Sample records for zemlya arctic russia

  1. Phytoplankton bloom along the coast of Novaya Zemlya, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    North of the western Russian mainland lies the island archipelago of Novaya Zemlya. The northern island is glacier covered and is the site of ongoing research into the effects of the North Atlantic Oscillation and climate change on the glaciers. The archipelago is situated in the Arctic Ocean, between the Barents Sea to the west and the Kara Sea to the east. In this true-color MODIS image, the blue-green swirls in the waters of the Barents Sea on the western coast could indicate a bloom of phytoplankton, or they could be highly reflective glacial silt resulting from run off. The Barents Sea is named for Dutch explorer Willem Barents, who is 1596 attempted to sail to Asia via the North Pole. Barents and his crew were caught in sea ice at north of the northern cape of Novaya Zemlya in August and were forced to winter on the island, building a house out of the wood from their ship. Not just a historic and climatological research site, the islands are also home to a Russian nuclear test facility.

  2. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya.

    PubMed

    Lebedev, A T; Mazur, D M; Polyakova, O V; Kosyakov, D S; Kozhevnikov, A Yu; Latkin, T B; Andreeva Yu, I; Artaev, V B

    2018-04-18

    Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Occupational accidents in Russia and the Russian Arctic

    PubMed Central

    Dudarev, Alexey A.; Karnachev, Igor P.; Odland, Jon Øyvind

    2013-01-01

    Background According to official statistics, the rate of occupational accidents (OAs) and fatal injuries in Russia decreased about 5-fold and 2-fold, respectively, from 1975 to 2010, but working conditions during this period had the opposite trend; for example, the number of people who work in unfavourable and hazardous conditions (particularly since 1991) has increased significantly. Methods This review summarises the results of a search of the relevant peer-reviewed literature published in Russia and official statistics on OAs and occupational safety in Russia and the Russian Arctic in 1980–2010. Results The occupational safety system in Russia has severely deteriorated in the last 2 decades, with legislators tending to promote the interests of industry and business, resulting in the neglect of occupational safety and violation of workers’ rights. The majority of workers are employed in conditions that do not meet rules of safety and hygiene. More than 60% of OAs can be attributed to management practices – violation of safety regulations, poor organisation of work, deficiency of certified occupational safety specialists and inadequate personnel training. Research aimed at improving occupational safety and health is underfunded. There is evidence of widespread under-reporting of OAs, including fatal accidents. Three federal agencies are responsible for OAs recording; their data differ from each other as they use different methodologies. The rate of fatal OAs in Russia was 3–6 times higher than in Scandinavian countries and about 2 times higher compared to United States and Canada in 2001. In some Russian Arctic regions OAs levels are much higher. Conclusions Urgent improvement of occupational health and safety across Russia, especially in the Arctic regions, is needed. PMID:23519652

  4. Occupational accidents in Russia and the Russian Arctic.

    PubMed

    Dudarev, Alexey A; Karnachev, Igor P; Odland, Jon Øyvind

    2013-01-01

    According to official statistics, the rate of occupational accidents (OAs) and fatal injuries in Russia decreased about 5-fold and 2-fold, respectively, from 1975 to 2010, but working conditions during this period had the opposite trend; for example, the number of people who work in unfavourable and hazardous conditions (particularly since 1991) has increased significantly. This review summarises the results of a search of the relevant peer-reviewed literature published in Russia and official statistics on OAs and occupational safety in Russia and the Russian Arctic in 1980-2010. The occupational safety system in Russia has severely deteriorated in the last 2 decades, with legislators tending to promote the interests of industry and business, resulting in the neglect of occupational safety and violation of workers' rights. The majority of workers are employed in conditions that do not meet rules of safety and hygiene. More than 60% of OAs can be attributed to management practices--violation of safety regulations, poor organisation of work, deficiency of certified occupational safety specialists and inadequate personnel training. Research aimed at improving occupational safety and health is underfunded. There is evidence of widespread under-reporting of OAs, including fatal accidents. Three federal agencies are responsible for OAs recording; their data differ from each other as they use different methodologies. The rate of fatal OAs in Russia was 3-6 times higher than in Scandinavian countries and about 2 times higher compared to United States and Canada in 2001. In some Russian Arctic regions OAs levels are much higher. Urgent improvement of occupational health and safety across Russia, especially in the Arctic regions, is needed.

  5. Geology and Assessment of Undiscovered Oil and Gas Resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province, 2008

    USGS Publications Warehouse

    Klett, Timothy R.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered petroleum resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province as part of its Circum-Arctic Resource Appraisal. These two provinces are situated northeast of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins Province for this study: the Kolguyev Terrace AU, the South Barents and Ludlov Saddle AU, and the North Barents Basin AU. A fourth AU, defined as the Novaya Zemlya Basins and Admiralty Arch AU, coincides with the Novaya Zemlya Basins and Admiralty Arch Province. These four AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources, resulting in total estimated mean volumes of ~7.4 billion barrels of crude oil, 318 trillion cubic feet (TCF) of natural gas, and 1.4 billion barrels of natural-gas liquids.

  6. Recent glacier surface snowpack melt in Novaya Zemlya and Severnaya Zemlya derived from active and passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhao, Meng

    The warming rate in the Russian High Arctic (RHA) (36˜158°E, 73˜82°N) is outpacing the pan-Arctic average, and its effect on the small glaciers across this region needs further examination. The temporal variation and spatial distribution of surface melt onset date (MOD) and total melt days (TMD) throughout the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) archipelagoes serve as good indicators of ice mass ablation and glacier response to regional climate change in the RHA. However, due to the harsh environment, long-term glaciological observations are limited, necessitating the application of remotely sensed data to study the surface melt dynamics. The high sensitivity to liquid water and the ability to work without solar illumination and penetrate non-precipitating clouds make microwave remote sensing an ideal tool to detect melt in this region. This work extracts resolution-enhanced passive and active microwave data from different periods and retrieves a decadal melt record for NovZ and SevZ. The high correlation among passive and active data sets instills confidence in the results. The mean MOD is June 20th on SevZ and June 10th on NovZ during the period of 1992-2012. The average TMDs are 47 and 67 days on SevZ and NovZ from 1995 to 2011, respectively. NovZ had large interannual variability in the MOD, but its TMD generally increased. SevZ MOD is found to be positively correlated to local June reanalysis air temperature at 850hPa geopotential height and occurs significantly earlier (˜0.73 days/year, p-value < 0.01) from 1992 to 2011. SevZ also experienced a longer TMD trend (˜0.75 days/year, p-value < 0.05) from 1995 to 2011. Annual mean TMD on both islands are positively correlated with regional summer mean reanalysis air temperature and negatively correlated to local sea ice extent. These strong correlations might suggest that the Russian High Arctic glaciers are vulnerable to the continuously diminishing sea ice extent, the associated air temperature

  7. Simulation of Arctic Black Carbon using Hemispheric CMAQ: Role of Russia's BC Emissions, Transport, and Deposition

    NASA Astrophysics Data System (ADS)

    Huang, K.; Fu, J. S.

    2015-12-01

    Black carbon plays a unique role in the Arctic climate system due to its multiple effects. It causes Arctic warming by directly absorbing sunlight from space and by darkening the surface albedo of snow and ice, which indirectly leads to further warming and melting, thus inducing an Arctic amplification effect. BC depositions over the Arctic are more sensitive to regions in close proximity. In this study, we reconstruct BC emissions for Russian Federation, which is the country that occupies the largest area in the Arctic Circle. Local Russia information such as activity data, emission factors and other emission source data are used. In 2010, total anthropogenic BC emission of Russia is estimated to be around 254 Gg. Gas flaring, a commonly ignored black carbon source, contributes a dominant 43.9% of Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 22.0%, 17.8%, 11.5%, and 4.8%, respectively. BC simulations were conducted using the hemispheric version of CMAQ with polar projection. Emission inputs are from a global emissions database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulations using the new Russian BC emission inventory could improve 46 - 61% of the Absorption Aerosol Optical Depth (AAOD) measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four air monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October - March). Emission perturbation studies show that Russia's BC emissions contribute over 50% of the surface BC concentrations over the Arctic during the cold seasons. This study demonstrates the good capability of H-CMAQ in

  8. Nematodes from terrestrial and freshwater habitats in the Arctic

    PubMed Central

    2014-01-01

    Abstract We present an updated list of terrestrial and freshwater nematodes from all regions of the Arctic, for which records of properly identified nematode species are available: Svalbard, Jan Mayen, Iceland, Greenland, Nunavut, Northwest territories, Alaska, Lena River estuary, Taymyr and Severnaya Zemlya and Novaya Zemlya. The list includes 391 species belonging to 146 genera, 54 families and 10 orders of the phylum Nematoda. PMID:25197239

  9. Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia

    NASA Astrophysics Data System (ADS)

    Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.

    2012-12-01

    Deposition of black carbon (BC) on snow and ice is widely considered to have a climate warming effect by reducing the surface albedo and promoting snowmelt. Such positive climate feedbacks in the Arctic are especially problematic because rising surface temperatures may trigger the release of large Arctic stores of terrestrial carbon, further amplifying current warming trends. Recognizing the Arctic as a vulnerable region, the U.S. government committed funds in Copenhagen in 2009 for international cooperation targeting Arctic BC emissions reductions. As a result, the U.S. Department of State has funded three research and demonstration projects with the goal to better understand and mitigate BC deposition in the Russian Arctic from a range of sources. The U.S. Department of Energy's (DOE) Arctic BC initiative presented here is focused on mitigating BC emissions resulting from heat and power generation as well as industrial applications. A detailed understanding of BC sources and its transport and fate is required to prioritize efforts to reduce BC emissions from sources that deposit in the Russian Arctic. Sources of BC include the combustion of fossil fuels (e.g. coal, fuel oil, diesel) and the combustion of biomass (e.g. wildfires, agricultural burning, residential heating and cooking). Information on fuel use and associated emissions from the industrial and heat & power sectors in Russia is scarce and difficult to obtain from the open literature. Hence, our project includes a research component designed to locate Arctic BC emissions sources in Russia and determine associated BC transport patterns. We use results from the research phase to inform a subsequent assessment/demonstration phase. We use a back-trajectory modeling method (potential source contribution function - PSCF), which combines multi-year, high-frequency measurements with knowledge about atmospheric transport patterns. The PSCF modeling allows us to map the probability (by season and year) at course

  10. Cryolithozone of Western Arctic shelf of Russia

    NASA Astrophysics Data System (ADS)

    Kholmyanskii, Mikhail; Vladimirov, Maksim; Snopova, Ekaterina; Kartashev, Aleksandr

    2017-04-01

    We propose a new original version of the structure of the cryolithozone of west Arctic seas of Russia. In contrast to variants of construction of sections and maps based on thermodynamic modeling, the authors have used electrometric, seismic, and thermal data including their own profile measurements by near-field transient electromagnetic technique and seismic profile observations by reflection method. As a result, we defined the spatial characteristics of cryolithozone and managed to differentiate it to several layers, different both in structure and formation time. We confirmed once again that the spatial boundary of cryolithozone, type and thickness of permafrost, chilled rocks and thawed ground are primarily determined by tectonic and oceanographic regimes of the Arctic Ocean and adjacent land in different geological epochs. Permafrost formed on the land in times of cold weather, turn to submarine during flooding and overlap, in the case of the sea transgression, by marine sediments accumulating in the period of warming. We have been able to establish a clear link between the permafrost thickness and the geomorphological structure of the area. This can be explained by the distribution of thermodynamic flows that change the temperature state of previously formed permafrost rocks. Formation in the outer parts of the shelf which took place at ancient conversion stage can be characterized by the structure: • permafrost table - consists of rocks, where the sea water with a temperature below 0 °C has replaced the melted ice; • middle horizon - composed of undisturbed rocks, and the rocks chilled through the lower sieving underlay; As a result of the interpretation and analysis of all the available data, the authors created a map of types of cryolithozone of the Western Arctic shelf of Russia. The following distribution areas are marked on the map: • single-layer cryolithozone (composed of sediments upper Pleistocene and Holocene); • monosyllabic relict

  11. Occupational health and health care in Russia and Russian Arctic: 1980-2010.

    PubMed

    Dudarev, Alexey A; Odland, Jon Øyvind

    2013-01-01

    There is a paradox in Russia and its Arctic regions which reports extremely low rates of occupational diseases (ODs), far below those of other socially and economically advanced circumpolar countries. Yet, there is widespread disregard for occupational health regulations and neglect of basic occupational health services across many industrial enterprises. This review article presents official statistics and summarises the results of a search of peer-reviewed scientific literature published in Russia on ODs and occupational health care in Russia and the Russian Arctic, within the period 1980-2010. Worsening of the economic situation, layoff of workers, threat of unemployment and increased work load happened during the "wild market" industrial restructuring in 1990-2000, when the health and safety of workers were of little concern. Russian employers are not legally held accountable for neglecting safety rules and for underreporting of ODs. Almost 80% of all Russian industrial enterprises are considered dangerous or hazardous for health. Hygienic control of working conditions was minimised or excluded in the majority of enterprises, and the health status of workers remains largely unknown. There is direct evidence of general degradation of the occupational health care system in Russia. The real levels of ODs in Russia are estimated to be at least 10-100 times higher than reported by official statistics. The low official rates are the result of deliberate hiding of ODs, lack of coverage of working personnel by properly conducted medical examinations, incompetent management and the poor quality of staff, facilities and equipment. Reform of the Russian occupational health care system is urgently needed, including the passing of strong occupational health legislation and their enforcement, the maintenance of credible health monitoring and effective health services for workers, improved training of occupational health personnel, protection of sanitary-hygienic laboratories

  12. Assessment of possible airborne impact from nuclear risk sites - Part II: probabilistic analysis of atmospheric transport patterns in Euro-Arctic region

    NASA Astrophysics Data System (ADS)

    Mahura, A. G.; Baklanov, A. A.

    2003-10-01

    The probabilistic analysis of atmospheric transport patterns from most important nuclear risk sites in the Euro-Arctic region is performed employing the methodology developed within the "Arctic Risk" Project of the NARP Programme (Baklanov and Mahura, 2003). The risk sites are the nuclear power plants in the Northwest Russia, Finland, Sweden, Lithuania, United Kingdom, and Germany as well as the Novaya Zemlya test site of Russia. The geographical regions of interest are the Northern and Central European countries and Northwest Russia. In this study, the employed research tools are the trajectory model to calculate a multiyear dataset of forward trajectories that originated over the risk site locations, and a set of statistical methods (including exploratory, cluster, and probability fields analyses) for analysis of trajectory modelling results. The probabilistic analyses of trajectory modelling results for eleven sites are presented as a set of various indicators of the risk sites possible impact on geographical regions and countries of interest. The nuclear risk site possible impact (on a particular geographical region, territory, country, site, etc.) due to atmospheric transport from the site after hypothetical accidental release of radioactivity can be properly estimated based on a combined interpretation of the indicators (simple characteristics, atmospheric transport pathways, airflow and fast transport probability fields, maximum reaching distance and maximum possible impact zone, typical transport time and precipitation factor fields) for different time periods (annual, seasonal, and monthly) for any selected site (both separately for each site or grouped for several sites) in the Euro-Arctic region. Such estimation could be the useful input information for the decision-making process, risk assessment, and planning of emergency response systems for sites of nuclear, chemical, and biological danger.

  13. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal, Russia.

    PubMed

    Ehrich, Dorothee; Cerezo, Maite; Rodnikova, Anna Y; Sokolova, Natalya A; Fuglei, Eva; Shtro, Victor G; Sokolov, Aleksandr A

    2017-09-16

    High latitude ecosystems are at present changing rapidly under the influence of climate warming, and specialized Arctic species at the southern margin of the Arctic may be particularly affected. The Arctic fox (Vulpes lagopus), a small mammalian predator endemic to northern tundra areas, is able to exploit different resources in the context of varying tundra ecosystems. Although generally widespread, it is critically endangered in subarctic Fennoscandia, where a fading out of the characteristic lemming cycles and competition with abundant red foxes have been identified as main threats. We studied an Arctic fox population at the Erkuta Tundra Monitoring site in low Arctic Yamal (Russia) during 10 years in order to determine which resources support the breeding activity in this population. In the study area, lemmings have been rare during the last 15 years and red foxes are nearly absent, creating an interesting contrast to the situation in Fennoscandia. Arctic fox was breeding in nine of the 10 years of the study. The number of active dens was on average 2.6 (range 0-6) per 100 km 2 and increased with small rodent abundance. It was also higher after winters with many reindeer carcasses, which occurred when mortality was unusually high due to icy pastures following rain-on-snow events. Average litter size was 5.2 (SD = 2.1). Scat dissection suggested that small rodents (mostly Microtus spp.) were the most important prey category. Prey remains observed at dens show that birds, notably waterfowl, were also an important resource in summer. The Arctic fox in southern Yamal, which is part of a species-rich low Arctic food web, seems at present able to cope with a state shift of the small rodent community from high amplitude cyclicity with lemming dominated peaks, to a vole community with low amplitude fluctuations. The estimated breeding parameters characterized the population as intermediate between the lemming fox and the coastal fox ecotype. Only continued

  14. Occupational health and health care in Russia and Russian Arctic: 1980–2010

    PubMed Central

    Dudarev, Alexey A.; Odland, Jon Øyvind

    2013-01-01

    Background There is a paradox in Russia and its Arctic regions which reports extremely low rates of occupational diseases (ODs), far below those of other socially and economically advanced circumpolar countries. Yet, there is widespread disregard for occupational health regulations and neglect of basic occupational health services across many industrial enterprises. Study design and methods This review article presents official statistics and summarises the results of a search of peer-reviewed scientific literature published in Russia on ODs and occupational health care in Russia and the Russian Arctic, within the period 1980–2010. Results Worsening of the economic situation, layoff of workers, threat of unemployment and increased work load happened during the “wild market” industrial restructuring in 1990–2000, when the health and safety of workers were of little concern. Russian employers are not legally held accountable for neglecting safety rules and for underreporting of ODs. Almost 80% of all Russian industrial enterprises are considered dangerous or hazardous for health. Hygienic control of working conditions was minimised or excluded in the majority of enterprises, and the health status of workers remains largely unknown. There is direct evidence of general degradation of the occupational health care system in Russia. The real levels of ODs in Russia are estimated to be at least 10–100 times higher than reported by official statistics. The low official rates are the result of deliberate hiding of ODs, lack of coverage of working personnel by properly conducted medical examinations, incompetent management and the poor quality of staff, facilities and equipment. Conclusions Reform of the Russian occupational health care system is urgently needed, including the passing of strong occupational health legislation and their enforcement, the maintenance of credible health monitoring and effective health services for workers, improved training of

  15. Black Carbon in the Arctic: Assessment of and efforts to reduce black carbon emissions from wildfires and agricultural burning in Russia

    NASA Astrophysics Data System (ADS)

    Kinder, B.; Hao, W. M.; Larkin, N. K.; McCarty, G.; O'neal, K. J.; Gonzalez, O.; Luxenberg, J.; Rosenblum, M.; Petkov, A.

    2011-12-01

    Black carbon and other short-lived climate forcers exert a warming effect on the climate but remain in the atmosphere for short time periods when compared to carbon dioxide. Black carbon is a significant contributor to increasing temperatures in the Arctic region, which has warmed at twice the global rate over the past 100 years. Black carbon warms the Arctic by absorbing incoming solar radiation while in the atmosphere and, when deposited onto Arctic ice, leading to increased atmospheric temperatures and snow and ice melt. Black carbon remains in the atmosphere for a short time period ranging from days to weeks; therefore, local atmospheric conditions at the time of burning determine the amount of black carbon transport to the Arctic. Most black carbon transport and deposition in the Arctic results from the occurrence of wildfires, prescribed forest fires, and agricultural burning at latitudes greater than 40 degrees north latitude. Wildfire affects some 10-15 million hectares of forest, forest steppe, and grasslands in Russia each year. In addition to wildfire, there is widespread cropland burning in Russia occurring in the fall following harvest and in the spring prior to tilling. Agricultural burning is common practice for crop residue removal as well as suppression of weeds, insects and residue-borne diseases. The goal of the United States Department of Agriculture (USDA) Black Carbon Initiative is to assess black carbon emissions from agricultural burning and wildfires in Russia and explore practical options and opportunities for reducing emissions from these two sources. The emissions assessment combines satellite-derived burned area measurements of forest and agricultural fires, burn severity information, ancillary geospatial data, vegetation and land cover maps, fuels data, fire emissions data, fire/weather relationship information, and smoke transport models to estimate black carbon transport and deposition in the Arctic. The assessment addresses

  16. The joint Russia-US-Sweden studies in the near-shore zone of the East-Siberian Arctic seas: (1999-2008)

    NASA Astrophysics Data System (ADS)

    Sergienko, V. I.; Shakhova, N.; Dudarev, O.; Gustafsson, O.; Anderson, L.; Semiletov, I.

    2009-04-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on poorly explored areas located west from the U.S.-Russia boundary, Warming causes thawing of the permafrost underlying a substantial fraction of the Arctic; this process could accelerate coastal erosion, river discharge and carbon losses from soils. Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. Rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed. Thus studying carbon cycling in the East Siberian Arctic marginal seas has a high scientific priority in order to establish the carbon budget and evaluate the role of the Arctic region in global carbon cycling, especially in the coastal zone where the redistribution of carbon between terrestrial and marine environments occurs and the characteristics of carbon exchange with atmosphere are unknown. In this report we overview the main field activities and present

  17. Trends of Cyclone Characteristics in the Arctic and Their Patterns From Different Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Zahn, Matthias; Akperov, Mirseid; Rinke, Annette; Feser, Frauke; Mokhov, Igor I.

    2018-03-01

    Cyclones in the Arctic are detected and tracked in four different reanalysis data sets from 1981 to 2010. In great detail the spatial and seasonal patterns of changes are scrutinized with regards to their frequencies, depths, and sizes. We find common spatial patterns for their occurrences, with centers of main activity over the seas in winter, and more activity over land and over the North Pole in summer. The deep cyclones are more frequent in winter, and the number of weak cyclones peaks in summer. Overall, we find a good agreement of our tracking results across the different reanalyses. Regarding the frequency changes, we find strong decreases in the Barents Sea and along the Russian coast toward the North Pole and increases over most of the central Arctic Ocean and toward the Pacific in winter. Areas of increasing and decreasing frequencies are of similar size in winter. In summer there is a longish region of increase from the Laptev Sea toward Greenland, over the Canadian archipelago, and over some smaller regions west of Novaya Zemlya and over the Russia. The larger part of the Arctic experiences a frequency decrease. All the summer changes are found statistically unrelated to the winter patterns. In addition, the frequency changes are found unrelated to changes in cyclone depth and size. There is generally good agreement across the different reanalyses in the spatial patterns of the trend sign. However, the magnitudes of changes in a particular region may strongly differ across the data.

  18. Assessment of Undiscovered Oil and Gas Resources of the West Siberian Basin Province, Russia, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Bird, Kenneth J.; Charpentier, Ronald R.; Gautier, Donald L.; Houseknecht, David W.; Klett, Timothy R.; Moore, Thomas E.; Pawlewicz, Mark J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2008-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered oil and gas potential of the West Siberian Basin Province in Russia as part of the USGS Circum-Arctic Resource Appraisal program. This province is the largest petroleum basin in the world and has an areal extent of about 2.2 million square kilometers. It is a large rift-sag feature bounded to the west by the Ural fold belt, to the north by the Novaya Zemlya fold belt and North Siberian Sill, to the south by the Turgay Depression and Altay-Sayan fold belt, and to the east by the Yenisey Ridge, Turukhan-Igarka uplift, Yenisey-Khatanga Basin, and Taimyr High. The West Siberian Basin Province has a total discovered oil and gas volume of more than 360 billion barrels of oil equivalent (Ulmishek, 2000). Exploration has led to the discovery of tens of giant oil and gas fields, including the Urengoy gas field with more than 3500 trillion cubic feet of gas reserves and Samotlar oil field with reserves of nearly 28 billion barrels of oil (Ulmishek, 2003). This report summarizes the results of a reassessment of the undiscovered oil and gas potential of that part of the province north of the Arctic Circle; a previous assessment that included the entire province was completed in 2000 (Ulmishek, 2000). The total petroleum system (TPS) and assessment units (AU) defined by the USGS for the assessments in 2000 were adopted for this assessment. However, only those parts of the Aus lying wholly or partially north of the Arctic Circle were assessed for this study.

  19. Ice Mass Changes in the Russian High Arctic from Repeat High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Willis, Michael; Zheng, Whyjay; Pritchard, Matthew; Melkonian, Andrew; Morin, Paul; Porter, Claire; Howat, Ian; Noh, Myoung-Jong; Jeong, Seongsu

    2016-04-01

    We use a combination of ASTER and cartographically derived Digital Elevation Models (DEMs) supplemented with WorldView DEMs, the ArcticDEM and ICESat lidar returns to produce a time-series of ice changes occurring in the Russian High Arctic between the mid-20th century and the present. Glaciers on the western, Barents Sea coast of Novaya Zemlya are in a state of general retreat and thinning, while those on the eastern, Kara Sea coast are retreating at a slower rate. Franz Josef Land has a complicated pattern of thinning and thickening, although almost all the thinning is associated with rapid outlet glaciers feeding ice shelves. Severnaya Zemlya is also thinning in a complicated manner. A very rapid surging glacier is transferring mass into the ocean from the western periphery of the Vavilov Ice Cap on October Revolution Island, while glaciers feeding the former Matusevich Ice Shelf continue to thin at rates that are faster than those observed during the operational period of ICESat, between 2003 and 2009. Passive microwave studies indicate the total number of melt days is increasing in the Russian Arctic, although much of the melt may refreeze within the firn. It is likely that ice dynamic changes will drive mass loss for the immediate future. The sub-marine basins beneath several of the ice caps in the region suggest the possibility that mass loss rates may accelerate in the future.

  20. Quantifying the potential for low-level transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic.

    NASA Astrophysics Data System (ADS)

    Hall, Joanne V.; Loboda, Tatiana V.

    2017-12-01

    Short-lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts’ ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March - May) cropland active fires (7% annual) likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority ( 90% - depending on injection height) of all potential spring deposition occurs below 75°N.

  1. Rabies in the arctic fox population, Svalbard, Norway.

    PubMed

    Mørk, Torill; Bohlin, Jon; Fuglei, Eva; Åsbakk, Kjetil; Tryland, Morten

    2011-10-01

    Arctic foxes, 620 that were trapped and 22 found dead on Svalbard, Norway (1996-2004), as well as 10 foxes trapped in Nenets, North-West Russia (1999), were tested for rabies virus antigen in brain tissue by standard direct fluorescent antibody test. Rabies antigen was found in two foxes from Svalbard and in three from Russia. Blood samples from 515 of the fox carcasses were screened for rabies antibodies with negative result. Our results, together with a previous screening (1980-1989, n=817) indicate that the prevalence of rabies in Svalbard has remained low or that the virus has not been enzootic in the arctic fox population since the first reported outbreak in 1980. Brain tissues from four arctic foxes (one from Svalbard, three from Russia) in which rabies virus antigen was detected were further analyzed by reverse-transcriptase polymerase chain reaction direct amplicon sequencing and phylogenetic analysis. Sequences were compared to corresponding sequences from rabies virus isolates from other arctic regions. The Svalbard isolate and two of the Russian isolates were identical (310 nucleotides), whereas the third Russian isolate differed in six nucleotide positions. However, when translated into amino acid sequences, none of these substitutions produced changes in the amino acid sequence. These findings suggest that the spread of rabies virus to Svalbard was likely due to migration of arctic foxes over sea ice from Russia to Svalbard. Furthermore, when compared to other Arctic rabies virus isolates, a high degree of homology was found, suggesting a high contact rate between arctic fox populations from different arctic regions. The high degree of homology also indicates that other, and more variable, regions of the genome than this part of the nucleoprotein gene should be used to distinguish Arctic rabies virus isolates for epidemiologic purposes.

  2. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  3. Demersal Fish Assemblages and Spatial Diversity Patterns in the Arctic-Atlantic Transition Zone in the Barents Sea

    PubMed Central

    Johannesen, Edda; Høines, Åge S.; Dolgov, Andrey V.; Fossheim, Maria

    2012-01-01

    Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity “hotspots”; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian). PMID:22545093

  4. Chronology of Pu isotopes and 236U in an Arctic ice core.

    PubMed

    Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B

    2013-09-01

    In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia

    NASA Astrophysics Data System (ADS)

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10°C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  6. 800,000 Years of Arctic Climate Variability: Insights from Lake El'gygytgyn, Far East Russia

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Habicht, H.; Patterson, M. O.; Burns, S. J.; Deconto, R. M.; Brigham-Grette, J.

    2017-12-01

    The regional response of the high Arctic to past climate variability is little known prior to 100,000 years ago. In 2009, a 3.6 Ma sediment core was recovered from Lake El'gygytgyn (Russia), the largest and oldest unglaciated Arctic lake basin. These sediments offer a unique opportunity to examine Plio-Pleistocene high-latitude continental climate variability. Determining the magnitude of past Arctic temperature and precipitation variability is especially relevant to understanding the mechanisms and feedbacks contributing to arctic amplification. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the past 800,000 years. We use the methylation and cyclization index of branched tetraethers (MBT'/CBT) to reconstruct past temperature (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014) and ratios of plant leaf waxes to examine vegetation variability within the lake catchment. In addition, algal biomarkers and bulk carbon isotopes provide insights into past changes in primary productivity. Trends noted in the MBT'/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core and reveal a strong response to interglacial-glacial variability as well as local summer insolation. Our temperature reconstructions indicate the terrestrial Arctic experienced both warm interglacials and mild glacial periods during the Mid-Pleistocene but transitioned to more extreme temperature fluctuations in the more recent part of the record. Plant leaf wax average chain lengths suggest that glacial intervals were marked by increased aridity, while interglacial periods were wetter at Lake El'gygytgyn. Time-series analysis of the organic geochemical temperature and vegetation reconstructions records revealed variability at precession and obliquity frequencies, respectively. We also find a signal of the Mid-Brunhes Event (MBE) recorded in numerous Lake El'gygytgyn proxy records. Pre- and

  7. Regional Arctic and Hemispheric Teleconnections expressed in the paleoenvironmental record of El'gygytgyn Lake, NE Russia

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Melles, M.; Deconto, R.; Koenig, S.

    2007-12-01

    The common goal of recovering long high-resolution records is in testing relevant questions of Earth system dynamics, as well as documenting the drivers of regional and global scale change. Lake El'gygytgyn, located 100 km north of the Arctic Circle in NE Russia is a target for deep drilling a continuous record back to ~3.6 My in Spring 2009. Pilot cores dating to 250ka to 300 ka provide the impetus for evaluating the sensitivity of the Arctic to regional and global climate events on millennial timescales. A clear record of the Younger Dryas, rapid change within MIS 3, and events including interstadials 19, 20, events within Stage 5, and at the end of stage 6 seen in Greenland and marine records suggest that oceanographic and atmospheric changes over the North Atlantic are reflected in hydrologic and seasonal temperature proxies. Rapid events are recorded despite demonstrated precessional influences and the suggested upwind influence of the Eurasian Ice sheet and dramatic changes in continentality due to changes in sea level across the Bering/Chukchi shelves and the extent and seasonal persistence of sea ice in the Arctic Ocean and deeper Bering Sea. Regionally, lake cores throughout Beringia reflect patterns of precipitation and temperature that point to persistent zonal differences in the response of the landscape to environmental change.

  8. Experimental study of global electromagnetic resonances of the Earth-ionosphere cavity in high latitudes (Novaya Zemlya Island and settlement Tiksi)

    NASA Astrophysics Data System (ADS)

    Auyrov, D. B.; Khaptanov, V. B.; Bashkuev, Yu. B.; Buyanova, D. G.

    2017-11-01

    The results of measurements of the horizontal electric field Eh components of the natural electromagnetic field of the Earth (Schumann resonances, SR) in the extreme low frequency (ELF) radio wave bands on Novaya Zemlya Island and settlement Tiksi are considered. In the electromagnetic clean arctic region on August 2016 (the Bay of Blagopoluchiya (75°41'59″ N; 63° 42' 36″ E)) the global electromagnetic resonances (SR) of the Earth-ionosphere cavity up to the 7th and 8th resonant peaks in spectra are identified. Calculated and experimental values of the peak frequencies fn and Qnfactors of the cavity "Earth-ionosphere" are presented. On the spectra of records received on July, 2015 also in high latitudes near settlement Tiksi (71°35'3″ N; 128°46'4″ E) we work with the same measuring equipment and observed the 4th and 5th SR resonances. Diurnal variations of basic parameters of Schumann resonances are investigated.

  9. Marine Corps Equities in the Arctic

    DTIC Science & Technology

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  10. Multinational Experiment 7. Maritime Security Region: The Arctic

    DTIC Science & Technology

    2013-07-08

    Russia. Marine Resources The Arctic Ocean is home to countless species from microscopic plankton to gigantic whales . Large-scale commercial...Arctic is a circumpolar region that encompasses both marine and land masses and includes the Arctic Ocean and its seas that cover more than 30...and does not rise on the day of the winter solstice. The Arctic Ocean is the world’s smallest and shallowest, with an average depth of roughly a

  11. Multi-proxy evidence for climate-driven changes in arctic lakes from northern Russia over the Holocene.

    NASA Astrophysics Data System (ADS)

    Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari

    2010-05-01

    Average arctic temperatures have increased at almost twice the rate of the rest of the world over the last 100 years and climate projections suggest this trend is likely to continue resulting in an additional warming of 2 - 3°C in annual mean air temperatures by 2050. Freshwater ecosystems occupy a substantial area of the terrestrial environment in the Arctic and are particularly sensitive to temperature increases which may lead to profound changes in catchment characteristics, permafrost, hydrology and nutrient availability. Therefore it is important to understand how past changes in climate have affected these ecosystems. In this paper we present one of the first quantitative multi-proxy climate records from arctic Siberia. The affect of early - mid Holocene and recent climate change on arctic lakes in northern Russia were investigated in multi-proxy studies. The past climate was reconstructed using chironomid inference models to estimate mean July air temperatures and trends in continentality. Stable isotopes and LOI were analysed to infer past changes in sediment organic matter. Near-infrared spectroscopy (NIRS) and/or diatoms were used to infer changes in lake water total organic carbon and algal pigments and/or diatoms were used to infer changes in productivity and light penetration in the lake. Analyses of a sediment core from a tundra lake (Lake Kharinei) in north-eastern European Russia show significant assemblage changes in diatoms, chironomids and pigments, which coincide with climate-driven vegetation shifts from open birch forest to spruce forest and then to tundra over the Holocene. During the open birch phase of the late Glacial - early Holocene, chironomid-inferred reconstructions suggest that the climate was approximately 1 - 3°C warmer and more continental than present. Isotopic analyses indicate a productive environment receiving a significant input of organic material from terrestrial plants into the lake. Both diatoms and NIRS-TOC also

  12. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  13. The joint Russia-US-Sweden studies in the East-Siberian Arctic Shelf (ESAS) during the last decade (1999-2009): an overview

    NASA Astrophysics Data System (ADS)

    Sergienko, Valentin; Shakhova, Natalia; Dudarev, Oleg; Gustafsson, Orjan; Anderson, Leif; Semiletov, Igor

    2010-05-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on he ESAS which is poorly explored areas located west from the U.S.-Russia boundary. In this report we overview the main field activities and present some results obtained during the last decade (1999-2009). Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. We suggest that rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed.. It has been found that 1) carbon dioxide and methane fluxes are significant (and non-counted) components of the carbon cycling in the Arctic Ocean; 2) transport of eroded terrestrial material plays a major role in the accumulation of carbon in the ESAS (Dudarev et al., Gustafsson et al., Vonk et al., Sanchez-Garcia et al., Charkin et al., Semiletov et al., this session) ; 3) the seabed is a major CH4 source over the ESAS (N.Shakhova et al., this session); 3) eroded carbon is biodegradable

  14. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    countries were conducted and mooring buoy observations were also carried out. The data retrieved during these observations was accumulated in the "Arctic Data archive System (ADS)" (https://ads.nipr.ac.jp/) and served with interfaces for analysis. In addition, modeling studies have been promoted from fundamental process model to general circulation model. The successor of the project, ArCS (Arctic Challenge for Sustainability), which lays delivering emphasis 
on robust scientific information to stakeholders for decision making and solving problems, was started in FY2015. Within this project, a cooperative observation of black carbon are planned to be started at Cape Baranova Station (AARI, Rusia), Severnaya Zemlya, and new activities including emphasizing aerological observations are also planned to be started for contributing to "Year of Polar Prediction (YOPP)" of Polar Prediction Project (PPP/ WMO). It will be desirable to have a future collaboration with IASOA.

  15. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    DOE PAGES

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; ...

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert

  16. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    NASA Astrophysics Data System (ADS)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Morozova, Irina; Ignatieva, Yulia; Cabaniss, John

    2015-11-01

    Development of reliable source emission inventories is particularly needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This study develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30-65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow

  17. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert

  18. Circumpolar Arctic vegetation mapping workshop

    USGS Publications Warehouse

    Walker, D. A.; Markon, C.J.

    1996-01-01

    The first Circumpolar Arctic Vegetation Mapping Workshop was held in the historic village of Lakta on the outskirts of St. Petersburg, Russia, March 21-25, 1994. The primary goals of the workshop were to: (1) review the status of arctic vegetation mapping in the circumpolar countries and (2) develop a strategy for synthesizing and updating the existing information into a new series of maps that portray the current state of knowledge. Such products are important for a number of purposes, such as the international effort to understand the consequences of global change in Arctic regions, to predict the direction of future changes, and for informed planning of resource development in the Arctic.

  19. Glacier velocity Changes at Novaya Zemlya revealed by ALOS1 and ALOS2

    NASA Astrophysics Data System (ADS)

    Konuma, Y.; Furuya, M.

    2016-12-01

    Matsuo and Heki (2013) revealed substantial ice-mass loss at Novaya Zemlya by Gravity Recovery And Climate Experiment (GRACE). In addition, the elevation thinning (Moholdt et al., 2012) and glacier retreat (Carr et al., 2014) has been reported. Melkonian et al. (2016) showed velocities map at coastal area of Novaya Zemlya by using Worldview, Landsat, ASTER and TerraSAR-X images. However, the entire distributions of ice speed and the temporal evolution remain unclear. In this study, we measured the glacier velocities using L-band SAR sensor onboard ALOS1 and ALOS2. We analyzed the data using pixel-offset tracking technique. We could observe the entire glaciated region in 2007-2008 winter and 2008-2009 winter. In particular, we could examine the velocities at middle of the glaciated region from 2006 to 2015 due to the availability of high-temporal resolution SAR data. As a result, we found the most glaciers in Novaya Zemlya have been accelerating since 1990s (Strozzi et al., 2008). Specially, Shokalskogo glacier has dramatically accelerated from the maximum of 300 ma-1 in 1998 to maximum of 600 ma-1 in 2015. Additionally, it turns out that there are marked differences in the glacier's velocities between the Barents Sea side and the Kara Sea side. The averaged maximum speed of the glaciers in Barents Sea side were approximately two times faster than that in Kara Sea side. We speculate the causes as the difference of topography under the calving front and sea-ice concentration. While each side has many calving glaciers, the fjord distribution in the Barents Sea side is much broader than in the Kara Sea side. Moreover, sea-ice concentration in the Barents Sea is lower than the Kara Sea, which might affect the glaciers' speed distribution.

  20. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  1. Fourth international circumpolar arctic vegetation mapping workshop

    USGS Publications Warehouse

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  2. Leaching of radionuclides from furfural-based polymers used to solidify reactor compartments and components disposed of in the Arctic Kara Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEISER,J.H.; SIVINTSEV,Y.; ALEXANDROV,V.P.

    1999-09-01

    Within the course of operating its nuclear navy, the former Soviet Union (FSU) disposed of reactor vessels and spent nuclear fuel (SNF) in three fjords on the east coast of Novaya Zemlya and in the open Kara Sea within the Novaya Zemlya Trough during the period 1965 to 1988. The dumping consisted of 16 reactors, six of which contained SNF and one special container that held ca. 60% of the damaged SNF and the screening assembly from the No. 2 reactor of the atomic icebreaker Lenin. At the time, the FSU considered dumping of decommissioned nuclear submarines with damaged coresmore » in the bays of and near by the Novaya Zemlya archipelago in the Arctic Kara Sea to be acceptable. To provide an additional level of safety, a group of Russian scientists embarked upon a course of research to develop a solidification agent that would provide an ecologically safe barrier. The barrier material would prevent direct contact of seawater with the SNF and the resultant leaching and release of radionuclides. The solidification agent was to be introduced by flooding the reactors vessels and inner cavities. Once introduced the agent would harden and form an impermeable barrier. This report describes the sample preparation of several ``Furfurol'' compositions and their leach testing using cesium 137 as tracer.« less

  3. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia

    PubMed Central

    Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Kim, Kwang-Yul; Boisvert, Linette N.; Stroeve, Julienne C.; Bartsch, Annett

    2016-01-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social–ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. PMID:27852939

  4. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    PubMed

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. © 2016 The Authors.

  5. Food and water security issues in Russia III: food- and waterborne diseases in the Russian Arctic, Siberia and the Far East, 2000-2011.

    PubMed

    Dudarev, Alexey A; Dorofeyev, Vitaliy M; Dushkina, Eugenia V; Alloyarov, Pavel R; Chupakhin, Valery S; Sladkova, Yuliya N; Kolesnikova, Tatjana A; Fridman, Kirill B; Nilsson, Lena Maria; Evengard, Birgitta

    2013-01-01

    The food- and waterborne disease situation in Russia requires special attention. Poor quality of centralized water supplies and sewage systems, biological and chemical contamination of drinking water, as well as contamination of food products, promote widespread infectious diseases, significantly exceeding nationwide rates in the population living in the two-thirds of Russian northern territories. The general aim was to assess the levels of food- and waterborne diseases in selected regions of Russian Arctic, Siberia and the Far East (for the period 2000-2011), and to compare disease levels among regions and with national levels in Russia. This study is the first comparative assessment of the morbidity in these fields of the population of 18 selected regions of Russian Arctic, Siberia and the Far East, using official statistical sources. The incidences of infectious and parasitic food- and waterborne diseases among the general population (including indigenous peoples) have been analyzed in selected regions (per 100,000 of population, averaged for 2000-2011). Among compulsory registered infectious and parasitic diseases, there were high rates and widespread incidences in selected regions of shigellosis, yersiniosis, hepatitis A, tularaemia, giardiasis, enterobiasis, ascariasis, diphyllobothriasis, opistorchiasis, echinococcosis and trichinellosis. Incidences of infectious and parasitic food- and waterborne diseases in the general population of selected regions of the Russian Arctic, Siberia and the Far East (2000-2011) are alarmingly high. Parallel solutions must be on the agenda, including improvement of sanitary conditions of cities and settlements in the regions, modernization of the water supply and of the sewage system. Provision and monitoring of the quality of the drinking water, a reform of the general healthcare system and the epidemiological surveillance (including gender-divided statistics), enhancement of laboratory diagnostics and the introduction of

  6. Quaternary Arctic Climate Change of the past 2.8 Ma as reconstructed from sediments of Lake El'gygytgyn, NE Russia (Invited)

    NASA Astrophysics Data System (ADS)

    Wennrich, V.; Melles, M.; Brigham-Grette, J.; Minyuk, P.; Nowaczyk, N. R.; Deconto, R. M.; Anderson, P. A.; Andreev, A. A.; Haltia, E.; Kukkonen, M.; Lozhkin, A. V.; Rosen, P.; Tarasov, P. E.

    2013-12-01

    Scientific deep drilling at Lake El'gygtygyn in Chukotka, northeastern Russia (67.5° N, 172° E) revealed the first high-resolution record of environmental history in the Arctic that spans the past 3.6 Ma continuously (Melles et al. 2012, Brigham-Grette et al. 2013). In this presentation we focus on the end-member glacial and interglacial climatic conditions of the past 2.8 Ma as clearly reflected in the pelagic lake sediments recovered. Peak glacial conditions, when mean annual air temperatures at least 3.3 (×0.9) °C lower than today led to perennial lake ice (Nolan 2013), first appeared at Lake El'gygytgyn 2.602 - 2.598 Ma ago, during marine isotope stage (MIS) 104. These pervasive glacial episodes gradually increase in frequency from ~2.3 to ~1.8 Ma, eventually concurring with all glacials and several stadials reflected globally in stacked marine isotope records. Particularly warm interglacials, in contrast, experienced a long ice-free season and enhanced nutrient supply from the catchment, which allowed for significantly higher primary production than today. These settings were most pronounced for MIS 11c, 31, 49, 55, 77, 87, 91, and 93. Their exceptional character becomes evident based upon pollen-based climate reconstructions in selected interglacials, showing that the mean temperature of the warmest month and the annual precipitation during the thermal maxima of MIS 11c and 31 ('super' interglacials) were 4-5 °C and ~300 mm higher than those of MIS 1 and 5e ('normal' interglacials), respectively. According to climate simulations, the exceptional warm and moist climates at least during MIS 11c cannot be explained by the natural variability in Earth's orbital parameters and greenhouse gas concentrations alone. A remarkable coincidence of the super interglacials at Lake El'gygytgyn with diatomite layers in the Antarctic ANDRILL 1B, which reflect periods of a diminished West Antarctic Ice Sheet (WAIS) (Naish et al. 2009, Pollard and DeConto 2009), suggests

  7. A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2015-07-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate-vegetation-land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.

  8. Plutonium in the arctic marine environment--a short review.

    PubMed

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  9. Transport of 137Cs and 239,240Pu with ice-rafted debris in the Arctic Ocean

    USGS Publications Warehouse

    Landa, E.R.; Reimnitz, E.; Beals, D.M.; Pochkowski, J.M.; Winn, W.G.; Rigor, I.

    1998-01-01

    Ice rafting is the dominant mechanism responsible for the transport of fine-grained sediments from coastal zones to the deep Arctic Basin. Therefore, the drift of ice-rafted debris (IRD) could be a significant transport mechanism from the shelf to the deep basin for radionuclides originating from nuclear fuel cycle activities and released to coastal Arctic regions of the former Soviet Union. In this study, 28 samples of IRD collected from the Arctic ice pack during expeditions in 1989-95 were analyzed for 137Cs by gamma spectrometry and for 239Pu and 240Pu by thermal ionization mass spectrometry. 137Cs concentrations in the IRD ranged from less than 0.2 to 78 Bq??kg-1 (dry weight basis). The two samples with the highest 137Cs concentrations were collected in the vicinity of Franz Josef Land, and their backward trajectories suggest origins in the Kara Sea. Among the lowest 137Cs values are seven measured on sediments entrained on the North American shelf in 1989 and 1995, and sampled on the shelf less than six months later. Concentrations of 239Pu + 240Pu ranged from about 0.02 to 1.8 Bq??kg-1. The two highest values came from samples collected in the central Canada Basin and near Spitsbergen; calculated backward trajectories suggest at least 14 years of circulation in the Canada Basin in the former case, and an origin near Severnaya Zemlya (at the Kara Sea/Laptev Sea boundary) in the latter case. While most of the IRD samples showed 240Pu/239Pu ratios near the mean global fallout value of 0.185, five of the samples had lower ratios, in the 0.119 to 0.166 range, indicative of mixtures of Pu from fallout and from the reprocessing of weapons-grade Pu. The backward trajectories of these five samples suggest origins in the Kara Sea or near Severnaya Zemlya.

  10. Food and water security issues in Russia III: food- and waterborne diseases in the Russian Arctic, Siberia and the Far East, 2000–2011

    PubMed Central

    Dudarev, Alexey A.; Dorofeyev, Vitaliy M.; Dushkina, Eugenia V.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Sladkova, Yuliya N.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Nilsson, Lena Maria; Evengard, Birgitta

    2013-01-01

    Background The food- and waterborne disease situation in Russia requires special attention. Poor quality of centralized water supplies and sewage systems, biological and chemical contamination of drinking water, as well as contamination of food products, promote widespread infectious diseases, significantly exceeding nationwide rates in the population living in the two-thirds of Russian northern territories. Objectives The general aim was to assess the levels of food- and waterborne diseases in selected regions of Russian Arctic, Siberia and the Far East (for the period 2000–2011), and to compare disease levels among regions and with national levels in Russia. Study design and methods This study is the first comparative assessment of the morbidity in these fields of the population of 18 selected regions of Russian Arctic, Siberia and the Far East, using official statistical sources. The incidences of infectious and parasitic food- and waterborne diseases among the general population (including indigenous peoples) have been analyzed in selected regions (per 100,000 of population, averaged for 2000–2011). Results Among compulsory registered infectious and parasitic diseases, there were high rates and widespread incidences in selected regions of shigellosis, yersiniosis, hepatitis A, tularaemia, giardiasis, enterobiasis, ascariasis, diphyllobothriasis, opistorchiasis, echinococcosis and trichinellosis. Conclusion Incidences of infectious and parasitic food- and waterborne diseases in the general population of selected regions of the Russian Arctic, Siberia and the Far East (2000–2011) are alarmingly high. Parallel solutions must be on the agenda, including improvement of sanitary conditions of cities and settlements in the regions, modernization of the water supply and of the sewage system. Provision and monitoring of the quality of the drinking water, a reform of the general healthcare system and the epidemiological surveillance (including gender

  11. The 2008 Circum-Arctic Resource Appraisal

    USGS Publications Warehouse

    Moore, Thomas E.; Gautier, Donald L.

    2017-11-15

    Professional Paper 1824 comprises 30 chapters by various U.S. Geological Survey authors, including introduction and methodology chapters, which together provide documentation of the geological basis and methodology of the 2008 Circum-Arctic Resource Appraisal, results of which were first released in August 2008.  Twenty-eight chapters summarize the petroleum geology and resource potential of individual, geologically defined provinces north of the Arctic Circle, including those of northern Alaska, northern Canada, east and west Greenland, and most of Arctic Russia, as well as certain offshore areas of the north Atlantic Basin and the Polar Sea. Appendixes tabulate the input and output information used during the assessment.

  12. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  13. Ichthyofauna of the Eastern Coast Bays of the Novaya Zemlya Archipelago

    NASA Astrophysics Data System (ADS)

    Bolshakova, Ya. Yu.; Bolshakov, D. V.

    2018-03-01

    Based on 2014-2016 studies and published data on the ichthyofauna composition near the eastern coast of Novaya Zemlya, a revised list of fish fauna has been compiled. It includes 30 species from 23 genera and 13 families. The taxonomic diversity of ichthyofauna, its characteristics in respect to geographic range and biotopic groups of fish are considered. In general, ichthyological communities in bays off the eastern coast are similar in the species ratio to the communities in the open Kara Sea, and do not demonstrate any essential features of isolation.

  14. Black carbon emissions in Russia: A critical review

    DOE PAGES

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; ...

    2017-05-18

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  15. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  16. Black carbon emissions in Russia: A critical review

    NASA Astrophysics Data System (ADS)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  17. Chapter 19: Geology and petroleum potential of the east Barents Sea Basins and Admiralty Arch

    USGS Publications Warehouse

    Klett, T.R.; Pitman, Janet K.

    2011-01-01

    The US Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the East Barents Basins and Novaya Zemlya Basins and Admiralty Arch Provinces as part of the USGS Circum-Arctic Resource Appraisal. These two provinces are located NE of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins for this study - Kolguyev Terrace Assessment Unit (AU), South Barents Basin and Ludlov Saddle AU, and North Barents Basin AU. A fourth, defined as Novaya Zemlya Basins and Admiralty Arch AU, is coincident with the Novaya Zemlya basins and Admiralty Arch Province. These AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources resulting in total estimated mean volumes of approximately 7.4 billion barrels of crude oil, 318 trillion cubic feet of natural gas and 1.4 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  18. Informatics and computational method for inundation and land use study in Arctic Sea eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko

    2016-11-01

    Eastern Siberia, Russia is physically and socio-economically vulnerable to accelerated Arctic sea level rise due to low topography, high ecological value, harsh climatic conditions, erosion and flooding of coastal area and destruction of harbor constructions and natural coastal hazards. A 1 to 10m inundation land loss scenarios for surface water and sea level rise (SLR) were developed using digital elevation models of study site topography through remote sensing and GIS techniques by ASTER GDEM and Landsat OLI data. Results indicate that 10.82% (8072.70km2) and 29.73% (22181.19km2) of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the vegetation, wetland and the natural ecosystem. Improved understanding of the extent and response of SLR will help in preparing for mitigation and adaptation.

  19. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  20. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology

    USGS Publications Warehouse

    Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.

    2006-01-01

    To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.

  1. Hypolactasia in the indigenous populations of northern Russia.

    PubMed

    Kozlov, A I

    1998-01-01

    The distribution of hypolactasia (PH) in the indigenous populations of the polar and related territories of the Russian Federation was investigated by an oral lactose tolerance. The frequency of hypolactasia in Kildin Saami population is 48%, Komi-Izhem-63%, Northern Mansi-71%, Northern Khanty-72%, West Siberia Nenets-78%. Generally hypolactasia frequencies in indigenous groups of Arctic and Sub-Arctic territories of Russia are higher than in the "reference" samples of Slav (Russian, 40-49%) and Permian Finn (Komi-Permiak and Udmurtian, 50-59%) groups.

  2. Pre-rift sedimentation of the Lomonosov Ridge, Arctic Ocean at 84°N - A correlation to the complex geologic evolution of the conjugated Kara Sea

    NASA Astrophysics Data System (ADS)

    Sauermilch, Isabel; Weigelt, Estella; Jokat, Wilfried

    2018-07-01

    The Arctic Ocean region plays, and has played in the geological past, a key role for Earth's climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30‧N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol'shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin's Bol'shevik-Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.

  3. 2.8 Million Years of Arctic Climate Change from Deep Drilling at Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Melles, M.; Brigham-Grette, J.; Minyuk, P.; Wennrich, V.; Nowaczyk, N.; DeConto, R.; Anderson, P.; Andreev, A.; Haltia-Hovi, E.; Kukkonen, M.; Lozhkin, A.; Rosén, P.; Tarasov, P.

    2012-12-01

    Scientific deep drilling at Lake El'gygtygyn in Chukotka, northeastern Russia (67.5 °N, 172 °E) revealed the first high-resolution record of environmental history in the Arctic that spans the past 2.8 Ma continuously (Melles et al. 2012). In this presentation we focus on the end-member glacial and interglacial climatic conditions during this period as clearly reflected in the pelagic lake sediments recovered. Peak glacial conditions, when mean annual air temperatures at least 4 (± 0.5) °C lower than today led to perennial lake ice (Nolan 2012), first appeared at Lake El'gygytgyn 2.602 - 2.598 Ma ago, during marine isotope stage (MIS) 104. These pervasive glacial episodes gradually increase in frequency from ~2.3 to ~1.8 Ma, eventually concurring with all glacials and several stadials reflected globally in stacked marine isotope records. Particularly warm interglacials, in contrast, experienced a long ice-free season and enhanced nutrient supply from the catchment, which allowed for significantly higher primary production than today. These settings were most pronounced for MIS 11c, 31, 49, 55, 77, 87, 91, and 93. Their exceptional character becomes evident based upon pollen-based climate reconstructions in selected interglacials, showing that the mean temperature of the warmest month and the annual precipitation during the thermal maxima of MIS 11c and 31 ("super" interglacials) were 4-5 °C and ~300 mm higher than those of MIS 1 and 5e ("normal" interglacials), respectively. According to climate simulations, the exceptional warm and moist climates at least during MIS 11c cannot be explained by the natural variability in Earth's orbital parameters and greenhouse gas concentrations alone. A remarkable coincidence of the super interglacials at Lake El'gygytgyn with diatomite layers in the Antarctic ANDRILL 1B, which reflect periods of a diminished West Antarctic Ice Sheet (WAIS) (Naish et al. 2009, Pollard and DeConto 2009), suggests intra-hemispheric climate

  4. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions.

    PubMed

    Mansfield, K L; Racloz, V; McElhinney, L M; Marston, D A; Johnson, N; Rønsholt, L; Christensen, L S; Neuvonen, E; Botvinkin, A D; Rupprecht, C E; Fooks, A R

    2006-03-01

    We report a molecular epidemiological study of rabies in Arctic countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from domestic animals (dogs/cats) and from two human cases were investigated. The resulting 400 bp N-gene sequences were compared with isolates representing neighbouring Arctic or Baltic countries from North America, the former Soviet Union and Europe. Phylogenetic analysis demonstrated similarities between sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating in the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group was differentiated into two lineages, Arctic 1 and Arctic 2, with good bootstrap support. Arctic 1 is mainly comprised of Canadian isolates with a single fox isolate from Maine in the USA. Arctic 2 was further divided into sub-lineages: 2a/2b. Arctic 2a comprises isolates from the Arctic regions of Yakutia in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders.

  5. Telecommunications equipment power supply in the Arctic by means of solar panels

    NASA Astrophysics Data System (ADS)

    Terekhin, Vladimir; Lagunov, Alexey

    2016-09-01

    Development of the Arctic region is one of the priorities in the Russian Federation. Amongst other things, a reliable telecommunications infrastructure in the Arctic is required. Petrol and diesel generators are traditionally employed but their use has considerable environmental impact. Solar panels can be used as an alternative power source. The electricity generated will be sufficient to supply small-sized telecommunications equipment with total the power of over 80 watts. An installation consisting of the solar modules, a charge controller, batteries, an inverter and load was designed. Tests were conducted at Cape Desire of the Novaya Zemlya (island). The solar panels provided in excess of 80 W from 7 a.m. to 11 p.m. The batteries charge during this time was sufficient to provide the power supply for the communication equipment during the night, from 11 p.m. to 7 a.m. The maximum value of 638 W of the power generation was observed at 3 p.m. The minimum value of 46 W was at 4 a.m. The solar modules thus can be used during the polar day to power the telecommunications equipment.

  6. A GCM comparison of Plio-Pleistocene interglacial-glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2014-08-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and

  7. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  8. Yields of Soviet underground nuclear explosions at Novaya Zemlya, 1964-1976, from seismic body and surface waves

    PubMed Central

    Sykes, Lynn R.; Wiggins, Graham C.

    1986-01-01

    Surface and body wave magnitudes are determined for 15 U.S.S.R. underground nuclear weapons tests conducted at Novaya Zemlya between 1964 and 1976 and are used to estimate yields. These events include the largest underground explosions detonated by the Soviet Union. A histogram of body wave magnitude (mb) values indicates a clustering of explosions at a few specific yields. The most pronounced cluster consists of six explosions of yield near 500 kilotons. Several of these seem to be tests of warheads for major strategic systems that became operational in the late 1970s. The largest Soviet underground explosion is estimated to have a yield of 3500 ± 600 kilotons, somewhat smaller than the yield of the largest U.S. underground test. A preliminary estimation of the significance of tectonic release is made by measuring the amplitude of Love waves. The bias in mb for Novaya Zemlya relative to the Nevada test site is about 0.35, nearly identical to that of the eastern Kazakhstan test site relative to Nevada. PMID:16593645

  9. The Novaya Zemlya Bora: Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Efimov, V. V.; Komarovskaya, O. I.

    2018-01-01

    We consider the data of an ASRI reanalysis to distinguish the properties of velocity and temperature fields in the region of Novaya Zemlya (NZ). A numerical simulation of the bora development is performed using the WRF-ARW regional model of atmospheric circulation for two cases with different directions of the wind. In the case of southeastern winds, the wind speed and temperature fields are reproduced and the characteristics of the bora are defined: temperature and wind speed increase over the lee slope of mountains and coastal western area of the Barents Sea. In the case of a western wind, the bora does not appear. The estimates of temperature contrasts in the flow of the air stream over the NZ mountains found in the processing of the ASRI data are reported. The region of high velocities and fluxes of sensible and latent heat indicating the climatic role of the NZ archipelago noted earlier in [12] is determined.

  10. Assessment of undiscovered oil and gas in the arctic

    USGS Publications Warehouse

    Gautier, Donald L.; Bird, Kenneth J.; Charpentier, Ronald R.; Grantz, Arthur; Houseknecht, David W.; Klett, Timothy R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, Christopher J.; Schuenemeyer, John H.; Sorensen, Kai; Tennyson, Marilyn E.; Valin, Zenon C.; Wandrey, Craig J.

    2009-01-01

    Among the greatest uncertainties in future energy supply and a subject of considerable environmental concern is the amount of oil and gas yet to be found in the Arctic. By using a probabilistic geology-based methodology, the United States Geological Survey has assessed the area north of the Arctic Circle and concluded that about 30% of the world’s undiscovered gas and 13% of the world’s undiscovered oil may be found there, mostly offshore under less than 500 meters of water. Undiscovered natural gas is three times more abundant than oil in the Arctic and is largely concentrated in Russia. Oil resources, although important to the interests of Arctic countries, are probably not sufficient to substantially shift the current geographic pattern of world oil production.

  11. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  12. Environmental Implications of Maritime Vessel Intensification in Arctic Waters

    NASA Astrophysics Data System (ADS)

    Stevenson, T. C.; Banis, D.; Sheard, W.

    2016-12-01

    In 2016, the Arctic experienced some of the warmest monthly temperatures on record. Record high temperatures in the Arctic continue to cause rapid sea ice declines, opening new areas of ocean to commercial exploitation and transportation and causing significant reductions in critical sea ice habitats used by iconic species. Elevated maritime vessel traffic in the Arctic is projected to increase black carbon emissions, encourage the spread of invasive species, increase mammal strikes, intensify conflict with smaller subsistence boats, and heighten oil spill risks. The Arctic Council, an intergovernmental organization concerned with sustainable development and environmental protection, is working with member countries, indigenous participants and other groups on developing networks of marine protected areas within ecologically or biologically important areas. To help inform that process, we analyzed vessel traffic and marine protected area coverage occurring within ecologically or biologically significant areas in the circumpolar Arctic. Our preliminary findings suggest vessel traffic within ecologically or biologically significant areas were highest around Iceland, Norway, Russia and United States but differed by vessel type. The density of fishing vessels occurring within ecologically or biologically important areas were highest near Norway, Iceland, Faroe Islands, parts of Greenland and United States, whereas vessels carrying liquefied natural gas and oil were concentrated near Norway and Russia. The percentage of area covered by marine protected areas within ecologically or biologically significant areas was low, with the exception of places like Wrangel Island, Svalbard, and areas around Greenland. These findings are important because it illustrates ecologically or biologically significant areas in the Arctic are vulnerable to projected vessel traffic intensification and the level of protection afforded by marine protected areas is relatively low.

  13. Structural-tectonic zoning of the Arctic

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Sobolev, Nikolay; Morozov, Andrey; Shokalsky, Sergey; Kashubin, Sergey; Grikurov, Garrik; Tolmacheva, Tatiana; Rekant, Pavel; Petrov, Evgeny

    2017-04-01

    Structural-tectonic zoning of the Arctic is based on the processing of geological and geophysical data and bottom sampling materials produced within the project "Atlas of Geological Maps of the Circumpolar Arctic." Zoning of the Arctic territories has been conducted taking into account the Earth's crust types, age of consolidated basement, and features of geological structure of the sedimentary cover. Developed legend for the zoning scheme incorporates five main groups of elements: continental and oceanic crust, folded platform covers, accretion-collision systems, and provinces of continental cover basalts. An important feature of the structural-tectonic zoning scheme is designation of continental crust in the central regions of the Arctic Ocean, the existence of which is assumed on the basis of numerous geological data. It has been found that most of the Arctic region has continental crust with the exception of the Eurasian Basin and the central part of the Canada Basin, which are characterized by oceanic crust type. Thickness of continental crust from seismic data varies widely: from 30-32 km on the Mendeleev Rise to 18-20 km on the Lomonosov Ridge, decreasing to 8-10 km in rift structures of the Podvodnikov-Makarov Basin at the expense of reduction of the upper granite layer. New data confirm similar basement structure on the western and eastern continental margins of the Eurasian oceanic basin. South to north, areas of Neoproterozoic (Baikalian) and Paleozoic (Ellesmerian) folding are successively distinguished. Neoproterozoic foldbelt is observed in Central Taimyr (Byrranga Mountains). Continuation of this belt in the eastern part of the Arctic is Novosibirsk-Chukchi fold system. Ellesmerian orogen incorporates the northernmost areas of Taimyr and Severnaya Zemlya, wherefrom it can be traced to the Geofizikov Spur of the Lomonosov Ridge and further across the De Long Archipelago and North Chukchi Basin to the north of Alaska Peninsula and in the Beaufort Sea

  14. PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways): Introduction and overview

    NASA Astrophysics Data System (ADS)

    Ó Cofaigh, Colm; Briner, Jason P.; Kirchner, Nina; Lucchi, Renata G.; Meyer, Hanno; Kaufman, Darrell S.

    2016-09-01

    This special issue relates to the Second International Conference of the PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways) network which was held in Trieste, Italy in 2014. Twenty five papers are included and they address topics under four main themes: (1) The growth and decay of Arctic ice sheets; (2) Arctic sea ice and palaeoceanography; (3) Terrestrial Arctic environments and permafrost change; and (4) Holocene Arctic environmental change. Geographically the focus is circum-Arctic; the special issue includes detailed regional studies from Greenland, Scandinavia, Russia, and Arctic North America and the adjoining seas, as well as a series of synthesis-type, review papers on Fennoscandian Ice Sheet deglaciation and Holocene Arctic palaeo-climate change. The methodologies employed are diverse and include marine sediment core and geophysical investigations, terrestrial glacial geology and geomorphology, isotopic analysis of ground ice, palaeo-ecological analysis of lacustrine and terrestrial sedimentary archives, geochronology and numerical ice sheet modeling.

  15. Command and Control: Toward Arctic Unity of Command and Unity of Effort

    DTIC Science & Technology

    2011-05-19

    Russia, Norway, and Denmark) are in the process of preparing or have submitted territorial claims in the Arctic by way of this convention.58... longitude . The Unified Command Plan divides the Arctic region geographically among three GCCs. U.S. Northern Command (USNORTHCOM), U.S. European...2008, http://www.defense.gov/specials/unifiedcommand/ images /unified-command_world-map.jpg (accessed November 22, 2010). While the Department of

  16. The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartse, H.E.

    1997-11-01

    Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{submore » n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.« less

  17. International Arctic Systems for Observing the Atmosphere (IASOA): 2007 Observatory Upgrades in Canada, Greenland, Russia and the United States

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Uttal, T.; Burkhart, J.; Drummond, J.

    2007-12-01

    International Arctic Systems for Observing the Atmosphere (IASOA) is a dynamic organization developed to enhance Arctic atmospheric research by fostering collaborations among researchers during the International Polar Year (IPY) and beyond. The member stations are Abisko, Sweden; Alert and Eureka, Canada; Barrow, USA; Cherskii and Tiksi Russia; Ny-Ålesund, Norway; Pallas and Sodankylä, Finland; and Summit, Greenland. All of these observatories operate year-round, with at least minimal staffing in the winter months, are intensive and permanent. Presently, measurement and building upgrades are occurring at the Tiksi, Eureka, Summit and Barrow observatories. A new weather station building has been completed in Tiksi and is currently available for installation of instruments. A second Clean Air Facility (CAF) that will be suitable for aerosol, chemistry, pollutant, greenhouse gases, fluxes and radiation measurements is expected to be completed in the spring of 2008. Real- time continuous measurement instruments for the measurement of ozone and black carbon, and flasks for carbon cycle gas measurements for the new Tiksi station are awaiting shipping from Boulder, CO. At the Eureka site many instruments including a flux tower, several CIMELs for the Aeronet Network, and a Baseline Surface Radiation Network (BSRN) station were installed in the summer of 2007. With IPY funding the level of technical support at the site has been increased to provide more reliable data collection and transmission. The Summit, Greenland observatory has recently released a strategic plan highlighting climate sensitive year- round observations, innovative research platforms and operational plans to increase renewable energy to maintain the pristine platform. Summit also has a new multi-channel GC/MS for continuous measurement of trace halocarbon and CFC gas concentrations. All NOAA instruments have been moved from the Science trench to a new atmospheric watch observatory building. NOAA is now

  18. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  19. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    A series of surface cyclones formed along an anomalously strong northeast-southwest oriented baroclinic zone over north-central Russia on 1-3 August 2012. These cyclones moved northeastward, intensified slowly, and crossed the coast of Russia by 4 August. The last cyclone in the series strengthened rapidly as it moved poleward over the Arctic Ocean on 5-6 August, achieved a minimum sea level pressure of < 965 hPa by 6 August, and was arguably the most intense storm system to impact the Arctic Ocean in the modern data record going back to the International Geophysical Year in 1957-1958. The purpose of this presentation is to illustrate the structure and life cycle of this Arctic Ocean cyclone from a multiscale perspective. Anticyclonic wave breaking in the upper troposphere across Russia in late July and very early August 2012 created an anomalously strong baroclinic zone across northern Asia between 60-80°N. During 1-5 August, negative 850 hPa temperature anomalies between -2° and -4°C were found poleward of 70-75°N between 90°E and the Dateline over the Arctic Ocean while positive 850 hPa temperature anomalies of 8-9°C were found over eastern Russia near 60°N. The associated anomalously strong 850 hPa meridional temperature gradient of ~10°C (2000 km)-1 helped to sustain an anomalously strong (20-30 m s-1) 250 hPa jet along the coast of northeastern Russia. A local wind speed maximum (~50 m s-1 ) embedded in this 250 hPa jet corridor contributed to the extreme intensity of the trailing (last) surface cyclone in the series. Although the dominant surface cyclone in the series of surface cyclones intensified most rapidly over the relatively ice free Arctic Ocean, the impact of surface heat and moisture fluxes appeared to be secondary to jet-driven dynamical processes in the deepening process. Anomalously high observed 1000-500 hPa thickness values between 564-570 dam, precipitable water values between 30-40 mm, and CAPE values between 500-1000 J kg-1 in the

  20. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling.

    PubMed

    Dastoor, Ashu; Ryzhkov, Andrew; Durnford, Dorothy; Lehnherr, Igor; Steffen, Alexandra; Morrison, Heather

    2015-03-15

    A review of mercury in the Canadian Arctic with a focus on field measurements is presented in part I (see Steffen et al., this issue). Here we provide insights into the dynamics of mercury in the Canadian Arctic from new and published mercury modeling studies using Environment Canada's mercury model. The model simulations presented in this study use global anthropogenic emissions of mercury for the period 1995-2005. The most recent modeling estimate of the net gain of mercury from the atmosphere to the Arctic Ocean is 75 Mg year(-1) and the net gain to the terrestrial ecosystems north of 66.5° is 42 Mg year(-1). Model based annual export of riverine mercury from North American, Russian and all Arctic watersheds to the Arctic Ocean are in the range of 2.8-5.6, 12.7-25.4 and 15.5-31.0 Mg year(-1), respectively. Analysis of long-range transport events of Hg at Alert and Little Fox Lake monitoring sites indicates that Asia contributes the most ambient Hg to the Canadian Arctic followed by contributions from North America, Russia, and Europe. The largest anthropogenic Hg deposition to the Canadian Arctic is from East Asia followed by Europe (and Russia), North America, and South Asia. An examination of temporal trends of Hg using the model suggests that changes in meteorology and changes in anthropogenic emissions equally contribute to the decrease in surface air elemental mercury concentrations in the Canadian Arctic with an overall decline of ~12% from 1990 to 2005. A slow increase in net deposition of Hg is found in the Canadian Arctic in response to changes in meteorology. Changes in snowpack and sea-ice characteristics and increase in precipitation in the Arctic related with climate change are found to be primary causes for the meteorology-related changes in air concentrations and deposition of Hg in the region. The model estimates that under the emissions reduction scenario of worldwide implementation of the best emission control technologies by 2020, mercury

  1. The distribution and utility of sea-level indicators in Eurasian sub-Arctic salt marshes (White Sea, Russia).

    NASA Astrophysics Data System (ADS)

    Nikitina, Daria; Kemp, Andrew; Horton, Benjamin; Van, Christopher; Potapova, Marina; Culver, Stephen; Repkina, Tatyana; Hill, David

    2017-04-01

    We investigated the utility of foraminifera, diatoms and bulk-sediment geochemistry (δ13C and parameters measured by RockEval pyrolysis) as sea-level indicators in Eurasian sub-Arctic salt marshes. At three salt marshes in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects sequentially crossing sub-tidal, tidal-flat, salt-marsh and Taiga forest environments. Foraminifera formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Both assemblages existed on all three transects and we conclude that foraminifera are sea-level indicators in Eurasian sub-Arctic salt marshes. Five, high-diversity groups of diatoms were identified and they displayed geographic variability among the study sites (<15 km apart). RockEval pyrolysis and δ13C measurements recognized two groups (clastic-dominated environments below MHHW and organic-rich environments above MHHW). Since one group included sub-tidal elevations and the other supra-tidal elevations, we conclude that the measured geochemical parameters do not meet the criteria for being stand-alone sea-level indicators. Core JT2012 captured a regressive sediment sequence of clastic, tidal-flat sediment overlain by salt-marsh organic silt and freshwater peat. The salt-marsh sediment accumulated at 2804 ± 52 years BP years before present and preserved foraminifera (J. macrescens and B. pseudomacrescens) with a high degree of analogy to modern assemblages indicating that relative sea level was 2.60 ± 0.47 m above present at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limits their utility as sea-level indicators in this setting.

  2. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  3. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga

  4. Operational Arctic: The Potential for Crisis or Conflict in the Arctic Region and Application of Operational Art

    DTIC Science & Technology

    2014-05-22

    PRC Peoples Republic of China SAMS School of Advanced Military Studies SLOC Sea Lines of Communication SSI Strategic Studies Institute UN...the North” (Monograph, School of Advanced Military Studies, 2013), 1. 5Robert Sibley, “Arrival of China in Arctic puts Canada on Alert,” Ottawa...the possibility of resource wealth or shipping opportunities.10 Some of the world’s more powerful and wealthy nations, Russia, Canada, China , and

  5. Low and declining mercury in arctic Russian rivers.

    PubMed

    Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Lysenko, Vladimir S; Spencer, Robert G M

    2014-01-01

    Mercury (Hg) dynamics in the Arctic is receiving increasing attention, but further understanding is limited by a lack of studies in Russia, which encompasses the majority of the pan-Arctic watershed. This study reports Hg concentrations and trends in burbot (Lota lota) from the Lena and Mezen Rivers in the Russian Arctic, and assesses the extent to which they differ from those found in burbot in arctic rivers elsewhere. Mercury concentrations in burbot in the Lena and Mezen Rivers were found to be generally lower than in 23 other locations, most of which are in the Mackenzie River Basin (Canada). Mercury concentrations in burbot in the Lena and Mezen Rivers also were found to have been declining at an annual rate of 2.3% while they have been increasing in the Mackenzie River Basin at annual rates between 2.2 and 5.1% during roughly the same time period. These contrasting patterns in Hg in burbot across the pan-Arctic may be explained by geographic heterogeneity in controlling processes, including riverine particulate material loads, historically changing atmospheric inputs, postdepositional processes, and climate change impacts.

  6. Geology and assessment of undiscovered oil and gas resources of the North Kara Basins and Platforms Province, 2008

    USGS Publications Warehouse

    Klett, Timothy R.; Pitman, Janet K.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the North Kara Basins and Platforms Province as part of the its Circum-Arctic Resource Appraisal. This geologic province is north of western Siberia, Russian Federation, in the North Kara Sea between Novaya Zemlya to the west and Severnaya Zemlya to the east. One assessment unit (AU) was defined, the North Kara Basins and Platforms AU, which coincides with the geologic province. This AU was assessed for undiscovered, technically recoverable resources. The total estimated mean volumes of undiscovered petroleum resources in the province are ~1.8 billion barrels of crude oil, ~15.0 trillion cubic feet of natural gas, and ~0.4 billion barrels of natural-gas liquids, all north of the Arctic Circle.

  7. Identifying Priorities for International Arctic Research and Policy

    NASA Astrophysics Data System (ADS)

    Rachold, V.; Hik, D.; Barr, S.

    2015-12-01

    The International Arctic Science Committee (IASC) is a non-governmental, international scientific organization, founded in 1990 by representatives of national scientific organizations of the eight Arctic countries - Canada, Denmark, Finland, Iceland, Norway, Russia (at that time Union of Soviet Socialist Republics), Sweden and the United States of America. Over the past 25 years, IASC has evolved into the leading international science organization of the North and its membership today includes 23 countries involved in all aspects of Arctic research, including 15 non-Arctic countries (Austria, China, the Czech Republic, France, Germany, India, Italy, Japan, the Netherlands, Poland, Portugal, South Korea, Spain, Switzerland and the UK). The Founding Articles committed IASC to pursue a mission of encouraging and facilitating cooperation in all aspects of Arctic research, in all countries engaged in Arctic research and in all areas of the Arctic region. IASC promotes and supports leading-edge multi-disciplinary research in order to foster a greater scientific understanding of the Arctic region and its role in the Earth system. IASC has organized three forward-looking conferences focused on international and interdisciplinary perspectives for advancing Arctic research cooperation and applications of Arctic knowledge. Indeed, the IASC Founding Articles call for IASC to host these conferences periodically in order to "review the status of Arctic science, provide scientific and technical advice, and promote cooperation and links with other national and international organizations." Through its members, including national science organizations and funding agencies from all countries engaged in Arctic research, IASC is uniquely placed to undertake this task. As an accredited observer on the Arctic Council, IASC is also in the position to introduce the outcome of its science planning efforts into the Arctićs main political body and to liaise with the Arctic Council Permanent

  8. Geo-Environmental Change and the United States Military: How History Can Inform Future Arctic Operations

    DTIC Science & Technology

    2012-05-17

    and the Northern Sea Route, extraction of potential oil and gas resources, and expanded fishing and tourism .‖ 6 The Arctic‘s vast natural resources...sudden and substantial increase in commercial shipping, marine tourism , and large passenger vessels in the Arctic poses significant challenges to the...security,‖ Huebert states that, ―Canada, Denmark, Norway, Russia and the United States have all either begun to rebuild their Arctic capabilities

  9. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  10. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burdenmore » are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.« less

  11. Prospects of using medium-wave band for radio communication with rescue mobile teams of EMERCOM of Russia

    NASA Astrophysics Data System (ADS)

    Bazhukov, I. F.; Dulkejt, I. V.; Zavyalov, S. A.; Lvova, Yu V.; Lyashuk, A. N.; Puzyrev, P. I.; Rekunov, S. G.; Chaschin, E. A.; Sharapov, S. V.

    2018-01-01

    The results of tests in-situ of the prototype of medium-wave mobile radio station «Noema-SV» in Western Siberia, Omsk region and Vorkuta Arctic Integrated Emergency and Rescue Center of EMERCOM of Russia are presented. Radio paths tests in-situ in the Far North show the possibility of radio communication with rescue mobile teams of EMERCOM of Russia in the medium-wave band within distances of several tens of kilometers of rugged topography. The radio range on a flat terrain increases to several hundreds of kilometers. Shortened medium-wave band antennas developed at OmSTU and employed by rescue mobile teams of EMERCOM of Russia were used in.

  12. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    NASA Astrophysics Data System (ADS)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  13. Food and water security issues in Russia II: water security in general population of Russian Arctic, Siberia and Far East, 2000-2011.

    PubMed

    Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M

    2013-01-01

    Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus

  14. International Arctic Research Collaborations: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Kintisch, E. S.

    2015-12-01

    International cooperation on Arctic research has a long and storied history, predating even the first International Polar Year in 1881. But scientists want to improve and expand current efforts to conduct international Arctic research, despite politcal and legal barriers that can hamper it. A review of the past and present aspects of such research can inform that effort. As part of a six month fellowship at the Center for Science Diplomacy at the American Association for the Advancement of Science I studied the history and current status of international cooperation in the Arctic. I will report on my findings, which include the fact that some of the first substantial international environmental research and regulatory cooperation began in the far North. My session will identify the elements that make international research collaborations successful, for example more than a century of cooperative work by Russian and Norwegian fishery scientists to monitor and regulate the cod trade in the Barents Sea. And it will explore the challenges that can threaten such collaborations. These can include rules that stymie data collection, block the import of certain analytical equipment across national boundaries, and bar the export of soil or water samples. I will mention specific complications to recent international arctic research projects. These include the SWERUS cruise, a joint effort between Sweden, Russia and the US, an effort to study carbon fluxes over the East Siberian Arctic Shelf in 2014. The session will also review progress towards a new international agreeement, first proposed by the US, on improving arctic research cooperation. That deal is focused on removing the bureacratic and legal barriers to scientists seeking to conduct arctic research on foreign waters and land.

  15. Agenda and Meeting Summary from Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:

  16. Collective doses to man from dumping of radioactive waste in the Arctic Seas.

    PubMed

    Nielsen, S P; Iosjpe, M; Strand, P

    1997-08-25

    A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of NovayaZemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates.

  17. Problems of Tectonics and Tectonic Evolution of the Arctic

    NASA Astrophysics Data System (ADS)

    Vernikovskiy, V. A.; Metelkin, D. V.; Matushkin, N. Y.; Vernikovskaya, A. E.; Chernova, A. I.; Mikhaltsov, N. E.

    2017-12-01

    The Arctic Ocean within Russia remains poorly investigated area, in particular to geological structures and the Arctic Ocean floor. Many researchers believe that the basements of the terranes, composing the Arctic shelf and continental slopes, are of the Precambrian age. It was assumed that the Arctic terranes formed the ancient paleocontinent of Arctida that broke up during rifting, whereas the separated plates and terranes accreted to the periphery of the Arctic Ocean at a later stage. However, geological, geochronological and paleomagnetic evidence to test this assumption has been insufficient. Recently, geological and geophysical studies have significantly increased, in particular to the structures of Eastern Arctic. For example, the New Siberian Islands Archipelago is one of key structures for understanding geology and evolution of the Arctic region. Additionally, several submerged structures containing fragments of continental crust, including the Lomonosov Ridge and the Mendeleev Rise, are identified within the Arctic Ocean and adjacent to the New Siberian Islands Archipelago. Here we present new geochronological and paleomagnetic data to refine the evolution of the Arctida paleocontinent. Our model implies existence of the two Arctidas during Late Precambrian - Late Paleozoic. The earlier Arctida-I was located near equator and connected with the continental margins of Laurentia, Baltica and Siberia within the supercontinent of Rodinia. The initiation of Arctida-I rifting is associated with breakup of Rodinia. As a result, small plates, including Svalbard, Kara, New Siberia Island and other terranes, were formed. We have reconstructed the main stages of further remobilization and global drift of these plates before Pangea assemblage. We assume that the later Arctida-II was located at the Pangean periphery in the temperate latitudes, and was also connected to the Laurentia, Baltica, and Siberia cratons. The breakup of the Arctida-II is suggested to have

  18. IHY-IPY conference report from Polar Gateways Arctic Circle Sunrise 2008

    NASA Astrophysics Data System (ADS)

    Cooper, John; Kauristie, Kirsti; Weatherwax, Allan; Thompson, Barbara; Sheehan, Glenn; Smith, Roger; Sandahl, Ingrid

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this unique circumpolar conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. Science presentations spanned the solar system from the polar Sun and heliospheric environment to Earth, Moon, Mars, Jupiter, Saturn, the Kuiper Belt, and the solar wind termination shock now crossed by both Voyager spacecraft. Many of the science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times during the conference. U.S. remote contributions came from the University of Alaska at Fairbanks, the University of California at Berkeley, the University of Arizona, NASA Jet Propulsion Laboratory, and NASA Goddard Space Flight Center. Convening during the first week of 2008 Arctic sunrise at Barrow, this conference served as a prelude that year to international Sun-Earth Day celebrations for IHY, while also commemorating Barrow scientific and native cultural support for the first International Polar Year 1882-1883. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The conference proceedings are Internet accessible via the home page at http://polargateways2008.org/.

  19. Interact - Access to the Arctic

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Callaghan, T. V.

    2013-12-01

    INTERACT is currently a network of 50 terrestrial research stations from all Arctic countries, but is still growing. The network was inaugurated in January 2011 when it received an EU 7th Framework award. INTERACT's main objective is to build capacity for identifying, understanding, predicting and responding to diverse environmental changes throughout the wide environmental and land-use envelopes of the Arctic. Implicit in this objective is the task to build capacity for monitoring, research, education and outreach. INTERACT is increasing access to the Arctic: 20 INTERACT research stations in Europe and Russia are offering Transnational Access and so far, 5600 person-days of access have been granted from the total of 10,000 offered. An INTERACT Station Managers' Forum facilitates a dialogue among station managers on subjects such as best practice in station management and standardised monitoring. The Station Managers' Forum has produced a unique 'one-stop-shop' for information from 45 research stations in an informative and attractive Station Catalogue that is available in hard copy and on the INTERACT web site (www.eu-interact.org). INTERACT also includes three joint research activities that are improving monitoring in remote, harsh environments and are making data capture and dissemination more efficient. Already, new equipment for measuring feedbacks from the land surface to the climate system has been installed at several locations, while best practices for sensor networking have been established. INTERACT networks with most of the high-level Arctic organisations: it includes AMAP and WWF as partners, is endorsed by IASC and CBMP, has signed MoUs with ISAC and the University of the Arctic, is a task within SAON, and contributes to the Cold Region community within GEO/GEOSS. INTERACT welcomes other interactions.

  20. Tsunami in the Arctic

    NASA Astrophysics Data System (ADS)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  1. Russia's black carbon emissions: focus on diesel sources

    NASA Astrophysics Data System (ADS)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  2. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleummore » gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  3. Arctic Temperature and Moisture Variability Associated with the Pliocene M2 Glacial Event from Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Salacup, J. M.; Castañeda, I. S.; Brigham-Grette, J.

    2014-12-01

    The early Late Pliocene (3.6-3.0 Ma) is the last time atmospheric CO2 concentrations equaled today's values (~400 ppm). Despite this, and the warmer than modern climate it fostered, this period experienced an intense global glaciation during marine isotope stage (MIS) M2 (~3.3 Ma). Constraints imposed by the estimated sea level drop associated with this event suggest ice growth was not isolated to Antarctica, as had previously been the case, but that ice grew in high northern latitudes as well. M2 is unique during the Pliocene and is likely the first attempt of Northern Hemisphere ice sheets to grow into those experienced during Pleistocene ice ages. However, the effects of MIS M2, and any attendant Northern Hemisphere ice sheets, on Arctic terrestrial temperature and hydrology are not well understood. Here we present and compare results from the biomarker-based MBT/CBT paleotemperature proxy with δDleaf wax results, sensitive to both temperature hydrology, from Lake El'gygytgyn (NE Russia) in an attempt to isolate and characterize variability in both air temperature and moisture source/availability. We compare our results with more coarsely resolved preexisting pollen-based temperature and moisture reconstructions. Our temperature reconstruction is, as far as we know, the highest resolution terrestrial record of this dramatic global cooling event. It implies a ~6°C cooling circa 3.29 Ma was accomplished in two steps before a rebound of ~7°C into the start of the mid-Pliocene Warm Period. Removal of the temperature effect from M2 δDleaf wax profiles using our MBT/CBT results provide insight into changes in local hydrology during this event that are compared with pollen-based estimates of minimum, maximum, and mean annual precipitation in order to discuss changes in amount and seasonality of moisture delivery to Lake El'gygytgyn (NE Russia) during the expansion of Northern Hemisphere ice sheets.

  4. NORTHWEST RUSSIA AS A LENS FOR CHANGE IN THE RUSSIAN FEDERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, Amy M.

    The region of Northwest Russia – encompassing the Kola Peninsula and the Arctic seas to its north – offers a lens through which to view the political, economic, ecological and cultural change occurring in the Russian Federation (RF) today. Amidst the upheaval that followed the collapse of the Soviet Union, this region was left to address the legacy of a Cold War history in which it was home to the Soviet (and now Russian) Navy’s Northern Fleet. This paper addresses the naval nuclear legacy from an ecological and environmental and perspective, first addressing the situation of radioactive contamination of themore » region. The focus then turns to one of the largest problems facing the RF today: the management and disposal of SNF and RW, much of which was produced by the Northern Fleet. Through the international programs to address these issues, and Russia's development of a national infrastructure to support spent nuclear fuel and waste management, the author discusses political, economic, environmental and cultural change in Russia.« less

  5. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet

  6. Urban heat island investigations in Arctic cities of northwestern Russia

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg I.; Kasatkina, Elena A.; Kanatjev, Alexander G.

    2017-12-01

    Urban microclimate peculiarities in two Arctic cities in northwestern Russia—Kirovsk (67.62°N, 33.67°E) and Apatity (67.57°N, 33.38°E)—were investigated by using mobile temperature records. The experiment was carried out in and around Apatity and Kirovsk in February 2014 and December 2016. The DS18B20 digital thermometer was installed on the roof of a car (height: approximately 1.2 m) to measure and record temperature variations automatically. In addition to the digital thermometer, the car was also equipped with an onboard global positioning system, allowing every temperature measurement to be referenced with an altitude and a latitude/longitude position. The possibility of urban heat island formation in these polar cities, above the Arctic Circle, was studied. Our analysis indicated that on 11 February 2014, the temperature varied in accordance with the background environmental lapse rate (-0.0045°C m-1), and nearly corresponded to it (-0.0165°C m-1) on 12 February 2014. On 6 December 2016, a strong local temperature inversion with a positive value of 0.032°C m-1 was detected, seemingly caused by the formation of a cold air pool in the valley near Kirovsk. It was found that the temperature variations within and outside these cities are strongly influenced by local topographic effects and the physical conditions of the atmospheric boundary layer.

  7. International student Arctic Field School on Permafrost and urban areas study

    NASA Astrophysics Data System (ADS)

    Suter, L.; Tolmanov, V. A.; Grebenets, V. I.; Streletskiy, D. A.; Shiklomanov, N. I.

    2017-12-01

    Arctic regions are experiencing drastic climatic and environmental changes. These changes are exacerbated in the Russian Arctic, where active resource development resulted in further land cover transformations, especially near large settlements. There is a growing need in multidisciplinary studies of climate and human- induced changes in the Arctic cities. In order to fill this gap, International Arctic Field Course on Permafrostand Northern Studies was organized in July 2017 to the Russian Arctic. The course was organized under the umbrella of the Arctic PIRE project in cooperation between the George Washington University, Moscow State University, and the Russian Center for Arctic Development. The course attracted twenty undergraduate and graduate students from Russia, USA, and EU countries and involved instructors specializing in Arctic system science, geocryology, permafrost engineering, and urban sustainability. The field course was focused on studying typical natural Arctic landscapes of tundra and forest tundra; transformations of natural landscapes in urban and industrial areas around Vorkuta and Salekhard; construction and planning on permafrost and field methods and techniques, including permafrost and soil temperature monitoring, active layer thickness (ALT) measurements, studying of cryogenic processes, stratigraphic and soil investigations, vegetation and microclimate studies. The students were also engaged in a discussion of climatic change and historical development of urban areas on permafrost,and were exposed to examples of both active and passive construction principles while conducting a field survey of permafrost related building deformations. During the course, students collected more than 800 ALT and soil temperature measurements in typical landscapes around Vorkuta and Salekhard to determine effects of soil and vegetation factors on ground thermal regime; surveyed several hundreds of buildings to determine locations with most deformation

  8. Sea-Level Change in the Russian Arctic Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Horton, B.; Baranskaya, A.; Khan, N.; Romanenko, F. A.

    2017-12-01

    Relative sea-level (RSL) databases that span the Last Glacial Maximum (LGM) to present have been used to infer changes in climate, regional ice sheet variations, the rate and geographic source of meltwater influx, and the rheological structure of the solid Earth. Here, we have produced a quality-controlled RSL database for the Russian Arctic since the LGM. The database contains 394 index points, which locate the position of RSL in time and space, and 244 limiting points, which constrain the minimum or maximum limit of former sea level. In the western part of the Russian Arctic (Barents and White seas,) RSL was driven by glacial isostatic adjustment (GIA) due to deglaciation of the Scandinavian ice sheet, which covered the Baltic crystalline shield at the LGM. RSL data from isolation basins show rapid RSL from 80-100 m at 11-12 ka BP to 15-25 m at 4-5 ka BP. In the Arctic Islands of Franz-Joseph Land and Novaya Zemlya, RSL data from dated driftwood in raised beaches show a gradual fall from 25-35 m at 9-10 ka BP to 5-10 m at 3 ka BP. In the Russian plain, situated at the margins of the formerly glaciated Baltic crystalline shield, RSL data from raised beaches and isolation basins show an early Holocene rise from less than -20 m at 9-11 ka BP before falling in the late Holocene, illustrating the complex interplay between ice-equivalent meltwater input and GIA. The Western Siberian Arctic (Yamal and Gydan Peninsulas, Beliy Island and islands of the Kara Sea) was not glaciated at the LGM. Sea-level data from marine and salt-marsh deposits show RSL rise at the beginning of the Holocene to a mid-Holocene highstand of 1-5 m at 5-1 ka BP. A similar, but more complex RSL pattern is shown for Eastern Siberia. RSL data from the Laptev Sea shelf show RSL at -40- -45 m and 11-14 ka BP. RSL data from the Lena Delta and Tiksi region have a highstand from 5 to 1 ka BP. The research is supported by RSF project 17-77-10130

  9. Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North East Arctic Russia

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Katkov, S. M.; Strickland, A.; Toro, J.; Akinin, V. V.; Dumitru, T. A.

    2009-09-01

    U-Pb isotopic dating of seven granitoid plutons and associated intrusions from the Bilibino region (Arctic Chukotka, Russia) was carried out using the SHRIMP-RG. The crystallization ages of these granitoids, which range from approximately 116.9±2.5 to 108.5±2.7 Ma, bracket two regionally significant deformational events. The plutons cut folds, steep foliations and thrust-related structures related to sub-horizontal shortening at lower greenschist facies conditions (D1), believed to be the result of the collision of the Arctic Alaska-Chukotka microplate with Eurasia along the South Anyui Zone (SAZ). Deformation began in the Late Jurassic, based on fossil ages of syn-orogenic clastic strata, and involves strata as young as early Cretaceous (Valanginian) north of Bilibino and as young as Hauterivian-Barremian, in the SAZ. The second phase of deformation (D2) is developed across a broad region around and to the east of the Lupveem batholith of the Alarmaut massif and is interpreted to be coeval with magmatism. D2 formed gently-dipping, high-strain foliations (S2). Growth of biotite, muscovite and actinolite define S2 adjacent to the batholith, while chlorite and white mica define S2 away from the batholith. Sillimanite (± andalusite) at the southeastern edge the Lupveem batholith represent the highest grade metamorphic minerals associated with D2. D2 is interpreted to have developed during regional extension and crustal thinning. Extension directions as measured by stretching lineations, quartz veins, boudinaged quartz veins is NE-SW to NW-SE. Mapped dikes associated with the plutons trend mostly NW-SE and indicate NE-SW directed extension. 40Ar/39Ar ages from S2 micas range from 109.3±1.2 to 103.0±1.8 Ma and are interpreted as post-crystallization cooling ages following a protracted period of magmatism and high heat flow. Regional uplift and erosion of many kilometers of cover produced a subdued erosional surface prior to the eruption of volcanic rocks of the

  10. Russia's black carbon emissions: focus on diesel sources

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-12

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  11. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  12. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  13. Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya.

    PubMed

    Børretzen, P; Salbu, B

    2000-10-30

    To assess the impact of radionuclides entering the marine environment from dumped nuclear waste, information on the physico-chemical forms of radionuclides and their mobility in seawater-sediment systems is essential. Due to interactions with sediment components, sediments may act as a sink, reducing the mobility of radionuclides in seawater. Due to remobilisation, however, contaminated sediments may also act as a potential source of radionuclides to the water phase. In the present work, time-dependent interactions of low molecular mass (LMM, i.e. species < 10 kDa) radionuclides with sediments from the Stepovogo Fjord, Novaya Zemlya and their influence on the distribution coefficients (Kd values) have been studied in tracer experiments using 109Cd2+ and 60Co2+ as gamma tracers. Sorption of the LMM tracers occurred rapidly and the estimated equilibrium Kd(eq)-values for 109Cd and 60Co were 500 and 20000 ml/g, respectively. Remobilisation of 109Cd and 60Co from contaminated sediment fractions as a function of contact time was studied using sequential extraction procedures. Due to redistribution, the reversibly bound fraction of the gamma tracers decreased with time, while the irreversibly (or slowly reversibly) associated fraction of the gamma tracers increased. Two different three-compartment models, one consecutive and one parallel, were applied to describe the time-dependent interaction of the LMM tracers with operationally defined reversible and irreversible (or slowly reversible) sediment fractions. The interactions between these fractions were described using first order differential equations. By fitting the models to the experimental data, apparent rate constants were obtained using numerical optimisation software. The model optimisations showed that the interactions of LMM 60Co were well described by the consecutive model, while the parallel model was more suitable to describe the interactions of LMM 109Cd with the sediments, when the squared sum of

  14. Food and water security issues in Russia II: Water security in general population of Russian Arctic, Siberia and Far East, 2000–2011

    PubMed Central

    Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.

    2013-01-01

    Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2

  15. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2013-04-25

    the population more suited to the changed environment) may not be able to occur fast enough, leaving migration and death as the only options. The...species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth herbivores, nor as fast as the birds that depend on the...page: http://mil.no/ excercises /coldresponse2012/pages/default.aspx 225 “The Arctic: Special Report,” The Economist, June 16, 2012. p. 11. 226 “Russia

  16. Geological Structure and History of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  17. Structural Geology and Microstructures of Wrangel Island, Arctic Russia

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Dumitru, T. A.; Seward, G.

    2010-12-01

    Wrangel Island is a unique exposure of Neoproterozoic basement and upper Paleozoic and Mesozoic cover. Its geology is critical for testing the continuity of stratigraphic units and structures across the Chukchi Sea from Alaska to Russia, for constraining paleogeography and plate reconstructions of the Arctic and for evaluating the hydrocarbon potential of this offshore region. The Paleozoic stratigraphy of Wrangel correlates to the offshore Hannah Trough, Alaska, but its thick section of Triassic turbidites has no counterpart in Alaska (Miller et al., 2010, AAPG; Sherwood et al., 2002, GSA Spec. Paper 360). Wrangel Island lies on a regional structural high along strike of the offshore Herald Arch and Chukchi Platform, Alaska. To the north, the deep North Chukchi Basin, bound by ~E-NE trending, north-dipping normal faults, is inferred to contain up to 12 km of Beaufortian and Brookian (Late Jurassic to Tertiary) sediments in addition to Paleozoic strata (Dinkelman et al., 2008). To the south, ~E-W trending faults bound the Longa Basin that separates Wrangel from Chukotka and lies along strike of the early Tertiary Hope Basin. Wrangel Island was interpreted to represent a north-vergent Mesozoic to Tertiary fold and thrust belt traced offshore by seismic reflection to the Herald Arch and then to the Lisburne Hills and the Brooks Range foreland fold and thrust belt, (e.g. Kos’ko et al., 1993). However, deformation of Wrangel Island rocks differs significantly from typical foreland fold-thrust structures. Both cover and basement rocks have strong penetrative metamorphic fabrics. Foliation strikes E-W and dips ~40° S, with a pronounced N-S trending elongation or stretching lineation. Aspect ratios of stretched pebbles are ~ 5:1:.2 to 10:1:.1. The foliation is axial planar to tight/isoclinal folds at all scales and these also involve the basement-sediment contact. 25 oriented thin-sections of feldspathic sandstones and grits were examined for sense of shear and the

  18. Persistent organic pollutants in maternal blood plasma and breast milk from Russian arctic populations.

    PubMed

    Klopov, V; Odland, J O; Burkow, I C

    1998-10-01

    Under the auspices of Arctic Monitoring and Assessment Programme (AMAP), a Russian-Norwegian co-operation project was established to assess the exposure of delivering women to persistent organic pollutants (POPs) in Arctic areas of Russia. In the period 1993-95 blood and breast milk samples were collected from 94 delivering women in Yamal and Tajmyr Autonomous Regions of Siberia. Concentrations of chlorinated pesticides and polychlorinated biphenyls (PCBs) were determined by high resolution gas chromatography with electron capture detection. The POP levels in maternal plasma among the non-indigenous women were higher than the native population, especially in total PCB, HCHs (hexachlorocyclohexanes) and the DDT-group. The dietary questionnaires showed that the non-indigenous populations consumed considerably less local food items like reindeer meat and fresh water fish. There was no correlation between local food consumption and elevated levels of pollutants. Even if the indigenous groups had lower concentrations of the most important pollutants than the non-indigenous population, they were still higher than the levels measured in the Scandinavian countries of the AMAP-study and up to levels of medical concern. The most important sources of organic pollutants for the Russian Arctic populations of Yamal and Tajmyr seems to be imported food from other areas of Russia and local use of pesticides. It must be a high priority concern to further elucidate these trends and initiate prophylactic measures for the exposed population groups.

  19. Organochlorine pesticides, PCBs, and mercury in hawk, falcon, eagle, and owl eggs from the Lipetsk, Voronezh, Novgorod and Saratov regions, Russia, 1992-1993

    USGS Publications Warehouse

    Henny, Charles J.; Ganusevich, S.A.; Ward, F.P.; Schwartz, T.R.; Mischenko, A.L.; Moseikin, V.N.; Sarychev, V.S.

    1998-01-01

    Fifty-two eggs (one per nest) of 12 species of raptors were collected in 1992-93 for contaminant analysis in three southern European locations in Russia. One Peregrine Falcon (Falco peregrinus) egg was also collected farther northwest in the Novgorod region. A high DDE concentration (27.3 ppm, wet weight [w/w]) in the Peregrine Falcon egg raised concern for the species in European Russia south of the Arctic Circle. Although a number of organochlorine contaminants were found in eggs of the other species, concentrations were all below known effect levels. Mercury levels were also extremely low. Nesting success in southern Russia in 1992 (only year with follow-up visits) appeared normal.

  20. Breeding and moulting locations and migration patterns of the Atlantic population of Steller's eiders Polysticta stelleri as determined from satellite telemetry

    USGS Publications Warehouse

    Petersen, M.R.; Bustnes, J.O.; Systad, G.H.

    2006-01-01

    This study was designed to determine the spring, summer, autumn, and early winter distribution, migration routes, and timing of migration of the Atlantic population of Steller's eiders Polysticta stelleri. Satellite transmitters were implanted in 20 eiders captured in April 2001 at Vads??, Norway, and their locations were determined from 5 May 2001 to 6 February 2002. Regions where birds concentrated from spring until returning to wintering areas included coastal waters from western Finnmark, Norway, to the eastern Taymyr Peninsula, Russia. Novaya Zemlya, Russia, particularly the Mollera Bay region, was used extensively during spring staging, moult, and autumn staging; regions of the Kola, Kanin, and Gydanskiy peninsulas, Russia, were used extensively during spring and moult migrations. Steller's eiders migrated across the Barents and Kara seas and along the Kara Sea and Kola Peninsula coastal waters to nesting, moulting, and wintering areas. The majority of marked eiders (9 of 15) were flightless in near-shore waters along the west side of Novaya Zemlya. Eiders were also flightless in northern Norway and along the Kanin and at Kola Peninsula coasts. We compare and contrast natural history characteristics of the Atlantic and Pacific populations and discuss evolutionary and ecological factors influencing their distribution. © Journal of Avian Biology.

  1. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  2. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  3. Chlorinated hydrocarbon contaminants in polar bears from eastern Russia, North America, Greenland, and Svalbard: Biomonitoring of Arctic pollution

    USGS Publications Warehouse

    Norstrom, R.J.; Belikov, Stanislav; Born, E.W.; Garner, G.W.; Malone, B.; Olpinski, S.; Ramsay, M.A.; Schliebe, S.; Stirling, I.; Sitshov, M.S.; Taylor, M.K.; Wiig, Øystein

    1998-01-01

    Adipose tissue samples from polar bears (Ursus maritimus) were obtained by necropsy or biopsy between the spring of 1989 to the spring of 1993 from Wrangel Island in Russia, most of the range of the bear in North America, eastern Greenland, and Svalbard. Samples were divided into 16 regions corresponding as much as possible to known stocks or management zones. Concentrations of dieldrin (DIEL), 4,4'-DDE (DDE), sum of 16 polychlorinated biphenyl congeners (sigma PCB), and sum of 11 chlordane-related compounds and metabolites (sigma CHL) were determined. In order to minimize the effect of age, only data for adults (320 bears age 5 years and older) was used to compare concentrations among regions. Concentrations of sigma PCB were 46% higher in adult males than females, and there was no significant trend with age. Concentrations of sigma CHL were 30% lower in adult males than females. Concentrations of sigma PCB, sigma CHL, and DDE in individual adult female bears were standardized to adult males using factors derived from the least-square means of each sex category, and geometric means of the standardized concentrations on a lipid weight basis were compared among regions. Median geometric mean standardized concentrations (lipid weight basis) and ranges among regions were as follows: sigma PCB, 5,942 (2,763-24,316) micrograms/kg; sigma CHL, 1,952 (727-4,632) micrograms/kg; DDE, 219 (52-560) micrograms/kg; DIEL, 157 (31-335) micrograms/kg. Geometric mean sigma PCB concentrations in bears from Svalbard, East Greenland, and the Arctic Ocean near Prince Patrick Island in Canada were similar (20,256-24,316 micrograms/kg) and significantly higher than most other areas. Atmospheric, oceanic, and ice transport, as well as ecological factors may contribute to these high concentrations of sigma PCB. sigma CHL was more uniformly distributed among regions than the other CHCs. Highest sigma CHL concentrations were found in southeastern Hudson Bay, which also had the highest DDE and

  4. Distribution and color variation of gyrfalcons in Russia

    USGS Publications Warehouse

    Ellis, D.H.; Ellis, Catherine H.; Pendleton, G.W.; Panteleyev, A.V.; Rebrova, I.V.; Markin, Y.M.

    1992-01-01

    Gyrfalcon (Falco rusticolus) museum specimens in Moscow (73) and St. Petersburg (132) were divided into four color classes (gray, light gray, white gray, and white) and four longitudinal belts representing major physiographic regions of northern Russia. Gray variants predominated in the west and central regions. White birds were most common in extreme eastern Siberia, but were occasionally found even west of the Ural Mountains. Frequencies were as follows: European Russia 4% white, 50% gray (the remainder were intermediates); western Siberia 0% white, 58% gray; central Siberia 15% white, 42% gray; and eastern Siberia 47% white, 33% gray. Remarkably, in the easternmost subregion, white birds predominated even near the southernmost extension. Because the northernmost portions of the species' range in continental Russia are in central Siberia where white variants were rare, we propose that a better predictor of the white variant is longitude, not latitude. White birds were most frequent at the eastern reaches of both the Palearctic and Nearctic. The best environmental correlates of this distribution pattern may be the southward bending thermal isoclines proceeding eastward toward Greenland or Kamchatka, where both land masses are bathed by cold oceanic currents of Arctic origin. By contrast, the western reaches of both land masses are bathed by warm currents. In these western reaches, Gyrfalcon summer distribution is displaced northward and dark variants predominate. The breeding range of the Gyrfalcon, determined by mapping the locations of the specimens we examined, differs little from the range proposed in 1951.

  5. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    PubMed

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A; Kondratyev, Alexander V; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  6. Rough-Legged Buzzards, Arctic Foxes and Red Foxes in a Tundra Ecosystem without Rodents

    PubMed Central

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A.; Kondratyev, Alexander V.; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species—rough-legged buzzard, arctic fox and red fox – perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey – altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period – a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers. PMID:25692786

  7. Impact of climate changes on population vital activities in Russia in the early 21st century

    NASA Astrophysics Data System (ADS)

    Zolotokrylin, A. N.; Vinogradova, V. V.; Titkova, T. B.; Cherenkova, E. A.; Bokuchava, D. D.; Sokolov, I. A.; Vinogradov, A. V.; Babina, E. D.

    2018-01-01

    The study substantiates the approach to the assessment of impact of climate change on vital activities of population in Russia in the face of increasing climate extremes. The obtained results reveal the occurrence of the essential climate extreme events over the period 1991-2013 in Russia that are vital for population activities. Annual amounts of interdiurnal temperature differences and pressure were calculated. Propagation of heat and cold waves, trends and frequencies of daily precipitation extremes were evaluated. The map “Zoning the territory of the Russian Federation by natural living conditions of the population” adapted for modern climate (2001-2010), illustrates the climate changes in the early 21st century. The modern warming of climate has led to a significant easing of discomfort in the territory of Russia. The steady decline of the absolutely unfavorable zone resulted from the expansion of less unfavorable areas is observed, especially in the Northern and Arctic regions. In the south the boundary of unfavorable territories shifts toward the north. It results in the expansion of the conditionally unfavorable area in West Siberia and in the south of East Siberia. In European Russia the favorable area expands and shifts far to the northern regions.

  8. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    NASA Astrophysics Data System (ADS)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    internationally). The workshop brought together approximately 40 participants, with roughly equal numbers from North America and Europe/Scandinavia, and included representatives from Canada, Russia, Germany, Iceland, Sweden, Norway, Finland, Denmark/Greenland, and the US. This talk will focus on findings of the workshop, highlighting advances in Arctic research that have taken flight over the last decade, specifically stimulated by considering the hydrologic cycle as an integrating force and fundamental building block uniting atmospheric, oceanic, cryospheric and terrestrial domains of the pan-Arctic system. The authors will present a future vision for systems-level science of Arctic hydrology and affiliated energy and carbon cycles. A scientific roadmap will be introduced, outlining the main research priorities, robust global and regional geo-information data products, improved models and effective data assimilation systems to forward the science of water in the Arctic.

  9. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution

    PubMed Central

    Rybczynski, Natalia; Gosse, John C.; Richard Harington, C.; Wogelius, Roy A.; Hidy, Alan J.; Buckley, Mike

    2013-01-01

    The mid-Pliocene was a global warm period, preceding the onset of Quaternary glaciations. Here we use cosmogenic nuclide dating to show that a fossiliferous terrestrial deposit that includes subfossil trees and the northern-most evidence of Pliocene ice wedge casts in Canada’s High Arctic (Ellesmere Island, Nunavut) was deposited during the mid-Pliocene warm period. The age estimates correspond to a general maximum in high latitude mean winter season insolation, consistent with the presence of a rich, boreal-type forest. Moreover, we report that these deposits have yielded the first evidence of a High Arctic camel, identified using collagen fingerprinting of a fragmentary fossil limb bone. Camels originated in North America and dispersed to Eurasia via the Bering Isthmus, an ephemeral land bridge linking Alaska and Russia. The results suggest that the evolutionary history of modern camels can be traced back to a lineage of giant camels that was well established in a forested Arctic. PMID:23462993

  10. Spatial and temporal patterns of sea ice variations in Vilkitsky strait, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Ci, T.; Cheng, X.; Hui, F.

    2013-12-01

    The Arctic Ocean has been greatly affected by climate change. Future predications show an even more drastic reduction of the ice cap which will open new areas for the exploration of natural resources and maritime transportation.Shipping through the Arctic Ocean via the Northern Sea Route (NSR) could save about 40% of the sailing distance from Asia (Yokohama) to Europe (Rotterdam) compared to the traditional route via the Suez Canal. Vilkitsky strait is the narrowest and northest portion of the Northern Sea Route with heaviest traffic between the Taimyr Peninsular and the Severnaya Zemlya archipelago. The preliminary results of sea ice variations are presented by using moderate-resolution imaging spectro radiometer(MODIS) data with 250-m resolution in the Vilkitsky strait during 2009-2012. Temporally, the first rupture on sea ice in Vilkitsky strait usually comes up in April and sea ice completely break into pieces in early June. The strait would be ice-free between August and late September. The frequency of ice floes grows while temperature falls down in October. There are always one or two months suitable for transport. Spatially, Sea ice on Laptev sea side breaks earlier than that of Kara sea side while sea ice in central of strait breaks earlier than in shoreside. The phenomena are directly related with the direction of sea wind and ocean current. In summmary, study on Spatial and temporal patterns in this area is significant for the NSR. An additional research issue to be tackled is to seeking the trends of ice-free duration in the context of global warming. Envisat ASAR data will also be used in this study.

  11. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  12. Stratospheric column NO2 anomalies over Russia related to the 2011 Arctic ozone hole

    NASA Astrophysics Data System (ADS)

    Aheyeva, Viktoryia; Gruzdev, Aleksandr; Elokhov, Aleksandr; Grishaev, Mikhail; Salnikova, Natalia

    2013-04-01

    We analyze data of spectrometric measurements of stratospheric column NO2 contents at mid- and high-latitude stations of Zvenigorod (55.7°N, Moscow region), Tomsk (56.5°N, West Siberia), and Zhigansk (66.8°N, East Siberia). Measurements are done in visual spectral range with zenith-viewing spectrometers during morning and evening twilights. Alongside column NO2 contents, vertical profiles of NO2 are retrieved at the Zvenigorod station. Zvenigorod and Zhigansk are the measurement stations within the Network for the Detection of Atmospheric Composition Change (NDACC). For interpretation of results of analysis of NO2 data, data of Ozone Monitoring Instrument measurements of total column ozone and rawinsonde data are also analyzed and back trajectories calculated with the help of HYSPLIT trajectory model are used. Significant negative anomalies in stratospheric NO2 columns accompanied by episodes of significant cooling of the stratosphere and decrease in total ozone were observed at the three stations in the winter-spring period of 2011. Trajectory analysis shows that the anomalies were caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 have had record magnitudes. Analysis of NO2 vertical profiles at Zvenigorod shows that the NO2 anomaly in 2011 compared to other years anomalies was additionally contributed by the denitrification of the Arctic lower stratosphere. NO2 profiles show that a certain degree of the denitrification probably survived even after the ozone hole.

  13. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  14. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    NASA Astrophysics Data System (ADS)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    anomalies in the Murman/West Novaya Zemlya current system on the eastern side of the Barents Sea. These anomalies affect sea ice in the eastern Barents Sea 1-3 months later, but are not completely lost on the interactions with the sea ice and local atmosphere. Statistically significant subsurface temperature anomalies driven by anomalous winds over the Barents Sea join, on their exit to the Arctic Ocean through St. Anna Trough, the Arctic Slope Current, in which they persist for several years.

  15. Radioactive and other environmental threats to the United States and the Arctic resulting from past Soviet activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Earlier this year the Senate Intelligence Committee began to receive reports from environmental and nuclear scientists in Russia detailing the reckless nuclear waste disposal practices, nuclear accidents and the use of nuclear detonations. We found that information disturbing to say the least. Also troubling is the fact that 15 Chernobyl style RBMK nuclear power reactors continue to operate in the former Soviet Union today. These reactors lack a containment structure and they`re designed in such a way that nuclear reaction can actually increase when the reactor overheats. As scientists here at the University of Alaska have documented, polar air massesmore » and prevailing weather patterns provide a pathway for radioactive contaminants from Eastern Europe and Western Russia, where many of these reactors are located. The threats presented by those potential radioactive risks are just a part of a larger Arctic pollution problem. Every day, industrial activities of the former Soviet Union continue to create pollutants. I think we should face up to the reality that in a country struggling for economic survival, environment protection isn`t necessarily the high priority. And that could be very troubling news for the Arctic in the future.« less

  16. Sources of Uncertainty in Modelling mid-Pliocene Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Dolan, A. M.; Haywood, A.; Howell, F.; Prescott, C.; Pope, J. O.; Hill, D. J.; Voss, J.

    2016-12-01

    The mid-Pliocene Warm Period (mPWP) is an interval between 3.264 and 3.205 million years ago, which has globally warmer temperatures (Haywood et al., 2013) accompanied by levels of CO2 above pre-Industrial ( 400 ppmv; e.g. Bartoli et al. 2011; Badger et al., 2013). Arctic amplification of temperatures is a major characteristic of all proxy-based reconstructions of the mPWP in terms of both oceanic (Dowsett et al., 2010) and land warming (Salzmann et al., 2013). For example, evidence of fossilised forests in the Canadian high-Arctic show summer temperatures of up to 16°C warmer than present (Csank et al., 2010). Also, summer temperatures estimates based on pollen reconstructions at Lake El'gygytgyn in North East Russia are up to 6°C warmer than present day (Brigham-Grette et al., 2013). Nevertheless, results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) suggest that climate models may underestimate the degree of Arctic amplification suggested by proxy records (Haywood et al., 2013). Here we use a large ensemble of experiments performed with the HadCM3 climate model to explore relative sources of uncertainty in the simulations of Arctic amplification. Within this suite of over 150 simulations, we consider; (i) a range of mPWP-specific orbital configurations to quantify the influence of temporal variability, (ii) a range of CO2 scenarios to take into account uncertainties in this particular greenhouse gas forcing, (iii) a perturbed physics ensemble to investigate parametric uncertainty within the HadCM3 climate model, and also (iv) a number of experiments with altered palaeogeographies (including changes to topography and ice sheets) to assess the impact of different boundary condition realisations on our simulation of Arctic amplification. We also incorporate results from the PlioMIP project to allude to the effect of structural uncertainty on Arctic warming. Following methods used in Yoshimori et al. (2013) and Laine et al. (2016

  17. Mesozoic tectonic history and geochronology of the Kular Dome, Russia and Bendeleben Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Daniel B.

    The tectonic history responsible for formation of the major basins of the Arctic and movement of landmasses surrounding these basins remains unclear despite multidisciplinary efforts. Most studies focus on one of four potential movement pathways of the Arctic Alaska-Chukotka microplate during the Mesozoic and the relationship between this movement and formation of the Amerasian Basin. Due to difficulty in access and harsh climate of the Arctic Ocean, most geological studies focus on landmasses surrounding the Amerasian Basin. For this reason, we have conducted research in the Kular Dome of northern Russia and the Bendeleben Mountain Range of the Seward Peninsula, Alaska in an attempt to better constrain timing of emplacement of plutons in these areas and their associated tectonic conditions. For both areas, U-Pb zircon crystallization geochronology was performed on several samples collected from plutons responsible for gneiss dome formation during the Mesozoic. Dating of these plutons in tandem with field observation and thin section analysis of deformation suggests an extensional emplacement setting for both areas during the Middle to Late Cretaceous. In the Kular Dome, intrusion of the Kular pluton occurred from approximately 111-103 Ma along with extensional development of the nearby Yana fault, which was previously interpreted as a regional suture between deposits of the Kolyma-Omolon superterrane and passive-margin sequences of the Verkhoyansk Fold-Thrust Belt. Evidence for extensional emplacement of the Kular pluton includes top-down shear around mantled porphyroblasts plunging along gentle foliation away from the pluton and abundant low-offset normal faults in the area. The Kular Dome also falls into a north-south oriented belt of Late Cretaceous plutons interpreted to have been emplaced under regional extensional conditions based on geochemical discrimination diagrams. Detrital zircon geochronology was also performed on seven samples collected from Triassic

  18. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland

    PubMed Central

    Hanke, Dennis; Freuling, Conrad M.; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R.; Bøtner, Anette; Mettenleiter, Thomas C.; Beer, Martin; Rasmussen, Thomas B.; Müller, Thomas F.; Höper, Dirk

    2016-01-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1–4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I – 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure

  19. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    PubMed

    Hanke, Dennis; Freuling, Conrad M; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R; Bøtner, Anette; Mettenleiter, Thomas C; Beer, Martin; Rasmussen, Thomas B; Müller, Thomas F; Höper, Dirk

    2016-07-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in

  20. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  1. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  2. China’s Interests and Goals in the Arctic: Implications for the United States

    DTIC Science & Technology

    2017-03-01

    areas north of the Arctic Circle (lat. 66.56° N ) amounting to 6 percent of the world’s landmass, including parts of Alaska—holds the world’s larg- est...September 4, 2015, avail- able from barentsobserver.com/en/business/2015/09/russia-and-china- sign-agreement-belkomur-railroad-04-09. 143. Vitaly ...nance of China, Beijing: Foreign Language Press, p. 326; Camilla T. N . Sørensen, “The Significance of Xi Jinping’s ‘Chinese Dream’ for Chinese

  3. Northern Regions of Russia as Alternative Sources of Pure Water for Sustainable Development: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.

    The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.

  4. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Bassford, R. P.; Gorman, M. R.; Williams, M.; Glazovsky, A. F.; Macheret, Y. Y.; Shepherd, A. P.; Vasilenko, Y. V.; Savatyuguin, L. M.; Hubberten, H.-W.; Miller, H.

    2002-04-01

    The 5,575-km2 Academy of Sciences Ice Cap is the largest in the Russian Arctic. A 100-MHz airborne radar, digital Landsat imagery, and satellite synthetic aperture radar (SAR) interferometry are used to investigate its form and flow, including the proportion of mass lost through iceberg calving. The ice cap was covered by a 10-km-spaced grid of radar flight paths, and the central portion was covered by a grid at 5-km intervals: a total of 1,657 km of radar data. Digital elevation models (DEMs) of ice surface elevation, ice thickness, and bed elevation data sets were produced (cell size 500 m). The DEMs were used in the selection of a deep ice core drill site. Total ice cap volume is 2,184 km3 (~5.5 mm sea level equivalent). The ice cap has a single dome reaching 749 m. Maximum ice thickness is 819 m. About 200 km, or 42%, of the ice margin is marine. About 50% of the ice cap bed is below sea level. The central divide of the ice cap and several major drainage basins, in the south and east of the ice cap and of up to 975 km2, are delimited from satellite imagery. There is no evidence of past surge activity on the ice cap. SAR interferometric fringes and phase-unwrapped velocities for the whole ice cap indicate slow flow in the interior and much of the margin, punctuated by four fast flowing features with lateral shear zones and maximum velocity of 140 m yr-1. These ice streams extend back into the slower moving ice to within 5-10 km of the ice cap crest. They have lengths of 17-37 km and widths of 4-8 km. Mass flux from these ice streams is ~0.54 km3 yr-1. Tabular icebergs up to ~1.7 km long are produced. Total iceberg flux from the ice cap is ~0.65 km3 yr-1 and probably represents ~40% of the overall mass loss, with the remainder coming from surface melting. Driving stresses are generally lowest (<40 kPa) close to the ice cap divides and in several of the ice streams. Ice stream motion is likely to include a significant basal component and may involve deformable

  5. Russia

    Atmospheric Science Data Center

    2013-04-16

    article title:  Smoke and Clouds over Russia     View Larger Image ... of Multi-angle Imaging SpectroRadiometer (MISR) images of Russia's far east Khabarovsk region. The images were acquired on May 13, 2001 ...

  6. Rapid Arctic Transitions in Relation to Infrastructure and Climate Change: Comparison of the Permafrost and Geoecological Conditions in the Bovanenkovo Gas Field, Russia and the Prudhoe Bay Oil Field, Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Raynolds, M. K.; Kumpula, T.; Shur, Y.; Kanevskiy, M. Z.; Kofinas, G.; Leibman, M. O.; Matyshak, G. V.; Epstein, H. E.; Buchhorn, M.; Wirth, L.; Forbes, B. C.

    2014-12-01

    Many areas of the Arctic are undergoing rapid permafrost and ecosystem transitions resulting from a combination of industrial development and climate change as summer sea ice retreats and abundant Arctic natural resources become more accessible for extraction. The Bovanenkovo Gas Field (BGF) in Russia and the Prudhoe Bay Oilfield (PBO) in Alaska are among the oldest and most extensive industrial complexes in the Arctic, situated in areas with extensive ice-rich permafrost. Ongoing studies of cumulative effects in both regions are part of the Northern Eurasia Earth-Science Partnership Initiative (NEESPI) and NASA's Land-Cover Land-Use Change (LCLUC) research. Comparative analysis is focused on changes occurring due to different climate, permafrost, land-use, and disturbance regimes in the BGF and PBO and along bioclimate transects that contain both fields. Documentation of the changes in relationship to the different geoecological and social-economic conditions will help inform management approaches to minimize the effects of future activities. We compare the area of disturbance in the two fields and some of the key differences in the permafrost conditions. Detailed remote sensing and geoecological mapping in both areas reveal major differences in permafrost conditions that have implications for total ecological function. At BGF, highly erodible sands and the presence of massive tabular ground ice near the surface contributes to landslides and thermo-denudation of slopes. At PBO, ice-wedge degradation is the most noticeable change, where thermokarst is expanding rapidly along ice-wedges adjacent to roads and in areas away from roads. Between 1990 and 2001, coincident with strong atmospheric warming during the 1990s, natural thermokarst resulted in conversion of low-centered ice-wedge polygons to high-centered polygons, more active lakeshore erosion and increased landscape and habitat heterogeneity. These geoecololgical changes have local and regional consequences to

  7. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history

    PubMed Central

    KUZMIN, I. V.; HUGHES, G. J.; BOTVINKIN, A. D.; GRIBENCHA, S. G.; RUPPRECHT, C. E.

    2008-01-01

    SUMMARY Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98·6–99·2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses. PMID:17599781

  8. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history.

    PubMed

    Kuzmin, I V; Hughes, G J; Botvinkin, A D; Gribencha, S G; Rupprecht, C E

    2008-04-01

    Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98.6-99.2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses.

  9. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  10. Geology and assessment of undiscovered oil and gas resources of the Northwest Laptev Sea Shelf Province, 2008

    USGS Publications Warehouse

    Klett, Timothy; Pitman, Janet K.; Moore, Thomas E.; Gautier, Donald L.

    2017-12-22

    The U.S. Geological Survey (USGS) has recently assessed the potential for undiscovered oil and gas resources in the Northwest Laptev Sea Shelf Province as part of the USGS Circum-Arctic Resource Appraisal. The province is in the Russian Arctic, east of Severnaya Zemlya and the Taimyr fold-and-thrust belt. The province is separated from the rest of the Laptev Sea Shelf by the Severnyi transform fault. One assessment unit (AU) was defined for this study: the Northwest Laptev Sea Shelf AU. The estimated mean volumes of undiscovered petroleum resources in the Northwest Laptev Sea Shelf Province are approximately 172 million barrels of crude oil, 4.5 trillion cubic feet of natural gas, and 119 million barrels of natural-gas liquids, north of the Arctic Circle.

  11. The Circumpolar Arctic Vegetation Map: A tool for analysis of change in permafrost regions

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Raynolds, M. K.; Maier, H. A.

    2003-12-01

    Arctic vegetation occurs beyond the northern limit of trees, in areas that have an Arctic climate and Arctic flora. Here we present an overview of the recently published Circumpolar Arctic Vegetation Map (CAVM), an area analysis of the vegetation map, and a discussion of its potential for analysis of change in the Arctic. Six countries have Arctic tundra vegetation, Canada, Greenland, Iceland, Russia, Norway (Svalbard), and the US (Total Arctic area = 7.1 million km2). Some treeless areas, such as most of Iceland and the Aluetian Islands are excluded from the map because they lack an Arctic climate. The CAVM divides the Arctic into five bioclimate subzones, A thru E (Subzone A is the coldest and Subzone E is the warmest), based on a combination of summer temperature and vegetation. Fifteen vegetation types are mapped based on the dominant plant growth forms. More detailed, plant-community-level, information is contained in the database used to construct the map. The reverse side of the vegetation map has a false-color infrared image constructed from Advanced Very-High Resolution (AVHRR) satellite-derived raster data, and maps of bioclimate subzones, elevation, landscape types, lake cover, substrate chemistry, floristic provinces, the maximum normalized difference vegetation index (NDVI), and aboveground phytomass. The vegetation map was analyzed by vegetation type and biomass for each county, bioclimate subzone, and floristic province. Biomass distribution was analyzed by means of a correlation between aboveground phytomass and the normalized difference vegetation index (NDVI), a remote-sensing index of surface greenness. Biomass on zonal surfaces roughly doubles within each successively warmer subzone, from about 50 g m-2 in Subzone A to 800 g m-2- in Subzone E. But the pattern of vegetation increase is highly variable, and depends on a number of other factors. The most important appears to be the glacial history of the landscape. Areas that were glaciated during

  12. Factors controlling black carbon distribution in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin

    2017-01-01

    We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3

  13. Pan-Arctic aerosol number size distributions: seasonality and transport patterns

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard

    2017-07-01

    The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.

    The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is

  14. The Kola Birth Registry and perinatal mortality in Moncegorsk, Russia.

    PubMed

    Vaktskjold, Arild; Talykova, Ljudmila; Chashchin, Valerij; Nieboer, Evert; Odland, Jon Øyvind

    2004-01-01

    A population-based birth registry has been set up for the Arctic town of Moncegorsk in north-western Russia. In this investigation, the quality and the content of the registry are assessed and the perinatal mortality (PM) rates in the period 1973-97 estimated. Enrollment in the Kola Birth Registry (KBR) involved the retrospective inclusion of all births with at least 28 weeks of gestation in Moncegorsk in the period 1973-97. The data in the registry were assessed for data entry errors, completeness of data and population coverage. The annual PM rates were estimated for live- and stillborns with at least 28 weeks of gestation. The KBR contains detailed information about the newborn, delivery, pregnancy and mother for 21 214 births by women from Moncegorsk, covering at least 96% of all the births by the population in the period studied. No records were missing data for gender and birth date of the newborn, and more than 99.9% of the records contained data about gestational age and birthweight. Data concerning the mothers' employment were missing in 0.4% of the records. The annual PM rate fell from more than 20 to less than 10 deaths per 1000 births during this period. The KBR provides an extensive data source useful for case-control and register-based prospective studies, and constitutes the first such compilation in Russia. The homogeneity of the population in Moncegorsk makes it advantageous for epidemiological investigations. The PM rate in Moncegorsk was lower than the overall rate in Russia.

  15. Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk

    NASA Astrophysics Data System (ADS)

    Drozdov, D. S.; Rivkin, F. M.; Rachold, V.

    2004-12-01

    The Arctic coast is characterized by a diversity of geological-geomorphological structures and geocryological conditions, which are expected to respond differently to changes in the natural environment and in anthropogenic impacts. At present, oil fields are prospected and developed and permanent and temporary ports are constructed in the Arctic regions of Russia. Thus, profound understanding of the processes involved and measures of nature conservation for the coastal zone of the Arctic Seas are required. One of the main field of Arctic coastal investigations and database formation of coastal conditions is the mapping of the coasts. This poster presents a set of digital maps including geology, quaternary sediments, landscapes, engineering-geology, vegetation, geocryology and a series of regional sources, which have been selected to characterize the Russian Arctic coast. The area covered in this work includes the 200-km-wide band along the entire Russian Arctic coast from the Norwegian boundary in the west to the Bering Strait in the east. Methods included the collection of the majority of available hard copies of cartographic material and their digital formats and the transformation of these sources into a uniform digital graphic format. The atlas consists of environmental maps and maps of engineering-geological zoning. The set of environmental maps includes geology, quaternary sediments, landscapes and vegetation of the Russian Arctic coast at a scale of 1:4000000. The set of engineering-geocryological maps includes a map of engineering-geocryological zoning of the Russian Arctic coast, a map of the intensity of destructive coastal process and a map of industrial impact risk assessment ( 1:8000000 scale). Detailed mapping has been performed for key sites (at a scale of 1:100000) in order to enable more precise estimates of the intensity of destructive coastal process and industrial impact. The engineering-geocryological map of the Russian Arctic coast was

  16. Key Findings of the AMAP 2015 Assessment on Black Carbon and Tropospheric Ozone as Arctic Climate Forcers

    NASA Astrophysics Data System (ADS)

    Quinn, P.

    2015-12-01

    The Arctic Monitoring and Assessment Programme (AMAP) established an Expert Group on Short-Lived Climate Forcers (SLCFs) in 2009 with the goal of reviewing the state of science surrounding SLCFs in the Arctic and recommending science tasks to improve the state of knowledge and its application to policy-making. In 2011, the result of the Expert Group's work was published in a technical report entitled The Impact of Black Carbon on Arctic Climate (AMAP, 2011). That report focused entirely on black carbon (BC) and co-emitted organic carbon (OC). The SLCFs Expert Group then expanded its scope to include all species co-emitted with BC as well as tropospheric ozone. An assessment report, entitled Black Carbon and Tropospheric Ozone as Arctic Climate Forcers, was published in 2015. The assessment includes summaries of measurement methods and emissions inventories of SLCFs, atmospheric transport of SLCFs to and within the Arctic, modeling methods for estimating the impact of SLCFs on Arctic climate, model-measurement inter-comparisons, trends in concentrations of SLCFs in the Arctic, and a literature review of Arctic radiative forcing and climate response. In addition, three Chemistry Climate Models and five Chemistry Transport Models were used to calculate Arctic burdens of SLCFs and precursors species, radiative forcing, and Arctic temperature response to the forcing. Radiative forcing was calculated for the direct atmospheric effect of BC, BC-snow/ice effect, and cloud indirect effects. Forcing and temperature response associated with different source sectors (Domestic, Energy+Industry+Waste, Transport, Agricultural waste burning, Forest fires, and Flaring) and source regions (United States, Canada, Russia, Nordic Countries, Rest of Europe, East and South Asia, Arctic, mid-latitudes, tropics, southern hemisphere) were calculated. To enable an evaluation of the cost-effectiveness of regional emission mitigation options, the normalized impacts (i.e., impacts per unit

  17. Vitamin D status of northern indigenous people of Russia leading traditional and "modernized" way of life.

    PubMed

    Kozlov, Andrew; Khabarova, Yulia; Vershubsky, Galina; Ateeva, Yulia; Ryzhaenkov, Vadim

    2014-01-01

    Vitamin D status in groups of northern indigenous people of Russia leading close to traditional (seminomadic reindeer herding), post-traditional (in settlements) or "modernized" (in towns) way of life was analysed. The survey study groups consisted of 178 Nenets and Komi aged 18-60 living in the Arctic (66-67°N). Urban Komi, Udmurts and Komi-Permiaks (n=150) living in a non-Arctic area (57-61°N) formed a control group. The concentration of serum 25-hydroxyvitamin D (25OHD), as a transport form of vitamin D, was assessed by enzyme immunoassay analysis. The group average 25OHD levels in both rural and urban Arctic residents are within the range of values seen in the non-Arctic urban subjects adjusted for season: 39.7-47.7 nmol/l. Abandoning traditional lifestyle associates with lower vitamin D levels in indigenous Arctic people. Mean±standard deviation 25OHD values among Nenets were lower in those living in the administrative centre (a big settlement) with a population of 1,460 (32.2±12.90 nmol/l) than in the residents of small settlements (39.6±14.08 nmol/l), and in reindeer herders (42.4±13.45 nmol/l; p<0.05 in both cases). Komi townspeople had lower 25OHD concentrations (47.7±12.00 nmol/l) than Komi reindeer herders (68.7±25.20; p<0.01). The transition from seminomadic to post-traditional and "modernized" way of life has led to a decrease in the consumption of traditional foods among the indigenous people of the Russian Arctic. Our data support the notion that the traditional northern diet promotes healthy vitamin D levels, while adherence to the "western" type of diet correlates with a lower 25OHD concentration.

  18. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    NASA Technical Reports Server (NTRS)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  19. An AeroCom assessment of black carbon in Arctic snow and sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during whichmore » an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g -1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g -1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g -1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most

  20. Russia`s Great Game in a nuclear South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilat, J.F.; Taylor, T.T.

    1998-12-31

    Lost in the noise of Pakistan`s nuclear weapon tests in the western Baluchistan desert on 28 and 30 May was a surprising diplomatic move by Russia. On 23 May, Russia became the first state to express its willingness to recognize India as a nuclear-weapon state, provided that India commits itself to the international nonproliferation regime. Russia`s Ambassador to India, Albert Chernyshev, stated in the days after the Indian but before the Pakistani nuclear tests that ``India proclaimed itself a nuclear weapons power. One now hopes that India will behave as a nuclear weapons power by acting responsibly. Every nuclear weaponsmore » state has some rights. But for getting recognition it must have some obligations. Once it is ready to show these obligations by joining the nonproliferation regime, its recognition as a nuclear weapons power will follow.`` Russia`s Great Game in South Asia in pursuit of short-term economic and other interests appears to be a serious obstacle on the path to dealing effectively with the South Asian nuclear crisis. Grave damage to security, stability and nonproliferation has already resulted from India`s and Pakistan`s actions, but the situation does not have to spiral out of control. It is imperative that the international community respond appropriately to this challenge. The international community is at a crossroads and Russia`s actions will be critical. Will it be willing to go beyond the narrow economic and political calculations reflected in its diplomatic posturing, and take actions that will serve its long-term interests by bridging differences with other great powers in order to demonstrate to India that it has not chosen the right path. If Russia decides it can gain from India`s current, perilous path and blocks or otherwise frustrates appropriate responses, the nuclear danger on the subcontinent will escalate and the global regimes to promote nonproliferation and to ban testing will be seriously, perhaps fatally, weakened with

  1. Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Shevchenko, Vladimir P.; Espen Yttri, Karl; Eckhardt, Sabine; Sollum, Espen; Pokrovsky, Oleg S.; Kobelev, Vasily O.; Korobov, Vladimir B.; Lobanov, Andrey A.; Starodymova, Dina P.; Vorobiev, Sergey N.; Thompson, Rona L.; Stohl, Andreas

    2018-01-01

    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53-0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE = 49 ng g-1) in 2014, 48 % (RMSE = 37 ng g-1) in 2015 and 27 % (RMSE = 43 ng g-1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB > -100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB < -100 %). There, the sources included emissions from gas flaring as a major contributor to snow BC. The accuracy of the model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in

  2. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2009-12-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world’s largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model (ArcVeg) to evaluate how two factors (soil organic nitrogen [SON] levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (High Arctic), D (northern Low Arctic) and E (southern Low Arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m2 in total biomass at the high SON site in subzone E, while only 298 g/m2 in the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m2 in the high SON site in contrast to 184 g/m2 in the low SON site in subzone E. When comparing low grazing to high grazing effects on soil organic nitrogen pools over time (Figure 1), higher grazing frequency led to either slower SON accumulation rates or more rapid SON depletion rates. Warming accentuated these differences caused by grazing, suggesting the interaction between grazing and warming may yield greater differences in SON levels across sites. Our results suggest that low SON and grazing may limit plant response to climate change. Interactions among bioclimate subzones, soils, grazing and warming significantly affect plant biomass and productivity in

  3. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    USGS Publications Warehouse

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  4. DNA analysis of a 30,000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels

    PubMed Central

    Faerman, Marina; Bar-Gal, Gila Kahila; Boaretto, Elisabetta; Boeskorov, Gennady G.; Dokuchaev, Nikolai E.; Ermakov, Oleg A.; Golenishchev, Fedor N.; Gubin, Stanislav V.; Mintz, Eugenia; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergei V.; Zanina, Oksana G.; Formozov, Nikolai A.

    2017-01-01

    In contrast to the abundant fossil record of arctic ground squirrels, Urocitellus parryii, from eastern Beringia, only a limited number of fossils is known from its western part. In 1946, unnamed GULAG prisoners discovered a nest with three mummified carcasses of arctic ground squirrels in the permafrost sediments of the El’ga river, Yakutia, Russia, that were later attributed to a new species, Citellus (Urocitellus) glacialis Vinogr. To verify this assignment and to explore phylogenetic relationships between ancient and present-day arctic ground squirrels, we performed 14C dating and ancient DNA analyses of one of the El’ga mummies and four contemporaneous fossils from Duvanny Yar, northeastern Yakutia. Phylogenetic reconstructions, based on complete cytochrome b gene sequences of five Late Pleistocene arctic ground squirrels and those of modern U. parryii from 21 locations across western Beringia, provided no support for earlier proposals that ancient arctic ground squirrels from Siberia constitute a distinct species. In fact, we observed genetic continuity of the glacialis mitochondrial DNA lineage in modern U. parryii of the Kamchatka peninsula. When viewed in a broader geographic perspective, our findings provide new insights into the genetic history of U. parryii in Late Pleistocene Beringia. PMID:28205612

  5. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  6. Impacts of urban and industrial development on Arctic land surface temperature in Lower Yenisei River Region.

    NASA Astrophysics Data System (ADS)

    Li, Z.; Shiklomanov, N. I.

    2015-12-01

    Urbanization and industrial development have significant impacts on arctic climate that in turn controls settlement patterns and socio-economic processes. In this study we have analyzed the anthropogenic influences on regional land surface temperature of Lower Yenisei River Region of the Russia Arctic. The study area covers two consecutive Landsat scenes and includes three major cities: Norilsk, Igarka and Dudingka. Norilsk industrial region is the largest producer of nickel and palladium in the world, and Igarka and Dudingka are important ports for shipping. We constructed a spatio-temporal interpolated temperature model by including 1km MODIS LST, field-measured climate, Modern Era Retrospective-analysis for Research and Applications (MERRA), DEM, Landsat NDVI and Landsat Land Cover. Those fore-mentioned spatial data have various resolution and coverage in both time and space. We analyzed their relationships and created a monthly spatio-temporal interpolated surface temperature model at 1km resolution from 1980 to 2010. The temperature model then was used to examine the characteristic seasonal LST signatures, related to several representative assemblages of Arctic urban and industrial infrastructure in order to quantify anthropogenic influence on regional surface temperature.

  7. NABOS-II Observational Program in the Arctic Ocean: New Perspectives and New Challenges

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Polyakov, I.; Ashik, I. M.; Pnyushkov, A.; Alkire, M. B.; Repina, I.; Alexeev, V. A.; Waddington, I.; Kanzow, T.; Goszczko, I.; Rember, R.; Artamonov, A.

    2016-02-01

    NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.

  8. NABOS-II Observational Program in the Arctic Ocean: New Perspectives and new Challenges

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir; Polyakov, Igor; Ashik, Igor; Pnyushkov, Andrey; Alkire, Matthew; Repina, Irina; Alexeev, Vladimir; Waddington, Ian; Kanzow, Torsten; Rember, Robert; Artamonov, Alexander; Goszczko, Ilona

    2016-04-01

    NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.

  9. Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2016-12-01

    The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.

  10. Basic Research on Seismic and Infrasonic Monitoring of the European Arctic

    DTIC Science & Technology

    2008-09-01

    characteristics as well as the inherent variability among these signals . We have used available recordings both from the Apatity infrasound array and from...experimentally attempt to generate an infrasonic event bulletin using only the estimated azimuths and detection times of infrasound phases recorded by... detection . Our studies have shown a remarkably efficient wave propagation from events near Novaya Zemlya across the Barents Sea. Significant signal

  11. Radioactive waste disposal in seas adjacent to the territory of the Russian Federation.

    PubMed

    Yablokov, A V

    2001-01-01

    The former USSR illegally dumped into the ocean liquid and solid radioactive wastes (RW) originating from nuclear-powered vessels and ships. The Russian President created a special Commission to analyse both the scale and consequences of this activity. According to documentary data and expert estimates at the Commission's disposal, the maximum activity of RW that entered the seas adjacent to Russian territory could have been as much as 2,500 kCi at the time of disposal. The greatest radio-ecological hazard comes from reactors from nuclear submarines and core plates of the nuclear icebreaker 'Lenin', which had spent nuclear fuel in place and which were dumped in shallow water in the Kara Sea near Novaya Zemlya. Editor's note: This article extracts material from a Commission which published a report produced in Russia in 1993. Numerous sources in many Ministries and other government agencies, noted in the text, formed the basis for the final draft. The authors of the draft report were A. Yablokov, V. Karasev, V. Rumyantsev, M. Kokeev, O. Petrov, V. Lystsov, A. Yemelyanenkov and P. Rubtsov. After approving the draft report, the Commission submitted the report to the President of the Russian Federation in February 1993. By Presidential decision, this report (after several technical corrections) was open to the public: it is known variously as 'the Yablokov Commission report, or more simply the 'Yablokov Report', the 'White Book' or 'Yablokov White Paper'. During April-May 1993, 500 copies were distributed among governmental agencies inside Russia, and abroad through a net of Russian Embassies. This article was later sent to Dr Mike Champ as part of the ongoing collections of papers on the Arctic published in this journal (edited by Champ et al.: 1997 'Contaminants in the Arctic', Marine Pollution Bulletin 35, pp. 203-385 and in Marine Pollution Bulletin 2000, vol. 40, pp. 801-868, and continued with the present collection).

  12. Unique Locality of Wooly Rhinoceros in Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Davydov, S.; Sher, A.; Boeskorov, G.; Lazarev, P.; Binladen, J.; Willerslev, E.; Tikhonov, A.

    2009-12-01

    A permafrost goldfield area in northeastern Yakutia, Russia turns out to be the richest locality of extinct woolly rhinoceros in the world. It has yielded fossil horns of about 50 rhino individuals, and recently the most complete mummified body of this extinct giant. The age of fossils is about 40-50 thousand years before present, but permafrost helped to preserve them in perfect condition. The fossils, and especially mummies, present a perfect material for genetic studies. Woolly rhinoceros, Coelodonta antiquitatis (Blum.), is one of the symbols of the Ice Age and one of few large mammal species that disappeared from Eurasia about 14 000 years ago. Recently, a substantially complete mummy of woolly rhinoceros was found in permafrost at the Rodinka site near Cherskiy, northeastern Yakutia, Russia (68.76°N, 161.63°E). It is the body of an adult female, weighing almost 900 kg, with the preserved skull, two horns, lower jaw, one ear, and tail. The length of the carcass is about 2 m, the live length of the animal is estimated as more than 3 m. The right legs are partly preserved and the chest and belly cavities are partly empty; almost all hair has been lost. Despite these defects, it is the most complete mummy of woolly rhino ever found in permafrost. A fragment of rib from the body has been AMS dated to 39140±390 BP (OxA-18755). In recent years the Rodinka site has yielded an unprecedented number of woolly rhino fossils and is so far the richest locality for this extinct species. The woolly rhino had a very wide distribution in the Late Pleistocene - from France to the Bering Strait and from China to the high-arctic islands. It was perfectly adapted to the variety of severe periglacial (tundra-steppe) environments. Intriguingly, it was the only large Siberian mammal that never crossed the Bering Land Bridge to Alaska. In the vast lowlands of Arctic Siberia Coelodonta fossils are common, but much less abundant (below 1%) compared to those of other large Ice Age

  13. Health risks facing travelers to Russia with special reference to natural-focal diseases.

    PubMed

    Malkhazova, Svetlana M; Mironova, Varvara A; Shartova, Natalia V; Pestina, Polina V; Orlov, Dmitry S

    2015-01-01

    Russia, an enormous country almost completely located within temperate latitudes, has a broad spectrum of natural landscapes which attract increasing numbers of tourists, from arctic deserts in the north to steppes and deserts in the south. Currently, tourism is undergoing active development in Russia: new travel routes, including ones that involve visiting the wilderness, are steadily appearing. Among the multitude of infectious diseases that can endanger travelers, natural-focal diseases, whose agents and/or carriers are integral to natural landscapes, are especially prominent. Some of the results of the study of natural-focal infections and parasitoses, which are necessary to evaluate the recreational and travel potential of the Russian Federation, are presented and discussed in this article. A cartographical and statistical analysis of infectious and parasitic natural-focal diseases, spanning more than a decade (1997-2013), is the basis of this article. This analysis, along with that of additional cartographical and textual sources, reveals that natural-focal infections are most diverse between 48° N and 60° N and least diverse in the northern regions of the Far East of Russia. Different regions have different numbers of nosoforms and different morbidity level, which signifies an irregularity in the distribution of parasitic diseases. This medico-geographical information may be useful both for individual tourists planning trips to Russia and tour agencies organizing tour groups. It also can be used by health advisers when they consult people before a trip, to assess the actual risks, suggest a number of precautions and pick the particular diseases out of those listed that actually constitute a risk in certain regions, and suggest a suitable preventative treatment if needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  15. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  16. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project.

    PubMed

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  17. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    PubMed Central

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-01-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316–328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  18. Explore Arctic Health.

    PubMed

    Lebow, Mahria

    2014-04-01

    The Arctic Health web site is a portal to Arctic-specific, health related content. The site provides expertly organized and annotated resources pertinent to northern peoples and places, including health information, research publications and environmental information. This site also features the Arctic Health Publications Database, which indexes an array of Arctic-related resources.

  19. Russia Country Analysis Brief

    EIA Publications

    2016-01-01

    Russia is a major producer and exporter of oil and natural gas. Russia's economic growth is driven by energy exports, given its high oil and natural gas production. Oil and natural gas revenues accounted for 43% of Russia's federal budget revenues in 2015.

  20. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  1. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions

    DTIC Science & Technology

    2010-03-23

    Semipalatinsk Test site ; Novaya Zemlya (461 traces) in Russia; and Lop Nor (120 traces) in China; and also from many Peaceful Nuclear Explosions (552... Semipalatinsk Test Site (circles) recorded at Borovoye (BRV) during 1966- 1989.The Balapan, Degelen, and Murzhik regions are indicated. 5 3. Locations of... Semipalatinsk Test Site , Kazakhstan; test of 1968 June 19 70 35. Last of seven sets of BRV seismograms on the KOD system for a UNE at the Balapan area

  2. Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W

    2014-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate ofmore » terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in

  3. Arctic moisture source for Eurasian snow cover variations in autumn

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Vázquez Dominguez, Marta; Gimeno Presa, Luis; Nieto, Raquel; Buligyna, Olga; Jaiser, Ralf; Handorf, Dörthe; Rinke, Anette; Dethloff, Klaus; Sterin, Alexander; Brönnimann, Stefan

    2015-04-01

    Global warming is enhanced at high northern latitudes where the Arctic surface air temperature has risen at twice the rate of the global average in recent decades - a feature called Arctic amplification. This recent Arctic warming signal likely results from several factors such as the albedo feedback due to a diminishing cryosphere, enhanced poleward atmospheric and oceanic transport, and change in humidity. The reduction in Arctic sea ice is without doubt substantial and a key factor. Arctic summer sea-ice extent has declined by more than 10% per decade since the start of the satellite era (e.g. Stroeve et al., 2012), culminating in a new record low in September 2012, with the long-term trend largely attributed to anthropogenic global warming. Eurasian snow cover changes have been suggested as a driver for changes in the Arctic Oscillation and might provide a link between sea ice decline in the Arctic during summer and atmospheric circulation in the following winter. However, the mechanism connecting snow cover in Eurasia to sea ice decline in autumn is still under debate. Our analysis focuses at sea ice decline in the Barents-Kara Sea region, which allows us to specify regions of interest for FLEXPART forward and backwards moisture trajectories. Based on Eularian and Lagrangian diagnostics from ERA-INTERIM, we can address the origin and cause of late autumn snow depth variations in a dense (snow observations from 820 land stations), unutilized observational datasets over the Commonwealth of Independent States. Open waters in the Barents and Kara Sea have been shown to increase the diabatic heating of the atmosphere, which amplifies baroclinic cyclones and might induce a remote atmospheric response by triggering stationary Rossby waves (Honda et al. 2009). In agreement with these studies, our results show enhanced storm activity originating at the Barents and Kara with disturbances entering the continent through a small sector from the Barents and Kara Seas

  4. High-latitude regions of Siberia and Northeast Russia in the Paleogene: Stratigraphy, flora, climate, coal accumulation

    NASA Astrophysics Data System (ADS)

    Akhmetiev, M. A.

    2015-07-01

    The geological structure and development history of superposed depressions on the Arctic coast of East Siberia and Bering Sea region (Chukotka, Koryakiya, northern Kamchatka) in the Early Paleogene are considered with the analysis of their flora and climatic parameters. The paleofloral analysis revealed thermophilic assemblages that reflect phases of maximum warming at the Paleocene-Eocene transition and in the Early Eocene. The appearance of thermophilic plants (Magnoliaceae, Myrtaceae, Lauraceae, Araliaceae, Loranthaceae, and others) in the Siberian segment of the Arctic region is explained by the stable atmospheric heat transfer from the Tethys to higher latitudes and absence of the latitudinal orographic barrier (Alpine-Himalayan belt). The plants migrated to high latitudes also along the meridional seaway that connected the Tethys with the Arctic Ocean via marine basins of the Eastern Paratethys, Turgai Strait, and West Siberia. The migration from the American continent was realized along the southern coast of Beringia under influence of a warm current flowing from low latitudes along the western coast of North America. The palm genus Sabal migrated to northern Kamchatka and Koryakiya precisely in this way via southern Alaska. In the Oligocene, shallow-water marine sediments in high-latitude regions were replaced by terrestrial facies. The Late Oligocene was marked by maximum cooling. Coal accumulation in Northeast Russia through the Paleogene is reviewed.

  5. White Arctic vs. Blue Arctic: Making Choices

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  6. AROME-Arctic: New operational NWP model for the Arctic region

    NASA Astrophysics Data System (ADS)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  7. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    BACKGROUND International Polar Year, which was launched in March 2007, is an international program of coordinated, interdisciplinary scientific research on Earth's polar regions. The northern regions of the eight Arctic States (Canada, Alaska (USA), Russia, Sweden, Norway, Finland. Iceland and Greenland (Denmark) have significant indigenous populations. The circumpolar Arctic is one of the least technologically connected regions in the world, although Canada and others have been pioneers in developing and suing Information and Communication Technology (ICT) in remote areas. The people living in this vast geographic area have been moving toward taking their rightful place in the global information society, but are dependent on the outreach and cooperation of larger mainstream societies. The dominant medium of communication is radio, which is flexible in accommodating multiple cultures, languages, and factors of time and distance. The addition of newer technologies such as streaming on the Internet can increase access and content for all communities of interest, north and south. The Arctic Circle of Indigenous Communicators (ACIC) is an independent association of professional Northern indigenous media workers in the print, radio, television, film and Internet industries. ACIC advocates the development of all forms of communication in circumpolar North areas. It is international in scope. Members are literate in English, French, Russian and many indigenous languages. ACIC has proposed the establishment of a headquarters for monitoring IPY projects are in each area, and the use of community radio broadcasters to collect and disseminate information about IPY. The cooperation of Team IPY at the University of Colorado, Arctic Net at Laval University, and others, is being developed. ACIC is committed to making scientific knowledge gained in IPY accessible to those most affected - residents of the Arctic. ABSTRACT The meeting of the American Geophysical Union will be held

  8. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  9. Arctic Visiting Speakers Series (AVS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Griswold, J.

    2011-12-01

    The Arctic Visiting Speakers (AVS) Series funds researchers and other arctic experts to travel and share their knowledge in communities where they might not otherwise connect. Speakers cover a wide range of arctic research topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Host applications are accepted on an on-going basis, depending on funding availability. Applications need to be submitted at least 1 month prior to the expected tour dates. Interested hosts can choose speakers from an online Speakers Bureau or invite a speaker of their choice. Preference is given to individuals and organizations to host speakers that reach a broad audience and the general public. AVS tours are encouraged to span several days, allowing ample time for interactions with faculty, students, local media, and community members. Applications for both domestic and international visits will be considered. Applications for international visits should involve participation of more than one host organization and must include either a US-based speaker or a US-based organization. This is a small but important program that educates the public about Arctic issues. There have been 27 tours since 2007 that have impacted communities across the globe including: Gatineau, Quebec Canada; St. Petersburg, Russia; Piscataway, New Jersey; Cordova, Alaska; Nuuk, Greenland; Elizabethtown, Pennsylvania; Oslo, Norway; Inari, Finland; Borgarnes, Iceland; San Francisco, California and Wolcott, Vermont to name a few. Tours have included lectures to K-12 schools, college and university students, tribal organizations, Boy Scout troops, science center and museum patrons, and the general public. There are approximately 300 attendees enjoying each AVS tour, roughly 4100 people have been reached since 2007. The expectations for each tour are extremely manageable. Hosts must submit a schedule of events and a tour summary to be posted online

  10. Thermal comfort sustained by cold protective clothing in Arctic open-pit mining—a thermal manikin and questionnaire study

    PubMed Central

    JUSSILA, Kirsi; RISSANEN, Sirkka; AMINOFF, Anna; WAHLSTRÖM, Jens; VAKTSKJOLD, Arild; TALYKOVA, Ljudmila; REMES, Jouko; MÄNTTÄRI, Satu; RINTAMÄKI, Hannu

    2017-01-01

    Workers in the Arctic open-pit mines are exposed to harsh weather conditions. Employers are required to provide protective clothing for workers. This can be the outer layer, but sometimes also inner or middle layers are provided. This study aimed to determine how Arctic open-pit miners protect themselves against cold and the sufficiency, and the selection criteria of the garments. Workers’ cold experiences and the clothing in four Arctic open-pit mines in Finland, Sweden, Norway and Russia were evaluated by a questionnaire (n=1,323). Basic thermal insulation (Icl) of the reported clothing was estimated (ISO 9920). The Icl of clothing from the mines were also measured by thermal manikin (standing/walking) in 0.3 and 4.0 m/s wind. The questionnaire showed that the Icl of the selected clothing was on average 1.2 and 1.5 clo in mild (−5 to +5°C) and dry cold (−20 to −10°C) conditions, respectively. The Icl of the clothing measured by thermal manikin was 1.9–2.3 clo. The results show that the Arctic open-pit miners’ selected their clothing based on occupational (time outdoors), environmental (temperature, wind, moisture) and individual factors (cold sensitivity, general health). However, the selected clothing was not sufficient to prevent cooling completely at ambient temperatures below −10°C. PMID:29021416

  11. Thermal comfort sustained by cold protective clothing in Arctic open-pit mining-a thermal manikin and questionnaire study.

    PubMed

    Jussila, Kirsi; Rissanen, Sirkka; Aminoff, Anna; Wahlström, Jens; Vaktskjold, Arild; Talykova, Ljudmila; Remes, Jouko; Mänttäri, Satu; Rintamäki, Hannu

    2017-12-07

    Workers in the Arctic open-pit mines are exposed to harsh weather conditions. Employers are required to provide protective clothing for workers. This can be the outer layer, but sometimes also inner or middle layers are provided. This study aimed to determine how Arctic open-pit miners protect themselves against cold and the sufficiency, and the selection criteria of the garments. Workers' cold experiences and the clothing in four Arctic open-pit mines in Finland, Sweden, Norway and Russia were evaluated by a questionnaire (n=1,323). Basic thermal insulation (I cl ) of the reported clothing was estimated (ISO 9920). The I cl of clothing from the mines were also measured by thermal manikin (standing/walking) in 0.3 and 4.0 m/s wind. The questionnaire showed that the I cl of the selected clothing was on average 1.2 and 1.5 clo in mild (-5 to +5°C) and dry cold (-20 to -10°C) conditions, respectively. The I cl of the clothing measured by thermal manikin was 1.9-2.3 clo. The results show that the Arctic open-pit miners' selected their clothing based on occupational (time outdoors), environmental (temperature, wind, moisture) and individual factors (cold sensitivity, general health). However, the selected clothing was not sufficient to prevent cooling completely at ambient temperatures below -10°C.

  12. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  13. Russia: St. Petersburg

    Atmospheric Science Data Center

    2013-04-17

    article title:  St. Petersburg, Russia     View Larger Image ... The city in the south eastern portion of the image is Russia's St. Petersburg, which is the most northerly large city in the world at ...

  14. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  15. Russia Between West and East

    DTIC Science & Technology

    2003-10-01

    the West in general and Russia . The contradictions stemming from Russia’s rapprochement with the West are reflected in the balance of forces in ...circulate this thoughtful and comprehensive analysis of Russia and the West by Dr. Mikhail Nosov of the Foundation "East-West Bridges" in Moscow. Eminent... in the West. After all, Russia never had a nation- state of

  16. Russian-US Partnership to Study the 23-km-diameter El'gygtgyn Impact Crater, Northeast Russia

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Minyuk, Pavel S.; Brigham-Grette, Julie; Glushkova, Olga; Layer, Paul; Raikevich, Mikhail; Stone, David; Smirnov, Valdimir

    2002-01-01

    El'gygytgyn crater, located within Eastern Siberia, is a Pliocene-aged (3.6 Ma), well-preserved impact crater with a rim diameter of roughly 23 km. The target rocks are a coherent assemblage of crystalline rocks ranging from andesite to basalt. At the time of impact the region was forested and the Arctic Ocean was nearly ice-free. A 15-km lake fills the center of the feature and water depths are approximately 175 m. Evidence of shock metamorphism, -- including coesite, fused mineral glasses, and planar deformation features in quartz -- has been reported. This feature is one of the youngest and best preserved complex craters on Earth. Because of its remote Arctic setting, however, El gygytgyn crater remains poorly investigated. The objectives of this three-year project are to establish and maintain a research partnership between scientists from Russia and the United States interested in the El gygytgyn crater. The principal institutions in the U.S. will be the Geophysical Institute, University of Alaska Fairbanks and the University of Massachusetts Amherst. The principal institution in Russia will be the North East Interdisciplinary Scientific Research Institute (NEISRI), which is the Far-East Branch of the Russian Academy of Science. Three science tasks are identified for the exchange program: (1) Evaluate impactite samples collected during previous field excursions for evidence of and level of shock deformation. (2) Build a high-resolution digital elevation model for the crater and its surroundings using interferometric synthetic aperture radar techniques on JERS-1, ERS-1, ERS-2, and/or RadarSat range-doppler data. (3) Gather all existing surface data available from Russian and U.S. institutions (DEM, remote sensing image data, field-based lithological and sample maps, and existing geophysical data) and assemble into a Geographic Information Systems database.

  17. From Russia with Montessori

    ERIC Educational Resources Information Center

    Selman, Ruth Corey

    2005-01-01

    As leader of a People-to-People tour to Russia, and one whose family history is linked to the cataclysmic history of 20th-century Russia, Ruth Corey, felt a special responsibility to introduce her traveling companions to Russia, and Russian Montessorians to her cohorts. Her traveling companions were a group of 15 Montessori teachers, committed to…

  18. Marine radioactivity in the Arctic: a retrospect of environmental studies in Greenland waters with emphasis on transport of 90Sr and 137Cs with the East Greenland Current.

    PubMed

    Aarkrog, A; Dahlgaard, H; Nielsen, S P

    1999-09-30

    The waters around Greenland have received radioactive contamination from three major sources: Global fallout, discharges from the nuclear fuel reprocessing plant Sellafield in the UK, and the Chernobyl accident in the Former Soviet Union (FSU). The global fallout peaked in the early 1960s. The radiologically most important radionuclides from this source are 90Sr and 137Cs. The input of global fallout to arctic waters was direct deposition from the atmosphere and indirect delivery through river run off and advection from the Atlantic Ocean via the north-east Atlantic current system. The waterborne discharges from Sellafield which were at their peak between 1974 and 1981 contributed primarily 137Cs, although some 90Sr was also discharged. The Chernobyl accident in 1986 was characterised by its substantial atmospheric release of radiocaesium (134Cs and 137Cs). Other sources may, however, also have contributed to the radioactivity in the Greenland waters. Examples include La Hague, France, and radioactive discharges to the great Siberian rivers (Ob, Yenisey and Lena) from nuclear activities in the Former Soviet Union or the local fallout from the Novaya Zemlya nuclear weapons test site. Dumping of nuclear waste in the Kara and Barents Seas may be another, although minor source. From measurements in Greenland waters carried out since 1962 the transport of radionuclides with the East Greenland Current is calculated and compared with the estimated inputs of 90Sr and 137Cs to the Arctic Ocean. This study focus on 90Sr and 137Cs because the longest time series are available for these two radionuclides.

  19. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    NASA Astrophysics Data System (ADS)

    Stein, R.; Coakley, B.

    2009-04-01

    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the

  20. Environmental Studies in the Boreal Forest Zone: Summer IPY Institute at Central Boreal Forest Reserve, Fedorovskoe, Tver area, Russia (14-28 August, 2007)

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Kurbatova, Y.; Groisman, P.; Alexeev, V.

    2007-12-01

    The Summer Institute was organized by the International Arctic Research Center (IARC) at the University of Alaska Fairbanks, in collaboration with the A.N. Severtsov Institute for Ecology and Evolution of the Russian Academy of Sciences in Moscow, Russia, and the Central Forest State Nature Biosphere Reserve in Fedorovskoe, Russia. The Institute was arranged as a part of the education/outreach activities of the International Polar Year (IPY) at the University of Alaska and the Northern Eurasia Earth Science Partnership Initiative (NEESPI) and was held in Russia. The Institute provided a unique opportunity for participants to learn about the climate and environment of Northern Eurasia from leading scientists and educators, in a wide spectrum of polar and Earth system science disciplines from meteorology, biology, chemistry, and earth system modeling. Additionally, the Institute attendees observed and participated in the biospheric research activities under the guidance of experienced scientists. During a two-week-interval, the School attendees heard 40 lectures, attended several field trips and participated in three brainstorming Round Table Workshop Sessions devoted to perspectives of the boreal forest zone research and major unresolved problems that it faces. Thirty professors and experts in different areas of climate and biosphere research from Russia, the United States, Germany, Finland, and Japan, shared their expertise in lectures and in round table discussions with the Institute participants. Among the Institute participants there were 31 graduate students/early career scientists from six countries (China, Russia, Estonia, Finland, UK, and the United States) and eight K-12 teachers from Russia. The two groups joined together for several workshop sessions and for the field work components of the Institute. The field work was focused on land-atmosphere interactions and wetland studies in the boreal forest zone. Several field trips in and outside the Forest

  1. Black Carbon and Sulfate Aerosols in the Arctic: Long-term Trends, Radiative Impacts, and Source Attributions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.

    2017-12-01

    The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and

  2. Arctic rabies--a review.

    PubMed

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  3. Arctic Haze Analysis

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  4. Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal

    PubMed Central

    Pant, Ganesh R.; Lavenir, Rachel; Wong, Frank Y. K.; Certoma, Andrea; Larrous, Florence; Bhatta, Dwij R.; Bourhy, Hervé

    2013-01-01

    Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal. PMID:24278494

  5. The oldest island arc and ophiolite complexes of the Russian Arctic (Taimyr Peninsula)

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Metelkin, Dmitriy V.; Matushkin, Nikolay Y.; Romanova, Irina V.

    2015-04-01

    Knowing the age of indicator complexes such as island arc, ophiolite, collisional, subductional etc. is extremely important for paleogeodynamic reconstructions. The age along with other geological and geophysical data enables the reestablishing of the positions of terranes of various origins in relation to continental margins and to each other. When studying the issues concerning the ancient Arctida paleocontinent, the nature of terranes and continental plates that compose the present day arctic shelf and submerged ridges it is important to determine the main stages of tectonic events. At the same time it is particularly important to establish the earliest stages of tectonic transformations. The Taimyr-Severnaya Zemlya orogenic belt is one of the large accretionary-collisional key structures in the Arctic. The Central Taimyr accretionary belt includes two granite-metamorphic terranes: Faddey and Mamont-Shrenk that include the oldest igneous formations of Taimyr. Those are granitoids with U/Pb zircons age of 850-830 Ma (Faddey) and 940-885 Ma (Mamont-Shrenk). Presently we have determined fragments of paleo-island arcs and ophiolites in the framing of these terranes. Moreover, in addition to already identified Neoproterozoic (755-730 Ma) ophiolites and island arc rocks (plagiogranites, gabbro, volcanics) we found more ancient rock complexes in the framings of both terranes closer in age to the Meso-Neoproterozoic boundary. In the region of the Tree Sisters Lake a paleo-island arc complex was found including plagiogranites and plagiorhyodacites with U-Pb isotopic zircon age of 969-961 Ma. Sm-Nd isotopic data for these rocks showed a Mesoproterozoic model age: TNd(DM) varies from 1170 to 1219 Ma. These data as well as Rb-Sr isotopic investigations indicate a predominance of a mantle component in the magmatic sources of these rocks: ɛNd (967-961) = 5.1-5.2 and (87Sr/86Sr)0 =0.70258-0.70391. In the framing of the Mamont-Shrenk terrane we determined ophiolite fragments

  6. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    NASA Astrophysics Data System (ADS)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  7. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  8. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    NASA Astrophysics Data System (ADS)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km-2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including

  9. Anthropogenic heavy metals in the environment of Eurasian Arctic Nature Reserves

    NASA Astrophysics Data System (ADS)

    Vinogradova, Anna; Ivanova, Yulia; Karpov, Alexey

    2014-05-01

    The Russian Arctic Nature Reserves are situated far from the main industrial regions. In spite of this, there are anthropogenic constituents (for example, heavy metals - HM) in the environmental objects (air, water, etc.) and in food chains (plants, birds, and so on). We studied the long-range atmospheric transport of some heavy metals (such as nickel, copper, lead, arsenic, and so on) to four Nature Reserves situated near the shore of the Arctic Ocean - in the Deltas of the Pechora River (Nenets reserve), the Ob River (Gydansky reserve), the Lena River (Ust-Lensky reserve), and at Wrangel Island. The air mass trajectories to each reserve were calculated with the help of the site (www.arl.noaa.gov/ready) for each day of January, April, July, and October for the period of 2001-2010. Analyzing the spatial distributions of these trajectories we studied seasonal variations in air transport of pollution to different Russian Arctic points. Modeling the HM transport in the atmosphere was as in [1]. The main assumption is that HM are transported with submicron aerosol particles. The annual source emissions for the last decade are generalized from the data published by Roshydromet of Russia (http://www.nii-atmosphere.ru/files/PUBL/Eg_2008.doc). The main important source-regions were found for each point. Mean anthropogenic HM concentrations in air and precipitations, as well as HM fluxes onto the surface were estimated at different arctic regions. The spatial distributions of so called "potential function of pollution" were calculated and presented on the maps. These results allow to analyze the role of a real pollution source or of a planned source for each reserve. So, the influence of northern oil and gas industry may be of great importance because of its proximity to the reserves under investigation. The work was partly supported by RFBR, grant No. 14-05-00059. Authors thank the NOAA service for possibility to use their data and products. ________________ 1. Vinogradova

  10. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    NASA Astrophysics Data System (ADS)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The

  11. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake.

    PubMed

    Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N

    2006-10-01

    There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.

  12. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    NASA Astrophysics Data System (ADS)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  13. Distribution and Sources of Black Carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC

  14. Ice-Free Arctic Ocean?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  15. Seismic and Geophysical Characterization of Northern Asia

    DTIC Science & Technology

    2010-09-01

    seismic networks in Russia and Japan. The geographic scope of this project covers Russia from the Urals to the Bering Strait and from the Arctic Ocean to...Russia and Japan. The geographic scope of this project covers Russia from the Urals to the Bering Strait and from the Arctic Ocean to the North Korean...between these somewhat correspond to the boundaries of the microplates , it is our intention to use significantly more data from the region to define

  16. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  17. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    article title:  Summer in the Arctic National Wildlife Refuge     View Larger Image This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging ...

  18. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  19. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    NASA Astrophysics Data System (ADS)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  20. Live from the Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  1. Spatial and Temporal Patterns in Black Carbon Deposition to Dated Fennoscandian Arctic Lake Sediments from 1830 to 2010.

    PubMed

    Ruppel, Meri M; Gustafsson, Örjan; Rose, Neil L; Pesonen, Antto; Yang, Handong; Weckström, Jan; Palonen, Vesa; Oinonen, Markku J; Korhola, Atte

    2015-12-15

    Black carbon (BC) is fine particulate matter produced by the incomplete combustion of biomass and fossil fuels. It has a strong climate warming effect that is amplified in the Arctic. Long-term trends of BC play an important role in assessing the climatic effects of BC and in model validation. However, few historical BC records exist from high latitudes. We present five lake-sediment soot-BC (SBC) records from the Fennoscandian Arctic and compare them with records of spheroidal carbonaceous fly-ash particles (SCPs), another BC component, for ca. the last 120 years. The records show spatial and temporal variation in SBC fluxes. Two northernmost lakes indicate declining values from 1960 to the present, which is consistent with modeled BC deposition and atmospheric measurements in the area. However, two lakes located closer to the Kola Peninsula (Russia) have recorded increasing SBC fluxes from 1970 to the present, which is likely caused by regional industrial emissions. The increasing trend is in agreement with a Svalbard ice-core-BC record. The results suggest that BC deposition in parts of the European Arctic may have increased over the last few decades, and further studies are needed to clarify the spatial extent of the increasing BC values and to ascertain the climatic implications.

  2. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    DOE PAGES

    Muster, Sina; Roth, Kurt; Langer, Moritz; ...

    2017-06-06

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1.0 × 10 4 m 2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 withmore » a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 × 10 6 km 2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1.0 ×10 6 m 2 down to 1.0 ×10 2 m 2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1.0 ×10 to 9.4 × 10 1 km –2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. In conclusion, the implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands.« less

  3. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muster, Sina; Roth, Kurt; Langer, Moritz

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1.0 × 10 4 m 2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 withmore » a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 × 10 6 km 2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1.0 ×10 6 m 2 down to 1.0 ×10 2 m 2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1.0 ×10 to 9.4 × 10 1 km –2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. In conclusion, the implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands.« less

  4. The Age of the Arctic.

    ERIC Educational Resources Information Center

    Young, Oran R.

    1986-01-01

    Examines trends related to exploration in the Arctic by considering: (1) technology and military strategies; (2) foreign policy and the Arctic; (3) Arctic industrialization; (4) the Arctic policy agenda; and (5) recent United States initiatives in this region. (JN)

  5. Comparison of the Impact of the Arctic Oscillation and East Atlantic - West Russia Teleconnection on Interannual Variation in East Asian Winter Temperatures and Monsoon

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2014-01-01

    The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  6. Arctic science input wanted

    NASA Astrophysics Data System (ADS)

    The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.

  7. Arctic Rabies – A Review

    PubMed Central

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology. PMID:15535081

  8. The 1994 Arctic Ocean Section. The First Major Scientific Crossing of the Arctic Ocean,

    DTIC Science & Technology

    1996-09-01

    contribute to the international effort to better understand the role of the Arctic Ocean in the global carbon cycle and climate change. Summar...Barium Distributions in the Arctic Ocean ? ........................ 32 Biology and the Carbon Cycle Cycling of Organic Carbon in the Central Arctic...of Heterotrophic Bacteria and Protists in the Arctic Ocean Carbon Cycle............. 40

  9. A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in 2000-2003

    NASA Astrophysics Data System (ADS)

    Su, Yushan; Hung, Hayley; Blanchard, Pierrette; Patton, Gregory W.; Kallenborn, Roland; Konoplev, Alexei; Fellin, Phil; Li, Henrik; Geen, Charles; Stern, Gary; Rosenberg, Bruno; Barrie, Leonard A.

    Air concentrations of organochlorine pesticides (OCPs) were measured on a weekly basis in 2000-2003 at six Arctic stations, which include Alert, Kinngait, and Little Fox Lake in Canada; Point Barrow in the USA; Valkarkai in Russia; and Zeppelin in Norway. These stations cover a large region in the Arctic, providing a comprehensive perspective on OCPs in the circumpolar atmosphere. Currently used pesticide endosulfan I had similar concentrations across the stations in November-May, whereas large spatial divergence was found in June-October. This implies the extensive usage of endosulfan during summertime followed by long-range transport to the Arctic. The median air concentration of endosulfan I was 3.2 pg m -3 ( n=245). Seasonally and spatially uniform concentrations of legacy chlordane-related compounds indicated that the influence of primary emissions on Arctic air has become less important than volatilization emissions. Median air concentrations (pg m -3) of trans-chlordane, cis-chlordane, trans-nonachlor, oxychlordane, and heptachlor exo-epoxide were 0.20 ( n=413), 0.58 ( n=413), 0.44 ( n=413), 0.30 ( n=245), and 0.54 ( n=244), respectively. Although extensive usage was banned in the 1970s, large spatial variations reflected that DDT-related compounds were not well mixed in Arctic air. Concentrations of DDT-related compounds were low in general, and median concentrations of p, p'-DDT, o, p'-DDT, p, p'-DDE, o, p'-DDE, and ∑ 4DDT were 0.10, 0.18, 0.37, 0.10, and 0.79 pg m -3 ( n=418), respectively. Air concentrations of pentachloroanisole and dieldrin showed strong seasonal/spatial variations with median values of 3.8 and 0.48 pg m -3 ( n=245). Uniform concentrations were observed for octachlorostyrene with a median of 0.32 pg m -3 ( n=245). Arctic air concentrations of other measured OCPs, such as endrin, heptachlor, methoxychlor, mirex, photomirex, tetrachloroveratrole, trichloroveratrol, and trifluralin, were generally low and mostly below method detection

  10. SEARCH: Study of Environmental Arctic Change-A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2011-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: (1) Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. (2) Identifies emerging issues in arctic environmental change. (3) Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. (4) Coordinates with national arctic science programs integral to SEARCH goals. (5) Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. (6) Represents the U.S. arctic environmental change science community in international and global change research initiatives. Examples of specific SEARCH activities include: (1) Arctic Observing Network (AON) - a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. (2) Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. (3) Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. (4) Developing recommendations for an interagency "Understanding Arctic Change" program. In addition to the above activities, SEARCH is also currently undertaking a strategic planning process to define priority goals and objectives for the next 3-5 years. SEARCH is guided by a Science Steering Committee and

  11. Seasonal Clear-Sky Flux and Cloud Radiative Effect Anomalies in the Arctic Atmospheric Column Associated with the Arctic Oscillation and Arctic Dipole

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    The impact of the Arctic Oscillation (AO) and Arctic Dipole (AD) on the radiative flux into the Arctic mean atmospheric column is quantified. 3-month-averaged AO and AD indices are regressed with corresponding surface and top-of-atmosphere (TOA) fluxes from the CERES-SFC and CERES-TOA EBAF datasets over the period 2000-2014. An increase in clear-sky fluxes into the Arctic mean atmospheric column during fall is the largest net flux anomaly associated with AO, primarily driven by a positive net longwave flux anomaly (i.e. increase of net flux into the atmospheric column) at the surface. A decrease in the Arctic mean atmospheric column cloud radiative effect during winter and spring is the largest flux anomaly associated with AD, primarily driven by a change in the longwave cloud radiative effect at the surface. These prominent responses to AO and AD are widely distributed across the ice-covered Arctic, suggesting that the physical process or processes that bring about the flux change associated with AO and AD are distributed throughout the Arctic.

  12. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, D W; Edson, R; Varela, M

    1999-11-15

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacificmore » Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as

  13. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  14. Arctic Climate Systems Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in themore » Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.« less

  15. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  16. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  17. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    PubMed

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.

    2013-12-01

    SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network

  19. Dynamical mechanisms of Arctic amplification.

    PubMed

    Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia

    2018-05-12

    The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.

  20. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    USGS Publications Warehouse

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin M.; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps

  1. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  2. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    PubMed

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. 77 FR 12880 - Uranium From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-539-C (Third Review)] Uranium From Russia... U.S.C. 1675(c)), that termination of the suspended investigation on uranium from Russia would be... from Russia: Investigation No. 731-TA-539-C (Third Review). By order of the Commission. Issued...

  4. Contemporary Arctic Sea Level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  5. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia

    NASA Astrophysics Data System (ADS)

    Gershenzon, O.

    2011-12-01

    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  6. Results of an Arctic Council survey on water and sanitation services in the Arctic.

    PubMed

    Bressler, Jonathan M; Hennessy, Thomas W

    2018-12-01

    As part of a project endorsed by the Arctic Council's Sustainable Development Working Group (SDWG), a survey was conducted to describe the current status of water, sanitation and hygiene (WASH) services in the Arctic region. The English language internet-based survey was open from April to September, 2016 and drew 142 respondents from seven Arctic nations. Respondents provided information on access to WASH services, notification requirements for water-related infectious diseases, and examples of environmental- or climate-change related events that impact the provision of WASH services. Many remote Arctic and sub-Arctic residents lack WASH services, and these disparities are often not reflected in national summary data. Environmental changes impacting WASH services were reported by respondents in every Arctic nation. Participants at an international conference co-sponsored by SDWG reviewed these results and provided suggestions for next steps to improve health of Arctic residents through improved access to water and sanitation services. Suggestions included ongoing reporting on WASH service availability in underserved populations to measure progress towards UN Sustainable Development Goal #6; evaluations of the health and economic consequences of disparities in WASH services; and Arctic-specific forums to share innovations in WASH technology, improved management and operations, and adaptation strategies for environmental or climate change.

  7. Results of an Arctic Council survey on water and sanitation services in the Arctic

    PubMed Central

    Bressler, Jonathan M.; Hennessy, Thomas W.

    2018-01-01

    ABSTRACT As part of a project endorsed by the Arctic Council’s Sustainable Development Working Group (SDWG), a survey was conducted to describe the current status of water, sanitation and hygiene (WASH) services in the Arctic region. The English language internet-based survey was open from April to September, 2016 and drew 142 respondents from seven Arctic nations. Respondents provided information on access to WASH services, notification requirements for water-related infectious diseases, and examples of environmental- or climate-change related events that impact the provision of WASH services. Many remote Arctic and sub-Arctic residents lack WASH services, and these disparities are often not reflected in national summary data. Environmental changes impacting WASH services were reported by respondents in every Arctic nation. Participants at an international conference co-sponsored by SDWG reviewed these results and provided suggestions for next steps to improve health of Arctic residents through improved access to water and sanitation services. Suggestions included ongoing reporting on WASH service availability in underserved populations to measure progress towards UN Sustainable Development Goal #6; evaluations of the health and economic consequences of disparities in WASH services; and Arctic-specific forums to share innovations in WASH technology, improved management and operations, and adaptation strategies for environmental or climate change. PMID:29383987

  8. Redefining U.S. Arctic Strategy

    DTIC Science & Technology

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  9. Variability of extreme climate events in the territory and water area of Russia

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Kostianoy, Andrey

    2016-04-01

    (depending on the parameters) in the territory and water area of Russia for determining and mapping of the observed characteristics and trends in the extreme climate events and statistical forecast of these events for the next decades. Determination of a frequency, intensity and duration of extreme climate events in the territory and water area of Russia was done for the first time. It was found that the interannual-scale dynamics of ENSO is actually reflected in the climate features of different regions of the Earth, including the Russian Arctic. In particular, when the boreal winter season coincides with an El Niño event it is indicative by a negative anomaly of near-surface temperature (about -1°C) and a positive anomaly of sea level pressure over the Russian Western Arctic Basin. In contrary, significant (about +1°C) positive anomaly of near-surface temperature along with reduced sea level pressure over the regions of the Barents, White and Kara Seas is typical for any La Niña event (up to 95% significance of Student's t-test). The study was carried out with a support of the Russian Science Foundation Grant (Project N 14-50-00095).

  10. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  11. The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.

  12. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    DTIC Science & Technology

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  13. Arctic: A Friend Acting Strangely

    Science.gov Websites

    frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar

  14. Nuclear weapons and NATO-Russia relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, G.C.

    1998-12-01

    Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountabilitymore » and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.« less

  15. Arctic Research Plan: FY2017-2021

    USGS Publications Warehouse

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  16. The Immediacy of Arctic Change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Wang, M.; Soreide, N. N.

    2015-12-01

    Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.

  17. Ecohydrologic Changes due to Tree Expansion into Tundra in the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Wang, J.; El Sharif, H. A.; Liu, D.; Sheshukov, A. Y.; Mazepa, V.; Shiyatov, S.; Sokolov, A.

    2017-12-01

    The Arctic has been warming at an accelerating rate over the last several decades and the changing climate has caused the invasion of trees and shrubs into tundra across the polar regions of Alaska, Canada, and Russia. These vegetation changes may have the potential to impact regional hydrology and climate. This study aims to develop mechanistic and quantitative understanding of implications of forest encroachment into tundra. Specifically, for several areas with well-documented larch and spruce expansion in the Polar Urals and southern Yamal Peninsula of Russia over 1960-2010s, we hypothesize that the encroachment process alters the seasonality of energy budget characterized by enhanced total evapotranspiration and concomitant subsurface warming. We are collecting a comprehensive set of field observational data on micrometeorology, snow conditions, radiative fluxes, tree sap flows, soil temperature, moisture, and heat fluxes, and active layer thickness. A novel model of maximum entropy production (MEP) is used to derive the surface energy budgets as the partition of radiative fluxes into turbulent and conductive heat fluxes across the ecotone interface. We are presenting preliminary findings that illustrate the identified differences of seasonal snow and heat budget regimes for two contrasting sites: one of which has experienced a recent tree encroachment, while for the other this process has not yet occurred. Observed and modeled heat fluxes are used to inform a comprehensive physical model to study the impact of vegetation encroachment process on the permafrost dynamics.

  18. Moscow meltdown: Can Russia survive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, J.E.

    Western intelligence analysts and policy makers should pay closer attention to the centrifugal forces in Russia for two primary reasons: nuclear weapons are located in some of the most volatile regions, and central control of the armed forces is eroding. If Russia were to fragment, thousands of weapons and tons of fissile materials would be dispersed to new states with little safeguards infrastructure and little experience in controlling borders, a situation potentially far more dangerous than the breakup of the Soviet Union. Nuclear research, production, maintenance, and dismantlement facilities, plus uranium enrichment and plutonium separation facilities, could be inherited bymore » new, unstable states. Further devolution of political authority could loosen control over sensitive exports and increase the risk of terrorist acquisition of fissile materials. This article discusses the confusion over the legitimacy of the physical and political boundaries of the Russian Federation; then, the economic incentives for regionalism in Russia; next, the main ethnic groups in Russia and the roots of ethnic nationalism in the Russian Federation. It then discusses political disarray in the center and in the regions, and the lack of unity among order-enforcing entities; focuses in somewhat more detail on the Volga-Ural region, where there is a concentration of nuclear weapons and facilities, and which is especially volatile politically. These factors taken together call into question Russia's viability as a state. In post-communist Russia, chaos has replaced order; license has replaced terror. Order-enforcing entities are eviscerated or in conflict. Neither economic shock therapy nor Group of Seven funds can help with these problems; Russia will not be a state until new unifying institutions are created, whether they are democratic or authoritarian.« less

  19. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; hide

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  20. Arctic Research NASA's Cryospheric Sciences Program

    NASA Technical Reports Server (NTRS)

    Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.

  1. Satellite observation of pollutant emissions from gas flaring activities near the Arctic

    NASA Astrophysics Data System (ADS)

    Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Fu, Joshua S.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee

    2016-05-01

    Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at ˜1 × 1015 molecules cm-2, suggesting sizeable emissions from these industrial activities. Statistically significant (at the 95% confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (±0.01) × 1015 and 0.015 (±0.006) × 1015 molecules cm-2 year-1 over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (±0.006) × 1015 molecules cm-2 year-1. This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire.

  2. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    NASA Astrophysics Data System (ADS)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    Lake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP "El'gygytgyn Drilling Project" and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in

  3. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  4. Shared Knowledge for Addressing Impacts of Land Use Transitions on Reindeer Husbandry in Northern Russia

    NASA Astrophysics Data System (ADS)

    Maynard, N.; Yurchak, B.; Sleptsov, Y.; Turi, J. M.

    2004-12-01

    Reindeer husbandry in Northern Russia is an economic activity with a special cultural dimension of utmost importance to the indigenous peoples. Climate changes with warmer temperatures are creating significant problems now in the Arctic for the reindeer herds. These climate factors, industrial development, and the recent transition of Russia to a market economy have resulted in a nearly complete disruption of any system of supply of goods and services and health care to indigenous peoples. In turn, this has caused rapidly deteriorating health and living conditions in the indigenous reindeer herder communities. To try to address some of these issues, a NASA-reindeer herder partnership, called Reindeer Mapper, has been initiated which is establishing a system to bring indigenous traditional and local knowledge together with scientific and engineering knowledge, remote sensing and information technologies to create a more powerful information base for addressing these environmental, climate, industrial, political, and business problems. Preliminary results from the Reindeer Mapper pilot project will be presented including a special information-sharing communications system for the Reindeer Mapper project (a private intranet system), several NASA data sets useful to the herders including SAR and Landsat imagery, local knowledge of herd distributions, ground-based data, and weather observations. Results will also be presented from the first NASA-reindeer herder science and indigenous knowledge summer camp for children of reindeer herders from the Republic of Sakha (Yakutia).

  5. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  6. Assessment of Undiscovered Oil and Gas Resources of the Timan-Pechora Basin Province, Russia, 2008

    USGS Publications Warehouse

    Schenk, C.J.; Bird, K.J.; Charpentier, R.R.; Gautier, D.L.; Houseknecht, D.W.; Klett, T.R.; Moore, T.; Pawlewicz, M.J.; Pittman, J.; Tennyson, Marilyn E.

    2008-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered oil and gas potential of the Timan-Pechora Basin Province in Russia as part of the USGS Circum-Arctic Oil and Gas Resource Appraisal program. Geologically, the Timan-Pechora Basin Province is a triangular-shaped cratonic block bounded by the northeast-southwest trending Ural Mountains and the northwest-southeast trending Timan Ridge. The northern boundary is shared with the South Barents Sea Province (fig.1). The Timan-Pechora Basin Province has a long history of oil and gas exploration and production. The first field was discovered in 1930 and, after 75 years of exploration, more than 230 fields have been discovered and more than 5,400 wells have been drilled. This has resulted in the discovery of more than 16 billion barrels of oil and 40 trillion cubic feet of gas.

  7. Toward an Arctic Strategy

    DTIC Science & Technology

    2009-02-01

    Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the

  8. Genomics of Arctic cod

    USGS Publications Warehouse

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  9. 77 FR 31677 - Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic Research Plan: FY2013-2017 May 22, 2012. ACTION: Request for public comment. SUMMARY: The Arctic Research and Policy Act of 1984 (ARPA), Public Law 98-373, established the...

  10. The International Arctic Buoy Programme (IABP): A Cornerstone of the Arctic Observing Network

    DTIC Science & Technology

    2008-09-01

    SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE The International Arctic Buoy Programme ( IABP ): A...Prescribed by ANSI Std Z39-18 The International Arctic Buoy Programme ( IABP ): A Cornerstone of the Arctic Observing Network Ignatius G. Rigor...changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the IABP (http

  11. Impact Studies of a 2 C Global Warming on the Arctic Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2004-01-01

    The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea ice from late 1970s to 2003. Updated satellite data indicate that the perennial ice continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea ice concentration in the seasonal sea ice regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial ice area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea ice covered areas suggesting a thinning in the ice cover. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea ice cover would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.

  12. Food and water security issues in Russia I: food security in the general population of the Russian Arctic, Siberia and the Far East, 2000-2011.

    PubMed

    Dudarev, Alexey A; Alloyarov, Pavel R; Chupakhin, Valery S; Dushkina, Eugenia V; Sladkova, Yuliya N; Dorofeyev, Vitaliy M; Kolesnikova, Tatijana A; Fridman, Kirill B; Nilsson, Lena Maria; Evengård, Birgitta

    2013-01-01

    Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination) have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000-2011. Food costs in the regions are high, comprising 23-43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil) are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries) is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Improvement of the food supply and food accessibility in the regions of the Russian Arctic, Siberia and the Far East is of utmost importance. Both quantitative and qualitative

  13. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  14. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  15. Undiscovered Arctic gas hydrates: permafrost relationship and resource evaluation.

    NASA Astrophysics Data System (ADS)

    Cherkashov, G. A.; Matveeva, T.

    2011-12-01

    (GHSZ), which is shifted downwards due to permafrost degradation (Istomin et al., 2006; Dallimore and Collett, 1995). It is also believed that thermal conditions favourable to the formation of gas hydrates within permafrost have existed since the end of the Pliocene (about 1.88 Ma) (Collet and Dallimore, 2000). We estimate the total area of the distribution of GHSZ in the Arctic Ocean (including shelf areas, continental slope, and deep-sea troughs) to be as much as four million km2. Assuming the average gas amount per unit area in a separate gas hydrate accumulation to be 5x106 m3/km2 (Soloviev et al., 1999), it can be estimated that Arctic hydrates contain about 20 billion m3 of methane. The total area of GHSZ distribution within the Arctic seas off Russia is estimated to be about 1 million km2, with potential resources of gas in the hydrate state of about 2.36 billion m3. It should be noted, however, that field data are sparse and investigations are still producing surprising results, indicating that our understanding of gas hydrate formation and distribution within and out of sub-sea permafrost is incomplete. Estimates of the current and future release of methane from still undiscovered hydrates require particularly knowledge of the recent geological history of Polar Regions.

  16. Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008

    NASA Astrophysics Data System (ADS)

    Qi, Ling; Li, Qinbin; Henze, Daven K.; Tseng, Hsien-Liang; He, Cenlin

    2017-08-01

    We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40-43 %) before 18 April and by Siberian open biomass burning emissions (29-41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24-68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20-25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in northern China, contribute significantly (˜ 10 %) to surface BC across the Arctic. On average, it takes ˜ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (˜ 50 % at Barrow and Zeppelin and ˜ 10 % at Alert). The large contributions from Asian anthropogenic

  17. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE PAGES

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; ...

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM 2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM 2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we findmore » that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM 10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM 2.5, modeled black carbon and SO 4 = concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during

  18. 76 FR 47238 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Russia Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... nitrate from Russia would be likely to lead to continuation or recurrence of material injury to an... USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from Russia: Investigation No. 731-TA...

  19. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, Rashed; von Salzen, Knut; Flanner, Mark

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonalmore » cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.« less

  20. a Coupled GCM Comparison of Marine Isotope Stages 1, 5e, 11c and 31 IN Relation to Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R.; Melles, M.; Brigham-Grette, J.; Minyuk, P.

    2012-12-01

    The lack of scientific data concerning interglacials of the Pleistocene in the Arctic has been a major obstacle within the climate community. Study of the interglacials of Marine Isotope Stage(s) (MIS) 1, 5e, 11c and 31 in high latitudes is important to decoding Arctic sensitivity and providing us with a potential analogue for a future Arctic with climate change. Data from a sediment core recovered from Lake El'Gygytgyn in northeastern (NE) Russia gives a continuous, high-resolution record of the Arctic spanning the past 2.8 million years whilst recording these interglacials. The data was used to correlate simulated interglacial Arctic climate with Arctic climate derived from sediment core proxy studies. Here, we use a Global Circulation Model (GCM) with a coupled atmosphere and land-surface scheme complete with an interactive vegetation component to simulate marine isotope stages 1, 5e, 11c and 31 in the Arctic. GCM simulations of MIS 5e and 31 in the Arctic both show a warmer arctic climate that can be explained by high obliquity, high eccentricity, high CO2 (287 ppmv ,325 ppmv , respectively) and precession that aligns perihelion with boreal summer. Consequently, MIS 5e showed the greatest summer warming compared to the other interglacials and pre-industrial control. However, the distinctly higher values of mean temperature of the warmest month (MTWM) and annual precipitation during stage 11c cannot readily be explained by summer orbital forcings and greenhouse gas (GHG) concentrations. Montane forest is seen migrating northward in stages 1, 5e and 31 as the surface insolation increases and sea ice melts, whereas in 11c, the warmest of the interglacials, evergreen forest takes over and migrates pole ward toward the coast. Feedback from low albedo forest biome was studied and conclusions suggest the increase in temperature due to forest cover is insignificant in creating a significantly warm regional climate. The warming associated with a lack of a Greenland Ice

  1. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  2. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  3. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in the Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kauristie, Kirsti; Weatherwax, Allan T.; Sheehan, Glenn W.; Smith, Roger W.; Sandahl, Ingrid; Ostgaard, Nikolai; Chernouss, Sergey; Thompson, Barbara J.; Peticolas, Laura; hide

    2008-01-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2808 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun- Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedidpodcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  4. Why Russia is not a state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, J.E.

    1993-08-16

    This article makes two principal points. First the author argues that the Russian federation has never been a state and is not sustainable as a state. Four centrifugal indicators are presented to support this claim: ethnic divisiveness; uncertainty about the legitimacy of Russia`s current borders; competing claims for legitimacy on the part of federal and regional leaders; and army units` unpredictable allegiances. Second, she argues that Soviet policies intended to facilitate central control of the periphery had the perverse effect of creating ethnic identity and demands for national autonomy where, in many cases, they did not exist prior to themore » Communist regime. Following the introduction, part one briefly reviews the concepts of state, nation, and nationalism and the roles they play in Russia. Criteria for state-hood are discussed. Part two lists the main ethnic groups in Russia and considers the roots of ethnic nationalism in the Russian Federation. Part three discusses confusion over the legitimacy of the physical, economic, and political boundaries of the Russian Federation. Part four discusses political disarray in the center and the regions and the lack of unity among order-enforcing entities. The Volga-Ural region -- where there is a large concentration of nuclear weapons and facilities, and which is especially volatile politically -- is discussed in somewhat more detail. Part five argues that these factors taken together call into question Russia`s identity as a state. The author concludes that Russia remains a multi-ethnic empire in which the rule of law is still not supreme.« less

  5. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2010-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to understand system-scale arctic change. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities. The SEARCH program is guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and focused panels. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the National Science Foundation’s (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF’s Arctic System Science (ARCSS) Program. The SEARCH Sea Ice Outlook (http://www.arcus.org/search/seaiceoutlook/index.php) is an "Understanding Change" synthesis effort that aims to advance our understanding of the arctic sea ice system. The Responding to Change element currently includes initial planning efforts by the International Study of Arctic Change (ISAC) program as well as a newly-launched "Sea Ice for Walrus Outlook," which is a weekly report of sea ice conditions geared to Alaska Native walrus subsistence hunters, coastal communities, and others interested in sea ice and walrus (http://www.arcus.org/search/siwo). SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http

  6. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  7. Arctic Security Considerations and the U.S. Navy’s Roadmap for the Arctic

    DTIC Science & Technology

    2010-01-01

    observed in the sea, in the air, and on land. Indigenous Arctic people are facing relocation and loss of communities as sea-ice melt causes increased...sea-ice melting associated with global climate change has caused leadersfrom the United States and the international community to reconsider the...of the Navy as a valued partner by the joint, interagency, and international communities . THE CHANGING ARCTIC ENVIRONMENT The Arctic has long been a

  8. Aging in Russia.

    PubMed

    Strizhitskaya, Olga

    2016-10-01

    Russia has always been at an intersection of Western and Eastern cultures, with its dozens of ethnic groups and different religions. The federal structure of the country also encompasses a variety of differences in socioeconomic status across its regions. This diversity yields complexity in aging research; aging people in Russia differ in terms of nationality, religion, political beliefs, social and economic status, access to health care, income, living conditions, etc. Thus, it is difficult to control for all these factors or to draw a picture of an "average" Russian older adult. Nevertheless, there is a great deal of research on aging in Russia, mainly focusing on biomedical and social aspects of aging. Most such research is based in the Central and Western regions, whereas the Siberian and Far East regions are underrepresented. There is also a lack of secondary databases and representative nationwide studies. Social policy and legislation address the needs of older adults by providing social services, support, and protection. The retirement system in Russia enables adults to retire at relatively young ages-55 and 60 years for women and men, respectively-but also to maintain the option of continuing their professional career or re-establishing a career after a "vocation" period. Though in recent years the government has faced a range of political issues, affecting the country's economy in general, budget funds for support of aging people have been maintained. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  10. Global Education Comes to Russia in 1991.

    ERIC Educational Resources Information Center

    Tucker, Jan L.

    This paper discusses the first international conference on the future of education in Russia held in Sochi, Russia, in September of 1991. The focus was on recent efforts that have been made by educators to develop global education in Russian schools. These efforts include a detailed project for the development of global education in Russia and…

  11. Arctic marine ecosystem contamination.

    PubMed

    Muir, D C; Wagemann, R; Hargrave, B T; Thomas, D J; Peakall, D B; Norstrom, R J

    1992-07-15

    The current state of knowledge of levels, spatial and temporal trends of contaminants in the Arctic marine ecosystem varies greatly among pollutants and among environmental compartments. Levels of polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and some heavy metals such as mercury and lead, in Arctic marine mammals and fish are relatively well documented because of the need for comparisons with biota in more polluted environments and interest in the contamination of native diets. Levels of heavy metals, alkanes, polyaromatic hydrocarbons (PAH) and OCs in the Arctic Ocean are comparable to uncontaminated ocean waters in the mid-latitudes. But concentrations of alpha- and gamma-hexachlorocyclohexane (HCHs) are higher in northern waters far removed from local sources, possibly because lower water temperature reduces transfer to the atmosphere. Bioaccumulation of OCs and heavy metals in Arctic marine food chains begins with epontic ice algae or phytoplankton in surface waters. Polychlorinated camphenes (PCC), PCBs, DDT- and chlordane-related compounds are the major OCs in marine fish, mammals and seabirds. Mean concentrations of most PCBs and OC pesticides in ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic are quite similar indicating a uniform geographic distribution of contamination, although alpha-HCH showed a distinct latitudinal gradient in bears due to higher levels in zones influenced by continental runoff. Ringed seals from Spitzbergen have higher levels of PCBs, total DDT and polychlorinated dioxins/furans (PCDD/PCDFs). In contrast to other OCs, PCDD/PCDFs in Canadian Arctic ringed seals and polar bears were higher in the east/central Arctic than at more southerly locations. Remarkably high cadmium levels are found in kidney and liver of narwhal (Monodons monoceros) from western Baffin Bay (mean of 63.5 micrograms g-1) and western Greenland waters (median of 39.5 micrograms g-1). Mercury

  12. The Arctic zone: possibilities and risks of development

    NASA Astrophysics Data System (ADS)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  13. The Arctic Coastal Erosion Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.; Thomas, Matthew Anthony; Bull, Diana L.

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible bymore » all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  14. Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L. K.; Koike, M.; Zhao, Y.; Fuelberg, H. E.; Sessions, W. R.; Diskin, G.; Anderson, B. E.; Blake, D. R.; Wisthaler, A.; Cubison, M. J.; Jimenez, J. L.

    2011-10-01

    We evaluate the impact of transport from midlatitudes on aerosol number concentrations in the accumulation mode (light-scattering particles (LSP) with diameters >180 nm) in the Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. We focus on transport from the Asian continent. We find marked contrasts in the number concentration (NLSP), transport efficiency (TEN_LSP, the fraction transported from sources to the Arctic), size distribution, and the chemical composition of aerosols between air parcels from anthropogenic sources in East Asia (Asian AN) and biomass burning sources in Russia and Kazakhstan (Russian BB). Asian AN air had lower NLSP and TEN_LSP (25 cm-3 and 18% in spring and 6.2 cm-3 and 3.0% in summer) than Russian BB air (280 cm-3 and 97% in spring and 36 cm-3 and 7.6% in summer) due to more efficient wet scavenging during transport from East Asia. Russian BB in this spring is the most important source of accumulation-mode aerosols over the Arctic, and BB emissions are found to be the primary source of aerosols within all the data in spring during ARCTAS. On the other hand, the contribution of Asian AN transport had a negligible effect on the accumulation-mode aerosol number concentration in the Arctic during ARCTAS. Compared with background air, NLSP was 2.3-4.7 times greater for Russian BB air but 2.4-2.6 times less for Asian AN air in both spring and summer. This result shows that the transport of Asian AN air decreases aerosol number concentrations in the Arctic, despite the large emissions of aerosols in East Asia. The very low aerosol number concentrations in Asian AN air were caused by wet removal during vertical transport in association with warm conveyor belts (WCBs). Therefore, this cleansing effect will be prominent for air transported via WCBs from other midlatitude regions and seasons. The inflow of clean midlatitude air can potentially have an important impact on

  15. Arctic Collaborative Environment: A New Multi-National Partnership for Arctic Science and Decision Support

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A,; Kress, Martin P.; McCracken, Jeff E.; Spehn, Stephen L.; Tanner, Steve

    2011-01-01

    The Arctic Collaborative Environment (ACE) project is a new international partnership for information sharing to meet the challenges of addressing Arctic. The goal of ACE is to create an open source, web-based, multi-national monitoring, analysis, and visualization decision-support system for Arctic environmental assessment, management, and sustainability. This paper will describe the concept, system architecture, and data products that are being developed and disseminated among partners and independent users through remote access.

  16. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  17. 75 FR 28547 - Aerospace Supplier Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Mission to Russia...-users in Russia's aerospace market. Participating U.S. companies will receive market intelligence briefings by Russian industry experts, information on how to do business in Russia, networking opportunities...

  18. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  19. Vladivostok, Russia

    NASA Image and Video Library

    2012-09-28

    This image, acquired by NASA Terra spacecraft, is of Vladivostok, the administrative center of Primorsky Krai, Russia, and home port of the Russian Pacific Fleet, situated at the head of the Golden Horn Bay, Vladivostok.

  20. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared

  1. Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn

    2016-09-01

    Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.

  2. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  3. Food and water security issues in Russia I: food security in the general population of the Russian Arctic, Siberia and the Far East, 2000–2011

    PubMed Central

    Dudarev, Alexey A.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatijana A.; Fridman, Kirill B.; Nilsson, Lena Maria; Evengård, Birgitta

    2013-01-01

    Background Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination) have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Objectives Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. Study design and methods In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000–2011. Results Food costs in the regions are high, comprising 23–43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil) are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries) is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Conclusion Improvement of the food supply and food accessibility in the regions of the Russian Arctic, Siberia and the

  4. Arctic tipping points in an Earth system perspective.

    PubMed

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  5. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  6. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    USGS Publications Warehouse

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar

  7. Genetic diversity of Echinococcus spp. in Russia.

    PubMed

    Konyaev, Sergey V; Yanagida, Tetsuya; Nakao, Minoru; Ingovatova, Galina M; Shoykhet, Yakov N; Bondarev, Alexandr Y; Odnokurtsev, Valeriy A; Loskutova, Kyunnyay S; Lukmanova, Gulnur I; Dokuchaev, Nikolai E; Spiridonov, Sergey; Alshinecky, Mikhail V; Sivkova, Tatyana N; Andreyanov, Oleg N; Abramov, Sergey A; Krivopalov, Anton V; Karpenko, Sergey V; Lopatina, Natalia V; Dupal, Tamara A; Sako, Yasuhito; Ito, Akira

    2013-11-01

    In Russia, both alveolar and cystic echinococcoses are endemic. This study aimed to identify the aetiological agents of the diseases and to investigate the distribution of each Echinococcus species in Russia. A total of 75 Echinococcus specimens were collected from 14 host species from 2010 to 2012. Based on the mitochondrial DNA sequences, they were identified as Echinococcus granulosus sensu stricto (s.s.), E. canadensis and E. multilocularis. E. granulosus s.s. was confirmed in the European Russia and the Altai region. Three genotypes, G6, G8 and G10 of E. canadensis were detected in Yakutia. G6 was also found in the Altai region. Four genotypes of E. multilocularis were confirmed; the Asian genotype in the western Siberia and the European Russia, the Mongolian genotype in an island of Baikal Lake and the Altai Republic, the European genotype from a captive monkey in Moscow Zoo and the North American genotype in Yakutia. The present distributional record will become a basis of public health to control echinococcoses in Russia. The rich genetic diversity demonstrates the importance of Russia in investigating the evolutionary history of the genus Echinococcus.

  8. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  9. Detecting and Understanding Changing Arctic Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  10. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  11. Behavioral interactions of penned red and arctic foxes

    USGS Publications Warehouse

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  12. Global warming and effects on the Arctic fox.

    PubMed

    Fuglei, Eva; Ims, Rolf Anker

    2008-01-01

    We predict the effect of global warming on the arctic fox, the only endemic terrestrial predatory mammals in the arctic region. We emphasize the difference between coastal and inland arctic fox populations. Inland foxes rely on peak abundance of lemming prey to sustain viable populations. In the short-term, warmer winters result in missed lemming peak years and reduced opportunities for successful arctic fox breeding. In the long-term, however, warmer climate will increase plant productivity and more herbivore prey for competitive dominant predators moving in from the south. The red fox has already intruded the arctic region and caused a retreat of the southern limit of arctic fox distribution range. Coastal arctic foxes, which rely on the richer and temporally stable marine subsidies, will be less prone to climate-induced resource limitations. Indeed, arctic islands, becoming protected from southern species invasions as the extent of sea ice is decreasing, may become the last refuges for coastal populations of Arctic foxes.

  13. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  14. 75 FR 35086 - Magnesium From China and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... China and Russia AGENCY: United States International Trade Commission. ACTION: Notice of Commission... and Russia. SUMMARY: The Commission hereby gives notice that it will proceed with full reviews... revocation of the antidumping duty orders on magnesium from China and Russia would be likely to lead to...

  15. 75 FR 48360 - Magnesium From China and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... and Russia AGENCY: United States International Trade Commission. ACTION: Scheduling of full five-year... from Russia. SUMMARY: The Commission hereby gives notice of the scheduling of full reviews pursuant to... Russia would be likely to lead to continuation or recurrence of material injury within a reasonably...

  16. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  17. Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes.

    PubMed

    Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A

    2017-05-01

    The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.

  18. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  19. 76 FR 11813 - Magnesium From China and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... and Russia Determinations On the basis of the record \\1\\ developed in the subject five-year reviews... antidumping duty order on magnesium from Russia would not be likely to lead to continuation or recurrence of... contained in USITC Publication 4214 (February 2011), entitled Magnesium from China and Russia: Investigation...

  20. 78 FR 55096 - Ferrosilicon from Russia and Venezuela

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... from Russia and Venezuela Determination On the basis of the record \\1\\ developed in the subject... that an industry in the United States is materially injured by reason of imports from Russia and... with material injury by reason of LTFV imports of ferrosilicon from Russia and Venezuela. Accordingly...

  1. Reconstruction of Holocene palaeoclimate and environment in the Khatanga region, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Syrykh, Ludmila; Nazarova, Larisa

    2016-04-01

    Arctic regions are highly sensitive to changes in temperature and precipitation, and their Late Quaternary environmental history is very important for understanding of present and past climate trends. Though the timing of Holocene climate change is well established for wide parts of the Northern Hemisphere, suitable palaeoenvironmental records are still scarce in the Russian Siberian Arctic. Taimyr Peninsula (74oN, 100oE) is the northernmost part of Russia. Thus, this area is probably one of the most promising regions for the reconstruction of the Late Quaternary environment in dependence on changes in global and regional climate and the atmospheric circulation. (Andreev et al., 2004).The area is characterized by a continental climate with long, severe winters, and short summers. The modern temperatures are about 10-14oC in July, and - 32 to 34oC in January. Annual precipitation ranges from about 300-400 mm at low elevations to about 600-800 mm on the western slopes of the Putorana Plateau (Atlas Arktiki, 1985). The frost-free period is ca. 35 days. Almost all the territory is underlain by continues permafrost. Periglacial landscape is dominated by tundra and taiga vegetation. Aquatic organisms such as chironomids (Insecta: Diptera) are recognized as the best biological indicators for quantifying past changes in air temperature or lake chemistry (Letter et al., 1997; Brooks and Birks, 2000; Battarbee, 2000; Massaferro and Brooks, 2002; Solovieva et al., 2005). Chironomids belong to the most abundant group of fresh-water bottom-dwelling macroinvertebrates. Because of their short life cycle, chironomids quickly adapt to environmental changes and in global scale the distribution and abundance of chironomids are mostly limited by temperature (Walker and Mathewes, 1987; Warwick, 1989; Hann et al., 1992; Walker et al., 1992). Larval head capsules of chironomids preserved in lake sediment as subfossils are abundant, identifiable and serve as indicators of the

  2. Analysis of vanillic acid in polar ice cores as a biomass burning proxy - preliminary results from the Akademii Nauk Ice Cap in Siberia

    NASA Astrophysics Data System (ADS)

    Grieman, M. M.; Jimenez, R.; McConnell, J. R.; Fritzsche, D.; Saltzman, E. S.

    2013-12-01

    Biomass burning influences global climate change and the composition of the atmosphere. The drivers, effects, and climate feedbacks related to fire are poorly understood. Many different proxies have been used to reconstruct past fire frequency from lake sediments and polar ice cores. Reconstruction of historical trends in biomass burning is challenging because of regional variability and the qualitative nature of various proxies. Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a product of the combustion of conifer lignin that is known to occur in biomass burning aerosols. Biomass burning is likely the only significant source of vanillic acid in polar ice. In this study we describe an analytical method for quantifying vanillic acid in polar ice using HPLC with electrospray ionization and tandem mass spectrometric detection. The method has a detection limit of 100 pM and a precision of × 10% at the 100 pM level for analysis of 100 μl of ice melt water. The method was used to analyze more than 1000 discrete samples from the Akademii Nauk ice cap on Severnaya Zemlya in the high Russia Arctic (79°30'N, 97°45'E) (Fritzsche et al., 2002; Fritzsche et al., 2005; Weiler et al., 2005). The samples range in age over the past 2,000 years. The results show a mean vanillic acid concentration of 440 × 710 pM (1σ), with elevated levels during the periods from 300-600 and 1450-1550 C.E.

  3. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting?

    NASA Astrophysics Data System (ADS)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.

    2016-11-01

    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  4. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic.

    PubMed

    Hassett, Brandon T; Ducluzeau, Anne-Lise L; Collins, Roy E; Gradinger, Rolf

    2017-02-01

    Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Arctic Logistics Information and Support: ALIAS

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.

    2004-12-01

    The ALIAS web site is a gateway to logistics information for arctic research, funded by the U.S. National Science Foundation, and created and maintained by the Arctic Research Consortium of the United States (ARCUS). ALIAS supports the collaborative development and efficient use of all arctic logistics resources. It presents information from a searchable database, including both arctic terrestrial resources and arctic-capable research vessels, on a circumpolar scale. With this encompassing scope, ALIAS is uniquely valuable as a tool to promote and facilitate international collaboration between researchers, which is of increasing importance for vessel-based research due to the high cost and limited number of platforms. Users of the web site can identify vessels which are potential platforms for their research, examine and compare vessel specifications and facilities, learn about research cruises the vessel has performed in the past, and find contact information for scientists who have used the vessel, as well as for the owners and operators of the vessel. The purpose of this poster presentation is to inform the scientific community about the ALIAS website as a tool for planning arctic research generally, and particularly for identifying and contacting vessels which may be suitable for planned ship-based research projects in arctic seas.

  6. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    NASA Astrophysics Data System (ADS)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  7. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are

  8. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  9. Advancing NOAA NWS Arctic Program Development

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  10. Arkhangelsk, Russia

    NASA Image and Video Library

    2011-01-26

    NASA Terra spacecraft captured this image of the city of Arkhangelsk or Archangel in English and administrative capital of Archangelsk Oblast, Russia. It is situated on both banks of the Dvina River near where it flows into the White Sea.

  11. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic

    NASA Astrophysics Data System (ADS)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.

    2004-12-01

    Global warming may disproportionately affect Arctic marine mammals and disrupt traditional subsistence hunting activities. Based upon analyses of a 24-year time series (1979-2002) of satellite-derived sea ice cover, we identified significant positive trends in the amount of open-water in three large and five small-scale regions in the western Arctic, including habitats where bowhead whales (Balaena mysticetus) feed or are suspected to feed. Bowheads are the only mysticete whale endemic to the Arctic and a cultural keystone species for Native peoples from northwestern Alaska and Chukotka, Russia. While copepods (Calanus spp.) are a mainstay of the bowhead diet, prey sampling conducted in the offshore region of northern Chukotka and stomach contents from whales harvested offshore of the northern Alaskan coast indicate that euphausiids (Thysanoessa spp.) advected from the Bering Sea are also common prey in autumn. Early departure of sea ice has been posited to control availability of zooplankton in the southeastern Bering Sea and in the Cape Bathurst polynya in the southeastern Canadian Beaufort Sea, with maximum secondary production associated with a late phytoplankton bloom in insolatoin-stratified open water. While it is unclear if declining sea-ice has directly affected production or advection of bowhead prey, an extension of the open-water season increases opportunities for Native subsistence whaling in autumn. Therefore, bowhead whales may provide a nexus for simultaneous exploration of the effects sea ice reduction on pagophillic marine mammals and on the social systems of the subsistence hunting community in the western Arctic. The NOAA/Alaska Fisheries Science Center and NSB/Department of Wildlife Management will investigate bowhead whale stock identity, seasonal distribution and subsistence use patterns during the International Polar Year, as an extension of research planned for 2005-06. This research is in response to recommendations from the Scientific

  12. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    NASA Astrophysics Data System (ADS)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will

  13. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Fox, S. E.

    2009-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the changing arctic system. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Observing, Understanding, and Responding to Change panels, and the Interagency Program Management Committee (IPMC), scientists with a variety of expertise work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the NSF’s Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU-sponsored Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, including the Sea Ice Outlook project, an international effort to provide a community-wide summary of the expected September arctic sea ice minimum. The Understanding Change component also has strong linkages to programs such as the NSF Arctic System Science (ARCSS) Program. The Responding to Change element will be launched through stakeholder-focused research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is working to expand international connections. The State of the Arctic Conference (soa.arcus.org), to be held 16-19 March 2010 in Miami, will be a milestone activity of SEARCH and will provide an international forum for discussion of future research directions aimed toward a better understanding of the arctic system and its trajectory. SEARCH is sponsored by eight U.S. agencies that comprise the IPMC, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space

  14. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  15. The Arctic Research Consortium of the United States

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.

    2007-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broad science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program and providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS' central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include the Witness the Arctic newsletter, the Arctic Visiting Speakers' Series, the ArcticInfo listserve, the Internet Media Archive (IMA), the annual Arctic Forum conference, and many others. More information about these and other ARCUS activities can be found at the ARCUS website at www.arcus.org.

  16. Genetic differentiation between wintering populations of lesser snow geese nesting on Wrangel Island, Russia

    USGS Publications Warehouse

    Kuznetsov, S.B.; Baranyuk, Vasily V.; Takekawa, John Y.

    1998-01-01

    Arctic breeding populations of Lesser Snow Geese (Chen c. caerulescens) range from Baffin Island in eastern Canada to Wrangel Island, Russia, which is located 650 km west of Alaska (Bellrose 1980). Although hundreds of thousands of Lesser Snow Geese may have occupied the Russian arctic in the mid1800s (see Takekawa et al., 1994), the Wrangel Island birds constitute the only remnant colony on the Asian continent (Syroechkovsky and Litvin 1986) and may represent a matriarchal population for the species (Quinn 1992). In the past 30 years, the Wrangel Island colony has declined from more than 200,000 to less than 75,000 breeding adults (Pacific Flyway Technical Subcommittee 1992, V. Baranyuk unpubl. data), which has resulted in increasing concern about its conservation and management.The Wrangel Island colony consists of two wintering populations that migrate to different regions and are faithful to their wintering areas (McKelvey et al. 1989). The larger northern population (about 60% of the total from Wrangel) migrates to the Fraser River delta of British Columbia and the Skagit River delta of northern Washington, whereas the southern population flies 600 km farther south to the Central Valley of California (Rienecker 1965, Teplov and Shev. aryova 1965, Jeffrey and Kaiser 1979, Priklonsky and Sapetin 1979). The northern population is isolated from other Lesser Snow Geese during the winter, but the southern population mixes with geese from Banks Island, Canada and from the smaller Anderson and Sagaviriniktok River deltas (Dzubin 1974, Johnson 1995, Syroechkovsky et al. 1994).

  17. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, Kevin; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  18. Moscow, Russia

    NASA Image and Video Library

    2013-05-21

    This image from NASA Terra spacecraft shows Moscow, the capital city of Russia, the northernmost megacity in the world, the most populous in Europe, and with a population of over 11,000,000, the 6th largest city proper in the world.

  19. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  20. Public Perceptions of Arctic Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  1. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  2. Surveillance of infectious diseases in the Arctic.

    PubMed

    Bruce, M; Zulz, T; Koch, A

    2016-08-01

    This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. The ICS system is a successful example of collaborative surveillance and research in an extreme environment. Published by Elsevier Ltd.

  3. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  4. Beyond Thin Ice: Co-Communicating the Many Arctics

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  5. Exploring Arctic history through scientific drilling

    NASA Astrophysics Data System (ADS)

    ODP Leg 151 Shipboard Scientific Party

    During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.

  6. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  7. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  8. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  9. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  10. Strategic Assessment for Arctic Observing, and the New Arctic Observing Viewer

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Dover, M.; Score, R.; Lin, D. H.; Villarreal, S.; Quezada, A.; Tweedie, C. E.

    2013-12-01

    Although a great deal of progress has been made with various Arctic Observing efforts, it can be difficult to assess that progress. What data collection efforts are established or under way? Where? By whom? To help meet the strategic needs of SEARCH-AON, SAON, and related initiatives, a new resource has been released: the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). This web mapping application covers the 'who', 'what', 'where', and 'when' of data collection sites - wherever marine or terrestrial data are collected. Hundreds of sites are displayed, providing an overview as well as details. Users can visualize, navigate, select, search, draw, print, and more. This application currently showcases a subset of observational activities and will become more comprehensive with time. The AOV is founded on principles of interoperability, with an emerging metadata standard and compatible web service formats, such that participating agencies and organizations can use the AOV tools and services for their own purposes. In this way, the AOV will complement other cyber-resources, and will help science planners, funding agencies, PI's, and others to: assess status, identify overlap, fill gaps, assure sampling design, refine network performance, clarify directions, access data, coordinate logistics, collaborate, and more to meet Arctic Observing goals.

  11. Activity of disaccharidases in arctic populations: evolutionary aspects disaccharidases in arctic populations.

    PubMed

    Kozlov, Andrew; Vershubsky, Galina; Borinskaya, Svetlana; Sokolova, Maria; Nuvano, Vladislav

    2005-07-01

    Disorders of dietary sugar assimilation occur more often among native people of the Arctic then in temperate climate inhabitants. It is hypothesized that the limited variety of natural exogenous sugars in the Arctic, and their low content in the traditional diets of native northerners in accordance with a "protein-lipid" type of metabolism weakened selection, favoring diversity of disaccharidase enzymes.

  12. An Intensified Arctic Water Cycle? Trend Analysis of the Arctic System Freshwater Cycle: Observations and Expectations

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.

    2007-12-01

    It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.

  13. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Wiggins, H. V.; Creek, K. R.

    2012-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  14. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.

    2013-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  15. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Wiggins, H. V.

    2011-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. - Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic.

  16. Physical and Optical/Radiative Properties of Arctic Aerosols: Potential Effects on Arctic Climate

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Kinne, S. A.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    We have determined the abundance of light-scattering sulfuric acid (H2SO4/H2O) and light-absorbing black carbon aerosol (BCA) in Spring 1992 in the Arctic atmosphere by airborne in situ sampling with impactors, and measured particle sizes and morphologies by scanning electron microscopy. The mass of BCA in the Arctic troposphere is one percent of the total aerosol, reduced to one part in 104 in the stratosphere. A Mie algorithm permits the calculation of the optical properties of the various aerosol components, and an algorithm developed by Ackerman and Toon and modified to serve our needs lets us calculate the optical effects of the black carbon aerosol that is mixed internally with the sulfuric acid aerosol. It follows that the effect of internally-mixed BCA on the aerosol scattering and absorption properties depends on its location within the droplet. BCA concentrated near the droplet surface has a greater effect on absorption of solar radiation than does the same amount of BCA located near its center. Single scatter albedos of the combined system are omega(sub 0)=1.0 in the post-Pinatubo Arctic stratosphere, and as low as 0.94 in the troposphere. The aerosol has the potential to regionally warm the Arctic earth-atmosphere system, because of the high surface albedo of the snow-covered Arctic.

  17. NATO’s Future Role in the Arctic

    DTIC Science & Technology

    2016-05-01

    iv Global Climate Change and Arctic Geopolitics............................. Error! Bookmark not defined. Russian Claims to the Arctic...13 1 Global Climate Change and Arctic Geopolitics Global climate change has a profound...explaining the effect of climate change in the Arctic and the consequences on regional security. Issues regarding territorial sovereignty will be

  18. Russia in the Arctic

    DTIC Science & Technology

    2011-07-01

    strategy with emphasis on geostrate- gic analysis. The mission of SSI is to use independent analysis to conduct strategic studies that develop policy...De- fense, and the larger national security community. In addition to its studies , SSI publishes special reports on topics of special or immediate... on the SSI website. The SSI website address is: www.StrategicStudiesInstitute.army.mil. ***** The Strategic Studies Institute publishes a monthly e

  19. Overview of internet development in Russia.

    PubMed

    Gronskaya-Palesh, O

    1999-01-01

    Internet use in Russia has been growing steadily. In the last four years the number of Russian Internet users grew from a few hundred thousand to over one million. Russian websites are diverse, and range from educational-informative to purely entertaining. This paper discusses several interesting and controversial Russian websites and possible implications associated with their use. It aims to understand and analyze a typical Internet user in Russia, by answering questions about their interests and demographics. The paper also discusses several other studies that were conducted in Russia on Internet use and looks at the currently available psychological resources on the Russian Internet.

  20. Russia's energy policy: A framing comment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslund, A.

    A prominent specialist on the Russian economy provides a framing comment on two preceding papers entitled 'Russia's Energy Policy' (by Vladimir Milov, Leonard Coburn, and Igor Danchenko) and 'Russia's Energy Policy: A Divergent View' (by Matthew J. Sagers). The author argues that Russia's current energy policy should be viewed as an outcome of competition between three overlapping programs. In this context, he identifies three policy models - the old Soviet, the liberal or oligarchic, and the most recent state capitalist. The latter is currently supported by President Putin, who prioritizes diversification of the country's economy at the expense of diminishedmore » investments in the oil and gas sector.« less

  1. ArcticDEM Validation and Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  2. Arctic tipping points: governance in turbulent times.

    PubMed

    Young, Oran R

    2012-02-01

    Interacting forces of climate change and globalization are transforming the Arctic. Triggered by a non-linear shift in sea ice, this transformation has unleashed mounting interest in opportunities to exploit the region's natural resources as well as growing concern about environmental, economic, and political issues associated with such efforts. This article addresses the implications of this transformation for governance, identifies limitations of existing arrangements, and explores changes needed to meet new demands. It advocates the development of an Arctic regime complex featuring flexibility across issues and adaptability over time along with an enhanced role for the Arctic Council both in conducting policy-relevant assessments and in promoting synergy in interactions among the elements of the emerging Arctic regime complex. The emphasis throughout is on maximizing the fit between the socioecological features of the Arctic and the character of the governance arrangements needed to steer the Arctic toward a sustainable future.

  3. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    , organosulfate and organic acid concentrations remained relatively constant during most of the year at amean concentration of 15 (±4) ng m-3 (accounting for 4 (±1)% of total organic matter) and 3.9 (±1) ng m-3 (accounting for 1.1 (±0.1)% of total organic matter) respectively. However during four weeks of spring remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. The periods of observed elevated organosulfate and organic acid concentration at Station Nord and at Zeppelin Mountain coincided with the Arctic Haze period. Furthermore, backwards air mass trajectories indicated northern Eurasia as the main source region of the Arctic haze aerosols at both sites. Periods with air mass transport from Russia to Zeppelin Mountain were associated with a doubled number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. Our analysis showed the presence of organosulfates and organic acids of both biogenic and anthropogenic origin throughout the year at both Arctic sites. As the formation of organosulfates binds inorganic sulfate, their presence may possibly affect the formation and lifetime of clouds in the Arctic atmosphere.

  4. Sensitivity of Arctic carbon in a changing climate

    Treesearch

    A. David McGuire; Henry P. Huntington; Simon Wilson

    2009-01-01

    The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.

  5. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  6. An unusually rich scuttle fly fauna (Diptera, Phoridae) from north of the Arctic Circle in the Kola Peninsula, N. W. Russia.

    PubMed

    Disney, R H L

    2013-01-01

    64 species of Phoridae, in 6 genera, are reported from the Kola Peninsula, north of the Arctic Circle. The new species Megaselia elenae and Megaselia kozlovi are described. 33 species of Megaselia, only known from females, are given code numbers. Keys to the species of all the females of Megaselia and Phora are provided; and also a key to the males European Megaselia species with a notopleural cleft.

  7. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  8. Development of pan-Arctic database for river chemistry

    USGS Publications Warehouse

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  9. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; O'Hara, T M; Elkin, B; Solomon, K R; Muir, D C G

    2003-01-01

    Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (delta 13C) and nitrogen (delta 15N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by delta 15N) is positively correlated with increasing delta 13C values, suggesting that Arctic fox with a predominantly marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (Sigma PCB) > chlordane-related compounds (Sigma CHLOR) > hexachlorocyclohexane (Sigma HCH) > total toxaphene (TOX) > or = chlorobenzenes (Sigma ClBz) > DDT-related isomers (Sigma DDT). In liver, Sigma CHLOR was the most abundant OC group, followed by Sigma PCB > TOX > Sigma HCH > Sigma ClBz > Sigma DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of delta 15N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While Sigma PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  10. Adult Education and Indigenous Peoples in Russia. International Survey on Adult Education for Indigenous Peoples. Country Study: Russia.

    ERIC Educational Resources Information Center

    Meschtyb, Nina

    Adult education for indigenous peoples in Russia was examined. First, information on government institutions, indigenous organizations, international agencies, and nongovernmental organizations (NGOs) engaged in adult education for Russia's indigenous peoples was compiled. Next, questionnaires and survey techniques were used to research the policy…

  11. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  12. Snowstorm Along the China-Mongolia-Russia Borders

    NASA Image and Video Library

    2004-03-31

    Heavy snowfall on March 12, 2004, across north China Inner Mongolia Autonomous Region, Mongolia and Russia, caused train and highway traffic to stop for several days along the Russia-China border shown here by NASA Terra spacecraft.

  13. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  14. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  15. JPSS Support to the Arctic Testbed

    NASA Astrophysics Data System (ADS)

    Layns, A. L.

    2017-12-01

    The Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) program facilitates initiatives to increase or improve the use and value of JPSS data products in user products, services, and application or service areas. Building on the success of the Fire and Smoke, River Ice and Flooding, and Sounding initiatives, the JPSS Arctic Initiative is the latest endeavor of the JPSS PGRR program to increase of the use of JPSS atmospheric and cryosphere products to improve NOAA's products and services in the Arctic. The major participants in the Arctic Initiative to date are the JPSS program office, National Ice Center (NIC), National Weather Service (NWS) Alaska Sea Ice Program (ASIP), and the National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). This paper will outline the initiative, the potential benefits of the JPSS data products in the Arctic, and the plans for a product demonstration in 2018 within the NOAA Arctic Testbed.

  16. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  17. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or... in USITC Publication 4345 (August 2012), entitled Ferrovanadium and Nitrided Vanadium from Russia...

  18. 76 FR 15339 - Solid Urea From Russia and Ukraine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Urea From Russia and Ukraine AGENCY: United States International Trade Commission. ACTION: Notice of... urea from Russia and Ukraine. SUMMARY: The Commission hereby gives notice that it will proceed with... determine whether revocation of the antidumping duty orders on solid urea from Russia and Ukraine would be...

  19. Sources and Removal of Springtime Arctic Aerosol

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.

    2017-12-01

    The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.

  20. Arctic air pollution: A Norwegian perspective

    NASA Astrophysics Data System (ADS)

    Ottar, B.

    The paper gives a survey of the results obtained during a research programme in the Norwegian Arctic, financed by British Petroleum Ltd. during the period 1981-1986 under an agreement between the Norwegian Government and the oil companies. The programme included extensive measurement programmes by aircraft and at ground stations, as well as modelling of the transport of air pollutants to the Arctic. The results show that the Arctic plays an important role as an intermediate station in the general dispersion of air pollutants within the Northern Hemisphere. Continued measurements in the Arctic may therefore provide essential information concerning such questions as the change of climate and the global dispersion of polychlorinated hydrocarbons and other halogenated organics.

  1. Russia's Policy and Standing in Nanotechnology

    ERIC Educational Resources Information Center

    Terekhov, Alexander I.

    2013-01-01

    In this article, I consider the historical stages of development of nanotechnology in Russia as well as the political framework for this. It is shown that early federal nanotechnology programs in Russia date back to the 1990s and that since the mid-2000s, nanotechnology has attracted the increasing attention of government. I characterize the…

  2. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was

  3. Association of climatic factors with infectious diseases in the Arctic and subarctic region--a systematic review.

    PubMed

    Hedlund, Christina; Blomstedt, Yulia; Schumann, Barbara

    2014-01-01

    The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14), the rest from Sweden (n=6), Finland (n=4), Norway (n=2), Russia (n=2), and Alaska, US (n=1). Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. More studies of high quality are needed to investigate the adverse health impacts of weather and

  4. High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia

    PubMed Central

    Forbes, Bruce C.; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-01-01

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience. PMID:20007776

  5. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  6. A Recommended Set of Key Arctic Indicators

    NASA Astrophysics Data System (ADS)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  7. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  8. Russia's population sink.

    PubMed

    Nelson, T

    1996-01-01

    Russia's public health problems, which are a result in part of uncontrolled development, are a lesson for developing countries. Trends in births and deaths in Russia indicate that as socioeconomic conditions declined in recent years, the death rate increased. During 1992-93 the death rate increased from 12.1 per 1000 population to 14.5, with 75% of the increase due to cardiovascular disease, accidents, murder, suicide, and alcohol poisoning. Quality of health care was given as one reason for the high cardiovascular disease rate that included deaths due to even mild heart attacks. 20-30% of deaths are attributed to pollution. 75% of rivers and lakes in the former Soviet Union are considered unfit for drinking, and 50% of tap water is unsanitary. An estimated 15% of Russia's land area is considered to be an ecological disaster zone. Births declined from a peak of 2.5 million in 1987 to 1.4 million in 1994. During this same period deaths increased from 1.5 million to 2.3 million. In 1994 deaths exceeded births by 880,000. Life expectancy declined from 65 to 57 years for men and from 75 years to 71 years for women. Infant mortality is rising. 11% of newborns had birth defects, and 60% showed evidence of allergies or vitamin D deficiencies. The death rate during pregnancy was 50 per 1000 births, and 75% of Russian women experienced complications during pregnancy. Women's health in the reproductive years was compromised by gynecological infections. A survey in 1992 revealed that 75% of Russian women gave insufficient income as a reason for reduced childbearing. The social conditions in Russia and the former Soviet republics reflect a lack of confidence in the future. Demographic trends are affected by a complex set of factors including economic collapse, economic change and uncertainty, inadequate health care, and poor environmental conditions. These changes occurred during the mid-1980s and before the collapse of the Soviet Union in 1991.

  9. The Arctic Circle

    NASA Astrophysics Data System (ADS)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  10. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  11. Modeling the Impact of Arctic Shipping Pollution on Air Quality off the Coast of Northern Norway

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.; Law, K.; Marelle, L.; Raut, J.; Jalkanen, J.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.; Fast, J. D.

    2013-12-01

    As the Arctic is undergoing rapid and potentially irreversible changes, such as the shrinking and thinning of sea-ice cover, the levels of atmospheric pollution are expected to rise dramatically due to the emergence of local pollution sources including shipping. Shipping routes through the Arctic (such as Russia's Northern Sea Route) are already used as an alternative to the traditional global transit shipping routes. In summer 2012, the ACCESS (Arctic Climate Change, Economy, and Society) aircraft campaign focused on studying pollution sources off the coast of northern Norway to quantify emissions from shipping and other anthropogenic pollution sources. To complement these measurements, a regional chemical transport model is used to study the impact of shipping pollution on gas and aerosol concentrations in the region. WRF-Chem (The Weather Research and Forecasting Model with Chemistry, which simulates gas and aerosols simultaneously with meteorology) is run with real time shipping emissions from STEAM (Ship Traffic Emission Assessment Model) for July 2012. The STEAM model calculates gas and aerosol emissions of marine traffic based on the ship type and location provided by the Automatic Identification System (AIS). Use of real time position, speed, and ship specific information allows for development of emissions with very high spatial (1x1 km) and temporal (30 min) resolution, which are used in the regional model runs. STEAM emissions have been specifically generated for shipping off the coast of Norway during the entire ACCESS campaign period. Simulated ship plumes from high-resolution model runs are compared to aircraft measurements. The regional impact of current summertime shipping is also examined. At present, relatively light ship traffic off the coast of northern Norway results in only a small impact of shipping pollution on regional atmospheric chemistry. The impact of increased future shipping on regional atmospheric chemistry is also assessed.

  12. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Warnick, W. K.

    2008-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi- agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS" central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers" Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  13. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.; Wiggins, H. V.

    2010-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS’ central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers’ Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  14. Does the Arctic Amplification peak this decade?

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Haine, Thomas W. N.

    2017-04-01

    Temperatures rise faster in the Arctic than on global average, a phenomenon known as Arctic Amplification. While this is well established from observations and model simulations, projections of future climate (here: RCP8.5) with models of the Coupled Model Intercomparison Project phase 5 (CMIP5) also indicate that the Arctic Amplification has a maximum. We show this by means of an Arctic Amplification factor (AAF), which we define as the ratio of Arctic mean to global mean surface air temperature (SAT) anomalies. The SAT anomalies are referenced to the period 1960-1980 and smoothed by a 30-year running mean. For October, the multi-model ensemble-mean AAF reaches a maximum in 2017. The maximum moves however to later years as Arctic winter progresses: for the autumn mean SAT (September to November) the maximum AAF is found in 2028 and for winter (December to February) in 2060. Arctic Amplification is driven, amongst others, by the ice-albedo feedback (IAF) as part of the more general surface albedo feedback (involving clouds, snow cover, vegetation changes) and temperature effects (Planck and lapse-rate feedbacks). We note that sea ice retreat and the associated warming of the summer Arctic Ocean are not only an integral part of the IAF but are also involved in the other drivers. In the CMIP5 simulations, the timing of the AAF maximum coincides with the period of fastest ice retreat for the respective month. Presence of at least some sea ice is crucial for the IAF to be effective because of the contrast in surface albedo between ice and open water and the need to turn ocean warming into ice melt. Once large areas of the Arctic Ocean are ice-free, the IAF should be less effective. We thus hypothesize that the ice retreat significantly affects AAF variability and forces a decline of its magnitude after at least half of the Arctic Ocean is ice-free and the ice cover becomes basically seasonal.

  15. Monitoring the Arctic during Polar Darkness

    NASA Image and Video Library

    2017-12-08

    Image acquired October 30, 2012 Scientists watched the Arctic with particular interest in the summer of 2012, when Arctic sea ice set a new record low. The behavior of sea ice following such a low extent also interests scientists, but as Arctic sea ice was advancing in the autumn of 2012, so was polar darkness. Fortunately, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite can see in the dark. The VIIRS “day-night band” detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. VIIRS acquired this nighttime view of sea ice north of Russia and Alaska on October 30, 2012. The day-night band takes advantage of moonlight, airglow (the atmosphere’s self-illumination through chemical reactions), zodiacal light (sunlight scattered by interplanetary dust), and starlight from the Milky Way. By using these dim light sources, the day-night band can detect changes in clouds, snow cover, and sea ice. The VIIRS day-night band offers a unique perspective because once polar night has descended, satellite sensors relying on visible light can no longer produce photo-like images. And although passive microwave sensors can monitor sea ice through the winter, they offer much lower resolution. Steve Miller of the Cooperative Institute for Research in the Atmosphere at Colorado State University has used the day-night band to study nighttime behavior of weather systems and sees advantages in studying the polar regions. “There’s a lot of use with these measurements as we look back at a season of record ice melt in the Arctic,” Miller says. “We can observe areas where there is ice melt and reformation, where there’s clear water and ships can pass through—especially as the ‘great darkness’ approaches with winter.” Ted Scambos of the National Snow and Ice Data Center at the University of Colorado concurs

  16. 78 FR 12033 - Programs and Research Projects Affecting the Arctic

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... ARCTIC RESEARCH COMMISSION Programs and Research Projects Affecting the Arctic Notice is hereby given that the U.S. Arctic Research Commission will hold its 100th meeting in Anchorage and Bethel... presentations concerning Arctic research activities The focus of the meeting will be Arctic research activities...

  17. Oceanographic Aspects of Recent Changes in the Arctic

    NASA Astrophysics Data System (ADS)

    Morison, J. H.

    2002-12-01

    In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important

  18. Tipping elements in the Arctic marine ecosystem.

    PubMed

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  19. Spring snow albedo feedback in daily data over Russia: Comparing in-situ measurements with reanalysis products.

    NASA Astrophysics Data System (ADS)

    Wegmann, M.; Zolina, O.; Jacobi, H. W.

    2016-12-01

    Global warming is enhanced at high northern latitudes where the Arctic surface air temperature has risen at twice the rate of the global average in recent decades - a feature called Arctic amplification. This recent Arctic warming signal likely results from several factors such as the albedo feedback due to a diminishing cryosphere, enhanced poleward atmospheric and oceanic heat transport, and changes in humidity. Surface albedo feedback is stating that the additional amount of shortwave radiation at the top of the atmosphere decreases with decreasing surface albedo whereas surface air temperature increases with decreasing surface albedo. It is considered a positive feedback in that an initial warming perturbation than kicks off a strengthening warming. Looking at the Northern Hemisphere with its large landmasses, snow albedo feedback is especially strong since most of these landmasses experience snow cover during boreal wintertime. Unfortunately, so far there remains a lack of reliable observational data over large parts of the cryosphere. Satellite products cover large parts of the NH, however lack high temporal resolution and have problems with large solar zenith angles as well as over complex terrain (eg. Wang et al. 2014). Our analysis focuses at the Russian territory where we utilize in-situ radiation and snow depth measurements. We found 50 stations which measure both variables on a daily basis for the period 2000-2013. Since Hall (2004) found that 50% of the notal NH snow albedo feedback caused by global warming occurs during NH spring, we focus on the transition period of March to June (MAMJ). Thackeray & Fletcher 2006 compared albedo feedback processes CMIP3 and CMIP5 model families and found while the models represent the feedback process accurately, there are still inherent biases and outdated parameterizations. Therefore we use the daily observations and state of the art reanalysis products to 1) evaluate reanalysis and model products in respect to

  20. Economic transition and health transition: comparing China and Russia.

    PubMed

    Liu, Y; Rao, K; Fei, J

    1998-05-01

    Drawing on experiences from China and Russia (the world's two largest transitional economies), this paper empirically examines the impact of economic reforms on health status. While China's overall health status continued to improve after the economic reform, Russia experienced a serious deterioration in its population health. The observed differences in health performance between China and Russia can be explained by the different impacts of economic reforms on three major socioeconomic determinants of health. Depending on whether or not the reform improves physical environment (as reflected in income level and nutritional status), social environment (including social stability and security system), and health care, we would observe either a positive or a negative net effect on health. Despite remarkable differences in overall health development, China and Russia share some common problems. Mental and social health problems such as suicides and alcohol poisoning have been on the rise in both countries. These problems were much more serious in Russia, where political and social instability was more pronounced, associated with Russia's relatively radical reform process. With their economies moving toward a free market system, health sectors in China and Russia are undergoing marketization, which has had serious detrimental effect on the public health services.

  1. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium to high ground-ice content permafrost in moderately sloping terrain. In one Arctic coastal plain watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. The comparisons of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform, and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones, effectively insulate channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features that range from 0.7 to 1.6 m. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains cold-water habitats. Snowmelt-generated peak flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.01 to 0.1 m s-1

  2. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    USGS Publications Warehouse

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  3. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  4. African Swine Fever Virus, Siberia, Russia, 2017.

    PubMed

    Kolbasov, Denis; Titov, Ilya; Tsybanov, Sodnom; Gogin, Andrey; Malogolovkin, Alexander

    2018-04-01

    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017.

  5. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  6. 76 FR 77015 - Solid Urea From Russia and Ukraine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Urea From Russia and Ukraine Determination On the basis of the record \\1\\ developed in the subject five... orders on solid urea from Russia and Ukraine would be likely to lead to continuation or recurrence of... 2011), entitled Solid Urea from Russia and Ukraine: Investigation Nos. 731-TA- 340-E and 340-H (Third...

  7. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Examining the complex Arctic biological-climatologic-hydrologic system

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.

    2012-12-01

    Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet

  8. Arctic research vessel design would expand science prospects

    NASA Astrophysics Data System (ADS)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  9. The Impact of Transported Pollution on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Stohl, A.; Arneth, A.; Berntsen, T.; Burkhart, J. F.; Flanner, M. G.; Kupiainen, K.; Shepherd, M.; Shevchenko, V. P.; Skov, H.; Vestreng, V.

    2011-12-01

    Arctic temperatures have increased at almost twice the global average rate over the past 100 years. Warming in the Arctic has been accompanied by an earlier onset of spring melt, a lengthening of the melt season, changes in the mass balance of the Greenland ice sheet, and a decrease in sea ice extent. Short-lived, climate warming pollutants such as black carbon (BC) have recently gained attention as a target for immediate mitigation of Arctic warming in addition to reductions in long lived greenhouse gases. Model calculations indicate that BC increases surface temperatures within the Arctic primarily through deposition on snow and ice surfaces with a resulting decrease in surface albedo and increase in absorbed solar radiation. In 2009, the Arctic Monitoring and Assessment Program (AMAP) established an Expert Group on BC with the goal of identifying source regions and energy sectors that have the largest impact on Arctic climate. Here we present the results of this work and investigate links between mid-latitude pollutants and Arctic climate.

  10. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  11. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  12. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    USGS Publications Warehouse

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  13. Arctic reconstruction from an Alaskan viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, R.C.

    1985-04-01

    Field, seismic, structural, and stratigraphic data were used to reconstruct the geologic history of the Arctic in 10-m.y. time slices from the present to mid-Jurassic - the initial opening of the Arctic Ocean. A basic assumption is that Lomonosov Ridge, Alpha Ridge, Mendeleyev Ridge, and Chukchi Plateau are all foundered continental plates. Opening of the Arctic occurs in two stages: Late Jurassic - Cretaceous for the Canada basin and Neogene for the Eurasian basin. Opening is facilitated by two subparallel transform shears - the Arctic (Kaltag-Porcupine) on the east and the Chukchi on the west. Deformation is essentially tensional onmore » the Barents side of the Arctic and shear-compressional on the Alaska side. The development of Chutkoya, North Slope, Brooks Range, north-west Canada, Seward Peninsula, and central Alaska can be sequentially related to Arctic opening, modified by impingement on the northern terrane of allochthonous terranes arriving from the south - the Pacific plates of Tintina, Denali, Orca (Prince William-Chugach-Yakutat), Anadyr, Khatyrka, Kolyman, and other minor terranes. The North Slope of Alaska, a passive, rifted, subsided margin, is restored to line up with a similar margin on Alpha Ridge. Northeastern Alaska (the Romanzof Mountain area) lines up opposite the north end of the Sverdrup Rim, near Prince Patrick and Borden Islands.« less

  14. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  15. Modelling past, present and future peatland carbon accumulation across the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2017-09-01

    Most northern peatlands developed during the Holocene, sequestering large amounts of carbon in terrestrial ecosystems. However, recent syntheses have highlighted the gaps in our understanding of peatland carbon accumulation. Assessments of the long-term carbon accumulation rate and possible warming-driven changes in these accumulation rates can therefore benefit from process-based modelling studies. We employed an individual-based dynamic global ecosystem model with dynamic peatland and permafrost functionalities and patch-based vegetation dynamics to quantify long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balances across the pan-Arctic region. Our results are broadly consistent with published regional and global carbon accumulation estimates. A majority of modelled peatland sites in Scandinavia, Europe, Russia and central and eastern Canada change from carbon sinks through the Holocene to potential carbon sources in the coming century. In contrast, the carbon sink capacity of modelled sites in Siberia, far eastern Russia, Alaska and western and northern Canada was predicted to increase in the coming century. The greatest changes were evident in eastern Siberia, north-western Canada and in Alaska, where peat production hampered by permafrost and low productivity due the cold climate in these regions in the past was simulated to increase greatly due to warming, a wetter climate and higher CO2 levels by the year 2100. In contrast, our model predicts that sites that are expected to experience reduced precipitation rates and are currently permafrost free will lose more carbon in the future.

  16. Enterprise systems in Russia: 1992-2012

    NASA Astrophysics Data System (ADS)

    Kataev, Michael Yu; Bulysheva, Larisa A.; Emelyanenko, Alexander A.; Emelyanenko, Vladimir A.

    2013-05-01

    This paper introduces the enterprise systems (ES) development and implementation in Russia in the past three decades. Historic analysis shows that, in terms of time frame, the development of ACS (Automated Control Systems) in the former Soviet Union and the ERP (Enterprise Resource Planning) in the West was almost parallel. In this paper, the current status and the major trend of ES in Russia is discussed.

  17. Outreach and educational activities in Russia

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Kartashova, A.

    2012-09-01

    We present an overview of the major internal as well as international meetings and events held in Russia and dedicated to the integration, development and expanding of knowledge in Planetary Research. The report is complemented by the Europlanet activities in Russia over the last year, achieved goals and lessons learned. Additionally, we highlight current problems and possible future improvements to the present educational and outreach techniques.

  18. Association of climatic factors with infectious diseases in the Arctic and subarctic region – a systematic review

    PubMed Central

    Hedlund, Christina; Blomstedt, Yulia; Schumann, Barbara

    2014-01-01

    Background The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. Objectives To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. Methods A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. Results In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14), the rest from Sweden (n=6), Finland (n=4), Norway (n=2), Russia (n=2), and Alaska, US (n=1). Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. Conclusions More studies of high quality are needed to

  19. Latitudinal variability in the seroprevalence of antibodies against Toxoplasma gondii in non-migrant and Arctic migratory geese.

    PubMed

    Sandström, Cecilia A M; Buma, Anita G J; Hoye, Bethany J; Prop, Jouke; van der Jeugd, Henk; Voslamber, Berend; Madsen, Jesper; Loonen, Maarten J J E

    2013-05-01

    Toxoplasma gondii is an intracellular coccidian parasite found worldwide and is known to infect virtually all warm-blooded animals. It requires a cat (family Felidae) to complete its full life cycle. Despite the absence of wild felids on the Arctic archipelago of Svalbard, T. gondii has been found in resident predators such as the arctic fox and polar bear. It has therefore been suggested that T. gondii may enter this ecosystem via migratory birds. The objective of this study was to identify locations where goose populations may become infected with T. gondii, and to investigate the dynamics of T. gondii specific antibodies. Single blood samples of both adults and juveniles were collected from selected goose species (Anser anser, A. brachyrhynchus, Branta canadensis, B. leucopsis) at Arctic brood-rearing areas in Russia and on Svalbard, and temperate wintering grounds in the Netherlands and Denmark (migratory populations) as well as temperate brood-rearing grounds (the Netherlands, non-migratory populations). A modified agglutination test was used on serum, for detection of antibodies against T. gondii. Occasional repeated annual sampling of individual adults was performed to determine the antibody dynamics. Adults were found seropositive at all locations (Arctic and temperate, brood-rearing and wintering grounds) with low seroprevalence in brood-rearing birds on temperate grounds. As no juvenile geese were found seropositive at any brood-rearing location, but nine month old geese were found seropositive during spring migration we conclude that geese, irrespective of species and migration, encounter T. gondii infection in wintering areas. In re-sampled birds on Svalbard significant seroreversion was observed, with 42% of seropositive adults showing no detectable antibodies after 12 months, while the proportion of seroconversion was only 3%. Modelled variation of seroprevalence with field data on antibody longevity and parasite transmission suggests seroprevalence

  20. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: results from a decade of monitoring.

    PubMed

    Hung, H; Blanchard, P; Halsall, C J; Bidleman, T F; Stern, G A; Fellin, P; Muir, D C G; Barrie, L A; Jantunen, L M; Helm, P A; Ma, J; Konoplev, A

    2005-04-15

    The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island, Russia and Amderma, Russia. Selected POPs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides, were analyzed in both the gas and particulate phases. This paper summarizes results obtained from this project in the past 5 years. Temporal trends were developed for atmospheric PCBs and OCs observed at Alert using a digital filtration (DF) technique. It was found that trends developed with 5 years of data (1993-1997) did not differ significantly from those determined with 7 years of data (1993-1999). This implies that with the DF technique, long-term trends can still be developed with less than 10 years of data. An acceleration in decline of OC and PCB air concentrations was noted in 1999 for some compounds, although the reason is unknown. Monitoring efforts must continue to assess the effect of this decline on the long-term trends of POPs in the Canadian Arctic. Occasional high trans-/cis-chlordane ratios and heptachlor air concentrations measured at Alert between 1995 and 1997 suggests sporadic fresh usage of chlordane-based pesticides. However, significant decreasing trends of chlordanes along with their chemical signatures has provided evidence that emission of old soil residues is replacing new usage as an important source to the atmosphere. Measurements of OC air concentrations conducted at Kinngait in 1994-1995 and 2000-2001 indicated faster OC removal at this location than at Alert. This may be attributed to the proximity of Kinngait to temperate regions where both biotic and abiotic degradation rates are faster. The PAH concentrations observed

  1. Fatal attraction: Explaining Russia's sensitive nuclear transfers to Iran

    NASA Astrophysics Data System (ADS)

    Kuchinsky, Leah R.

    This paper explores Russia's sensitive nuclear assistance to Iran in an effort to determine why a supplier state might proliferate against its own apparent security interests. The goal is to help readers understand the supply-side dynamics of nuclear proliferation. Through careful reconstruction of the historical narrative, using open source data, this study tests the plausibility of a "fatalistic calculus" explanation, identified by Stephen Sestanovich as a possible driver for Russia's behavior. According to the hypothesis, Russia has cooperated with Iran as a way both to stay in the good graces of a neighbor that is suspected of developing nuclear weapons and to win short-term influence and profits. The paper also examines the role of other factors advanced in the existing supply-side literature, such as economic motives identified by physicist and nonproliferation scholar David Albright. The findings show that bureaucratic, economic and fatalistic factors have each played a role in motivating Russia's cooperation with Iran, with their relative importance shifting over time. Fatalism begets a strategy of Russian "minimaxing," in the lexicon of Russia scholar Robert Freedman, wherein Russia attempts to minimize damage to its relationship with the U.S. while maximizing influence in Iran via nuclear cooperation. Fatalism, as actualized by minimaxing, best explains Russia's behavior after former Russian president Vladmir Putin came to power, when the bureaucratic and economic arguments become less cogent.

  2. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  3. Arctic Amplification and Potential Mid-Latitude Weather Linkages

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2014-12-01

    Increasing temperatures and other changes continued in the Arctic over the last decade, even though the rate of global warming has decreased in part due to a cool Pacific Ocean. Thus Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures. Credibility for persistent Arctic change comes from multiple indicators which are now available for multiple decades. Further, the spatial pattern of Arctic Amplification differs from patterns of natural variability. The role of the Arctic in the global climate system is based on multiple interacting feedbacks represented by these indicators as a causal basis for Arctic Amplification driven by modest global change. Many of these processes act on a regional basis and their non-linear interactions are not well captured by climate models. For example, future loss of sea ice due to increases in CO2 are demonstrated by these models but the rates of loss appear slow. It is reasonable to suspect that Arctic change which can produce the largest temperature anomalies on the planet and demonstrate recent extremes in the polar vortex could be linked to mid-latitude weather, especially as Arctic change will continue over the next decades. The meteorological community remains skeptical, however, in the sense of "not proven." Natural variability in chaotic atmospheric flow remains the main dynamic process, and it is difficult to determine whether Arctic forcing of a north-south linkage is emerging from the most recent period of Arctic change since 2007. Nonetheless, such a hypothesis is worthy of investigation, given the need to further understand Arctic dynamic atmospheric processes, and the potential for improving mid-latitude seasonal forecasts base on high-latitude forcing. Several AGU sessions and other forums over the next year (WWRP, IASC,CliC) address this issue, but the topic is not ready for a firm answer. The very level of controversy indicates the state of the science.

  4. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  5. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    NASA Astrophysics Data System (ADS)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  6. U.S. National Arctic Strategy: Preparing Defensive Lines of Effort for the Arctic

    DTIC Science & Technology

    2014-04-01

    publications hint at new political posturing and suggest China should develop a more assertive approach to the international debates on controlling ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-04-2014 2. REPORT TYPE...importance of the Arctic, but lacks the infrastructure, command and control structure, and Arctic-capable assets to meet national strategic objectives

  7. Levels and trends of contaminants in humans of the Arctic.

    PubMed

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment.

  8. Levels and trends of contaminants in humans of the Arctic

    PubMed Central

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment. PMID:27974136

  9. Chinese Students in the Higher Educational Institutions of Russia

    ERIC Educational Resources Information Center

    Aref'ev, A. L.

    2012-01-01

    There has been an increase in the number of students from China studying in Russia, but still less than 2 percent of Chinese who study abroad do so in Russia. A third of these students would not encourage others to do so, on the grounds that educational conditions are not good and that they feel unwelcome in Russia. Most of these students…

  10. Kondyor Massif, Russia

    NASA Image and Video Library

    2008-02-19

    The Kondyor Massif is located in Eastern Siberia, Russia, north of the city of Khabarovsk. It is a rare form of igneous intrusion called alkaline-ultrabasic massif and it is full of rare minerals. This image is from NASA Terra satellite.

  11. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the

  12. Toward a United States Arctic research policy

    NASA Astrophysics Data System (ADS)

    Roederer, Juan G.

    Of all countries bordering on the Arctic, the United States is the only one without a national institute, laboratory, or any other organization devoted to the sustained planning and support of Arctic research. Up to now, the responsibility for planning, implementing, and funding Arctic research has been divided between several federal agencies, the state of Alaska, and private groups whose mandates or objectives are often unconnected.The result of this pluralistic approach to U.S. science in the Arctic is that basic research has been conducted in piecemeal fashion. Individual studies are proposed and supported separately, and their costly logistic requirements must be funded in competition with research carried out under less-demanding environmental conditions in the rest of the country. Fundamental data-gathering and interpretation of information has been the responsibility of public agencies whose missions are separate and whose budgets may not reflect the priorities of Arctic issues.

  13. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification

    NASA Astrophysics Data System (ADS)

    Cohen, Judah

    2016-05-01

    The tropics, in general, and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing midlatitude weather. However, since the late 1980s and early 1990s, the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intraseasonal temperature variability shows that the cooling in midlatitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash."

  14. Neckband retention for lesser snow geese in the western Arctic

    USGS Publications Warehouse

    Samuel, M.D.; Goldberg, Diana R.; Smith, A.E.; Baranyuk, W.; Cooch, E.G.

    2001-01-01

    Neckbands are commonly used in waterfowl studies (especially geese) to identify individuals for determination of movement and behavior and to estimate population parameters. Substantial neckband loss can adversely affect these research objectives and produce biased survival estimates. We used capture, recovery, and observation histories for lesser snow geese (Chen caerulescens caerulescens) banded in the western Arctic, 1993-1996, to estimate neckband retention. We found that neckband retention differed between snow goose breeding colonies at Wrangel Island, Russia, and Banks Island, Northwest Territories, Canada. Male snow geese had higher neckband loss than females, a pattern similar to that found for Canada geese (Branta canadensis) and lesser snow geese in Alaska. We found that the rate of neckband loss increased with time, suggesting that neckbands are lost as the plastic deteriorates. Survival estimates for geese based on resighting neckbands will be biased unless estimates are corrected for neckband loss. We recommend that neckband loss be estimated using survival estimators that incorporate recaptures, recoveries, and observations of marked birds. Research and management studies using neckbands should be designed to improve neckband retention and to include the assessment of neckband retention.

  15. Arctic sea-ice melting: Effects on hydroclimatic variability and on UV-induced carbon cycling

    NASA Astrophysics Data System (ADS)

    Sulzberger, Barbara

    2016-04-01

    Since 1980 both the perennial and the multiyear central Arctic sea ice areas have declined by approximately 13 and 15% per decade, respectively (IPCC, 2013). Arctic sea-ice melting has led to an increase in the amplitude of the Northern Hemisphere jet stream and, as a consequence, in more slowly moving Rossby waves which results in blocking of weather patterns such as heat waves, droughts, cold spells, and heavy precipitation events (Francis and Vavrus, 2012). Changing Rossby waves account for more than 30% of the precipitation variability over several regions of the northern middle and high latitudes, including the US northern Great Plains and parts of Canada, Europe, and Russia (Schubert et al., 2011). From 2007 to 2013, northern Europe experienced heavy summer precipitation events that were unprecedented in over a century, concomitant with Arctic sea ice loss (Screen, 2013). Heavy precipitation events tend to increase the runoff intensity of terrigenous dissolved organic matter (tDOM) (Haaland et al., 2010). In surface waters tDOM is subject to UV-induced oxidation to produce atmospheric CO2. Mineralization of DOM also occurs via microbial respiration. However, not all chemical forms of DOM are available to bacterioplankton. UV-induced transformations generally increase the bioavailability of tDOM (Sulzberger and Durisch-Kaiser, 2009). Mineralization of tDOM is an important source of atmospheric CO2 and this process is likely to contribute to positive feedbacks on global warming (Erickson et al., 2015). However, the magnitudes of these potential feedbacks remain unexplored. This paper will discuss the following items: 1.) Links between Arctic sea-ice melting, heavy precipitation events, and enhanced tDOM runoff. 2.) UV-induced increase in the bioavailability of tDOM. 3.) UV-mediated feedbacks on global warming. References Erickson, D. J. III, B. Sulzberger, R. G. Zepp, A. T. Austin (2015), Effects of stratospheric ozone depletion, solar UV radiation, and climate

  16. Arctic Ocean Paleoceanography and Future IODP Drilling

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  17. The NSF Arctic Data Center: Leveraging the DataONE Federation to Build a Sustainable Archive for the NSF Arctic Research Community

    NASA Astrophysics Data System (ADS)

    Budden, A. E.; Arzayus, K. M.; Baker-Yeboah, S.; Casey, K. S.; Dozier, J.; Jones, C. S.; Jones, M. B.; Schildhauer, M.; Walker, L.

    2016-12-01

    The newly established NSF Arctic Data Center plays a critical support role in archiving and curating the data and software generated by Arctic researchers from diverse disciplines. The Arctic community, comprising Earth science, archaeology, geography, anthropology, and other social science researchers, are supported through data curation services and domain agnostic tools and infrastructure, ensuring data are accessible in the most transparent and usable way possible. This interoperability across diverse disciplines within the Arctic community facilitates collaborative research and is mirrored by interoperability between the Arctic Data Center infrastructure and other large scale cyberinfrastructure initiatives. The Arctic Data Center leverages the DataONE federation to standardize access to and replication of data and metadata to other repositories, specifically the NOAA's National Centers for Environmental Information (NCEI). This approach promotes long-term preservation of the data and metadata, as well as opening the door for other data repositories to leverage this replication infrastructure with NCEI and other DataONE member repositories. The Arctic Data Center uses rich, detailed metadata following widely recognized standards. Particularly, measurement-level and provenance metadata provide scientists the details necessary to integrate datasets across studies and across repositories while enabling a full understanding of the provenance of data used in the system. The Arctic Data Center gains this deep metadata and provenance support by simply adopting DataONE services, which results in significant efficiency gains by eliminating the need to develop systems de novo. Similarly, the advanced search tool developed by the Knowledge Network for Biocomplexity and extended for data submission by the Arctic Data Center, can be used by other DataONE-compliant repositories without further development. By standardizing interfaces and leveraging the DataONE federation

  18. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  19. The International Polar year 2007-2008; the Arctic human health legacy.

    PubMed

    Parkinson, Alan J

    2007-01-01

    Life expectancy in Arctic populations has greatly improved over the last 50 years. Much of this improvement can be attributed health research that has resulted in a reduction in morbidity and mortality from infectious diseases, such as tuberculosis, and the vaccine-preventable diseases of childhood. However, despite these improvements in health indicators of Arctic residents, life expectancy and infant mortality remain higher in indigenous Arctic residents in the US Arctic, northern Canada, and Greenland when compared to Arctic residents of Nordic countries. The International Polar Year (IPY) represents a unique opportunity to focus world attention on Arctic human health and to further stimulate Circumpolar cooperation on emerging Arctic human health concerns. The Arctic Human Health Initiative (AHHI) is an Arctic Council IPY initiative that aims to build and expand on existing Arctic Council and International Union for Circumpolar Health (IUCH) human health research activities. The human health legacy of the IPY will be increased visibility of the human health concerns of Arctic communities, revitalization of cooperative Arctic human health research focused on those concerns, the development of health policies based on research findings, and the subsequent implementation of appropriate interventions, prevention and control measures at the community level.

  20. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  1. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  2. Arctic-like Rabies Virus, Bangladesh

    PubMed Central

    Jamil, Khondoker Mahbuba; Hossain, Moazzem; Matsumoto, Takashi; Ali, Mohammad Azmat; Hossain, Sohrab; Hossain, Shakhawat; Islam, Aminul; Nasiruddin, Mohammad; Nishizono, Akira

    2012-01-01

    Arctic/Arctic-like rabies virus group 2 spread into Bangladesh ≈32 years ago. Because rabies is endemic to and a major public health problem in this country, we characterized this virus group. Its glycoprotein has 3 potential N-glycosylation sites that affect viral pathogenesis. Diversity of rabies virus might have public health implications in Bangladesh. PMID:23171512

  3. Reconstruction of Arctic surface temperature in past 100 years using DINEOF

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Huang, Jianbin; Luo, Yong

    2015-04-01

    Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that

  4. Russia SimSmoke: the long-term effects of tobacco control policies on smoking prevalence and smoking-attributable deaths in Russia

    PubMed Central

    Maslennikova, Galina Ya; Oganov, Rafael G; Boytsov, Sergey A; Ross, Hana; Huang, An-Tsun; Near, Aimee; Kotov, Alexey; Berezhnova, Irina; Levy, David T

    2015-01-01

    Background Russia has high smoking rates and weak tobacco control policies. A simulation model is used to examine the effect of tobacco control policies on past and future smoking prevalence and premature mortality in Russia. Methods The Russia model was developed using the SimSmoke tobacco control model previously developed for the USA and other nations. The model inputs population size, birth, death and smoking rates specific to Russia. It assesses, individually and in combination, the effect of seven types of policies consistent with the WHO Framework Convention on Tobacco Control (FCTC): taxes, smoke-free air, mass media campaign, advertising bans, warning labels, cessation treatment and youth access policies. Outcomes are smoking prevalence and the number of smoking-attributable deaths by age and gender from 2009 to 2055. Results Increasing cigarette taxes to 70% of retail price, stronger smoke-free air laws, a high-intensity media campaign and comprehensive treatment policies are each potent policies to reduce smoking prevalence and smoking-attributable premature deaths in Russia. With the stronger set of policies, the model estimates that, relative to the status quo trend, smoking prevalence can be reduced by as much as 30% by 2020, with a 50% reduction projected by 2055. This translates into 2 684 994 male and 1 011 985 female premature deaths averted from 2015–2055. Conclusions SimSmoke results highlight the relative contribution of policies to reducing the tobacco health burden in Russia. Significant inroads to reducing smoking prevalence and premature mortality can be achieved through strengthening tobacco control policies in line with FCTC recommendations. PMID:23853252

  5. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions

  6. Arctic-midlatitude weather linkages in North America

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  7. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image Stratus clouds are common in the Arctic during the summer months, ... (Acro Service Corporation/Jet Propulsion Laboratory), David J. Diner (Jet Propulsion Laboratory). Other formats available at JPL ...

  8. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  9. Arctic Change Detection: Multiple Observations and Recent Explanations

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2004-12-01

    The recently released Arctic Climate Impact Assessment (ACIA) Report documents Arctic-wide changes and impacts; it provides a long-term perspective for peoples, governments and scientists in coping with these changes. Further, investigation of the last three decades of multivariate biophysical data sets(climate, land and marine ecosystems, cryosphere) and century-long weather records, show two main types of Arctic variability. These are: 1) long-term trends as represented by loss of sea-ice and tundra area and their biological response, and 2) decadal variability in atmospheric forcing and its direct impacts. Three main conclusions are possible: * Temperature anomalies in the last 15 years are unique in the Arctic instrumental record (1880-2003). Historically, there were regional/decadal warm events during winter and spring in the 1930s to 1950s, but meteorological analysis shows that these surface air temperature anomalies are the result of intrinsic variability in regional flow patterns, as contrasted with the Arctic-wide Arctic Oscillation (AO) influence of the 1990s. * These changes are primarily driven by changes in atmospheric circulation, and thus are subject to north/south gradients in hemispheric radiative forcing from volcanic aerosols, insolation cycles and CO2 increase. These north/south differences drive temperature advection in the trough-ridge structure of the AO. This conclusion is based primarily on model results and impacts from volcanos. * Change is likely to be irreversible over at least the next decade. In the previous five years, many ecosystems, such as the Bering Sea and east Greenland, are showing more year-to-year persistence, despite considerable variability in the AO and other climate indices. We hypothesize that the changes occurring in the Arctic are beginning to be significant enough to make the Arctic less sensitive to cold swings in atmospheric variability, although direct mechanisms are unclear. A next step in the post-ACIA period

  10. Politics and Economics in Putins Russia

    DTIC Science & Technology

    2013-12-01

    from 28.9 to 42.2 between 1992 and 2009. Social stresses have been similarly magnified. Given that federal spending on social services in 2007-2008...demonstration that supreme power in Russia will be undivided and unaccount- able. With Medvedev humiliated, previously heated speculation over who...that Russia has come to look like a modern society. It is true that the townscapes of major cities like Mos- cow and St. Petersburg are presently

  11. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    NASA Astrophysics Data System (ADS)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  12. Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, A.; Payne, J.F.; Fancey, L.L.

    1997-09-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less

  13. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    USGS Publications Warehouse

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  14. Spatial and seasonal variations of Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere.

    PubMed

    Su, Yushan; Hung, Hayley; Blanchard, Pierrette; Patton, Gregory W; Kallenborn, Roland; Konoplev, Alexei; Fellin, Phil; Li, Henrik; Geen, Charles; Stern, Gary; Rosenberg, Bruno; Barrie, Leonard A

    2006-11-01

    Weekly high-volume air samples were collected between 2000 and 2003 at six Arctic sites, i.e., Alert, Kinngait, and Little Fox Lake (LFL) in Canada, Point Barrow in Alaska, Valkarkai in Russia, and Zeppelin in Norway. Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were quantified in all samples. Comparison showed that alpha-HCH and HCB were homogeneously distributed in the circumpolar atmosphere and uniform throughout the seasons. However, significantly higher atmospheric concentrations of alpha-HCH and HCB and strongertemperature dependence of alpha-HCH and gamma-HCH were found at LFL in Yukon (YK), which is unique among the sites by virtue of its high altitude and low latitude, resulting in higher precipitation rates and summer temperatures. Strong temperature dependence of alpha- and gamma-HCH at this location suggests that secondary emissions, i.e., re-evaporation from surfaces, were more important at this site than others. It is hypothesized that a higher precipitation rate at LFL facilitated the transfer of alpha-HCH from the atmosphere to surface media when technical HCH was still in use worldwide. On the other hand, higher temperature at LFL enhanced reevaporation to the atmosphere after the global ban of technical HCH. In contrast to alpha-HCH and HCB, larger spatial and seasonal differences were seen for gamma-HCH (a currently used pesticide), which likely reflect the influence of different primary contaminant sources on different Arctic locations. Fugacity ratios suggest a net deposition potential of HCB from air to seawater, whereas seawater/air exchange direction of alpha-HCH varies in the circumpolar environment.

  15. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  16. Engineering and Technical Education in Russia, in Numbers

    ERIC Educational Resources Information Center

    Aref'ev, A. L.; Aref'ev, M. A.

    2013-01-01

    An analysis of the main tendencies in the development of engineering and technical education in Russia during the last 100 years shows that earlier strengths have been lost, and that currently technical education in Russia is far behind modern world standards.

  17. Satellite Observed Changes in the Arctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2004-01-01

    The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.

  18. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  19. Seeing the risks of multiple Arctic amplifying feedbacks.

    NASA Astrophysics Data System (ADS)

    Carter, P.

    2014-12-01

    There are several potentially very large sources of Arctic amplifying feedbacks that have been identified. They present a great risk to the future as they could become self and inter-reinforcing with uncontrollable knock-on, or cascading risks. This has been called a domino effect risk by Carlos Duarte. Because of already committed global warming and the millennial duration of global warming, these are highly policy relevant. These Arctic feedback processes are now all operant with emissions of carbon dioxide methane and nitrous oxide detected. The extent of the risks from these feedback sources are not obvious or easy to understand by policy makers and the public. They are recorded in the IPCC AR5 as potential tipping points, as is the irreversibility of permafrost thaw. Some of them are not accounted for in the IPCC AR5 global warming projections because of quantitative uncertainty. UNEP issued a 2012 report (Policy Implications of Thawing Permafrost) advising that by omitting carbon feedback emissions from permafrost, carbon budget calculations by err on the low side. There is the other unassessed issue of a global warming safety limit for preventing uncontrollable increasing Arctic feedback emissions. Along with our paper, we provide illustrations of the Arctic feedback sources and processes from satellite imagery and flow charts that allows for their qualitative consideration. We rely on the IPCC assessments, the 2012 paper Possible role of wetlands permafrost can methane hydrates in the methane cycle under future climate change; a review, by Fiona M. O'Connor et al., and build on the WWF 2009 Arctic Climate Feedbacks: Global Implications. The potential sources of Arctic feedback processes identified include: Arctic and Far North snow albedo decline, Arctic summer sea ice albedo decline, Greenland summer ice surface melting albedo loss, albedo decline by replacement of Arctic tundra with forest, tundra fires, Boreal forest fires, Boreal forest die

  20. A quantitative assessment of Arctic shipping in 2010–2014

    PubMed Central

    Eguíluz, Victor M.; Fernández-Gracia, Juan; Irigoien, Xabier; Duarte, Carlos M.

    2016-01-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far. PMID:27477878

  1. 15 CFR 744.10 - Restrictions on certain entities in Russia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Russia. 744.10 Section 744.10 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... REGULATIONS CONTROL POLICY: END-USER AND END-USE BASED § 744.10 Restrictions on certain entities in Russia. (a) General prohibition. Certain entities in Russia are included in supplement No. 4 to this part 744 (Entity...

  2. 15 CFR 744.10 - Restrictions on certain entities in Russia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Russia. 744.10 Section 744.10 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... REGULATIONS CONTROL POLICY: END-USER AND END-USE BASED § 744.10 Restrictions on certain entities in Russia. (a) General prohibition. Certain entities in Russia are included in Supplement No. 4 to this part 744 (Entity...

  3. 15 CFR 744.10 - Restrictions on certain entities in Russia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Russia. 744.10 Section 744.10 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... REGULATIONS CONTROL POLICY: END-USER AND END-USE BASED § 744.10 Restrictions on certain entities in Russia. (a) General prohibition. Certain entities in Russia are included in Supplement No. 4 to this part 744 (Entity...

  4. 15 CFR 744.10 - Restrictions on certain entities in Russia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Russia. 744.10 Section 744.10 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... REGULATIONS CONTROL POLICY: END-USER AND END-USE BASED § 744.10 Restrictions on certain entities in Russia. (a) General prohibition. Certain entities in Russia are included in Supplement No. 4 to this part 744 (Entity...

  5. 15 CFR 744.10 - Restrictions on certain entities in Russia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Russia. 744.10 Section 744.10 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... REGULATIONS CONTROL POLICY: END-USER AND END-USE BASED § 744.10 Restrictions on certain entities in Russia. (a) General prohibition. Certain entities in Russia are included in Supplement No. 4 to this part 744 (Entity...

  6. Variability of the Arctic Basin Oceanographic Fields

    DTIC Science & Technology

    1996-02-01

    the model a very sophisticated turbulence closure scheme. 9. Imitation of the CO2 doubling We parameterized the " greenhouse " effect by changing the...of the Arctic Ocean. A more realistic model of the Arctic Ocean circulation was obtained, and an estimation of the impact of the greenhouse effect on... greenhouse effect is in freshening of the upper Arctic Basin. Although some shortcomings of the model still exist (an unrealistic high coefficient of

  7. Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, F.L.; Machemehl, J.L.

    1985-01-01

    Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less

  8. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-04-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon - a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams). The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  11. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  12. Arctic Freshwater Synthesis: Summary of key emerging issues

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.

    2015-10-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.

  13. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  14. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    PubMed

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  15. Plio-Pleistocene Temperature Variability in the Terrestrial Arctic: Insights from Branched Glycerol Dialkyl Glycerol Tetraethers

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Salacup, J.; de Wet, G.; Habicht, M. H.; Keisling, B. A.; Phu, V.; Johnson, J.; Lukas, S.; Lyons, N.; Brigham-Grette, J.

    2014-12-01

    Drill coring at Lake El'gygytgyn (Far East Russia) in 2009 retrieved a 3.6 Ma long sediment core, which is presently the oldest continuous sedimentary record available from the terrestrial Arctic. This unique Plio-Pleistocene record allows for the response of the Arctic to global climate events under a variety of different boundary conditions to be examined. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the mid-Pliocene warm period, the Plio-Pleistocene transition, the mid-Brunhes transition, and warm Pleistocene interglacial periods including Marine Isotope Stages (MIS) 5, 9, 11, 19 and 31. Despite the ultra-oligotrophic nature of Lake El'gygytgyn and the generally low sedimentary total organic carbon (TOC) content, we find abundant branched glycerol dialkyl glycerol tetraethers (brGDGTs) throughout the entire record and use the methylation and cyclization indices of branched tetraethers (MBT and CBT, respectively) to reconstruct past temperature (Weijers et al., 2007). We hypothesize that the majority of brGDGTs are produced in the lake during the brief summer period of ice free conditions and that MBT/CBT likely reflects a warm season temperature. Trends noted in the MBT/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core. For example, we note a dramatic ~6°C cooling associated with the mid-Pliocene M2 event and thus far MIS 31 has emerged as the warmest period at Lake El'gygytgyn during the past ~ 1 Ma, corroborating the pollen data. Interestingly, a number of abrupt and relatively short-lived cooling events of 2 to 4°C are noted within several of the particularly warm interglacial periods (e.g. MIS 5e, MIS 11 and MIS 31) and are the subject of ongoing investigation. Overall, application of the MBT/CBT paleothermometer to Lake El'gygytgyn sediments is a highly promising technique for generating a Plio-Pleistocene temperature record from the continental

  16. Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; Elkin, B; Armstrong, F A J; Muir, D C G

    2003-06-20

    Arctic fox (Alopex lagopus) and wolverine (Gulo gulo) tissues were collected in the Canadian Arctic from 1998 to 2001 and analyzed for various essential and non-essential elements. Several elements (Ag, Al, As, B, Ba, Be, Co, Cr, Mo, Ni, Sb, Sn, Sr, Tl, U and V) were near or below the detection limits in >95% arctic fox and wolverine samples. Concentrations of Cd, Cu, Fe, total Hg (THg), Mn, Pb, Se and Zn were quantifiable in >50% of the samples analyzed and reported herein. Hepatic elemental concentrations were not significantly different among arctic foxes collected at Ulukhaqtuuq (Holman), NT (n=13) and Arviat, NU (n=50), but were significantly greater than concentrations found in wolverine liver from Kugluktuk (Coppermine), NU (n=12). The mean (+/-1 S.E.) concentrations of Cd in kidney were also significantly greater in arctic fox (1.08+/-0.19 microg g(-1) wet wt.) than wolverine (0.67+/-0.18 microg g(-1) wet wt.). However, mean hepatic Cu concentrations (Ulukhaqtuuq: 5.5+/-0.64; Arviat: 7.1+/-0.49 microg g(-1) wet wt.) in arctic foxes were significantly lower than in wolverines (32+/-3.3 microg g(-1) wet wt.). Hepatic total Hg (THg) concentrations in arctic fox from this study were not significantly different from specimens collected in 1973, suggesting that THg concentrations have not changed dramatically over the past 30 years. The mono-methylmercury (MeHg) concentrations in selected (n=10) arctic fox liver samples from Arviat (0.14+/-0.07 microg g(-1) wet wt.) comprised 14% of THg. While the molar concentrations of THg were correlated with Se in arctic foxes and wolverines, the hepatic Hg/Se molar ratios were consistently lower than unity; suggesting that Se-mediated detoxification pathways of Hg are not overwhelmed at current exposure.

  17. Circum-arctic plate accretion - Isolating part of a pacific plate to form the nucleus of the Arctic Basin

    USGS Publications Warehouse

    Churkin, M.; Trexler, J.H.

    1980-01-01

    A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea. ?? 1980.

  18. Arctic Oil and Natural Gas Potential

    EIA Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  19. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    PubMed

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  20. Arctic Ocean Pathways in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew

    2017-04-01

    In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by

  1. A History of Coastal Research in the Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  2. Rural migration and agrarian reform in Russia: a research note.

    PubMed

    Wegren, S K

    1995-07-01

    This study focuses primarily on trends in rural-urban migration in Russia and the former Soviet Union. "New data suggest that a historic shift in migration patterns is underway in Russia, a change that may have profound long-term effects on agrarian reform and the nature of the Russian countryside. We begin with a short review of past rural migration trends and the rural demographic situation, in part using archival data for an oblast in central Russia. We will then present new data on rural migration. Finally, we assess the implications of rural migratory trends for agrarian reform in Russia." excerpt

  3. Distribution of Aerosols in the Arctic as Observed by CALIOP

    NASA Astrophysics Data System (ADS)

    Winker, D.; Kittaka, C.

    2007-12-01

    The Arctic climate is now recognized to be uniquely sensitive to atmospheric perturbations. Pollution aerosols and smoke from boreal fires have potentially important impacts on Arctic climate but there are many uncertainties. Aerosol in the Arctic, generally referred to as "Arctic haze", has been studied with great interest for over thirty years. Much has been learned about the composition and sources of the haze yet our knowledge is largely based on long term measurements at a very few widely dispersed sites, augmented by modeling activities and occasional field campaigns. Transport pathways from source regions into the Arctic are not well understood. Emission patterns have changed over the last several decades, but the impact of this on concentrations and distribution of Arctic haze are understood only in the crudest sense. Due to poor lighting conditions, extended periods of darkness, and surfaces covered by snow and ice, satellite sensors have been unable to provide much information on Arctic haze to date. The CALIPSO satellite carries CALIOP, a two-wavelength polarization lidar, optimized for profiling clouds and aerosols. CALIOP has been acquiring global observations since June 2006 and provides our first opportunity to observe the distribution and seasonal variation of aerosol in the Arctic. The Arctic is characterized by the prevalence of optically thin ice clouds and clouds composed of supercooled water, often occurring in the same atmospheric column along with aerosol. CALIOP depolarization signals are used to discriminate Arctic haze from optically thin cirrus and diamond dust. Two-wavelength returns aid in the discrimination of aerosol and optically thin water cloud. Results of initial analyses of CALIOP aerosol observations in the Arctic will be presented. This work is a preliminary analysis in support of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign planned for April 2008.

  4. The Long and Winding Road of Arctic Change Research

    NASA Astrophysics Data System (ADS)

    Mark, S.

    2016-12-01

    In the quest to better understand the local, regional and global drivers and impacts of Arctic change, we must not forget that the questions being asked today build on more than a century of research. There were giants before us. Perhaps the first observational evidence that the Arctic was responding to increasing carbon dioxide levels came from a 1986 study by Lachenbruch and Marshall of permafrost temperatures from boreholes in northernmost Alaska. In 1991, Detlef Quadfasel provided the first data on what appeared to be shifts in the ocean circulation, and hints then emerged that the sea ice cover at summer's end was receding. It was then noted that air temperatures over some parts of the Arctic were rising and others were cooling, attended by shifts in weather patterns. While some of this resembled what climate models were projecting, much of it looked like natural climate variability, driven variously by processes internal to the Arctic or linked to lower latitudes via the behavior of the NAO and the Arctic Oscillation. But the changes kept coming. Through a largely self-organizing process, led in considerable part by a small number of leading voices and with the strong support of funding agencies, scientists from diverse disciplines around the world began to find the answers. By the first decade of the 21st century, it was understood that large natural variability in Arctic climate, linked to both within-Arctic and lower-latitude drivers, was superimposed upon warming due to rising greenhouse gas levels, and that what was happening in the Arctic was already influencing lower latitudes. Many issues remain to be resolved. What are the relative roles of different drivers of Arctic amplification? Does Arctic amplification influence weather patterns beyond the Arctic? Will thawing terrestrial or subsea permafrost lead to substantial carbon emissions to the atmosphere, exacerbating global warming? How will sea ice loss affect Arctic ecosystems? How much will the

  5. Arctic Energy Resources: Energy Research

    NASA Astrophysics Data System (ADS)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  6. U.S. Geological Survey circum-arctic resource appraisal

    USGS Publications Warehouse

    Gautier, D.L.

    2011-01-01

    Among the greatest uncertainties in future energy supply is the amount of oil and gas yet to be found in the Arctic. Using a probabilistic geology-based methodology, the U.S. Geological Survey has assessed the area north of the Arctic Circle. The Circum-Arctic Resource Appraisal (CARA) consists of three parts: (1) Mapping the sedimentary sequences of the Arctic (Grantz and others 2009), (2) Geologically based estimation of undiscovered technically recoverable petroleum (Gautier and others 2009, discussed in this presentation) and (3) Economic appraisal of the cost of delivering the undiscovered resources to major markets (also reported at this conference by White and others). We estimate that about 30% of the world's undiscovered gas and about 13% of the world's undiscovered oil may be present in the Arctic, mostly offshore under less than 500m of water. Billion BOE-plus accumulations of gas and oil are predicted at a 50% probability in the Kara Sea, Barents Sea, offshore East and West Greenland, Canada, and Alaska. On a BOE basis, undiscovered natural gas is three times more abundant than oil in the Arctic and is concentrated in Russian territory. Oil resources, while critically important to the interests of Arctic countries, are probably not sufficient to significantly shift the current geographic patterns of world oil production. Copyright 2011, Offshore Technology Conference.

  7. Influence of sea ice on Arctic precipitation

    PubMed Central

    Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  8. The Arctic Observing Viewer (AOV): Visualization, Data Discovery, Strategic Assessment, and Decision Support for Arctic Observing

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Villarreal, S.; Manley, W. F.; Gaylord, A. G.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2017-12-01

    To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version of the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been released. This web mapping application and information system conveys the who, what, where, and when of "data collection sites" - the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 13,000 sites across the circumarctic are documented including a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, NOAA, the NSF Arctic Data Center, ADIwg, AOOS, a2dc, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent updates include: a vastly improved Search tool with free text queries, autocomplete, and filters; faster performance; a new clustering visualization; heat maps to highlight concentrated research; and 3-D represented data to more easily identify trends. AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals. AOV is a companion application to the Arctic Research Mapping Application (armap.org), which is focused on general project information at a

  9. JAMSTEC Compact Arctic Drifter (J-CAD): A new Generation drifting buoy to observe the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Kiyoshi; Hosono, Masuo; Shimada, Koji; Kikuchi, Takashi; Nishino, Shigeto

    The Arctic Ocean is one of the most sensitive regions to the earth environment changes. Japan Marine Science and Technology Center developed a new drift buoy to observe the Arctic Ocean. The name of the buoy is J-CAD (JAMSTEC Compact Arctic Drifter). From 1991 to 1993, JAMSTEC developed Ice-Ocean Environmental Buoy (IOEB) as a buoy to observe the Arctic Ocean in cooperation with Woods Hole Oceanographic Institution. The J-CAD is the buoy, which adopted the latest technology based on the knowledge and experience of IOEB development. The J-CAD was designed and developed by JAMSTEC and made by a Canadian Company MetOcean. JAMSTEC did design and development, and a Canadian company Met-Ocean made the J-CAD. It acquires meteorological and oceanographic data of the Arctic Ocean, and transmits the data that it measured via satellite. It dose also store the data inside its memory. An Inductive Modem system, which was developed by Sea-Bird Electronics, Inc. in the United States, was adopted in the underwater transmission system that data on each ocean sensor were collected. An ORBCOMM communication system was adopted for the satellite data transmission. J-CAD-1 was installed at 89°41'N 130°20'W on April 24, 2000, and the observation was started. August 1st was the day when 100 days have passed since the J-CAD-1 was installed on the North Pole. And now, the distance J-CAD-1 has covered exceeds 400 km, and it has transmitted data more than 500 k byte. A part of the data is introduced to the public in the homepage (http://w3.jamstec.go.jp: 8338) of the Arctic research group of JAMSTEC.

  10. The central arctic caribou herd

    USGS Publications Warehouse

    Cameron, Raymond D.; Smith, Walter T.; White, Robert G.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    From the mid-1970s through the mid-1980s, use of calving and summer habitats by Central Arctic herd caribou (Rangifer tarandus granti) declined near petroleum development infrastructure on Alaska's arctic coastal plain (Cameron et al. 1979; Cameron and Whitten 1980, Smith and Cameron 1983. Whitten and Cameron 1983a, 1985: Dau and Cameron 1986).With surface development continuing to expand westward from the Prudhoe Bay petroleum development area (Fig. 4.1), concerns arose that the resultant cumulative losses of habitat would eventually reduce productivity of the caribou herd. Specifically, reduced access of adult females to preferred foraging areas might adversely affect growth and fattening (Elison et al. 1986. Clough et al. 1987), in turn depressing calf production (Dauphiné 1976, Thomas 1982, Reimers 1983, White 1983, Eloranta and Nieminen 1986. Lenvik et al. 1988, Thomas and Kiliaan 1991) and survival (Haukioja and Salovaara 1978, Rognmo et al. 1983, Skogland 1984, Eloranta and Nieminen 1986, Adamczewski et al. 1987).Those concerns, though justified in theory, lacked empirical support. With industrial development in arctic Alaska virtually unprecedented, there was little basis for predicting the extent and duration of habitat loss, much less the secondary short- and long-term effects on the well-being of a particular caribou herd.Furthermore, despite a general acceptance that body condition and fecundity of the females are functionally related for reindeer and caribou, it seemed unlikely that any single model would apply to all subspecies of Rangifer, and perhaps not even within a subspecies in different geographic regions. We therefore lacked a complete understanding of the behavioral responses of arctic caribou to industrial development, the manner in which access to habitats might be affected, and how changes in habitat use might translate into measurable effects on fecundity and herd growth rate.Our study addressed the following objectives: 1) estimate

  11. Improving coordination and integration of observations of Arctic change

    NASA Astrophysics Data System (ADS)

    Perovich, Donald; Payne, John; Eicken, Hajo

    2012-10-01

    U.S. Arctic Observing Coordination Workshop;Anchorage, Alaska, 20-22 March 2012 The Arctic is undergoing tremendous changes. Permafrost is thawing, ice sheets are melting, and sea ice is thinning and retreating. These changes are impacting ecosystems and human activities. Observing, understanding, and responding to these changes are the central themes of the U.S. Interagency Study of Environmental Arctic Change (SEARCH, http://www.arcus.org/search/index.php). SEARCH brings together academic and government agency scientists and stakeholders to prioritize, plan, conduct, and synthesize research focused on Arctic environmental change. The U.S. Arctic Observing Coordination Workshop (http://www.arcus.org/search/meetings/2012/coordination-workshop/) focused on two key themes for cross-disciplinary and cross-agency collaboration: (1) understanding and predicting sea ice changes and their consequences for ecosystems, human activities, and climate and (2) determining consequences of loss and warming of shallow permafrost on Arctic and global systems.

  12. Research Applications of Data from Arctic Ocean Drifting Platforms: The Arctic Buoy Program and the Environmental Working Group CD's.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.; Rigor, I.

    2006-12-01

    ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.

  13. Status and Impacts of Arctic Freshwater Export

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  14. Arctic vs. Tropical Influence and Over the Period of Arctic Amplification including Winter 2015/16

    NASA Astrophysics Data System (ADS)

    Cohen, J. L.; Francis, J. A.; Pfeiffer, K.

    2016-12-01

    The tropics in general and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing mid-latitude weather. However, since the late 1980s and early 1990s the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intra-seasonal temperature variability shows that the cooling in mid-latitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash." When a record El Niño occurred this past winter, it should have been an opportunity to showcase decades of research and resources dedicated to the study of the ENSO phenomenon and its global impacts. However the dynamical forecasts performed poorly this past winter. Instead we will show that many of the significant circulation anomalies of this past winter are related to high latitude processes. We believe that the failed forecasts of this past winter will serve as a watershed moment and an inflection point in climate science. Climate science requires a paradigm shift in order to improve long-range forecasts. Less reliance on the tropics and exploration of new regions of predictability, including the Arctic, are required.

  15. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models.

    PubMed

    Gaina, Carmen; Medvedev, Sergei; Torsvik, Trond H; Koulakov, Ivan; Werner, Stephanie C

    Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province-HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.

  16. The Arctic Cooperative Data and Information System: Data Management Support for the NSF Arctic Research Program (Invited)

    NASA Astrophysics Data System (ADS)

    Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.

    2013-12-01

    The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities

  17. Photosynthesis, Earth System Models and the Arctic

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.

    2013-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here

  18. Cruise to the Chukchi Borderland, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; ,

    1993-01-01

    Oceanography and geology were the principal focuses of the U.S. Geological Survey-sponsored expedition Arctic Summer West '92, which traveled to the eastern part of the Chukchi Borderland of the Amerasia Basin, western Arctic Ocean. The expedition took place from August 20 to September 25, 1992, aboard the Coast Guard cutter Polar Star. USGS investigated the geologic framework and tectonic origin of the borderland, Arctic Quaternary paleoclimate, sea-ice transport of particulate matter in the Beaufort Gyre, and possible radionuclide contamination of the water column and seafloor off Alaska from sources in the Russian Arctic. Researchers from five other institutions studied the area's oceanography, age of the water column, paleoenvironment of the Holocene sediment, physical properties and synthetic-aperture radar backscatter of sea ice, and the drop-stone content of late Quaternary sediment.

  19. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  20. The adaptation challenge in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Pearce, Tristan

    2015-12-01

    It is commonly asserted that human communities in the Arctic are highly vulnerable to climate change, with the magnitude of projected impacts limiting their ability to adapt. At the same time, an increasing number of field studies demonstrate significant adaptive capacity. Given this paradox, we review climate change adaptation, resilience and vulnerability research to identify and characterize the nature and magnitude of the adaptation challenge facing the Arctic. We find that the challenge of adaptation in the Arctic is formidable, but suggest that drivers of vulnerability and barriers to adaptation can be overcome, avoided or reduced by individual and collective efforts across scales for many, if not all, climate change risks.