pubic hair P3 and enlargement of the testes (15 ml) and penis). Laboratory measurements included: LH 7.5 mIU/ml, FSH 1.1 mIU/ml, testosterone 183 ng/ml, assessment of bone age: 9 years. The response to LHRH stimulation was characteristic for true precocious puberty (LH 15.9 mIU/ml and FSH 1.5 mIU/ml after 30 minutes). The MRI of the brain showed a tumour of the suprasellar region with compression of pituitary stalk. True precocious puberty was diagnosed. Treatment with Diphereline was introduced. At present the boy is 9 years old and has been treated with Diphereline for 16 months. The volume of the testicles has decreased to 7 ml and loss of pubic hair was noted. The MRI does not show any progression in tumour growth. The authors would like to underline the need of close observation of children with von Reclinghausen disease with regard to possibility of uncovering true precocious puberty which is critical for rapid diagnosis and introduction of correct treatment.

  9. Boris Novozhilov: Life and contribution to the physics of combustion

    NASA Astrophysics Data System (ADS)

    Novozhilov, Vasily

    2018-04-01

    Professor Boris Novozhilov (1930-2017) passed away on February 19th, 2017 in Moscow. The present paper provides brief account of his life and contributions to the physics of combustion. From extensive scientific legacy left by Boris, several major achievements are discussed here: Zeldovich-Novozhilov (ZN) theory of unsteady solid propellant combustion, contributions to thermal explosion theory, the theory of spin combustion, discovery of propellant combustion transition to chaotic regimes through Feigenbaum period bifurcation scenario.

  10. Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.

    2016-02-01

    In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.

  11. Hazardous Waste Cleanup: Von Roll Isola USA Incorporated in Schenectady, New York

    EPA Pesticide Factsheets

    The Riverview facility is a 52-acre manufacturing facility located on Von Roll Drive in Schenectady, New York. The facility is owned and operated by Von Roll Isola USA, Inc., and produces solid and liquid insulating materials and tapes for the electrical

  12. [out of scope].

    PubMed

    Siegmund-Schultze, Reinhard

    2008-01-01

    The paper discusses several still unsettled and not systematically investigated questions concerning the situation of Jewish scientists, among them mathematicians, in the Republic of Weimar. Contemporary statements by the well-known leftist and liberal journalists Carl von Ossietzky (1932) and Rudolf Olden (1934) are used to describe the general political situation. A wide-spread feeling of a social and political crisis and changes and perturbations in international scientific communication provide explanatory background for the conditions within academia in the 1920s. A comparison of appointments of Jewish mathematicians to full professorships before and after World War I does not give significant differences. Attitudes of Jewish mathematicians such as Felix Bernstein, Richard Courant, Emil Julius Gumbel, Edmund Landau, Richard von Mises, Johann von Neumann and Adolf A. Fraenkel, but also of non-Jewish mathematicians such as Felix Klein, Walther von Dyck and Theodor Vahlen will be discussed, providing some unpublished material. One statement by Felix Klein (1920), which shows his undecided stance with respect to the problem of anti-Semitism, and an excerpt from Richard von Mises' diary (1933), where he reflects on his status as a Jewish mathematician and as a refugee, are particularly valuable as points of reference for necessary further research.

  13. Robin Gravity

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Maheshwari, Shubham; Bala Subramanian, P. N.

    2017-08-01

    We write down a Robin boundary term for general relativity. The construction relies on the Neumann result of arXiv:1605.01603 in an essential way. This is unlike in mechanics and (polynomial) field theory, where two formulations of the Robin problem exist: one with Dirichlet as the natural limiting case, and another with Neumann.

  14. Separability of a family of one-parameter W and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal q-conditional-entropy approach

    SciTech Connect

    Prabhu, R.; Usha Devi, A. R.; Inspire Institute Inc., McLean, Virginia 22101

    2007-10-15

    We employ conditional Tsallis q entropies to study the separability of symmetric one parameter W and GHZ multiqubit mixed states. The strongest limitation on separability is realized in the limit q{yields}{infinity}, and is found to be much superior to the condition obtained using the von Neumann conditional entropy (q=1 case). Except for the example of two qubit and three qubit symmetric states of GHZ family, the q-conditional entropy method leads to sufficient--but not necessary--conditions on separability.

  15. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Moretti, Valter; Oppio, Marco

    quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. This complex structure reveals a nice interplay of Poincaré symmetry and the classification of the commutant of irreducible real von Neumann algebras.

  16. Die nuklearen Anlagen von Hanford (1943-1987) Eine Fallstudie über die Schnittstellen von Physik, Biologie und die US-amerikanische Gesellschaft zur Zeit des Kalten Krieges

    NASA Astrophysics Data System (ADS)

    Macuglia, Daniele

    Die Geschichte des Kalten Krieges eröffnet viele Möglichkeiten, sich näher mit den Schnittstellen von Physik und Biologie während des 20. Jahrhunderts zu befassen. Nicht nur das Unglück in Tschernobyl aus dem Jahr 1986, auch das Beispiel der nuklearen Anlagen in Hanford in den Vereinigten Staaten zeigt die biologischen Folgen von nuklearer Physik.

  17. Modification of the Douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Grose, G. G.

    1978-01-01

    The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.

  18. Voluntarism in early psychology: the case of Hermann von Helmholtz.

    PubMed

    De Kock, Liesbet

    2014-05-01

    The failure to recognize the programmatic similarity between (post-)Kantian German philosophy and early psychology has impoverished psychology's historical self-understanding to a great extent. This article aims to contribute to recent efforts to overcome the gaps in the historiography of contemporary psychology, which are the result of an empiricist bias. To this end, we present an analysis of the way in which Hermann von Helmholtz's theory of perception resonates with Johann Gottlieb Fichte's Ego-doctrine. It will be argued that this indebtedness is particularly clear when focusing on the foundation of the differential awareness of subject and object in perception. In doing so, the widespread reception of Helmholtz's work as proto-positivist or strictly empiricist is challenged, in favor of the claim that important elements of his theorizing can only be understood properly against the background of Fichte's Ego-doctrine. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. The molecular genetics of von Willebrand disease.

    PubMed

    Berber, Ergül

    2012-12-01

    Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.

  20. Wernher von Braun

    NASA Image and Video Library

    1965-05-25

    This image depicts the tension in the Launch Control Center of the Launch Complex 37 at Cape Canaveral, Florida, during the SA-8 on May 25, 1965. Pointing, center is Dr. Kurt Debus, Director, Launch Operations Directorate, MSFC. To the right is Dr. Hans Gruene, Deputy Director, Launch Operations Directorate, MSFC; Dr. von Braun, Director, Marshall Space Flight Center (MSFC); and leaning, Dr. Eberhard Rees, Director, Deputy Director for Research and Development, MSFC. The SA-8 mission, with a Saturn I launch vehicle, made the first night launch and deployed Pegasus II, micrometeoroid detection satellite.

  1. Geochemistry of volcanic rocks from the Wawa greenstone belt

    NASA Technical Reports Server (NTRS)

    Schulz, K. J.; Sylvester, P. J.; Attoh, K.

    1983-01-01

    The Wawa greenstone belt is located in the District of Algoma and extends east-northeast from Lake Superior to the western part of the Sudbury District in Ontario, Canada. Recent mapping by Attoh has shown that an unconformity at the base of the Dore' Formation and equivalent sedimentary rocks marks a significant stratigraphic break which can be traced throughout the volcanic belt. This break has been used to subdivide the volcanic-sedimentary into pre- and post-Dore' sequences. The pre-Dore' sequence includes at least two cycles of mafic-to-felsic volcanism, each capped by an iron-formation unit. The post-Dore' sequence includes an older mafic-to-felsic unit, which directly overlies sedimentary rocks correlated with the Dore' Formation, and a younger felsic breccia unit interpreted to have formed as debris flows from a felsic volcanic center. In the present study, samples of both the pre-and post-Dore' volcanic sequences were analyzed for major and trace elements, incuding rare earths (REE). This preliminary study is part of an ongoing program to assess the petrogenesis of the volcanic rocks of the Wawa greenstone belt.

  2. Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder

    PubMed Central

    Eastman, Rocky; Leaf, Elizabeth M.; Zhang, Dianzhong; True, Lawrence D.; Sweet, Robert M.; Seidel, Kristy; Siebert, Joseph R.; Grady, Richard; Mitchell, Michael E.

    2010-01-01

    von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen. Histocytochemical analysis and keratin profiling demonstrated that nested cells exhibited a phenotype similar, but not identical, to that of urothelial cells of transitional epithelium. Immunostaining and in situ hybridization analysis of exstrophic tissue demonstrated that the FGF-10 receptor is synthesized and retained by cells of von Brunn's nest. In contrast, FGF-10 is synthesized and secreted by mesenchymal fibroblasts via a paracrine pathway that targets basal epithelial cells of von Brunn's nests. Small clusters of 10pRp cells, positive for both FGF-10 and its receptor, were observed both proximal to and inside blood vessels in the lamina propria. The collective evidence points to a mechanism where von Brunn's nests develop under the control of the FGF-10 signal transduction system and suggests that 10pRp cells may be the original source of nested cells. PMID:20719973

  3. Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI.

    PubMed

    Bhalerao, Abhir; Westin, Carl-Fredrik

    2007-01-01

    A mapping of unit vectors onto a 5D hypersphere is used to model and partition ODFs from HARDI data. This mapping has a number of useful and interesting properties and we make a link to interpretation of the second order spherical harmonic decompositions of HARDI data. The paper presents the working theory and experiments of using a von Mises-Fisher mixture model for directional samples. The MLE of the second moment of the HvMF pdf can also be related to fractional anisotropy. We perform error analysis of the estimation scheme in single and multi-fibre regions and then show how a penalised-likelihood model selection method can be employed to differentiate single and multiple fibre regions.

  4. Genetics Home Reference: von Hippel-Lindau syndrome

    MedlinePlus

    ... more common in particular ethnic groups? Genetic Changes Mutations in the VHL gene cause von Hippel-Lindau ... dividing too rapidly or in an uncontrolled way. Mutations in this gene prevent production of the VHL ...

  5. A Universe of Questions.

    ERIC Educational Resources Information Center

    Zeldovich, Yakov

    1992-01-01

    Reprinted from the original Russian manuscript of Yakov Zeldovich, this article chronicles his studies of the universe and his attempts to construct a theory of its evolution. He provides the high school student with compelling cosmological discussions about uniformity, galactic clusters, radiation, evolution, the big bang, and gravitational…

  6. A rapid method to visualize von willebrand factor multimers by using agarose gel electrophoresis, immunolocalization and luminographic detection.

    PubMed

    Krizek, D R; Rick, M E

    2000-03-15

    A highly sensitive and rapid clinical method for the visualization of the multimeric structure of von Willebrand Factor in plasma and platelets is described. The method utilizes submerged horizontal agarose gel electrophoresis, followed by transfer of the von Willebrand Factor onto a polyvinylidine fluoride membrane, and immunolocalization and luminographic visualization of the von Willebrand Factor multimeric pattern. This method distinguishes type 1 from types 2A and 2B von Willebrand disease, allowing timely evaluation and classification of von Willebrand Factor in patient plasma. It also allows visualization of the unusually high molecular weight multimers present in platelets. There are several major advantages to this method including rapid processing, simplicity of gel preparation, high sensitivity to low concentrations of von Willebrand Factor, and elimination of radioactivity.

  7. Wernher von Braun: Reflections on His Contributions to Space Exploration

    NASA Technical Reports Server (NTRS)

    Goldman, Arthur E.

    2012-01-01

    In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.

  8. Update zum klinischen Einsatz von Inhibitoren mutierter Phosphokinasen beim Melanom.

    PubMed

    Cosgarea, Ioana; Ritter, Cathrin; Becker, Jürgen C; Schadendorf, Dirk; Ugurel, Selma

    2017-09-01

    Die Behandlungsstrategie beim metastasierten Melanom hat sich mit der Identifizierung therapeutisch angreifbarer molekularer Zielstrukturen innerhalb zellulärer Signalwege radikal geändert. Durch die Zulassung von Substanzen, die gezielt an den zentralen Schaltmolekülen, den Phosphokinasen, angreifen, können diese Signalwege selektiv abgeschaltet werden. Dies ist insbesondere bei denjenigen Tumoren von Interesse, deren Signalwege durch aktivierende Mutationen der für die Schaltmoleküle kodierenden Gene konstitutiv aktiviert sind. Aktuell ist diese therapeutische Strategie insbesondere für Patienten bedeutsam, deren Melanome eine Mutation im BRAF-Gen aufweisen. Diese Patienten können durch eine Kombinationstherapie aus Inhibitoren der Phosphokinasen BRAF und MEK langfristig mit sehr guter Krankheitskontrolle behandelt werden. Unter dieser Kombinationstherapie wird aktuell ein progressionsfreies Überleben von über zehn Monaten und ein Gesamtüberleben von mehr als zwei Jahren bei guter Lebensqualität erzielt. Da unter längerfristiger Therapie mit Kinaseinhibitoren jedoch bei einem Großteil der Patienten eine Resistenzbildung auftritt, sind aktuelle klinische Therapiestudien auf die Suche nach geeigneten Kombinationspartnern unter Blockierung anderer Signalwege oder unter Aktivierung der T-Zell-vermittelten Immunantwort ausgerichtet. Der vorliegende Übersichtsartikel stellt sowohl die aktuell verfügbaren als auch die in der klinischen Testung befindlichen zukünftigen Optionen der zielgerichteten Therapie des Melanoms dar. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  9. Entropic inequalities for a class of quantum secret-sharing states

    SciTech Connect

    Sarvepalli, Pradeep

    It is well known that von Neumann entropy is nonmonotonic, unlike Shannon entropy (which is monotonically nondecreasing). Consequently, it is difficult to relate the entropies of the subsystems of a given quantum state. In this paper, we show that if we consider quantum secret-sharing states arising from a class of monotone span programs, then we can partially recover the monotonicity of entropy for the so-called unauthorized sets. Furthermore, we can show for these quantum states that the entropy of the authorized sets is monotonically nonincreasing.

  10. Wernher von Braun

    NASA Image and Video Library

    1959-03-01

    In this photo, Director of the U.S. Army Ballistic Missile Agency's (ABMA) Development Operations Division, Dr. Wernher von Braun, and Director of Missile Firing Division, Dr. Kurt Debus, are shown with unidentified individuals, discussing two components that would make up the Pioneer IV Lunar Probe. The mercury batteries (left) were used to power the radio transmitter, cosmic radiation counter and other instruments in Pioneer IV. The conical shroud placed over the instruments of Pioneer IV was plated with gold to improve conductivity. The metal surface also served as the anterna for the probe's instruments signaling back to the Earth receiving stations.

  11. Introduction of a Classical Level in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Prosperi, G. M.

    2016-11-01

    In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.

  12. The British Interplanetary Society - Val Cleaver and Wernher von Braun

    NASA Astrophysics Data System (ADS)

    Willhite, I. P.

    This article is concerned with the early relationship between Wernher von Braun and the British Interplanetary Society (BIS). The BIS/Wernher von Braun/Val Cleaver correspondence files located here at the US Space & Rocket Center in Huntsville, Alabama are unparalleled. As one reads the stimulating comments between Cleaver and von Braun, the need to share their thoughts prevails. Following is an excerpt from one letter that whets ones appetite for more. 10 June 1951 Cleaver writes, “I'm so glad you enjoyed my last letter, and look forward to your promised further contribution to our discussion of the ethics of science in general and astronautics in particu- lar. As regards the one particular point on which you found yourself unable to hold your fire, I should say there are really two distinct issues at stake:. . .” This article attempts to represent the best of the letters as they goad each other on scientific principles, means to prevent wars, and other philosophic ideas.

  13. Correlation, evaluation, and extension of linearized theories for tire motion and wheel shimmy

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F

    1957-01-01

    An evaluation is made of the existing theories of a linearized tire motion and wheel shimmy. It is demonstrated that most of the previously published theories represent varying degrees of approximation to a summary theory developed in this report which is a minor modification of the basic theory of Von Schlippe and Dietrich. In most cases where strong differences exist between the previously published theories and summary theory, the previously published theories are shown to possess certain deficiencies. A series of systematic approximations to the summary theory is developed for the treatment of problems too simple to merit the use of the complete summary theory, and procedures are discussed for applying the summary theory and its systematic approximations to the shimmy of more complex landing-gear structures than have previously been considered. Comparisons of the existing experimental data with the predictions of the summary theory and the systematic approximations provide a fair substantiation of the more detailed approximate theories.

  14. Virchow's triad: Kussmaul, Quincke and von Recklinghausen.

    PubMed

    Stanifer, John W

    2016-02-01

    For most of the 19th century, Germany was the centre of the medical world. From there the most innovating research came and many of the physicians of that era are known to nearly every medical student and physician of today. Virchow, Kussmaul, Quincke, von Recklinghausen, Müller and Schönlein are familiar names in today's medicine but insofar as they are merely eponyms associated with signs, symptoms, disease and anatomy. The story of their lives, their research and their influence on each other has been little examined. This is an essay about Virchow's relationship with his mentors Müller and Schönlein and how these relationships shaped the development of Kussmaul, Quincke and von Recklinghausen as students of Virchow and their work in medicine and clinical observation after leaving Virchow's laboratory. © The Author(s) 2014.

  15. Von eingebetteten Systemen zu Cyber-Physical Systems

    NASA Astrophysics Data System (ADS)

    Wedde, Rorst F.; Lehnhoff, Sebastian; Rehtanz, Christian; Krause, Olav

    Das Hauptanliegen des Papiers ist, ein Paradigma für Probleme mit neuartigen Integrationsanforderungen für Forschung und Entwicklung in verteilten eingebetteten Echtzeitsystemen zu motivieren und vorzustellen, nämlich den Begriff Cyber-Physical Systems. Bei einer in letzter Zeit stark zunehmenden Anzahl von Realzeitanwendungen können ohne die Berücksichtigung solcher Forderungen keine praktisch brauchbaren Lösungen erwartet werden. Einige Anwendungsfelder werden angesprochen. Im Einzelnen werden dann für Elektroautos, die mit erneuerbaren Energien betrieben werden sollen, einerseits die Management-, verteilte Verhandlungs- und Verteilungsprobleme der benötigten Energie in einem bottom-up Ansatz gelöst. Andererseits wird als Teil unserer Projektarbeit die Bereitstellung von Reserveenergie für den allgemeinen Bedarf durch Autobatterien vorgestellt. Es zeigt sich, dass dies effizienter und wesentlich kurzfristiger in unserem verteilten Vorgehen geschehen kann als in traditionellen Verfahren.

  16. Aufnahme, Analyse und Visualisierung von Bewegungen nativer Herzklappen in-vitro

    NASA Astrophysics Data System (ADS)

    Weiß, Oliver; Friedl, Sven; Kondruweit, Markus; Wittenberg, Thomas

    Die hohe Zahl an Transplantationen von Herzklappen und viele nötige Re-Operationen machen eine detaillierte Analyse der Strömungen und Klappenbewegungen klinisch interessant. Ein neuer Ansatz ist hierbei der Einsatz von Hochgeschwindigkeitskameras um Bewegungsabl äufe der Herzklappen beobachten und auswerten zu können. Die hohen Datenraten erfordern allerdings eine möglichst automatisierte Analyse und möglichst komprimierte Darstellung des Schwingungsverhaltens. In dieser Arbeit wird ein Ansatz vorgestellt, bei dem Bewegungen nativer Herzklappen in-vitro aufgenommen, analysiert und kompakt visualisiert werden.

  17. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  18. High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates.

    PubMed

    Cruikshank, Benjamin; Jacobs, Kurt

    2017-07-21

    von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.

  19. Software Deficiency Issues Confronting the Utilization of ’Non-von Neumann’ Architectures

    DTIC Science & Technology

    1989-01-01

    upon work done by Charles Babbage nearly 100 years before. Hence, the " Babbage " machine that was designed in the 1820’s and 1830’s is generally...functionality. For example, consider the world’s first computer designer, Charles Babbage , who primarily designed in the 1820’s what is considered to be the...primarily considered as direct descendants of ideas that were devised in the 1930’s, these ideas were basically rediscoveries of what Charles Babbage

  20. The Emergence of Mathematical Physics at the University of Leipzig

    NASA Astrophysics Data System (ADS)

    Schlote, Karl-Heinz

    Except for the well-known blossoming of theoretical physics with the group around Werner Heisenberg at the University of Leipzig at the end of the 1920s, the tradition of mathematical physics had been analyzed in only a few aspects, in particular the work of Carl Neumann and his contributions to the shaping of mathematical physics in general and the theory of electrodynamics in particular. However, the establishment of mathematical physics and its strong position at the University of Leipzig, with Neumann as its leading figure in the last third of the nineteenth century, formed important preconditions for the later upswing. That process is analyzed in this article, focusing on the work of Neumann. It includes a discussion of his ideas on the structure of a physical theory and the role of mathematics in physics as well as his impact on the interaction of mathematics and physics.

  1. Gibbs paradox of entropy of mixing experimental facts. Its rejection, and the theoretical consequences

    SciTech Connect

    Lin, Shu-Kun

    1996-12-31

    Gibbs paradox statement of entropy of mixing has been regarded as the theoretical foundation of statistical mechanics, quantum theory and biophysics. However, all the relevant chemical experimental observations and logical analyses indicate that the Gibbs paradox statement is false. I prove that this statement is wrong: Gibbs paradox statement implies that entropy decreases with the increase in symmetry (as represented by a symmetry number {sigma}; see any statistical mechanics textbook). From group theory any system has at least a symmetry number {sigma}=1 which is the identity operation for a strictly asymmetric system. It follows that the entropy of a systemmore » is equal to, or less than, zero. However, from either von Neumann-Shannon entropy formula (S(w) =-{Sigma}{sup {omega}} in p{sub 1}) or the Boltzmann entropy formula (S = in w) and the original definition, entropy is non-negative. Therefore, this statement is false. It should not be a surprise that for the first time, many outstanding problems such as the validity of Pauling`s resonance theory, the explanation of second order phase transition phenomena, the biophysical problem of protein folding and the related hydrophobic effect, etc., can be solved. Empirical principles such as Pauli principle (and Hund`s rule) and HSAB principle, etc., can also be given a theoretical explanation.« less

  2. The Theories of Turbulence

    NASA Technical Reports Server (NTRS)

    Bass, J; Agostini, L

    1955-01-01

    The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.

  3. Von Donuts und Zucker: Mit Neutronen biologische Makromoleküle erforschen

    NASA Astrophysics Data System (ADS)

    May, Roland P.

    2003-05-01

    Für die Erforschung von Biomolekülen bieten Neutronen einzigartige Eigenschaften. Vor allem ihre unterschiedliche Wechselwirkung mit dem natürlichen Wasserstoff und seinem schweren Isotop Deuterium ermöglicht tiefe Einblicke in Struktur, Funktion und Dynamik von Proteinen, Nukleinsäuren und Biomembranen. Bei vielen Fragestellungen zur Strukturaufklärung gibt es kaum oder keine Alternative zum Neutron. Das Institut Laue-Langevin trägt Bahnbrechendes zum Erfolg der Neutronen-Methoden in der Biologie bei.

  4. Entanglement entropy in Fermi gases and Anderson's orthogonality catastrophe.

    PubMed

    Ossipov, A

    2014-09-26

    We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.

  5. Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem

    NASA Astrophysics Data System (ADS)

    Busch, P.

    2003-09-01

    A quantum state can be understood in a loose sense as a map that assigns a value to every observable. Formalizing this characterization of states in terms of generalized probability distributions on the set of effects, we obtain a simple proof of the result, analogous to Gleason’s theorem, that any quantum state is given by a density operator. As a corollary we obtain a vonNeumann type argument against noncontextual hidden variables. It follows that on an individual interpretation of quantum mechanics the values of effects are appropriately understood as propensities.

  6. Entropic characterization of separability in Gaussian states

    SciTech Connect

    Sudha; Devi, A. R. Usha; Inspire Institute Inc., McLean, Virginia 22101

    2010-02-15

    We explore separability of bipartite divisions of mixed Gaussian states based on the positivity of the Abe-Rajagopal (AR) q-conditional entropy. The AR q-conditional entropic characterization provide more stringent restrictions on separability (in the limit q{yields}{infinity}) than that obtained from the corresponding von Neumann conditional entropy (q=1 case)--similar to the situation in finite dimensional states. Effectiveness of this approach, in relation to the results obtained by partial transpose criterion, is explicitly analyzed in three illustrative examples of two-mode Gaussian states of physical significance.

  7. Two-Step Deterministic Remote Preparation of an Arbitrary Quantum State

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Yan, Feng-Li

    2010-11-01

    We present a two-step deterministic remote state preparation protocol for an arbitrary quhit with the aid of a three-particle Greenberger—Horne—Zeilinger state. Generalization of this protocol for higher-dimensional Hilbert space systems among three parties is also given. We show that only single-particle von Neumann measurements, local operations, and classical communication are necessary. Moreover, since the overall information of the quantum state can be divided into two different pieces, which may be at different locations, this protocol may be useful in the quantum information field.

  8. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-01

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  9. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.

    PubMed

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-25

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  10. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    PubMed

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  11. Quenched dynamics of classical isolated systems: the spherical spin model with two-body random interactions or the Neumann integrable model

    NASA Astrophysics Data System (ADS)

    Cugliandolo, Leticia F.; Lozano, Gustavo S.; Nessi, Nicolás; Picco, Marco; Tartaglia, Alessandro

    2018-06-01

    We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p  =  2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N  ‑  1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs–Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.

  12. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    SciTech Connect

    Terrana, Alexandra; Johnson, Matthew C.; Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, andmore » estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.« less

  13. RR-MR transition of a Type V shock interaction in inviscid double-wedge flow with high-temperature gas effects

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Zhu, Y.; Luo, X.

    2018-07-01

    The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.

  14. Entanglement dynamics in short- and long-range harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, M. Ghasemi; Rajabpour, M. A.

    2014-11-01

    We study the time evolution of the entanglement entropy in the short- and long-range-coupled harmonic oscillators that have well-defined continuum limit field theories. We first introduce a method to calculate the entanglement evolution in generic coupled harmonic oscillators after quantum quench. Then we study the entanglement evolution after quantum quench in harmonic systems in which the couplings decay effectively as 1 /rd +α with the distance r . After quenching the mass from a nonzero value to zero we calculate numerically the time evolution of von Neumann and Rényi entropies. We show that for 1 <α <2 we have a linear growth of entanglement and then saturation independent of the initial state. For 0 <α <1 depending on the initial state we can have logarithmic growth or just fluctuation of entanglement. We also calculate the mutual information dynamics of two separated individual harmonic oscillators. Our findings suggest that in our system there is no particular connection between having a linear growth of entanglement after quantum quench and having a maximum group velocity or generalized Lieb-Robinson bound.

  15. Why risk is not variance: an expository note.

    PubMed

    Cox, Louis Anthony Tony

    2008-08-01

    Variance (or standard deviation) of return is widely used as a measure of risk in financial investment risk analysis applications, where mean-variance analysis is applied to calculate efficient frontiers and undominated portfolios. Why, then, do health, safety, and environmental (HS&E) and reliability engineering risk analysts insist on defining risk more flexibly, as being determined by probabilities and consequences, rather than simply by variances? This note suggests an answer by providing a simple proof that mean-variance decision making violates the principle that a rational decisionmaker should prefer higher to lower probabilities of receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a continuous increasing indifference curve for mean-variance combinations at the origin is enough to imply that a decisionmaker must find unacceptable some prospects that offer a positive probability of gain and zero probability of loss. Unlike some previous analyses of limitations of variance as a risk metric, this expository note uses only simple mathematics and does not require the additional framework of von Neumann Morgenstern utility theory.

  16. Differentiability of correlations in realistic quantum mechanics

    SciTech Connect

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumedmore » to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.« less

  17. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality.

    PubMed

    Alba, Vincenzo

    2017-06-01

    In recent years entanglement measures, such as the von Neumann and the Rényi entropies, provided a unique opportunity to access elusive features of quantum many-body systems. However, extracting entanglement properties analytically, experimentally, or in numerical simulations can be a formidable task. Here, by combining the replica trick and the Jarzynski equality we devise an alternative effective out-of-equilibrium protocol for measuring the equilibrium Rényi entropies. The key idea is to perform a quench in the geometry of the replicas. The Rényi entropies are obtained as the exponential average of the work performed during the quench. We illustrate an application of the method in classical Monte Carlo simulations, although it could be useful in different contexts, such as in quantum Monte Carlo, or experimentally in cold-atom systems. The method is most effective in the quasistatic regime, i.e., for a slow quench. As a benchmark, we compute the Rényi entropies in the Ising universality class in 1+1 dimensions. We find perfect agreement with the well-known conformal field theory predictions.

  18. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    SciTech Connect

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  19. The von Auwers reaction - history and synthetic applications.

    PubMed

    Dumeunier, Raphaël; Jaeckh, Simon

    2014-01-01

    Dienones obtained from the facile dearomatization of phenols, can be further transformed to semi-benzenes prone to rearomatize in clean, but sometimes unexpected, fashion. Over a hundred years ago, K. von Auwers found that adding Grignards on dienones would lead spontaneously to subsequent dehydration and a novel aromatizing rearrangement. This reaction was ignored for 50 years before Melvin Newman re-investigated these findings, studied the mechanism, and developed variations on the same theme. Since then, despite the tremendous potential of the reactions, those studies were only rarely mentioned, before finally falling into oblivion. This review aims to provide the reader with a detailed history and comprehensive bibliography of the von Auwers rearrangement, some of its synthetic applications, and new unpublished material in the hope to open new perspectives on this forgotten reaction.

  20. Quantum Rényi relative entropies affirm universality of thermodynamics.

    PubMed

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.