Sample records for zenith angles sza

  1. Chapman Solar Zenith Angle variations at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  2. Estimation of Canopy Clumping Index From MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Wei, S.; Fang, H.

    2016-12-01

    The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.

  3. Assessment of satellite retrieval algorithms for chlorophyll-a concentration under high solar zenith angle

    NASA Astrophysics Data System (ADS)

    Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng

    2016-10-01

    Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.

  4. An investigation of the solar zenith angle variation of D-region ionization

    NASA Technical Reports Server (NTRS)

    Ratnasiri, P. A. J.; Sechrist, C. F., Jr.

    1975-01-01

    Model calculations are carried out with a view to interpreting the solar zenith angle variation of D-region ionization. A model is developed for the neutral chemistry including the transport terms relating to molecular and eddy diffusion. The diurnal behavior is described of the minor neutral constituents formed in an oxygen-hydrogen-nitrogen atmosphere, in the height interval between 30 and 120 km. Computations carried out for two cases of the eddy diffusion coefficients models indicate that the constituents which are important for the D-region positive-ion chemistry do not show a significant variation with zenith angle for values up to 75 deg over the D-region heights. In the ion chemistry model, ion-pair production rates are calculated for solar X-rays between 1 A and 100 A, EUV radiations from 100 A up to the Lyman-alpha line, precipitating electrons, and galactic cosmic rays. The solar zenith angle variation of the positive-ion composition, negative-ion composition, and the electron densities are described up to 75 deg zenith angle, in the height interval between 60 and 100 km.

  5. Asronomical refraction: Computational methods for all zenith angles

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Standish, E. M.

    2000-01-01

    It is shown that the problem of computing astronomical refraction for any value of the zenith angle may be reduced to a simple, nonsingular, numerical quadrature when the proper choice is made for the independent variable of integration.

  6. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.

    PubMed

    Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao

    2018-02-19

    Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

  7. [Radiance Simulation of BUV Hyperspectral Sensor on Multi Angle Observation, and Improvement to Initial Total Ozone Estimating Model of TOMS V8 Total Ozone Algorithm].

    PubMed

    Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun

    2015-11-01

    New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting

  8. Zenith angle dependence of the geocoronal Lyman-alpha glow.

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Kumar, S.; Bowyer, S.

    1972-01-01

    Review of the observations made on the zenith angle dependence and intensity of the geocoronal hydrogen Lyman-alpha glow by means of one of four extreme ultraviolet photometers flown to an altitude of 264 km on a Nike Tomahawk rocket launched from Thumba, India, in March 1970. The results obtained are compared with Meier and Mange's (1970) theoretical predictions. The possible causes for the discrepancies found are discussed.

  9. Determination of coupling coefficients at various zenith angles of the basis of the cosmic ray azimuth effect

    NASA Technical Reports Server (NTRS)

    Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.

    1975-01-01

    The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.

  10. Derivation of Cloud Heating Rate Profiles using observations of Mixed-Phase Arctic Clouds: Impacts of Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.

    2005-12-01

    Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.

  11. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  12. Interpreting vegetation reflectance measurements as a function of solar zenith angle

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Ranson, K. J.

    1979-01-01

    Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.

  13. Midlatitude ionospheric D region: Height, sharpness, and solar zenith angle

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2017-08-01

    VLF radio amplitude and phase measurements are used to find the height and sharpness of the D region of the ionosphere at a mid to high geomagnetic dip latitude of 52.5°. The two paths used are both from the 23.4 kHz transmitter, DHO, in north Germany with the first path being northward and mainly over the sea along the west coast of Denmark over a range of 320-425 km, and the second, also mainly all-sea, to a single fixed recording receiver at Eskdalemuir in Scotland ( 750 km). From plots of the measured amplitudes and phases versus distance for the first of these paths compared with calculations using the U.S. Navy code, ModeFinder, the Wait height and sharpness parameters of the D region at midday in summer 2015 are found to be H' = 72.8 ± 0.2 km and β = 0.345 ± 0.015 km-1 at a solar zenith angle 33°. From phase and amplitude measurements at other times of day on the second path, the daytime changes in H' and β as functions of solar zenith angle are determined from shortly after dawn to shortly before dusk. Comparisons are also made between the modal ModeFinder calculations and wave hop calculations, with both giving similar results. The parameters found here should be useful in understanding energy inputs to the D region from the radiation belts, solar flares, or transient luminous events. The midday values may be sufficiently precise to be useful for monitoring climate change.

  14. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  15. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes

    PubMed Central

    Sato, Tatsuhiko

    2016-01-01

    A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  16. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).

  17. ATTENUATION OF VISIBLE SUNLIGHT BY LIMITED VISIBILITY AND CLOUDINESS

    EPA Science Inventory

    Variability in the irradiance measurements arises from systematic changes in the solar zenith angle (SZA), cloudiness and changing visibility. Measurements in the wavelength band centered on 612 nm serve as a reference for the initial characterization of the effects of cloudy ...

  18. Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate

    NASA Astrophysics Data System (ADS)

    Ramstad, R.; Barbash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.

    2015-12-01

    Eight years (2007-2015) of ion flux measurements from Mars Express are used to empirically investigate the influence of the Martian crustal magnetic fields on the atmospheric ion escape rate. We combine ASPERA-3/IMA (Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer) measurements taken during nominal upstream solar wind and solar Extreme Ultraviolet (EUV) conditions to compute global average ion distribution functions for varying solar zenith angles (SZA) of the strongest crustal field. Escape rates are subsequently calculated from each of the average distribution functions. A statistically significant increase in escape rate is found for high dayside SZA, compared to low SZA.

  19. Variations in the short wavelength cut-off of the solar UV spectra.

    PubMed

    Parisi, A V; Turner, J

    2006-03-01

    Cloud and solar zenith angle (SZA) are two major factors that influence the magnitude of the biologically damaging UV (UVBD) irradiances for humans. However, the effect on the short wavelength cut-off due to SZA and due to clouds has not been investigated for biologically damaging UV for cataracts. This research aims to investigate the influence of cloud and SZA on the short wavelength cut-off of the spectral UVBD for cataracts. The spectral biologically damaging UV for cataracts on a horizontal plane was calculated by weighting the spectral UV measured with a spectroradiometer with the action spectrum for the induction of cataracts in a porcine lens. The UV spectra were obtained on an unshaded plane at a latitude of 29.5 degrees S. The cut-off wavelength (lambdac) was defined as the wavelength at which the biologically damaging spectral irradiance was 0.1% of the maximum biologically damaging irradiance for that scan. For the all sky conditions, the short wavelength cut-off ranged by 12 nm for the SZA range of 5 to 80 degrees and the maximum in the spectral UVBD ranged by 15 nm. Similarly, for the cloud free cases, the short wavelength cut-off ranged by 9 nm for the same SZA range. Although, cloud has a large influence on the magnitude of the biologically damaging UV for cataracts, the influence of cloud on the short wavelength cut-off for the biologically damaging UV for cataracts is less than the influence of the solar zenith angle.

  20. A relation between landsat digital numbers, surface reflectance, and the cosine of the solar zenith angle

    USGS Publications Warehouse

    Kowalik, William S.; Marsh, Stuart E.; Lyon, Ronald J. P.

    1982-01-01

    A method for estimating the reflectance of ground sites from satellite radiance data is proposed and tested. The method uses the known ground reflectance from several sites and satellite data gathered over a wide range of solar zenith angles. The method was tested on each of 10 different Landsat images using 10 small sites in the Walker Lake, Nevada area. Plots of raw Landsat digital numbers (DNs) versus the cosine of the solar zenith angle (cos Z) for the the test areas are linear, and the average correlation coefficients of the data for Landsat bands 4, 5, 6, and 7 are 0.94, 0.93, 0.94, and 0.94, respectively. Ground reflectance values for the 10 sites are proportional to the slope of the DN versus cos Z relation at each site. The slope of the DN versus cos Z relation for seven additional sites in Nevada and California were used to estimate the ground reflectances of those sites. The estimates for nearby sites are in error by an average of 1.2% and more distant sites are in error by 5.1%. The method can successfully estimate the reflectance of sites outside the original scene, but extrapolation of the reflectance estimation equations to other areas may violate assumptions of atmospheric homogeneity.

  1. Inclusion of the second Umkehr in the conventional Umkehr retrieval analysis as a means of improving ozone retrievals in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Gioulgkidis, Konstantinos; Lowe, Robert P.; Mcelroy, C. Tom

    1994-01-01

    The Umkehr method for retrieving the gross features of the vertical ozone distribution requires measurements of the ratio of zenith-sky radiances at two wavelengths in the near-UV region while the solar zenith angle (SZA) changes from 60 to 90 degrees. A Brewer spectrophotometer was used for taking such measurements extending the SZA range down to 96 degrees. Analyzed data from the Spring of 1991 imply that observations at twilight are of great significance in improving ozone retrievals in the upper stratosphere. Judged by the variance reduction for Umkehr layers 9 to 12 (25-30 percent for layer 11) and the increase in separation and amplitude of the averaging kernels for the relevant layers, the ozone retrievals in the upper stratosphere are shown to be in better agreement with climatological means.

  2. Atmospheric effects on radiometry from zenith of a plane with dark vertical protrusions

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1983-01-01

    Effects of an optically thin plane-parallel scattering atmosphere on radiometric imaging from the zenith of a specific surface-type are analyzed. The surface model was previously developed to describe arid steppe, where the sparse vegetation forms dark vertical protrusions from the bright soil-plane. The analysis is in terms of the surface reflectivity to the zenith r sub p for the direct beam, which is formulated as r sub p = r sub i exp (-s tan theta sub 0), where v sub i is the Lambert law reflectivity of the soil, the protrusions parameters s is the projection on a vertical plane of protrusions per unit area and theta sub 0 is the zenith angle. The surface reflectivity r sub p is approximately equal to that for the global irradiance (which is directly measured in the field) only for a narrow range of the solar zenith angles. The effects of the atmosphere when imaging large uniform areas of this type are comparable to those in imaging a Lambert surface with a reflectivity r sub p. Thus, the effects can be approximated by those in the case of a dark Lambert surface (analyzed previously), inasmuch as r sub p is smaller than the soil reflectivity r sub i for any off-zenith illumination. The surface becomes effectively darker with increasing solar zenith angle. Adjacency effects of a reflection from one area and scattering in the instantaneous field of view (object pixel) are analyzed as cross radiance and cross irradiance.

  3. A simulation study on few parameters of Cherenkov photons in extensive air showers of different primaries incident at various zenith angles over a high altitude observation level

    NASA Astrophysics Data System (ADS)

    Das, G. S.; Hazarika, P.; Goswami, U. D.

    2018-07-01

    We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been

  4. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; hide

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  5. Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.

  6. Search for neutrino generated air shower candidates with energy ≥ 1019 eV and Zenith angle θ

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Sabourov, Artem

    2017-06-01

    The description of the methodology and results of searching for air showers generated by neutral particles such as high energy gamma quanta and astroneutrinos are presented. For this purpose, we conducted a comprehensive analysis of the data: the electron, the muon and the EAS Cerenkov light, and their response time in scintillation and Cherenkov detectors. Air showers with energy more than 5·1018 eV and zenith angle θ ≥ 55∘ are selected and analyzed. Search results indicate a lack of air shower events formed by gamma-rays or high-energy neutrinos, but it does not mean that such air showers do not exist in nature; for example, experiments that recorded showers having a marked low muon content, i.e., "Muonless", are likely to be candidates for showers produced by neutral primary particles.

  7. Spectral changes in the zenith skylight during total solar eclipses.

    PubMed

    Hall, W N

    1971-06-01

    The relative spectral intensity of the zenith sky was measured with an optical scanning spectrometer at Nantucket Island, Massachusetts, during the total solar eclipse of 7 March 1970. The spectral ratios I(5100 A)/I(4300 A) and I(5900 A)/I(5100 A) at Nantucket remained unchanged for 96% or less obscuration of the sun by the moon. The results are compared with other recent relative spectral intensity measurements made during total solar eclipses. Comparison with other eclipse measurements for solar elevation angle at totality less than 45 degrees shows a blue color shift consistent with rayleigh scattering. Eclipses with solar elevation angles at totality greater than 45 degrees do not show consistent color shifts. This inconsistency may be due to difficulty in establishing a suitable reference spectrum for comparison with the spectral distribution of the zenith sky at totality. Selection of a suitable reference spectrum is discussed.

  8. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  9. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.

    1990-01-01

    An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).

  10. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  11. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE PAGES

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  12. A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2017-09-01

    Global ultraviolet-B irradiance (UV-B, 280-315 nm) measurements made at the campus of the University of Córdoba, Argentina were analyzed to quantify the effects of ozone and aerosols on surface UV-B erythemal irradiance (UVER). The measurements have been carried out with a YES Pyranometer during the period 2000-2013. The effect of ozone and aerosols has been quantified by means of the Radiation Amplification Factor (RAF) and by an aerosol factor (AF, analogous to RAF), respectively. The overall mean RAF under cloudless conditions was (1.2 ± 0.3) %, ranging from 0.67 to 2.10% depending on solar zenith angle (SZA) and on Aerosol Optical Depth (AOD). The RAF increased with the SZA with a clear trend. Similarly, the aerosol effect under almost-constant ozone and SZA showed that, on average, a 1% increase in AOD forced a decrease of (0.15 ± 0.04) % in the UVER, with a range of 0.06 to 0.27 and no defined trend as a function of the SZA. To analyze the effect of absorbing aerosols, an effective single scattering albedo (SSA) was determined by comparing the experimental UVER with calculations carried out with the TUV radiative transfer model.

  13. Empirical evaluation of global vitamin D effective ultraviolet irradiances under cloudy conditions for a subtropical southern hemisphere site.

    PubMed

    Turnbull, David J; Parisi, Alfio V; Schouten, Peter W

    2010-05-01

    This paper evaluates the global vitamin D effective UV (UV(vitd)) irradiances under cloudy conditions at a subtropical, southern hemisphere site. The UV(vitd) irradiances were analyzed on a horizontal plane and sampled at 5-min intervals over 18 months so that a wide range of parameters including cloud conditions, solar zenith angles (SZA) and ozone levels were taken into account. Cloud modification factors were determined from the influence of clouds on the global broadband solar radiation, and these were applied to the cloud-free vitamin D effective UV irradiance to evaluate the UV(vitd) irradiances on a horizontal plane for cloudy conditions. For vitamin D effective UV irradiance, cloud modification factors were found to range from 0.9 to 1.0 for no cloud and 0.4 to 0.5 for 8 octa of cloud cover. SZA played a minimal role in this variation. A comparison of the measured and calculated UV(vitd) irradiances for the 2004 data set in the range of SZA of 70 degrees or less provided an R(2) value of 0.90. The output of the model was compared to data measured during the first 6 months of 2005 for an SZA of 70 degrees or less and provided an R(2) value of approximately 0.82.

  14. Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.

  15. Integrated cosmic muon flux in the zenith angle range 0 < cosθ < 0.37 for momentum threshold up to 11.6 GeV/c

    NASA Astrophysics Data System (ADS)

    Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko

    2017-12-01

    We have measured the cosmic muon flux in the zenith angle range {<} cos θ {<} 0.37 with a detector comprising planes of scintillator hodoscope bars and iron blocks inserted between them. The muon ranges for up to 9.5 m-thick iron blocks allow the provision of muon flux data integrated over corresponding threshold momenta up to 11.6 GeV/c. Such a dataset covering the horizontal direction is extremely useful for a technique called muon radiography, where the mass distribution inside a large object is investigated from the cosmic muon distribution measured behind the object.

  16. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

    USGS Publications Warehouse

    Ji, Lei; Brown, Jesslyn

    2017-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, −14, −16, −17, −18, and −19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989–1994) and NOAA-14 (1995–2000) missions. The growing-season median SZA values (44°–60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°–40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1–20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the

  17. Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate

    NASA Astrophysics Data System (ADS)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Nilsson, Hans; Holmström, Mats

    2016-10-01

    Eight years (2007-2015) of ion flux measurements from Mars Express are used to statistically investigate the influence of the Martian magnetic crustal fields on the atmospheric ion escape rate. We combine all Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer (ASPERA-3/IMA) measurements taken during nominal upstream solar wind and solar extreme ultraviolet conditions to compute global average ion distribution functions, individually for the north/south hemispheres and for varying solar zenith angles (SZAs) of the strongest crustal magnetic field. Escape rates are subsequently calculated from each of the average distribution functions. The maximum escape rate (4.2 ± 1.2) × 1024s-1 is found for SZA = 60°-80°, while the minimum escape rate (1.7 ± 0.6) × 1024s-1 is found for SZA = 28°-60°, showing that the dayside orientation of the crustal fields significantly affects the global escape rate (p = 97%). However, averaged over time, independent of SZA, we find no statistically significant difference in the escape rates from the two hemispheres (escape from southern hemisphere 46% ± 18% of global rate).

  18. Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula.

    PubMed

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E; Wang, Huiqun; González Abad, Gonzalo; Román, Roberto; Costa, Maria João

    2017-02-15

    This paper shows the validation of integrated water vapor (IWV) measurements retrieved from the Ozone Monitoring Instrument (OMI), using as reference nine ground-based GPS stations in the Iberian Peninsula. The study period covers from 2007 to 2009. The influence of two factors, - solar zenith angle (SZA) and IWV -, on OMI-GPS differences was studied in detail, as well as the seasonal dependence. The pseudomedian of the relative differences is -1 ± 1% and the inter-quartile range (IQR) is 41%. Linear regressions calculated over each station show an acceptable agreement (R 2 up to 0.77). The OMI-GPS differences display a clear dependence on IWV values. Hence, OMI substantially overestimates the lower IWV data recorded by GPS (∼ 40%), while underestimates the higher IWV reference values (∼ 20%). In connection to this IWV dependence, the relative differences also show an evident SZA dependence when the whole range of IWV values are analyzed (OMI overestimates for high SZA values while underestimates for low values). Finally, the seasonal variation of the OMI-GPS differences is also associated with the strong IWV dependence found in this validation exercise. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Water vapor radiative effects on short-wave radiation in Spain

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Román, Roberto; Cachorro, Victoria E.

    2018-06-01

    In this work, water vapor radiative effect (WVRE) is studied by means of the Santa Barbara's Disort Radiative Transfer (SBDART) model, fed with integrated water vapor (IWV) data from 20 ground-based GPS stations in Spain. Only IWV data recorded during cloud-free days (selected using daily insolation data) were used in this study. Typically, for SZA = 60.0 ± 0.5° WVRE values are around - 82 and - 66 Wm-2 (first and third quartile), although it can reach up - 100 Wm-2 or decrease to - 39 Wm-2. A power dependence of WVRE on IWV and cosine of solar zenith angle (SZA) was found by an empirical fit. This relation is used to determine the water vapor radiative efficiency (WVEFF = ∂WVRE/∂IWV). Obtained WVEFF values range from - 9 and 0 Wm-2 mm-1 (- 2.2 and 0% mm-1 in relative terms). It is observed that WVEFF decreases as IWV increases, but also as SZA increases. On the other hand, when relative WVEFF is calculated from normalized WVRE, an increase of SZA results in an increase of relative WVEFF. Heating rates were also calculated, ranging from 0.2 Kday-1 to 1.7 Kday-1. WVRE was also calculated at top of atmosphere, where values ranged from 4 Wm-2 to 37 Wm-2.

  20. Muon tomography imaging improvement using optimized limited angle data

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  1. Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.

    2004-01-01

    A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.

  2. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  3. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Twomore » methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.« less

  4. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  5. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    NASA Astrophysics Data System (ADS)

    Wald, L.; Blanc, Ph.

    2010-09-01

    change in irradiance with a specific variable. The communication discusses two parameterisations found in the literature. One deals with the solar zenith angle, the other with the altitude. We assess their performances in retrieving solar irradiance for 32 spectral bands, from 240 nm to 4606 nm. The model libRadtran is run to create data sets for all sun zenith angles (every 5 degrees) and all altitudes (every km). These data sets are considered as a reference. Then, for each parameterisation, we compute the parameters using two irradiance values for specific values of angle (e.g., 0 and 60 degrees) or altitude (e.g., 0 and 3 km). The parameterisations are then applied to other values of angle and altitude. Differences between these assessments and the reference values of irradiance are computed and analysed. We conclude on the level of performances of each parameterisation for each spectral band as well as for the total irradiance. We discuss the possible use of these parameterisations in the future method Heliosat-4 and possible improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project).

  6. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  7. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-02-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.

  8. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  9. Zenith angle distribution of cosmic ray showers measured with the Yakutsk array and its application to the analysis of arrival directions in equatorial coordinates

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2018-04-01

    The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.

  10. Self Validation of Radiance Measurements from the CERES (TRMM)Instrument

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Lee, Robert B., III; Priestley, Kory J.

    1999-01-01

    Eight continuous months of earth-nadir-viewing radiance measurements from the 3-channel Tropical Rainfall Measuring Mission (TRMM,) Clouds and the Earth's Radiant Energy System (CERES) scanning radiometric measurement instrument, have been analyzed. While previous remote sensing satellites, such as the Earth Radiation Budget Experiment (ERBE) covered all subsets of the broadband radiance spectrum (total, longwave and shortwave.) CERES has two subset channels (window and shortwave) which do not give continuous frequency coverage over the total band. Previous experience with ERBE indicated the need for us to model the equivalent daytime longwave radiance using a window channel regression, which will allow us to validate the performance of the instrument using a three-channel inter-comparison. Limiting our consideration to the fixed azimuth plane, cross-track, scanning mode (FAPS), each nadir-viewing measurement was averaged into three subjective categories called daytime, nighttime, and twilight. Daytime was defined as any measurement taken when the solar zenith angle (SZA) was less than 90 ; nighttime was taken to be any measurement where the SZA was greater than 117 ; and twilight was everything else. Our analysis indicates that there are only two distinct categories of nadir-view data; daytime, and non-daytime (i.e., the union of the nighttime and twilight sets); and that the CERES longwave radiance is predictable to an accuracy of 1%, based on the SZA, and window channel measurements.

  11. [The Effect of Observation Geometry on Polarized Skylight Spectrum].

    PubMed

    Zhang, Ren-bin; Wang, Ling-mei; Gao, Jun; Wang, Chi

    2015-03-01

    Study on polarized skylight spectral characters while observation geometry changing in different solar zenith angles (SZA), viewing zenith angles (VZA) or relative azimuth angles (RAA). Simulation calculation of cloudless daylight polarimetric spectrum is realized based on the solver, vector discrete ordinate method, of radiative transfer equation. In the Sun's principal and perpendicular plane, the spectral irradiance data, varying at wavelengths in the range between 0.4 and 3 μm, are calculated to extend the atmospheric polarization spectral information under the conditions: the MODTRAN solar reference spectrur is the only illuminant source; the main influencing factors of polarized radiative transfer include underlying surface albedo, aerosol layers and components, and the absorption of trace gases. Simulation analysis results: (1) While the relative azimuth angle is zero, the magnitude of spectrum U/I is lower than 10(-7) and V/I is negligible, the degree of polarization and the spectrum Q/I are shaped like the letter V or mirror-writing U. (2) In twilight, when the Sun is not in FOV of the detector, the polarization of the daytime sky has two maximum near 0.51 and 2.75 μm, and a minimum near 1.5 μm. For arbitrary observation geometry, the spectral signal of V/I may be ignored. According to observation geometry, choosing different spectral bands or polarized signal will be propitious to targets detection.

  12. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  13. OH in the Tropical Upper Troposhere and Its Relationships to Solar Radiation and Reactive Nitrogen

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Rosenlof, K. H.; Fahey, D. W.; Wennberg, P. O.; Hintsa, E. J.; Hanisco, T. F.

    2014-01-01

    In situ measurements of [OH], [HO2] (square brackets denote species concentrations), and other chemical species were made in the tropical upper troposphere (TUT). [OH] showed a robust correlation with solar zenith angle. Beyond this dependence, however, [HOx] ([OH] + [HO2]) only weakly responds to variations in its source and sink species. For example, at a given SZA, [HOx] was broadly independent of the product of [O3] and [H2O]. This suggests that [OH] is heavily buffered in the TUT. One important exception to this result is found in regions with very low [O3], [NO], and [NOy], where [OH] is highly suppressed, pointing to the critical role of NO in sustaining OH in the TUT.

  14. Emirates Mars Ultraviolet Spectrometer's (EMUS) Prediction of Oxygen OI 135.6 nm and CO 4PG Emissions in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Almatroushi, H. R.; Lootah, F. H.; Deighan, J.; Fillingim, M. O.; Jain, S.; Bougher, S. W.; England, S.; Schneider, N. M.

    2017-12-01

    This research focuses on developing empirical and theoretical models for OI 135.6 nm and CO 4PG band system FUV dayglow emissions in the Martian thermosphere as predicted to be seen from the Emirates Mars Ultraviolet Spectrometer (EMUS), one of the three scientific instruments aboard the Emirates Mars Mission (EMM) to be launched in 2020. These models will aid in simulating accurate disk radiances which will be utilized as an input to an EMUS instrument simulator. The developed zonally averaged empirical models are based on FUV data from the IUVS instrument onboard the MAVEN mission, while the theoretical models are based on a basic Chapman profile. The models calculate the brightness (B) of those emissions taking into consideration observation geometry parameters such as emission angle (EA), solar zenith angle (SZA) and planet distance from the sun (Ds). Specifically, the empirical models takes a general form of Bn=A*cos(SZA)n/cos(EA)m , where Bn is the normalized brightness value of an emission feature, and A, n, and m are positive constant values. The model form shows that the brightness has a positive correlation with EA and a negative correlation with SZA. A comparison of both models are explained in this research while examining full Mars and half Mars disk images generated using geometry code specially developed for the EMUS instrument. Sensitivity analyses have also been conducted for the theoretical modeling to observe the contributions of electron impact on atomic oxygen and CO2 to the brightness of OI 135.6nm, in addition to the effect of electron temperature on the CO2± dissociative recombination contribution to the CO 4PG band system.

  15. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  16. Study of the Total Electron Content in Mars ionosphere from MARSIS data set

    NASA Astrophysics Data System (ADS)

    Bergeot, Nicolas; Witasse, Olivier; Kofman, Wlodek; Grima, Cyril; Mouginot, Jeremie; Peter, Kerstin; Pätzold, Martin; Dehant, Véronique

    2016-04-01

    Centimeter level accuracy on the signal delay will be required on X-band radio link for future Mars landers such as InSIGHT, aiming at better determining the interior structure of Mars. One of the main error sources in the estimated signal delay is directly linked to the Total Electron Content (TEC) values at Earth and Mars ionosphere level. While the Earth ionosphere is now well modeled and monitored at regional and global scales, this is not the case concerning the Mars' upper atmosphere. The present paper aims at establishing the basis to model the climatological behavior of the TEC on a global scale in the Mars' ionosphere. For that we analyzed ˜8.5 years of data (mid-2005 to 2014) of the vertical Total Electron Content (vTEC) expressed in TEC units (1 TECu = 1016e-.m-2) from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar. Our study takes advantage of the double data set of EUV solar index and Mars vTEC data to develop an empirical Model of Mars Ionosphere (MoMo). The finality of this model is to predict the vTEC at a given latitude, solar zenith angle and season taking only F10.7P solar index as input. To minimize the differences during the least-square adjustment between the modeled and observed vTEC, we considered (1) a 4th-order polynomial function to describe the vTEC diurnal behavior (2) a discretization with respect to Mars seasons (depending on Ls) and (3) two latitudinal sectors (North and South hemispheres). The mean of the differences between the model and the observations is 0.00±0.07 TECu with an error of the model around 0.1 TECu depending on the Solar Zenith Angle (SZA), season and hemisphere of interest (e.g. rms 0.12 TECu for SZA equal to 50°±5° in the Northern hemisphere during the spring season). Additionally, comparison with 250 Mars Express radio occultation data shows differences with MoMo predictions of 0.02±0.06 TECu for solar zenith angles below 50 degrees. Using the model we (1) highlighted

  17. Four years of ground-based total ozone measurements by visible spectrometry in Antarctica

    NASA Technical Reports Server (NTRS)

    Goutail, F.; Pommereau, J. P.; Sarkissian, A.

    1994-01-01

    Visible spectrometers SAOZ have been developed at Service d'Aeronomie for permanent ground-based ozone monitoring at all latitudes up to the polar circle in winter. Observations are made by looking at the sunlight scattered at zenith in the visible range, twice a day, at sunrise and sunset. Compared to ozone observations in the UV generally in use, visible observations in the small Chappuis bands at twilight have the advantages of being independent of stratospheric temperature, little contaminated by tropospheric ozone and multiple scattering, and of permitting observations even in winter at the polar circle. SAOZ instruments have been installed since 1988 at several stations in the Antarctic and the Arctic. More than four years data at Dumont d'Urville in Terre Adelie (67 deg S) are now available. The station is generally located at the edge of the vortex in spring and therefore the ozone hole is seen there only occasionally. The lowest values (140 DU) were reported in early October 1991. According to these first regular observations throughout the whole winter ozone seems to increase in late autumn and winter. Its decay does not start before the end of August. Although of smaller amplitude than with the previous version five data, the ratio between the groundbased and satellite/TOMS measurements displays a systematic seasonal variation correlated partly to the sun zenith angle of observations from orbit and partly to the temperature of the stratosphere. Since ground-based measurements are always made at 90 deg SZA, the SZA dependence must come from the satellite data interpretation (TOMS observations are between 43 to 88 deg SZA). The temperature dependence could be partly due to variations of ozone absorption cross-sections in the ultraviolet used by the satellite spectrometer, and partly to a systematic seasonal cycle of the air mass factor use in the interpretation of the ground based observations. However, the last contribution appears to be too small to

  18. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the

  19. Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Mitchell, David; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew; Lillis, Robert; McFadden, James; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce

    2016-09-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of ˜150 km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA >120° latitude >60°), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200 km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day-night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O2+ density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200 km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora.

  20. Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Hao, D.; Wen, J.; Xiao, Q.

    2017-12-01

    Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.

  1. Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements

    NASA Astrophysics Data System (ADS)

    Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.

    2010-10-01

    This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter

  2. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  3. Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.

    2015-10-01

    We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.

  4. Analysis of zenith tropospheric delay in tropical latitudes

    NASA Astrophysics Data System (ADS)

    Zablotskyj, Fedir; Zablotska, Alexandra

    2010-05-01

    The paper studies some peculiarities of the nature of zenith tropospheric delay in tropical latitudes. There are shown the values of dry and wet components of zenith tropospheric delay obtained by an integration of the radiosonde data at 9 stations: Guam, Seyshelles, Singapore, Pago Pago, Hilo, Koror, San Cristobal, San Juan and Belem. There were made 350 atmospheric models for the period from 11th to 20th of January, April, July and October 2008 at 0h and 12h UT (Universal Time). The quantities of the dry dd(aer) and wet dw(aer) components of zenith tropospheric delay were determined by means of the integration for each atmospheric model. Then the quantities of the dry dd(SA), dd(HO) and wet dw(SA), dw(HO) components of zenith tropospheric delay (Saastamoinen and Hopfield analytical models) were calculated by the surface values of the pressure P0, temperature t0, relative air humidity U0 on the height H0 and by the geographic latitude φ. It must be point out the following from the analysis of the averaged quantities and differences δdd(SA), δdd(HO), δdw(SA), δdw(HO) between the correspondent components of zenith tropospheric delay obtained by the radiosonde data and by the analytical models: zenith tropospheric delay obtained by the radiosonde data amounts to considerably larger value in the equatorial zone, especially, at the expense of the wet component, in contrast to high and middle latitudes. Thus, the dry component of zenith tropospheric delay is equal at the average 2290 mm and the wet component is 290 mm; by the results of the analysis of Saastamoinen and Hopfield models the dry component differences δdd(SA) and δdd(HO) are negative in all cases and average -20 mm. It is not typical neither for high latitudes nor for middle ones; the differences between the values of the wet components obtained from radiosonde data and of Saastamoinen and Hopfield models are positive in general. Therewith the δdw(HO) values are larger than the correspondent

  5. Constraints on a Broadcast Innovation: Zenith's Phonevision System, 1931-1972.

    ERIC Educational Resources Information Center

    Bellamy, Robert V., Jr.

    1988-01-01

    Demonstrates that the reason for Zenith's Phonevision's failure was the interweaving of such individual factors as the actions of the regulatory system and the opposition of the broadcast and film industries, along with the internal activities of Zenith and prevailing market conditions. (MS)

  6. Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones.

    PubMed

    Wuttke, Sigrid; El Naggar, Saad; Bluszcz, Thaddäus; Schrems, Otto

    2007-10-01

    Ship-borne measurements of spectral as well as biologically effective UV irradiance have been performed on the German research vessel Polarstern during the Atlantic transect from Bremerhaven, Germany (53.5 degrees N, 8.5 degrees E), to Cape Town, South Africa (33.6 degrees S, 18.3 degrees E), from 13 October to 17 November 2005. Such measurements are required to study UV effects on marine organisms. They are also necessary to validate satellite-derived surface UV irradiance. Cloud free radiative transfer calculations support the investigation of this latitudinal dependence. Input parameters, such as total ozone column and aerosol optical depth have been measured on board as well. Using these measured parameters, the modelled cloudless noontime UVA irradiance (320-400 nm) shows the expected dependence on varying minimum solar zenith angles (SZA) at different latitudes. The modelled cloudless noontime UVB irradiance (290-320 nm) does not show this clear dependence on SZA due to the strong influence of ozone absorption in this spectral range. The maximum daily dose of erythemal irradiance of 5420 J m(-1) was observed on 14 November 2005, when the ship was in the tropical Atlantic south of the equator. The expected UV maximum should have been observed with the sun in the zenith during local noon (11 November). Stratiform clouds reduced the dose to 3835 J m(-1). In comparison, the daily erythemal doses in the mid-latitudinal Bay of Biscay only reached values between 410 and 980 J m(-1) depending on cloud conditions. The deviation in daily erythemal dose derived from different instruments is around 5%. The feasibility to perform ship-borne measurements of spectral UV irradiance is demonstrated.

  7. Multi-azimuthal-angle effects in self-induced supernova neutrino flavor conversions without axial symmetry

    NASA Astrophysics Data System (ADS)

    Mirizzi, Alessandro

    2013-10-01

    The flavor evolution of neutrinos emitted by a supernova (SN) core is strongly affected by the refractive effects associated with the neutrino-neutrino interactions in the deepest stellar regions. Till now, all numerical studies have assumed the axial symmetry for the “multi-angle effects” associated with the neutrino-neutrino interactions. Recently, it has been pointed out in Raffelt, Sarikas, and Seixas [Phys. Rev. Lett. 111, 091101 (2013)] that if this assumption is removed, a new multi-azimuthal-angle (MAA) instability emerges in the flavor evolution of the dense SN neutrino gas, in addition to the one caused by multi-zenith-angle effects. Inspired by this result, for the first time we numerically solve the nonlinear neutrino propagation equations in SN, introducing the azimuthal angle as an angular variable in addition to the usual zenith angle. We consider simple energy spectra with an excess of νe over ν¯e. We find that even starting with a complete axial symmetric neutrino emission, the MAA effects would lead to significant flavor conversions in normal mass hierarchy, in cases otherwise stable under the only multi-zenith-angle effects. The final outcome of the flavor conversions, triggered by the MAA instability, depends on the initial asymmetry between νe and ν¯e spectra. If it is sufficiently large, final spectra would show an ordered behavior with spectral swaps and splits. Conversely, for small flavor asymmetries flavor decoherence among angular modes develops, also affecting the flavor evolution in the inverted mass hierarchy.

  8. Meteoroid stream flux densities and the zenith exponent

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Barentsen, Geert

    2013-01-01

    The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).

  9. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip Kumar

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along

  10. Thromboembolic Complications after Zenith{sup ®} Low Profile Endovascular Graft for Infrarenal Abdominal Aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urlings, T. A. J., E-mail: t-urlings@hotmail.com; Vries, A. C. de, E-mail: a.de.vries@mchaaglanden.nl; Mol van Otterloo, J. C. A. de, E-mail: a.de.molvanotterloo@mchaaglanden.nl

    2015-06-15

    PurposeThe purpose of this study was to objectify and evaluate risk factors for thromboembolic complications after treatment with a Zenith{sup ®} Low Profile Endovascular Graft (Zenith LP). Results were compared with those in the recent literature on endovascular aortic repair (EVAR) and with the thromboembolic complications in the patient group treated with a Zenith Flex Endovascular Graft in our institute in the period before the use of the Zenith LP.Materials and MethodsAll consecutive patients who were suitable for treatment with a Zenith LP endograft between October 2010 and December 2011 were included. The preprocedural computed tomography scan (CT), procedural angiographicmore » images, and the postprocedural CT scans were evaluated for risk factors for and signs of thromboembolic complications. All patients treated between December 2007 and November 2012 with a Zenith Flex endograft were retrospectively evaluated for thromboembolic complications.ResultsIn the study period 17 patients were treated with a LP Zenith endograft. Limb occlusion occurred in 35 % of the patients. Limb occlusions occurred in 24 % of the limbs at risk (one limb occluded twice). In one patient two risk factors for limb occlusion were identified. Between December 2007 and November 2012, a total of 43 patients were treated with a Zenith Flex endograft. No limb occlusion or distal embolization occurred.ConclusionDespite that this was a small retrospective study, the Zenith LP endograft seems to be associated with more frequent thromboembolic complications compared with the known limb occlusion rates in the literature and those of the patients treated with a Zenith Flex endograft in our institute.« less

  11. Mean exposure fractions of human body solar UV exposure patterns for application in different ambient climates.

    PubMed

    Downs, Nathan; Parisi, Alfio

    2012-01-01

    In this research, the erythemally effective UV measured using miniaturized polysulphone dosimeters to over 1250 individual body sites and collected over a 4-year period is presented relative to the total exposed skin surface area (SSA) of a life-size manikin model. A new term is also introduced, the mean exposure fraction (MEF). The MEF is used to weight modeled or measured horizontal plane UV exposures to the total unprotected SSA of an individual and is defined as the ratio of exposure per unit area received by the unprotected skin surfaces of the body relative to the exposure received on a horizontal plane. The MEF has been calculated for a range of solar zenith angles (SZA) to provide a sunburning energy data set weighted to the actual SSA of a typically clothed individual. For this research, the MEF was determined as 0.15, 0.26 and 0.41 in the SZA ranges 0°-30°, 30°-50° and 50°-80° providing information that can be used in a variety of different ambient, latitudinal and seasonal climates where total human body UV exposure information is not available. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  12. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    PubMed

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  13. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).

  14. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip K.

    2013-12-01

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation

  15. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  16. Gingival Zenith Positions and Levels of Maxillary Anterior Dentition in Cases of Bimaxillary Protrusion: A Morphometric Analysis.

    PubMed

    Gowd, Snigdha; Shankar, T; Chatterjee, Suravi; Mohanty, Pritam; Sahoo, Nivedita; Baratam, Srinivas

    2017-08-01

    To investigate the two clinical parameters, such as gingival zenith positions (GZPs) and gingival zenith levels (GZLs), of maxillary anterior dentition in bimaxillary protrusion cases and collate it with severiety of crown inclination. Gingival zenith position and GZL in 40 healthy patients (29 females and 11 males) with an average age of 21.5 years were assessed. Inclusion criteria involved absence of periodontal diseases, Angle's class I molar relationship, and upper anterior proclination within 25 to 45° based on Steiner's analysis; exclusion criteria included spacing, crowding, anterior restoration and teeth with incisor attrition or rotation. The GZP was evaluated using digital calipers from voxel-based morphometry (VBM), and GZL was assessed from the tangent drawn from GZP of central incisor and canines to the linear vertical distance of GZP of lateral incisor. All the central incisors showed a GZP distal to VBM with a mean average of 1 mm. Severe proclination between 40 and 45° showed a statistically significant variation. Lateral incisors displayed a mean of 0.5 mm deviation of GZP from the vertically bisected midline. In 80% of canine population, GZP was centralized. We conclude that the degree of proclination of maxillary anterior dentition was correlated to the gingival contour in bimaxillary cases. The investigation revealed that there is a variation in the location of GZP as the severity of proclination increases. This study highlights the importance of microesthetics in fixed orthodontic treatment. The gingival contour should be unaltered while retraction during management of bimaxillary protrusion.

  17. Modification of spectral ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol.

    PubMed

    Aun, Margit; Eerme, Kalju; Ansko, Ilmar; Veismann, Uno; Lätt, Silver

    2011-01-01

    Wavelength-dependent attenuation of ground-level ultraviolet (UV) dose by different cloud and aerosol situations at the Tartu Observatory site (58°15' N, 26°28' E, 70 m a.s.l) is under scrutiny. The spectra at wavelengths ranging below 400 nm have been recorded by the simple Avantes, Inc. array spectrometer AvaSpec-256 in 2004-2009. The spectral information was supported by the conventional broadband solar irradiance and by the necessary meteorological data. The average cloud modification factor (CMF) on overcast days from May to August has been quite low, 0.36 in UVA and 0.35 in UVB. In the UVA range, the reduction of the daily dose with increasing noon solar zenith angle (SZA) from 35-50° to 65-80° in overcast days has been about 20% more than in clear days, while in the UVB range it was 45% larger. No clear difference in the influence of SZA on CMF between low level (St, Ns) and medium level (As, Ac) overcast cloudiness has been found. The aerosol attenuation during large aerosol optical depth (AOD) episode has been comparable with that of medium level clouds with the wavelength dependency in the UVA range different from that of clouds. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  18. Sky radiance at a coastline and effects of land and ocean reflectivities

    NASA Astrophysics Data System (ADS)

    Kreuter, Axel; Blumthaler, Mario; Tiefengraber, Martin; Kift, Richard; Webb, Ann R.

    2017-12-01

    We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZAs) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean's sun glint at high SZA, which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean bi-directional reflectance functions (BRDFs) do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coastline by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground

  19. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, p<<0.01). In the accumulation zone, the net CRE seasonal trend is controlled by longwave CRE associated with cloud fraction and liquid water content. It becomes stronger from May to July and stays constant in August. In the ablation zone, albedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, p<0.01). Although cloud properties intrinsically affect CRE, the large melt-season variability of these two non-cloud factors, albedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative

  20. Characterization of in Band Stray Light in SBUV-2 Instruments

    NASA Technical Reports Server (NTRS)

    Huang, L. K.; DeLand, M. T.; Taylor, S. L.; Flynn, L. E.

    2014-01-01

    Significant in-band stray light (IBSL) error at solar zenith angle (SZA) values larger than 77deg near sunset in 4 SBUV/2 (Solar Backscattered Ultraviolet) instruments, on board the NOAA-14, 17, 18 and 19 satellites, has been characterized. The IBSL error is caused by large surface reflection and scattering of the air-gapped depolarizer in front of the instrument's monochromator aperture. The source of the IBSL error is direct solar illumination of instrument components near the aperture rather than from earth shine. The IBSL contamination at 273 nm can reach 40% of earth radiance near sunset, which results in as much as a 50% error in the retrieved ozone from the upper stratosphere. We have analyzed SBUV/2 albedo measurements on both the dayside and nightside to develop an empirical model for the IBSL error. This error has been corrected in the V8.6 SBUV/2 ozone retrieval.

  1. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery.

    PubMed

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-04-06

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.

  2. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    NASA Astrophysics Data System (ADS)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  3. Constraints on the photolysis and the equilibrium constant of ClO-dimer from airborne and balloon-borne measurements of chlorine compounds

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Canty, T. P.; Salawitch, R. J.; Khosravi, M.; Urban, J.; Toon, G. C.; Kuellmann, H.; Notholt, J.

    2011-12-01

    Significant differences exist between different laboratory measurements of the photolysis cross-sections of ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. This leads to uncertainties in the calculations of stratospheric ozone loss in the winter polar regions. One way to constrain the plausibility of these parameters is the measurement of ClO across the terminator in the activated polar vortex. Here we analyze measurements of ClO taken by the airborne submillimeter radiometer ASUR in the Arctic winter of 1999/2000. We use measured ClO at low solar zenith angles (SZA) to estimate the total active chlorine (ClOx). We estimate total available inorganic chlorine (Cly) using ASUR measurements of N2O in January 2000 and a N2O-Cly correlation established by a balloon measurement of the MarkIV interferometer in December 1999. We compare the ClOx estimates based on different photolysis rates of ClO-Dimer. Our results show that cross-sections leading to fast photolysis rates like the ones by Burkholder et al. [1990] or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly. Slower photolysis rates like the ones by von Hobe et al. [2009] and Pope et al. [2007] lead to ClOx values that are significantly higher than the available Cly. We use the calculated ClOx from low SZA to estimate the ClO in darkness with different equilibrium constants, and compare it with ASUR ClO measurements before sunrise (SZA > 95). We find that calculations with equilibrium constants published in the JPL evaluation of the last few years all give good agreement with observed ClO mixing ratios. The equilibrium constant estimated by von Hobe et al. [2005] yields ClO values that are higher than the ones observed.

  4. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery

    PubMed Central

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  5. Gingival zenith positions and levels of the maxillary anterior dentition.

    PubMed

    Chu, Stephen J; Tan, Jocelyn H-P; Stappert, Christian F J; Tarnow, Dennis P

    2009-01-01

    The location of the gingival zenith in a medial-lateral position relative to the vertical tooth axis of the maxillary anterior teeth remains to be clearly defined. In addition, the apex of the free gingival margin of the lateral incisor teeth relative to the gingival zeniths of the adjacent proximal teeth remains undetermined. Therefore, this investigation evaluated two clinical parameters: (1) the gingival zenith position (GZP) from the vertical bisected midline (VBM) along the long axis of each individual maxillary anterior tooth; and (2) the gingival zenith level (GZL) of the lateral incisors in an apical-coronal direction relative to the gingival line joining the tangents of the GZP of the adjacent central incisor and canine teeth under healthy conditions. A total of 240 sites in 20 healthy patients (13 females, 7 males) with an average age of 27.7 years were evaluated. The inclusion patient criteria were absence of periodontal disease, gingival recession, or gingival hypertrophy as well as teeth without loss of interdental papillae, spacing, crowding, existing restorations, and incisal attrition. GZP dimensions were measured with calibrated digital calipers for each individual tooth and within each tooth group in a medial-lateral direction from the VBM. GZLs were measured in an apical-coronal direction from a tangent line drawn on the diagnostic casts from the GZPs of the adjacent teeth. This study demonstrated that all central incisors displayed a distal GZP from the VBM, with a mean average of 1 mm. Lateral incisors showed a deviation of the gingival zenith by a mean of 0.4 mm. In 97.5% of the canine population, the GZP was centralized along the long axis of the canine. The mean distance of the contour of the gingival margin in an apical-coronal direction of the lateral incisors (GZL) relative to gingival line joining the tangent of the adjacent central and canine GZPs was approximately 1 mm. This investigation revealed a GZP mean value of 1 mm distal from

  6. Periodontics, Implantology, and Prosthodontics Integrated: The Zenith-Driven Rehabilitation

    PubMed Central

    Cabral, Guilherme

    2017-01-01

    A customized treatment plan is important to reach results that will satisfy the patient providing esthetics, function, and long-term stability. This type of oral rehabilitation requires professionals from different dental specialties where communication is a major key point. Digital Smile Design allows the practitioners to plan and discuss the patient's condition to establish the proper treatment plan, which must be driven by the desired zenith position. The ideal gingival position will guide the professionals and determine the need to perform surgical procedures or orthodontic movement before placing the final restorations. In this article, the zenith-driven concept is discussed and a challenging case is presented with 4-year follow-up where tooth extraction, immediate implant placement, bone regeneration, and a connective tissue graft were performed. PMID:28713600

  7. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Lester, M.; Cowley, S. W. H.; Eriksson, A. I.

    2008-08-01

    We use the data set from the magnetometer and electron reflectometer instruments on board the Mars Global Surveyor spacecraft to show that the crustal magnetic fields of Mars affect the location of the magnetic pileup boundary (MPB) and bow shock (BS) globally. We search for crossings of the MPB and BS in the data that were observed over the first 16 months of the mission. To identify the influence of the crustal magnetic fields, all crossings are extrapolated to the terminator plane in order to remove the solar zenith angle (SZA) dependence, and to make it possible to compare crossings independently of location. The MPB crossings that were observed over regions on Mars, which contain strong crustal magnetic fields, are on average located further out than crossings observed over regions with weak crustal fields. This is shown in three separate longitude intervals. We also find that the dayside BS crossings observed over the southern hemisphere of Mars are on average located further out than the BS crossings observed over the northern hemisphere, possibly because of the influence of the crustal fields. We also study the magnetic field strength and its variation at the inside of the MPB and their dependence on the SZA and altitude. We find that the magnitude of the magnetic field in the MPB is closely linked to the altitude of the MPB, with the magnitude increasing as the MPB is observed closer to the planet.

  8. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation

    NASA Technical Reports Server (NTRS)

    Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.

    2003-01-01

    One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.

  9. Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2009-01-01

    The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.

  10. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  11. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.

    2009-04-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.

  12. Multipurpose Spectroradiometer for Satellite Instrument Calibration and Zenith Sky Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Ahmad, Zia

    2001-01-01

    In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.

  13. Zenith: A Radiosonde Detector for Rapid-Response Ionizing Atmospheric Radiation Measurements During Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.

    2018-03-01

    Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.

  14. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC

  15. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    NASA Astrophysics Data System (ADS)

    Leyser, Thomas B.; James, H. Gordon; Gustavsson, Björn; Rietveld, Michael T.

    2018-02-01

    The response of ionospheric plasma to pumping by powerful HF (high frequency) electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association) Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer) spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O) conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  16. Impact of Biomass Burning Plumes on Photolysis Rates and Ozone Formation at the Mount Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Baylon, P.; Jaffe, D. A.; Hall, S. R.; Ullmann, K.; Alvarado, M. J.; Lefer, B. L.

    2018-02-01

    In this paper, we examine biomass burning (BB) events at the Mt. Bachelor Observatory (MBO) during the summer of 2015. We explored the photochemical environment in these BB plumes, which remains poorly understood. Because we are interested in understanding the effect of aerosols only (as opposed to the combined effect of aerosols and clouds), we carefully selected three cloud-free days in August and investigate the photochemistry in these plumes. At local midday (solar zenith angle (SZA) = 35°), j(NO2) values were slightly higher (0.2-1.8%) in the smoky days compared to the smoke-free day, presumably due to enhanced scattering by the smoke aerosols. At higher SZA (70°), BB aerosols decrease j(NO2) by 14-21%. We also observe a greater decrease in the actinic flux at 310-350 nm, compared to 360-420 nm, presumably due to absorption in the UV by brown carbon. We compare our measurements with results from the Tropospheric Ultraviolet-Visible v.5.2 model. As expected, we find a good agreement (to within 6%) during cloud-free conditions. Finally, we use the extended Leighton relationship and a photochemical model (Aerosol Simulation Program v.2.1) to estimate midday HO2 and RO2 concentrations and ozone production rates (P(O3)) in the fire plumes. We observe that Leighton-derived HO2 and RO2 values (49-185 pptv) and instantaneous P(O3) (2.0-3.6 ppbv/h) are higher than the results from the photochemical model.

  17. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  18. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed?

    NASA Astrophysics Data System (ADS)

    Bará, Salvador

    2018-01-01

    A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist-Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec-2 (in the root-mean-square sense) of its true value in the Johnson-Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.

  19. Estimating Real-Time Zenith Tropospheric Delay over Africa Using IGS-RTS Products

    NASA Astrophysics Data System (ADS)

    Abdelazeem, M.

    2017-12-01

    Zenith Tropospheric Delay (ZTD) is a crucial parameter for atmospheric modeling, severe weather monitoring and forecasting applications. Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively in real-time atmospheric modeling applications. The objective of this study is to develop a real time zenith tropospheric delay estimation model over Africa using the IGS-RTS products. The real-time ZTDs are estimated based on the real-time precise point positioning (PPP) solution. GNSS observations from a number of reference stations are processed over a period of 7 days. Then, the estimated real-time ZTDs are compared with the IGS tropospheric products counterparts. The findings indicate that the estimated real-time ZTDs have millimeter level accuracy in comparison with the IGS counterparts.

  20. Characteristics of skylight at the zenith during twilight as indicators of atmospheric turbidity. 1: Degree of polarization.

    PubMed

    Coulson, K L

    1980-10-15

    An extensive series of measurements of the intensity and polarization of the light from the zenith sky during periods of twilight was made at an altitude of 3400 m on the island of Hawaii during a 5-month period in 1977. This first of two papers is on the twilight polarization; the second will deal with intensity. The measurements were made in eight narrow spectral ranges between 0.32 and 0.90 microm under clear sky conditions. The data show that the degree of polarization at the zenith is a sensitive indicator of the existence of turbid layers at high levels in the atmosphere, and by monitoring the zenith skylight as a function of time during the twilight, it is possible to obtain qualitative information on both the altitude and relative density of the layers.

  1. Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.

    2018-04-01

    The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending

  2. Improving the estimation of zenith dry tropospheric delays using regional surface meteorological data

    NASA Astrophysics Data System (ADS)

    Luo, X.; Heck, B.; Awange, J. L.

    2013-12-01

    Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.

  3. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Iwahashi, Kiyomi

    2017-10-01

    Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.

  4. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  5. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.

  6. The effect of subauroral polarization streams on the mid-latitude thermospheric disturbance neutral winds: a universal time effect

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Kedeng; Zheng, Zhichao; Ridley, Aaron James

    2018-03-01

    The temporal and spatial variations in thermospheric neutral winds at an altitude of 400 km in response to subauroral polarization streams (SAPS) are investigated using global ionosphere and thermosphere model simulations under the southward interplanetary magnetic field (IMF) condition. During SAPS periods the westward neutral winds in the subauroral latitudes are greatly strengthened at dusk. This is due to the ion drag effect, through which SAPS can accelerate neutral winds in the westward direction. The new findings are that for SAPS commencing at different universal times, the strongest westward neutral winds exhibit large variations in amplitudes. The ion drag and Joule heating effects are dependent on the solar illumination, which exhibit UT variations due to the displacement of the geomagnetic and geographic poles. With more sunlight, stronger westward neutral winds can be generated, and the center of these neutral winds shifts to a later magnetic local time than neutral winds with less solar illumination. In the Northern Hemisphere and Southern Hemisphere, the disturbance neutral wind reaches a maximum at 18:00 and 04:00 UT, and a minimum at 04:00 and 16:00 UT, respectively. There is a good correlation between the neutral wind velocity and cos0.5(SZA) (solar zenith angle). The reduction in the electron density and enhancement in the air mass density at an altitude of 400 km are strongest when the maximum solar illumination collocates with the SAPS. The correlation between the neutral wind velocity and cos0.5(SZA) is also good during the northward IMF period. The effect of a sine-wave oscillation of SAPS on the neutral wind also exhibits UT variations in association with the solar illumination.

  7. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  8. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  9. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  10. Absorbed photosynthetically active radiation of steppe vegetation and sun-view geometry effects on APAR estimates

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.

    1992-01-01

    Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.

  11. CIMEL Measurements of Zenith Radiances at the ARM Site

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.

  12. Low-Altitude Magnetic Topology with MAVEN SWEA and MAG

    NASA Astrophysics Data System (ADS)

    Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew

    2016-04-01

    The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.

  13. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  14. Calibration and Testing of Digital Zenith Camera System Components

    NASA Astrophysics Data System (ADS)

    Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim

    2017-04-01

    Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.

  15. A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Espinosa, R.; Ziemba, L. D.; Beyersdorf, A. J.; Rocha Lima, A.; Anderson, B. E.; Martins, J. V.; Dubovik, O.; Ducos, F.; Fuertes, D.; Lapyonok, T.; Shook, M.; Derimian, Y.; Moore, R.

    2016-12-01

    We have developed a method for validating Aerosol Robotic Network (AERONET) retrieval algorithms by mimicking atmospheric extinction and radiance measurements in a laboratory experiment. This enables radiometric retrievals that utilize the same sampling volumes, relative humidities, and particle size ranges as observed by other in situ instrumentation in the experiment. We utilize three Cavity Attenuated Phase Shift (CAPS) monitors for extinction and UMBC's three-wavelength Polarized Imaging Nephelometer (PI-Neph) for angular scattering measurements. We subsample the PI-Neph radiance measurements to angles that correspond to AERONET almucantar scans, with solar zenith angles ranging from 50 to 77 degrees. These measurements are then used as input to the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm, which retrieves size distributions, complex refractive indices, single-scatter albedos (SSA), and lidar ratios for the in situ samples. We obtained retrievals with residuals R < 10% for 100 samples. The samples that we tested include Arizona Test Dust, Arginotec NX, Senegal clay, Israel clay, montmorillonite, hematite, goethite, volcanic ash, ammonium nitrate, ammonium sulfate, and fullerene soot. Samples were alternately dried or humidified, and size distributions were limited to diameters of 1.0 or 2.5 um by using a cyclone. The SSA at 532 nm for these samples ranged from 0.59 to 1.00 when computed with CAPS extinction and PSAP absorption measurements. The GRASP retrieval provided SSAs that are highly correlated with the in situ SSAs, and the correlation coefficients ranged from 0.955 to 0.976, depending upon the simulated solar zenith angle. The GRASP SSAs exhibited an average absolute bias of +0.023 +/-0.01 with respect to the extinction and absorption measurements for the entire dataset. Although our apparatus was not capable of measuring backscatter lidar ratio, we did measure bistatic lidar ratios at a scattering angle of 173 deg. The

  16. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  17. Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.

    2010-01-01

    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.

  18. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai

    2016-12-01

    Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy

  19. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    NASA Astrophysics Data System (ADS)

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  20. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  1. MAVEN observations of electron temperatures in the dayside ionosphere at Mars

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Cravens, T.; Andersson, L.; Fowler, C. M.; Thiemann, E.; Eparvier, F. G.; Bougher, S. W.; Rahmati, A.; Reedy, N. L.; Mitchell, D. L.; Mazelle, C. X.; Mahaffy, P. R.; Jakosky, B. M.

    2016-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) have observed the ionospheric electron temperature at Mars since November 2014. The only in-situ measurements of plasma temperatures were provided by the two Viking landers in 1976 before the MAVEN mission. The ionospheric electron temperatures are particularly important for determining the neutral escape rate from the atmosphere of Mars. We have investigated the electron temperatures on the dayside ionosphere using the Langmuir Probe and Waves instrument onboard MAVEN. The temperatures are studied in two regions of (1) the crustal magnetic field and (2) the solar wind/induced (or draped) magnetic field. We also focused on how temperatures vary with solar zenith angle (SZA) and the solar extreme ultraviolet (EUV) irradiances. The electron temperatures did not vary much due to the SZA variation, but increased when the solar EUV irradiances are high. This means the ionospheric temperatures are sensitive to the solar activity. Furthermore, we investigated the correlation of electron temperatures against magnetic field configurations under the same EUV irradiances. The electron temperatures in the crustal region were lower than those in the draped region. One possible explanation is that the energy input from high altitude, which is related to the tail and solar wind electrons, might control the temperatures in the draped region. Vertical heat conductance in the draped region could also affect the electron temperatures (with a greater effect in the draped region), so that electrons cooled at low altitude tend to transport to high altitude. However, the electron heating is more local in the draped region, and the electrons would be heated efficiently. Therefore, the electron temperatures in the draped region were higher than those in the crustal region. It is implied that the rate of atmospheric escape, which is attributed to photochemical escape, depends on the topology of the magnetic fields.

  2. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    NASA Technical Reports Server (NTRS)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  3. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  4. Narrow-band multi-filter radiometer for total ozone content measurements: Mario Zucchelli Station (Antarctica) campaign.

    PubMed

    Scaglione, Salvatore; Zola, Danilo; Menchini, Francesca; Sarcina, Ilaria Di

    2017-02-01

    The importance of ground-based measurements of ultraviolet radiation has increased since the discovery of the stratospheric ozone layer depletion. Spectroradiometers are the most widely used class of instruments, although the requirement to work in attended stations is sometimes limiting. In this work we present a filter radiometer, named F-RAD, with good optical stability, very short sampling time (1 min), and proven reliability. The instrument is based on a stand-alone functioning, making it suitable for operation in hostile environments. The total ozone column (TOC) was estimated by the irradiance ratio at wavelengths where the ozone absorbs the solar radiation and where the radiation is not absorbed. Direct correlation between the TOC values estimated by F-RAD and by the Ozone Monitoring Instrument (OMI) was found, and the standard deviations of the ratios between such values were calculated. Three wavelength ratios were identified to take into account the dependence of the measurements from the Solar Zenith Angle, AF-RAD (306.0 nm/325.3 nm) for SZA<50°, BF-RAD (309.9 nm/325.3 nm) and CF-RAD (317.5 nm/325.3 nm) for SZA>50°. Considering the OMI ozone data as the reference values, the accuracy of the filter radiometer is estimated to be ±4%. The data collected during the calibration campaign in Lampedusa (June-July 2009, Italy) and during the first Antarctica winter of the 2009-2013 measurement campaign at Mario Zucchelli Station (MZS) are reported. The TOC measured by the F-RAD instrument, by the OMI on board of EOS-Aura satellite (NASA), and by the NOAA UV Monitoring Station in McMurdo (USA) are compared to assess the appropriateness of F-RAD for a long-term measurement campaign.

  5. A Semiempirical Approach to the Determination of Daily Erythemal Doses.

    PubMed

    Silva, Abel A; Yamamoto, Ana L C; Corrêa, Marcelo P

    2018-02-15

    The maintenance of ground-based instruments to measure the incidence of ultraviolet radiation (UVR) from the Sun demands strict and well-developed procedures. A piece of equipment can be out of service for a couple of weeks or months for calibration, repair or even the improvement of the facilities where it has been set up. However, the replacement of an instrument in such circumstances can be logistically and financially prohibitive. On the other hand, the lack of data can jeopardize a long-term experiment. In this study, we introduce a semiempirical approach to the determination of the theoretical daily erythemal dose (DED t ) for periods of instrumental absence in a tropical site. The approach is based on 5 years of ground-based measurements of daily erythemal dose (DED) linearly correlated with parameters of total ozone column (TOC) and reflectivity (R PC ) from the Ozone Monitoring Instrument (OMI) and the cosine of solar zenith angle at noon (SZA n ). Seventeen months of missing ground-based data were replaced with DED t , leading to a complete 5-year series of data. The lowest and the highest values of typical DED were 2411 ± 322 J m -2 (1σ) (winter) and 5263 ± 997 J m -2 (summer). The monthly integrated erythemal dose (mED) varied from 59 kJ m -2 (winter) to 162 kJ m -2 (summer). Both of them depended mainly on cos(SZA n ) and R PC . The 12-month integrated erythemal dose (12-ED) ranged from 1350 kJ m -2 to 1546 kJ m -2 , but it can depend significantly on other atmospheric parameter (maybe aerosols) not explicitly considered here. © 2018 The American Society of Photobiology.

  6. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  7. Information content of sky intensity and polarization measurements at right angles to the solar direction

    NASA Technical Reports Server (NTRS)

    Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.

    1978-01-01

    The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.

  8. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  9. Comparison of Kalman filter estimates of zenith atmospheric path delays using the global positioning system and very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Tralli, David M.; Lichten, Stephen M.; Herring, Thomas A.

    1992-01-01

    Kalman filter estimates of zenith nondispersive atmospheric path delays at Westford, Massachusetts, Fort Davis, Texas, and Mojave, California, were obtained from independent analyses of data collected during January and February 1988 using the GPS and VLBI. The apparent accuracy of the path delays is inferred by examining the estimates and covariances from both sets of data. The ability of the geodetic data to resolve zenith path delay fluctuations is determined by comparing further the GPS Kalman filter estimates with corresponding wet path delays derived from water vapor radiometric data available at Mojave over two 8-hour data spans within the comparison period. GPS and VLBI zenith path delay estimates agree well within one standard deviation formal uncertainties (from 10-20 mm for GPS and 3-15 mm for VLBI) in four out of the five possible comparisons, with maximum differences of 5 and 21 mm over 8- to 12-hour data spans.

  10. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  11. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.

    The multiannual global mean of aerosol optical depth at 550 nm (AOD 550) over land is ~0.19, and that over oceans is ~0.13. About 45 % of the Earth surface shows AOD 550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiativemore » transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD 430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD 430 < 0.13) we compare RSP-based retrievals of AOD 430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD 430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMEL AOD - MFRSR AOD) and yields the following expressions for correlations between different instruments: DOAS AOD = - (0.019 ± 0

  12. The CU 2-D-MAX-DOAS instrument - Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-01

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ˜ 0.19, and that over oceans is ˜ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD - MFRSRAOD) and yields the following expressions for correlations between different instruments

  13. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.

    PubMed

    Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M

    2017-05-01

    Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model

  14. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2015-03-01

    The main goal of this paper is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Centre (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by the GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient, R2, of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF < 5%), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, the analysis of the relative differences between GOME-2 and GRUAN data shows a mean absolute bias error (weighted with the combined uncertainty derived from the estimated errors of both data sets) of 15% for all-sky conditions (9% for cloud-free cases). These results evidence a notable bias in the satellite TWVC data against the reference balloon-borne measurements, partially related to the cloudy conditions during the satellite overpass. The detailed analysis of the influence of cloud properties - CF, cloud top albedo (CTA) and cloud top pressure (CTP) - on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from -6 to -23% when CTA rises from 0.3 to 0.8. Furthermore, the satellite-sounding TWVC differences show a strong dependence on the satellite solar zenith angle (SZA) for values above 50°. Hence the smallest relative differences found in this satellite-sounding comparison are achieved for those cloud-free cases with satellite SZA below 50

  15. Topside Ionospheric Response to Solar EUV Variability

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.; Hawkins, J.

    2015-12-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an

  16. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  17. Erosion Results of the MISSE 7 Polymers Experiment and Zenith Polymers Experiment After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.

    2016-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.

  18. Estimating Integrated Water Vapor (IWV) regional map distribution using METEOSAT satellite data and GPS Zenith Wet Delay (ZWD)

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Leontiev, A.

    2016-12-01

    Using GPS satellites signals, we can study atmospheric processes and coupling mechanisms, which can help us understand the physical conditions in the upper atmosphere that might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by geodetic stations on the ground are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature measurements on the ground. Here, we present the use of Israel's geodetic GPS receivers network for extracting tropospheric zenith path delays combined with near Real Time (RT) METEOSAT-10 Water Vapor (WV) and surface temperature pixel intensity values (7.3 and 12.1 channels, respectively) in order to obtain absolute IWV (kg/m2) or PWV (mm) map distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS Zenith Total Delays (ZTD) and METEOSAT-10 surface temperature data compared with available radiosonde Precipitable IWV/PWV absolute values. The presented strategy can provide unprecedented temporal and special IWV/PWV distribution, which is needed as part of the accurate and comprehensive initial conditions pro­vided by upper-air observation systems at temporal and spatial resolutions consistent with the models assimilating them.

  19. Remote Sensing of Clouds for Solar Forecasting Applications

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe

    A method for retrieving cloud optical depth (tauc) using a UCSD developed ground- based Sky Imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various tauc produced by a Radiative Transfer Model (RTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (SZA), tau c , solar pixel an- gle/scattering angle (SPA), and pixel zenith angle/view angle (PZA). The effects of these parameters are described and the functions for radiance, Ilambda (tau c ,SZA,SPA,PZA) , and the red-blue ratio, RBR(tauc ,SZA,SPA,PZA) , are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for tau c , where RBR increases with tauc up to about tauc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Imeaslambda (SPA,PZA) , in addition to RBRmeas (SPA,PZA ) to obtain a unique solution for tauc . The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min [ MH96a ] method for overcast skies. tau c values ranged from 0-80 with values over 80 being capped and registered as 80. A tauc RMSE of 2.5 between the Min method [ MH96b ] and the USI are observed. The MWR and USI have an RMSE of 2.2 which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms. Using the RRBR tauc estimate as an input we then explore the potential of using tomographic techniques for 3-D cloud reconstruction. The Algebraic Reconstruction Technique (ART) is applied to optical depth maps from sky images to reconstruct 3-D cloud extinction coefficients. Reconstruction accuracy

  20. Software development and its description for Geoid determination based on Spherical-Cap-Harmonics Modelling using digital-zenith camera and gravimetric measurements hybrid data

    NASA Astrophysics Data System (ADS)

    Morozova, K.; Jaeger, R.; Balodis, J.; Kaminskis, J.

    2017-10-01

    Over several years the Institute of Geodesy and Geoinformatics (GGI) was engaged in the design and development of a digital zenith camera. At the moment the camera developments are finished and tests by field measurements are done. In order to check these data and to use them for geoid model determination DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software is used. It is based on parametric modelling of the HRS as a continous polynomial surface. The HRS, providing the local Geoid height N, is a necessary geodetic infrastructure for a GNSS-based determination of physcial heights H from ellipsoidal GNSS heights h, by H=h-N. The research and this publication is dealing with the inclusion of the data of observed vertical deflections from digital zenith camera into the mathematical model of the DFHRS approach and software v4.3. A first target was to test out and validate the mathematical model and software, using additionally real data of the above mentioned zenith camera observations of deflections of the vertical. A second concern of the research was to analyze the results and the improvement of the Latvian quasi-geoid computation compared to the previous version HRS computed without zenith camera based deflections of the vertical. The further development of the mathematical model and software concerns the use of spherical-cap-harmonics as the designed carrier function for the DFHRS v.5. It enables - in the sense of the strict integrated geodesy approach, holding also for geodetic network adjustment - both a full gravity field and a geoid and quasi-geoid determination. In addition, it allows the inclusion of gravimetric measurements, together with deflections of the vertical from digital-zenith cameras, and all other types of observations. The theoretical description of the updated version of DFHRS software and methods are discussed in this publication.

  1. Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.

    2013-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  2. Exploitation of the UV Aerosol Index scattering angle dependence: Properties of Siberian smoke plumes

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas

    2017-04-01

    The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.

  3. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  4. Mid- and long-term device migration after endovascular abdominal aortic aneurysm repair: a comparison of AneuRx and Zenith endografts.

    PubMed

    Tonnessen, Britt H; Sternbergh, W Charles; Money, Samuel R

    2005-09-01

    Freedom from migration is key to the durability of endovascular aneurysm repair (EVAR). This study evaluates the mid- and long-term incidence of migration with two different endografts. Between September 1997 and June 2004, 235 patients were scheduled for EVAR with an AneuRx (Medtronic/AVE Inc.) or Zenith (Cook) endograft. Patients with fusiform, infrarenal aneurysms and a minimum 12 months of follow-up were analyzed, for a final cohort of 130 patients. Migration was assessed on axial computed tomography (CT) (2.5 to 3 mm cuts) as the distance from the most caudal renal artery to the first slice containing endograft (AneuRx) or to the top of the bare suprarenal stent (Zenith). Aortic neck diameters were measured at the most caudal renal artery. The initial postoperative CT scan was the baseline. Migration was defined by caudal movement of the endograft at two thresholds, > or =5 mm and > or =10 mm, or any migration with a related clinical event. Life-table analysis demonstrated AneuRx freedom from migration (> or =10 mm or clinical event) was 96.1%, 89.5%, 78.0%, and 72.0% at 1, 2, 3, and 4 years, respectively. Zenith freedom from migration was 100%, 97.6%, 97.6%, and 97.6% at 1, 2, 3, and 4 years, respectively (P = .01, log-rank test). The stricter 5-mm migration threshold found 67.4% of AneuRx and 90.1% of Zenith patients free from migration at 4 years of follow-up. Twelve out of 14 (85.7%) AneuRx patients (12/14) with migration (> or =10 mm or clinical event) underwent 14 related secondary procedures (13 endovascular, 1 open conversion). The single Zenith patient with migration (> or =10 mm) has not required adjuvant treatment. Mean follow-up was 39.0 +/- 2.3 months (AneuRx) and 30.8 +/- 1.9 months (Zenith, P = .01). Patients with and without migration did not differ in age, gender ratio, aneurysm diameter, and neck diameter. However, initial neck length was shorter in patients with migration (22.1 +/- 2.1 mm vs 31.2 +/- 1.2 mm, P = .02). A subset of patients

  5. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.

    2016-12-01

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear andmore » cloudy spectra, where the coefficients, slope and intercept, character-ize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative cor-relation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measure-ments from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band de-crease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results sup-port the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less

  6. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    DOE PAGES

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; ...

    2016-08-11

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius r eff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clearmore » and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r eff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less

  7. Observation of the Spectrally Invariant Properties of Clouds in Cloudy-to-Clear Transition Zones During the MAGIC Field Campaign

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-01-01

    We use the spectrally invariant method to study the variability of cloud optical thickness tau and droplet effective radius r(sub eff) in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness t while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r(sub eff)even without the exact knowledge of tau; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  8. Vertical-angle control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei

    2000-10-01

    A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.

  9. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  10. Project Zenith: Multicultural/Multimedia/Emphasis in Speech-Language Pathology, 1997-2001. Grant Performance Report--Final Report.

    ERIC Educational Resources Information Center

    San Jose State Univ., CA.

    This report discusses the activities and outcomes of Project Zenith, which was designed to recruit two cohorts of bilingual graduate students to complete a graduate program with specialized skills in the diagnosis and treatment of communicative disorders in multicultural populations in the public schools. Included in the specialized training is…

  11. Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan

    2017-02-01

    Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.

  12. BOREAS RSS-2 Level-1B ASAS Image Data: At-Sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Russell, C.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Dabney, P. W.; Kovalick, W.; Graham, D.; Bur, Michael; Irons, James R.; Tierney, M.

    2000-01-01

    The BOREAS RSS-2 team used the ASAS instrument, mounted on the NASA C-130 aircraft, to create at-sensor radiance images of various sites as a function of spectral wavelength, view geometry (combinations of view zenith angle, view azimuth angle, solar zenith angle, and solar azimuth angle), and altitude. The level-1b ASAS images of the BOREAS study areas were collected from April to September 1994 and March to July 1996.

  13. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.

    In this study, the multiannual global mean of aerosol optical depth at 550 nm (AOD 550) over land is ~0.19, and that over oceans is ~0.13. About 45 % of the Earth surface shows AOD 550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity.more » We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD 430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD 430 < 0.13) we compare RSP-based retrievals of AOD 430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD 430 is +0.012 ± 0.023 (CIMEL), –0.012 ± 0.024 (MFRSR), –0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMEL AOD –MFRSR AOD) and yields the following expressions for correlations between different instruments: DOAS AOD = –(0

  14. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE PAGES

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; ...

    2016-08-23

    In this study, the multiannual global mean of aerosol optical depth at 550 nm (AOD 550) over land is ~0.19, and that over oceans is ~0.13. About 45 % of the Earth surface shows AOD 550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity.more » We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD 430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD 430 < 0.13) we compare RSP-based retrievals of AOD 430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD 430 is +0.012 ± 0.023 (CIMEL), –0.012 ± 0.024 (MFRSR), –0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMEL AOD –MFRSR AOD) and yields the following expressions for correlations between different instruments: DOAS AOD = –(0

  15. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Sasselov, Dimitar D.

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.

  16. Development of fog detection algorithm using Himawari-8/AHI data at daytime

    NASA Astrophysics Data System (ADS)

    Han, Ji-Hye; Kim, So-Hyeong; suh, Myoung-Seok

    2017-04-01

    Fog is defined that small cloud water drops or ice particles float in the air and visibility is less than 1 km. In general, fog affects ecological system, radiation budget and human activities such as airplane, ship, and car. In this study, we developed a fog detection algorithm (FDA) consisted of four threshold tests of optical and textual properties of fog using satellite and ground observation data at daytime. For the detection of fog, we used satellite data (Himawari-8/AHI data) and other ancillary data such as air temperature from NWP data (over land), SST from OSTIA (over sea). And for validation, ground observed visibility data from KMA. The optical and textual properties of fog are normalized albedo (NAlb) and normalized local standard deviation (NLSD), respectively. In addition, differences between air temperature (SST) and fog top temperature (FTa(S)) are applied to discriminate the fog from low clouds. And post-processing is performed to detect the fog edge based on spatial continuity of fog. Threshold values for each test are determined by optimization processes based on the ROC analysis for the selected fog cases. Fog detection is performed according to solar zenith angle (SZA) because of the difference of available satellite data. In this study, we defined daytime when SZA is less than 85˚ . Result of FDA is presented by probability (0 ˜ 100 %) of fog through the weighted sum of each test result. The validation results with ground observed visibility data showed that POD and FAR are 0.63 ˜ 0.89 and 0.29 ˜ 0.46 according to the fog intensity and type, respectively. In general, the detection skills are better in the cases of intense and without high clouds than localized and weak fog. We are plan to transfer this algorithm to the National Meteorological Satellite Center of KMA for the operational detection of fog using GK-2A/AMI data which will be launched in 2018.

  17. Aerosol Optical Depth Retrievals from High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    DTIC Science & Technology

    2006-06-01

    angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar

  18. Developing a Modern Low Cost Apparatus to Measure Muon Flux vs. Angle at Muhlenberg College

    NASA Astrophysics Data System (ADS)

    Kasle, Lucas; Bene, Charles; Crawford, Travis; Morash, Richard; Tornetta, Kelly

    2017-09-01

    Experiments using cosmic ray muons have been a staple of the undergraduate lab for decades. Muhlenberg seeks to modernize one of these experiments, and implement it inexpensively. Cognizant of the widespread use of Silicon Photomultipliers (SiPMs) in the research environment, our detector employs SiPMs instead of PMTs. Furthermore, a simulation activity has been developed to accompany the laboratory experiment. Our detector design consists of two small plastic scintillators arranged so that coincidence measurements select cosmic ray muons of particular angles with respect to the zenith. Each scintillator is attached to an SiPM and electronics to process the signal. A crude prototype was constructed last summer that produced results consistent with the well established dependence of flux on polar angle, and a simulation was created that also produced consistent results. Progress in the development of the electronics for the SiPMs, the overall design of the apparatus, and the accompanying computer simulation will be reported. NSF Grant 1507841.

  19. Midterm outcomes of the Zenith Renu AAA Ancillary Graft.

    PubMed

    Jim, Jeffrey; Rubin, Brian G; Geraghty, Patrick J; Money, Samuel R; Sanchez, Luis A

    2011-08-01

    The Zenith Renu abdominal aortic aneurysm (AAA) Ancillary Graft (Cook Medical Inc, Bloomington, Ind) provides active proximal fixation for treatment of pre-existing endografts with failed or failing proximal fixation or seal. The purpose of this study was to evaluate the midterm outcomes of treatment with this device. From September 2005 to November 2006, a prospective, nonrandomized, multicenter, postmarket registry was utilized to collect physician experiences from 151 cases (89 converters and 62 main body extensions) at 95 institutions. Preoperative indications and procedural and postimplantation outcomes were collected and analyzed. Technical success and clinical success were determined as defined by the Society of Vascular Surgery reporting standards. Patients were predominantly male (87%) with a mean age of 77 years. The interval between the original endograft implantation to Renu treatment was 43.4 ± 18.7 months. The indications for treatment were endoleak (n = 111), migration (n = 136), or both (n = 94). Technical success was 98.0% with two cases of intraoperative conversion and one case of persistent type IA endoleak. The median follow-up for the cohort was 45.0 months (range, 0-56 months; interquartile range, 25.0 months). Overall, 32 cases had treatment failures that included at least one of the following: death (n = 5), type I/III endoleak (n = 18), graft infection (n = 1), thrombosis (n = 1), aneurysm enlargement >5 mm (n = 9), rupture (n = 4), conversion (n = 9, with 7 after 30 days), and migration (n = 1). Overall, the clinical success for the entire cohort during the follow-up period was 78.8% (119/151). The postmarket registry data confirm that the Zenith Renu AAA Ancillary Graft can be used to treat endovascular repairs that failed due to proximal attachment failures. The salvage treatment with the Renu device had high technical success rate and resulted in clinical success in a majority of patients (78.8%). While failed endovascular repairs can

  20. Augmentation of Quasi-Zenith Satellite Positioning System Using High Altitude Platforms Systems (HAPS)

    NASA Astrophysics Data System (ADS)

    Tsujii, Toshiaki; Harigae, Masatoshi

    Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.

  1. A new spherical model for computing the radiation field available for photolysis and heating at twilight

    NASA Technical Reports Server (NTRS)

    Dahlback, Arne; Stamnes, Knut

    1991-01-01

    Accurate computation of atmospheric photodissociation and heating rates is needed in photochemical models. These quantities are proportional to the mean intensity of the solar radiation penetrating to various levels in the atmosphere. For large solar zenith angles a solution of the radiative transfer equation valid for a spherical atmosphere is required in order to obtain accurate values of the mean intensity. Such a solution based on a perturbation technique combined with the discrete ordinate method is presented. Mean intensity calculations are carried out for various solar zenith angles. These results are compared with calculations from a plane parallel radiative transfer model in order to assess the importance of using correct geometry around sunrise and sunset. This comparison shows, in agreement with previous investigations, that for solar zenith angles less than 90 deg adequate solutions are obtained for plane parallel geometry as long as spherical geometry is used to compute the direct beam attenuation; but for solar zenith angles greater than 90 deg this pseudospherical plane parallel approximation overstimates the mean intensity.

  2. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  3. Site selection and directional models of deserts used for ERBE validation targets

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  4. Characteristics of skylight at the zenith during twilight as indicators of atmospheric turbidity. 2: Intensity and color ratio.

    PubMed

    Coulson, K L

    1981-05-01

    This is the second of two papers based on an extensive series of measurements of the intensity and polarization of light from the zenith sky during periods of twilight made at an altitude of 3400 m on the island of Hawaii. Part 1 dealt with the skylight polarization; part 2 is on the measured intensity and quantities derived from the intensity. The principal results are that (1) the polarization and intensity of light from the zenith during twilight are sensitive indicators of the existence of turbid layers in the stratosphere and upper troposphere, and (2) at least at Mauna Loa primary scattering of the sunlight incident on the upper atmosphere during twilight is strongly dominant over secondary or multiple scattering at wavelengths beyond ~0.60microm, whereas this is much less true at shorter wavelengths. It is suggested that the development and general use of a simple twilight polarimeter would greatly facilitate determinations of turbidity in the upper layers of the atmosphere.

  5. Twilight polarization and optical depth of stratospheric aerosols over Beijing after the Pinatubo volcanic eruption.

    PubMed

    Wu, B; Jin, Y

    1997-09-20

    After the volcanic eruption of Mt. Pinatubo the degree of polarization of skylight during twilight over Beijing was monitored with a polarimeter aimed at the local zenith. We analyze the effect of changes in the scattering coefficient of atmospheric aerosols for the case of multiple scattering on skylight polarization at the zenith and then discuss the evolution of skylight polarization over Beijing during the posteruption period. As a reference and for comparison we also discuss the evolution of the aerosol optical depth retrieved from the combination of skylight polarization and backscattering ratio measured by the polarimeter and a lidar for the period beginning with the eruption of Mt. Pinatubo through the end of 1993. The contributions of atmospheric aerosols at different altitudes to the ground-observed twilight polarization depend on the solar zenith angle. For larger solar zenith angles, the skylight polarization is mostly sensitive to aerosol variations in the upper layer that range from 15 to 30 km. The twilight polarization at the zenith from June 1991 to mid-1994 shows different features for three periods: (1) From October 1991 to February 1992, volcanic dust traveled to mid-latitudes, and the degree of polarization decreased substantially. (2) From February 1992 to November 1993, volcanic dust was dispersed the minimum degree of polarization at the solar zenith angle of 93.5 degrees disappeared and the maximum increased. In addition, polarization for solar zenith angles less than 90 degrees also increased. (3) From November 1993 to May 1994, most of the volcanic dust had fallen off, the atmosphere was restored to the background state, and the skylight polarization approached the preeruption condition.

  6. UV spectral irradiance measurements in New Zealand: Effects of Pinatubo volcanic aerosol

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.

    1994-01-01

    Since late 1989, regular UV spectral irradiance measurements have been made at Lauder, New Zealand (45 deg S, 170 deg E), whenever weather permits. Here, the instrumentation and measurement strategy are outlined, and early results are discussed. Following the eruption of Mt Pinatubo in June 1991, large amounts of volcanic aerosol were injected into the stratosphere and were subsequently transported to New Zealand's latitudes in the latter half of 1991. This provides an opportunity to investigate the effects of volcanic aerosols on UV irradiances measured at this clean-air site. Although changes in global (sum of diffuse plus direct) irradiances were below the detection threshold, there were significant changes in the partitioning of radiation between the direct beam and diffuse skylight. Decreases by nearly a factor of two in the direct/diffuse ratio were observed at longer wavelengths, and at smaller solar zenith angles (sza's). The aerosol optical depth due to volcanic aerosol over Lauder in December 1991 was 0.15 plus or minus 0.02 at 450 nm, with lower values at shorter wavelengths. Although effects were relatively small in the UVB region, an implication of the changes is that the contrast between shade and direct sun is reduced, so that shaded areas received relatively more radiation in the summer of 1991/92 in New Zealand.

  7. Improved estimation of Mars ionosphere total electron content

    NASA Astrophysics Data System (ADS)

    Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.

    2018-01-01

    We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.

  8. Establishment of the Relationship between the Photochemical Reflectance Index and Canopy Light Use Efficiency Using Multi-angle Hyperspectral Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin

    2017-04-01

    The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using

  9. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as

  10. Sensitivity of EAS measurements to the energy spectrum of muons

    NASA Astrophysics Data System (ADS)

    Espadanal, J.; Cazon, L.; Conceição, R.

    2017-01-01

    We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.

  11. On-Sky Demonstration of a Fluid Atmospheric Dispersion Corrector

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Saunders, W.; Lawrence, J. S.; Richards, S.

    2013-02-01

    The first on-sky demonstration of a fluid atmospheric dispersion corrector (FADC) is presented using the Anglo-Australian Telescope at Siding Spring Observatory. The atmospheric dispersion correction was observed with a three-colour CCD camera at the telescope’s Cassegrain focus. The FADC contains a pair of immiscible fluids in a small glass container placed very close to the telescope focal plane. A pair of fluid prisms is formed and the apex of the two prisms varies with telescope zenith angle because of gravity. Three chemicals were identified and tested for this purpose. We experimentally measured the FADC dispersion properties versus zenith angle and it is shown that its dispersion follows the tan(Z) law. We have been able to observe 6 stars at different zenith angles and show that the FADC can correct atmospheric dispersion up to 1‧‧ at a zenith angle of 52° across the visible spectral range of 400-700 nm. It is demonstrated that an FADC can function as a passive atmospheric dispersion corrector without any moving parts. Our on-sky measurement results show excellent agreement with the optical ray-tracing model.

  12. There is no bidirectional hot-spot in Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Li, Z.; Roy, D. P.; Zhang, H.

    2017-12-01

    The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of

  13. Effect of Ram and Zenith Exposure on the Optical Properties of Polymers in Space

    NASA Technical Reports Server (NTRS)

    Li, Yuachun; de Groh, Kim K.; Banks, Bruce A.; Leneghan, Halle; Asmar, Olivia

    2017-01-01

    The temperature of spacecraft is influenced by the solar absorptance and thermal emittance of the external spacecraft materials. Optical and thermal properties can degrade over time in the harsh low Earth orbital (LEO) space environment where spacecraft external materials are exposed to various forms of radiation, thermal cycling, and atomic oxygen. Therefore, it is important to test the durability of spacecraft materials in the space environment. One objective of the Polymers and Zenith Polymers Experiments was to determine the effect of LEO space exposure on the optical properties of various spacecraft polymers. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission on the exterior of the International Space Station (ISS) for 1.5 years. Samples were flown in ram, wake or zenith directions, receiving varying amounts of atomic oxygen and solar radiation exposure. Total and diffuse reflectance and transmittance of flight and corresponding control samples were obtained post-flight using a Cary 5000 UV-Vis-NIR Spectrophotometer. Integrated air mass zero solar absorptance (s) of the flight and control samples were computed from the total transmittance and reflectance, and compared. The optical data are compared with similar polymers exposed to space for four years as part of MISSE 2, and with atomic oxygen erosion data, to help understand the degradation of these polymers in the space environment. Results show that prolonged space exposure increases the solar absorptance of some materials. Knowing which polymers remain stable will benefit future spacecraft design.

  14. Characterization and Discrimination of Selected Vegetation Canopies from Field Observations of Bidirectional Reflectances. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donovan, Sheila

    1985-01-01

    A full evaluation of the bidirectional reflectance properties of different vegetated surfaces was limited in past studies by instrumental inadequacies. With the development of the PARABOLA, it is now possible to sample reflectances from a large number of view angles in a short period of time, maintaining an almost constant solar zenith angle. PARABOLA data collected over five different canopies in Texas are analyzed. The objective of this investigation was to evaluate the intercanopy and intracanopy differences in bidirectional reflectance patterns. Particular attention was given to the separability of canopy types using different view angles for the red and the near infrared (NIR) spectral bands. Comparisons were repeated for different solar zenith angles. Statistical and other quantitative techniques were used to assess these differences. For the canopies investigated, the greatest reflectances were found in the backscatter direction for both bands. Canopy discrimination was found to vary with both view angle and the spectral reflectance band considered, the forward scatter view angles being most suited to observations in the NIR and backscatter view angles giving better results in the red band. Because of different leaf angle distribution characteristics, discrimination was found to be better at small solar zenith angles in both spectral bands.

  15. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh

    2017-11-01

    Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop

  16. Monitoring Bio-Optical Processes Using NPP-VIIRS and MODIS-Aqua Ocean Color Products

    DTIC Science & Technology

    2013-01-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...account for satellite sensor and solar zenith angles. Additionally, the Bidirectional Reflectance Distribution Function ( BRDF ) of the water particles is...similarly dependent on satellite and solar zenith and azimuth angles 4 . The influence of BRDF is more pronounced in a high scattering environment

  17. Assessment of BRDF effect of Kunlun Mountain glacier on Tibetan Plateau as a potential pseudo-invariant calibration site

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Hu, Xiuqing; Chen, Lin

    2017-09-01

    Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF

  18. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  19. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    USGS Publications Warehouse

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  20. Ground-based determination of atmospheric radiance for correction of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1974-01-01

    A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.

  1. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  2. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  3. All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2013-04-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.

  4. Modeling Solar Zenith Angle Effects on the Polar Wind

    NASA Technical Reports Server (NTRS)

    Glocer, A; Kitamura, N.; Toth, G; Gombosi, T.

    2012-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum. The PWOM solves the gyrotropic transport equations for O+, H+, and He+ along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. (2011) of electron density which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites. The data and model agree reasonably well, albeit with some differences. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results of electron density, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide an initial validation of the PWOM s ability to model the quiet time "background" solution.

  5. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  6. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  7. Altitude-resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer

    NASA Astrophysics Data System (ADS)

    Meloni, D.; Junkermann, W.; di Sarra, A.; Cacciani, M.; De Silvestri, L.; Di Iorio, T.; Estellés, V.; Gómez-Amo, J. L.; Pace, G.; Sferlazzo, D. M.

    2015-04-01

    Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and heating rates (AHR), taking advantage of vertically resolved measurements of irradiances, meteorological parameters, and aerosol microphysical and optical properties. Two cases, characterized respectively by the presence of a homogeneous dust layer (3 May, with aerosol optical depth, AOD, at 500 nm of 0.59) and by a low aerosol burden (5 May, with AOD of 0.14), are discussed. A radiative transfer model was initialized with the measured vertical profiles and with different aerosol properties, derived from measurements or from the literature. The simulation of the irradiance vertical profiles, in particular, provides the opportunity to constrain model-derived estimates of the AHR. The measured SW and LW irradiances were reproduced when the model was initialized with the measured aerosol size distributions and refractive indices. For the dust case, the instantaneous (solar zenith angle, SZA, of 55.1°) LW-to-SW ADRF ratio was 23% at the surface and 11% at the top of the atmosphere (TOA), with a more significant LW contribution on a daily basis (52% at the surface and 26% at TOA), indicating a relevant reduction of the SW radiative effects. The AHR profiles followed the aerosol extinction profile, with comparable peaks in the SW (0.72 ± 0.11 K d-1) and in the LW (-0.52 ± 0.12 K d-1

  8. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative

  9. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    PubMed

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  10. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced

  12. Ground Experiments of Remote Synchronization for Onboard Crystal Oscillator of Quasi-Zenith Satellites - Use of Multiple Positioning Signals for Feedback Control

    DTIC Science & Technology

    2007-01-01

    Iwata, A. Iwasaki, Y. Fukuyama, F. Tappero, K. Hagimoto, T. Ikegami , and H. Murakami, 2004, “Ground Testbed for Quasi-Zenith Satellite Remote...JSASS, Tokyo), ISTS 2004-f-16. [7] T. Iwata, F. Tappero, M. Imae, Y. Fukuyama, K. Hagimoto, H. Murakami, T. Ikegami , A. Iwasaki, K. Nakajima, and Y

  13. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-01-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.

  14. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-06-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.

  15. Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012

    NASA Astrophysics Data System (ADS)

    van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.

    2015-07-01

    The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry

  16. Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk

    2017-10-01

    Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309

  17. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  18. Fourteen-year outcomes of abdominal aortic endovascular repair with the Zenith stent graft.

    PubMed

    Verzini, Fabio; Romano, Lydia; Parlani, Gianbattista; Isernia, Giacomo; Simonte, Gioele; Loschi, Diletta; Lenti, Massimo; Cao, Piergiorgio

    2017-02-01

    Long-term results of abdominal aortic aneurysm (AAA) endovascular repair are affected by graft design renewals that tend to improve the performance of older generation prostheses but usually reset the follow-up times to zero. The present study investigated the long-term outcomes of endovascular AAA repair (EVAR) using the Zenith graft, still in use without major modification, in a single center experience. Between 2000 and 2011, 610 patients underwent elective EVAR using the Zenith endograft (Cook Inc, Bloomington, Ind) and represent the study group. Primary outcomes were overall survival, freedom from AAA rupture, and freedom from AAA-related death. Secondary outcomes included freedom from late (>30 days) reintervention, freedom from late (>30 days) conversion to open repair, freedom from aneurysm sac enlargement >5.0 mm and freedom from EVAR failure, defined as a composite of AAA-related death, AAA rupture, AAA growth >5 mm, and any reintervention. Mean age was 73.2 years. Mean aneurysm diameter was 55.3 mm. There were five perioperative deaths (0.8%) and three intraoperative conversions. At a mean follow-up of 99.2 (range, 0-175) months, seven AAA ruptures occurred, all fatal except one. Overall survival was 92.8% ± 1.1% at 1 year, 70.1% ± 1.9% at 5 years, 37.8% ± 2.9% at 10 years, and 24 ± 4% at 14 years. Freedom from AAA-rupture was 99.8% ± 0.02 at 1 year (one case), 99.4% ± 0.04 at 5 years (three cases), and 98.1% ± 0.07 at 10 and 14 years. Freedom from late reintervention and conversion was 98% ± 0.6 at 1 year, 87.7% ± 1.5 at 5 years, 75.7% ± 3.2 at 10 years, and 69.9% ± 5.2 at 14 years. Freedom from aneurysm sac growth >5.0 mm was 99.8% at 1 year, 96.6% ± 0.7 at 5 years, 81.0% ± 3.4 at 10 years, and 74.1% ± 5.8% at 14 years. EVAR failure occurred in 132 (21.6%) patients at 14 years. At multivariate analysis, independent predictors of EVAR failure resulted type I and III endoleak (hazard ratio [HR], 6.7; 95

  19. Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.

    1997-01-01

    Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area

  20. Tables of asymptotic directions, cutoff rigidities, and reentrant albedo calculations for Palestine, Dallas, and Midland, Texas. Special repts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, M.A.; Smart, D.F.

    1974-03-26

    Using the trajectory-tracing technique, the asymptotic directions and cut-off rigidities for Palestine, Dallas, amd Midland,Texas were calculated as a function of various zenith and azimuth angles. Continuation of the trajectory-tracing process below the Stormer cutoff allows an evaluation of the reentrant albedo; the invariant latitude of the guiding center of the trajectory at the albedo origin is seen to be the same as the invariant latitude of the guiding center of the particle trajectory at the specified zenith and azimuth angle of the detection point. Tables of asymptotic directions, cutoff rigidities, and the location of the reentrant albedo for eachmore » of these locations are given. Summaries of cutoff rigidity calculations as a function of zenith and azimuth directions for some miscellaneous locations are also included. (GRA)« less

  1. Modeling of temporal variation of very low frequency radio waves over long paths as observed from Indian Antarctic stations

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Basak, Tamal; Chakraborty, Suman; Palit, Sourav; Chakrabarti, Sandip K.

    2017-07-01

    Characteristics of very low frequency (VLF) signal depends on solar illumination across the propagation path. For a long path, solar zenith angle varies widely over the path and this has a significant influence on the propagation characteristics. To study the effect, Indian Centre for Space Physics participated in the 27th and 35th Scientific Expedition to Antarctica. VLF signals transmitted from the transmitters, namely, VTX (18.2 kHz), Vijayanarayanam, India, and NWC (19.8 kHz), North West Cape, Australia, were recorded simultaneously at Indian permanent stations Maitri and Bharati having respective geographic coordinates 70.75°S, 11.67°E, and 69.4°S, 76.17°E. A very stable diurnal variation of the signal has been obtained from both the stations. We reproduced the signal variations of VLF signal using solar zenith angle model coupled with long wavelength propagation capability (LWPC) code. We divided the whole path into several segments and computed the solar zenith angle (χ) profile. We assumed a linear relationship between the Wait's exponential model parameters effective reflection height (h'), steepness parameter (β), and solar zenith angle. The h' and β values were later used in the LWPC code to obtain the VLF signal amplitude at a particular time. The same procedure was repeated to obtain the whole day signal. Nature of the whole day signal variation from the theoretical modeling is also found to match with our observation to some extent.

  2. Modeling radiative transfer with the doubling and adding approach in a climate GCM setting

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.

    2017-12-01

    The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.

  3. Optical Properties of Ice Particles in Young Contrails

    NASA Technical Reports Server (NTRS)

    Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.

    2008-01-01

    The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.

  4. Cosmic Rays In The Magnetosphere, 2. Apparent Cut-off Rigidities and Coupling Functions

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Danilova, O. A.; Iucci, N.; Parisi, M.; Ptitsyna, N. G.; Tyasto, M. I.; Villoresi, G.

    We calculate the apparent cut-off rigidities along the survey Italy-Antarctica-Italy** on the basis of results of Danilova et al. (2001) on trajectory calculations for inclined cut- off rigidities at eight azimuths (through 45?) and five zeniths angles (through 15?) along the survey. For calculations of apparent cut-off rigidities we use also the infor- mation on integral multiplicities of secondary neutrons in dependence of zenith angle of incident primary cosmic ray particles, as theoretically computed. This information is based on the theoretical calculations of meson-nuclear cascades for primary protons with different rigidities arriving to the EarthSs atmosphere at different zenith angles (Dorman and Pakhomov, 1979). These results have been checked and normalized by using coupling functions obtained in the same survey [Dorman et al. (2000)]. The determined apparent cut-off rigidities have been compared with results obtained by Clem et al. (1997) and with those used by Dorman et al. (2000) computed by using vertical cut-off rigidities, for trajectories especially calculated for the survey. On the basis of the apparent cut-off rigidities along the latitude survey, the coupling functions for neutron monitor and bare neutron counters found by Dorman et al. (2000) are now determined more accurately. **Survey realized with logistic and financial support of the Italian Antarctic Program (PNRA) and with the co-operation of IFSI-CNR. REFERENCES: Clem, J.M., et al. J. Geophys. Res., 102, 26,919 (1997). Danilova, O.A., et al., Latitude survey in December 1996-March 1997, 1. Cut-off rigidities for different azimuth and zenith angles, Paper ST13, This issue (2001) Dorman L.I. and Pakhomov N.I., "The dependence of the integral generation multiplicity of neutron component at various depths in the atmosphere on zenith angle on primary particle in- cidence". Proc. 16-th ICRC, Kyoto, 4, 416-420 (1979) Dorman, L.I., et al., J. Geophys. Res. 105 , 21,047 (2000).

  5. Additional freeze hardiness in wheat acquired by exposure to -3 degreesC is associated with extensive physiological, morphological, and molecular changes.

    PubMed

    Herman, Eliot M; Rotter, Kelsi; Premakumar, Ramaswamy; Elwinger, G; Bae, Hanhong; Bae, Rino; Ehler-King, Linda; Chen, Sixue; Livingston, David P

    2006-01-01

    Cold-acclimated plants acquire an additional 3-5 degrees C increase in freezing tolerance when exposed to -3 degrees C for 12-18 h before a freezing test (LT50) is applied. The -3 degrees C treatment replicates soil freezing that can occur in the days or weeks leading to overwintering by freezing-tolerant plants. This additional freezing tolerance is called subzero acclimation (SZA) to differentiate it from cold acclimation (CA) that is acquired at above-freezing temperatures. Using wheat as a model, results have been obtained indicating that SZA is accompanied by changes in physiology, cellular structure, the transcriptome, and the proteome. Using a variety of assays, including DNA arrays, reverse transcription-polymerase chain reaction (RT-PCR), 2D gels with mass spectroscopic identification of proteins, and electron microscopy, changes were observed to occur as a consequence of SZA and the acquisition of added freezing tolerance. In contrast to CA, SZA induced the movement of intracellular water to the extracellular space. Many unknown and stress-related genes were upregulated by SZA including some with obvious roles in SZA. Many genes related to photosynthesis and plastids were downregulated. Changes resulting from SZA often appeared to be a loss of rather than an appearance of new proteins. From a cytological perspective, SZA resulted in alterations of organelle structure including the Golgi. The results indicate that the enhanced freezing tolerance of SZA is correlated with a wide diversity of changes, indicating that the additional freezing tolerance is the result of complex biological processes.

  6. A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow

    NASA Astrophysics Data System (ADS)

    Bourgeois, C. S.; Calanca, P.; Ohmura, A.

    2006-10-01

    Hemispherical directional reflectance factors (HDRF) were collected under solar zenith angles from 49° to 85°. The experimental site was the Greenland Summit Environmental Observatory (72°35'N, 34°30'W, 3203 m above sea level) where both the snow and the atmosphere are very clean. The observations were carried out for two prevailing snow surface types: a smooth surface with wind-broken small snow grains and a surface covered with rime causing a higher surface roughness. A specially designed Gonio-Spectrometer (wavelength range 350-1050 nm), was developed at the Institute for Atmospheric and Climate Science and used to collect spectral HDRFs over the hemisphere. The angular step size was 15° in zenith and azimuth. The HDRFs showed strong variations ranging from 0.6 to 13, depending on the solar zenith angle. The HDRF distribution was nearly isotropic at noon. It varied with increasing solar zenith angle, resulting in a strong forward scattering peak. Smooth surfaces exhibited stronger forward scattering than surfaces covered with rime. At a solar zenith of 85°, an HDRF of ˜13 was observed in the forward scattering direction for λ=900 nm. Spectral albedos were calculated by interpolating the HDRF data sets on a 2° grid and integrating individual wavelengths. Spectral albedos showed variations depending on the solar illumination geometry and the snow surface properties. Broadband albedos were calculated by integration of the spectral albedos over all wavelengths. The broadband albedos derived from directional measurements reproduced the diurnal pattern measured with two back-to-back broadband pyranometers.

  7. Characterisation of J(O1D) at Cape Grim 2000-2005

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.

    2014-07-01

    Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone J(O1D) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). These estimates agree well with measurements made during SOAPEX-II and with model estimates of clear sky photolysis rates. Observations spanning 2000-2005 have been used to quantify the impact of season, cloud and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an inter-annual variation (monthly standard deviation) of 9%, but in midsummer and midwinter this reduces to 3-4%. Factors dependent upon solar zenith angle and satellite derived total ozone column explain 87% of the observed signal variation of the individual measurements. The impact of total column ozone, expressed as a Radiation Amplification Factor (RAF), is found to be ~1.45, in agreement with model estimates. This ozone dependence explains 20% of the variation observed at medium solar zenith angles (30-50°). The impact of clouds results in a median reduction of 14% in J(O1D) for the same solar zenith angle range. At all solar zenith angles less than 50° approximately 10% of measurements show enhanced J(O1D) due to cloud scattering and this fraction climbs to 25% at higher solar angles. Including estimates of cloudiness derived from Long Wave Radiation measurements resulted in a statistically significant fit to observations but the quality of the fit did not increase significantly as measured by the reduced R2.

  8. Sat-sat Radio Occultation Experiment between Yinghuo-1 and Phobos-Grunt at Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Sun, Yue-Qiang; Wu, Ji

    Sat-sat Radio Occultation Experiment between Yinghuo-1 and Phobos-Grunt at Mars Hua Zhao1, J. Wu1, Y. Q. Sun1, G. W. Zhu1, Q. F. Du1, X. Hu1, A. Zakharov2 1Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences, Beijing, China 2IKI, Russian Academy of Sciences, Moscow, Russia Abstract: A micro-satellite, Yinghuo-1, would be launched with Phobos-Grunt in October, 2009 to investigate the space environment around Mars. A coordinated radio occultation experiment would be carried out between YH-1 and Phobos-Grunt. A radio wave transmitter is mounted on Phobos-Grunt to beam out radio wave at 400/800 MHz in 6W output to YH-1, and a radio receiver is installed on YH-1 to measure the phase shift and xxx during the occultation opportunities. The total electron content (TEC) can be obtained from the occultation experiment, and the Martian electron density profiles would be driven out. After inserting into Mars orbit, YH-1 would be separated from Phobos-Grunt with a relative speed of 2m/s, and the orbits of YH-1 and Phobos-Grunt are placed in the same plan near the Mars equator, and the ROE would have opportunities to measure the Mars ionospheric electron density profiles in the altitude range 50—300 km with solar zenith angle (SZA) smaller than 43o, and larger than 138o. The micro-strip antenna is used for the receiver on YH-1, and the sensitivity of the receiver is about -145dBm.

  9. Solar Illumination Control of the Polar Wind

    NASA Astrophysics Data System (ADS)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  10. Comparative analysis of positioning and zenith total delay retrieval using GPS-, GLONASS-only, and GPS/GLONASS combined precise point positioning

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Li, Xingxing; Cai, Miaomiao; Chen, Wen; Dong, Danan; Schuh, Harald

    2017-04-01

    Since October 2011, the Russian GLONASS has been revitalized and is now fully operational with 24 satellites in orbit. It is critical to assess the benefits and problems of using GLONASS observations (i.e. GLONASS-only or combined GPS/GLONASS) for precise positioning and zenith total delay (ZTD) retrieval on a global scale using the precise point positioning (PPP) technique. In this contribution, extensive evaluations are conducted with GNSS data sets collected from 251 globally distributed stations of the International GNSS Service (IGS) network in July 2016. The stations are divided into 30 groups by antenna/radome types to investigate whether there are antenna/radome-dependent biases in position and ZTD results derived from GLONASS-only PPP. The positioning results do not show obvious antenna/radome-dependent biases except the stations with JAV_RINGANT_G3T/NONE. The averaged biases of the stations with JAV_RINGANT_G3T/NONE in horizontal component especially in north component can even achieve -9.0 mm. The standard deviation (STD) and root mean square (RMS) are used as indicators of positioning repeatability and accuracy, respectively. Compared with GPS-only PPP, smaller averaged STD and RMS values of GLONASS-only PPP are achieved in horizontal component, while larger ones in vertical component. Furthermore, the STD and RMS values of GPS/GLONASS combined PPP solutions are the smallest in horizontal and vertical components, indicating that adding GLONASS observations can achieve better positioning performance than GPS-only PPP. Meanwhile, better positioning repeatability and accuracy are found in north component than that in east component, which may be caused by the configuration of GNSS satellite orbit. With respect to GPS-only PPP-derived ZTD, the ZTD biases, accuracy, and correlation derived from GLONASS-only and GPS/GLONASS PPP solutions are antenna/radome-independent, while the biases and accuracy are slightly latitude- or Geometric Dilution of Precisions

  11. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Jui-Yuan

    2010-10-19

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less

  12. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner.

    PubMed

    Gordon, H R; Brown, J W; Evans, R H

    1988-03-01

    For improved analysis of Coastal Zone Color Scanner (CZCS) imagery, the radiance reflected from a planeparallel atmosphere and flat sea surface in the absence of aerosols (Rayleigh radiance) has been computed with an exact multiple scattering code, i.e., including polarization. The results indicate that the single scattering approximation normally used to compute this radiance can cause errors of up to 5% for small and moderate solar zenith angles. At large solar zenith angles, such as encountered in the analysis of high-latitude imagery, the errors can become much larger, e.g.,>10% in the blue band. The single scattering error also varies along individual scan lines. Comparison with multiple scattering computations using scalar transfer theory, i.e., ignoring polarization, show that scalar theory can yield errors of approximately the same magnitude as single scattering when compared with exact computations at small to moderate values of the solar zenith angle. The exact computations can be easily incorporated into CZCS processing algorithms, and, for application to future instruments with higher radiometric sensitivity, a scheme is developed with which the effect of variations in the surface pressure could be easily and accurately included in the exact computation of the Rayleigh radiance. Direct application of these computations to CZCS imagery indicates that accurate atmospheric corrections can be made with solar zenith angles at least as large as 65 degrees and probably up to at least 70 degrees with a more sensitive instrument. This suggests that the new Rayleigh radiance algorithm should produce more consistent pigment retrievals, particularly at high latitudes.

  13. Zenith skylight intensity and color during the total solar eclipse of 20 July 1963.

    PubMed

    Sharp, W E; Lloyd, J W; Silverman, S M

    1966-05-01

    The zenith skylight intensity was measured, with a resolution of 10 A, over the wavelength range from 5200 A to 6400 A during a total solar eclipse at Hermon, Maine. The intensity was found to change by about two orders of magnitude in the 2-min period before totality and reached a minimum during totality of 19.5 kR/A at 5200 A. The spectral distribution remained that of the day sky until the sun was more than 99.8% obscured. During totality, the shorter wavelengths were enhanced, indicating a shift to the blue in sky color. Comparisons with an independent measurement from an aircraft show that the intensity scale height of the secondary scattered component, predominating at totality, is significantly less than that of the day sky. The measurements are compared with the day and twilight sky.

  14. Multi-azimuthal-angle instability for different supernova neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Mirizzi, Alessandro

    2014-08-01

    It has been recently discovered that removing the axial symmetry in the "multiangle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos, a new multi-azimuthal-angle (MAA) instability will trigger flavor conversions in addition to the ones caused by the bimodal and multi-zenith-angle (MZA) instabilities. We investigate the dependence of the MAA instability on the original SN neutrino fluxes, performing a stability analysis of the linearized neutrino equations of motion. We compare these results with the numerical evolution of the SN neutrino nonlinear equations, looking at a local solution along a specific line of sight, under the assumption that the transverse variations of the global solution are small. We also assume that self-induced conversions are not suppressed by large matter effects. We show that the pattern of the spectral crossings (energies where Fνe=Fνx and Fν¯e=Fν¯x) is crucial in determining the impact of MAA effects on the flavor evolution. For neutrino spectra with a strong excess of νe over ν¯e, presenting only a single crossing, MAA instabilities will trigger new flavor conversions in normal mass hierarchy. In our simplified flavor evolution scheme, these will lead to spectral swaps and splits analogous to what is produced in inverted hierarchy by the bimodal instability. Conversely, in the presence of spectra with a moderate flavor hierarchy, having multiple crossing energies, MZA effects will produce a sizable delay in the onset of the flavor conversions, inhibiting the growth of the MAA instability. In this case, the splitting features for the oscillated spectra in both the mass hierarchies are the ones induced by the only bimodal and MZA effects.

  15. High-energy spectra of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Petrova, O. N.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2012-12-01

    A calculation of the atmospheric high-energy muon neutrino spectra and zenith-angle distributions is performed for two primary spectrum parameterizations (by Gaisser and Honda and by Zatsepin and Sokolskaya) with the use of QGSJET-II-03 and SIBYLL 2.1 hadronic models. A comparison of the zenith angle-averaged muon neutrino spectrum with the data of Frejus, AMANDA-II, and IceCube40 experiments makes it clear that, even at energies above 100 TeV, the prompt neutrino contribution is not apparent because of the considerable uncertainties of the experimental data in the high-energy region.

  16. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Suttles, J. T.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.

  17. Experimental test of plant canopy reflectance models on cotton

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W.

    1973-01-01

    Spectroradiometric data on the bidirectional reflectance function was collected for a cotton canopy as a function of observer zenith angle, observer angle, and solar zenith angle. The area under study was about 40 miles from the Gulf of Mexico and the prevailing winds blew inland such that cloud formation increased during the day. The standard reflectance panel was constructed of plywood that had been spray painted with a flat white latex paint. Physical and optical plant parameters were measured. A time lapse mechanism was constructed to operate a 16 mm movie camera such that single frames could be exposed at intervals of one per second up to one per hour. Data were digitized from a strip chart recorder and reflectance panel measurements.

  18. Multiple molecular scattering and albedo action on the solar spectral irradiance in the region of the UVB (less than or equal to 320 nm): A preliminary inventory

    NASA Astrophysics Data System (ADS)

    Nicolet, Marcel

    A study comparing, in the spectral UVB region, the various components of the solar radiation field in order to explain the large difference obtained in Apr. 1939 by Goetz in Chur (green meadows), Nicolet in Arosa (adequate location in the snow) and Penndorf on the Weisshorn (above the ski slopes) (Switzerland) is presented. Numerical results from detailed theoretical calculations aimed at evaluating the various absolute effects associated with height, solar zenith angle and surface albedo were obtained for the standard atmosphere. The variations with solar zenith angles from 0 to 90 deg and albedos between 0 and 1 are presented for a spherical terrestrial atmosphere at selected wavelengths between 301 and 325 nm in the UVB region. From simultaneous measurements made at the same solar zenith angles, it was found that the values obtained in Arosa were between 5 and 10 times those obtained in Chur and on the Weisshorn. Such results are explained by a maximum of reflectivity of the snow covering the slope facing the relatively low Sun and its associated multiple scattered radiation in addition to the multiple molecular scattering of the atmosphere.

  19. Temporal and spatial characterization of zenith total delay (ZTD) in North Europe

    NASA Astrophysics Data System (ADS)

    Stoew, B.; Elgered, G.

    2003-04-01

    The estimates of ZTD are often treated as realizations of random walk stochastic processes. We derive the corresponding process parameters for 34 different locations in North Europe using two measurement techniques - Global Positioning System (GPS) and Water Vapor Radiometer (WVR). GPS-estimated ZTD is an excellent candidate for data assimilation in numerical weather prediction (NWP) models in terms of both spatial and temporal resolution. We characterize the long term behavior of the ZTD as a function of site latitude and height. The spatial characteristics of the ZTD are studied as a function of site separation and season. We investigate the influence of the time-interpolated atmospheric pressure data used for the estimation of zenith wet delay (ZWD) from ZTD. Characterization of extreme atmospheric events can aid the development of an early warning system. We consider two types of extreme meteorological phenomena with regard to their spatial scales. The first type concerns larger regions (including several GPS sites); the extreme weather is characterized by intense precipitation which may result in a flood. The second type is related to local variations in the ZWD/ZTD and can be used for detection/monitoring of passing atmospheric fronts.

  20. Aeronomy report no. 73: Analysis of sounding rocket data from Punta Chilca, Peru

    NASA Technical Reports Server (NTRS)

    Fillinger, R. W., Jr.; Mechtly, E. A.; Walton, E. K.

    1976-01-01

    A technique is described for measuring electron concentrations in the lower portion of the ionosphere above Punta Chilca. A radio-propagation experiment for measuring Faraday rotation is combined with a dc/Langmuir probe experiment for measuring electron current. The results obtained from the analysis of radio and probe data from Nike Apache 14.532, which was launched at 20:26 UT on May 28, 1975, at a solar zenith angle of 60 deg are presented. A comparison of the profiles of electron concentration indicates that the value of the maximum ionization in the D region under quiet conditions is proportional to the square of the cosine of the solar zenith angle.

  1. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    NASA Astrophysics Data System (ADS)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  2. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    NASA Astrophysics Data System (ADS)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  3. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NASA Astrophysics Data System (ADS)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-04-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI's sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.

  4. In-situ observation of Martian neutral exosphere: Results from MENCA aboard Indian Mars Orbiter Mission (MOM)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pratim Das, Tirtha; Dhanya, M. B.; Thampi, Smitha V.

    2016-07-01

    Till very recently, the only in situ measurements of the Martian upper atmospheric composition was from the mass spectrometer experiments aboard the two Viking landers, which covered the altitude region from 120 to 200 km. Hence, the exploration by the Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Mars Orbiter Mission (MOM) spacecraft of ISRO and the Neutral Gas and Ion Mass Spectrometer (NGIMS) experiment aboard the Mars Atmosphere and Volatile ENvironment (MAVEN) mission of NASA are significant steps to further understand the Martian neutral exosphere and its variability. MENCA is a quadrupole based neutral mass spectrometer which observes the radial distribution of the Martian neutral exosphere. The analysis of the data from MENCA has revealed unambiguous detection of the three major constituents, which are amu 44 (CO2), amu 28 (contributions from CO and N2) and amu 16 (atomic O), as well as a few minor species. Since MOM is in a highly elliptical orbit, the MENCA observations pertain to different local times, in the low-latitude region. Examples of such observations would be presented, and compared with NGIMS results. Emphasis would be given to the observations pertaining to high solar zenith angles and close to perihelion period. During the evening hours, the transition from CO2 to O dominated region is observed near 270 km, which is significantly different from the previous observations corresponding to sub-solar point and SZA of ~45°. The mean evening time exospheric temperature derived using these observations is 271±5 K. These are the first observations corresponding to the Martian evening hours, which would help to provide constraints to the thermal escape models.

  5. Validation of Improved Broadband Shortwave and Longwave Fluxes Derived From GOES

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Nordeen, Michele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick; Doelling, David R.

    2009-01-01

    Broadband (BB) shortwave (SW) and longwave (LW) fluxes at TOA (Top of Atmosphere) are crucial parameters in the study of climate and can be monitored over large portions of the Earth's surface using satellites. The VISST (Visible Infrared Solar Split-Window Technique) satellite retrieval algorithm facilitates derivation of these parameters from the Geostationery Operational Environmental Satellites (GOES). However, only narrowband (NB) fluxes are available from GOES, so this derivation requires use of narrowband-to-broadband (NB-BB) conversion coefficients. The accuracy of these coefficients affects the validity of the derived broadband (BB) fluxes. Most recently, NB-BB fits were re-derived using the NB fluxes from VISST/GOES data with BB fluxes observed by the CERES (Clouds and the Earth's Radiant Energy Budget) instrument aboard Terra, a sun-synchronous polar-orbiting satellite that crosses the equator at 10:30 LT. Subsequent comparison with ARM's (Atmospheric Radiation Measurement) BBHRP (Broadband Heating Rate Profile) BB fluxes revealed that while the derived broadband fluxes agreed well with CERES near the Terra overpass times, the accuracy of both LW and SW fluxes decreased farther away from the overpass times. Terra's orbit hampers the ability of the NB-BB fits to capture diurnal variability. To account for this in the LW, seasonal NB-BB fits are derived separately for day and night. Information from hourly SW BB fluxes from the Meteosat-8 Geostationary Earth Radiation Budget (GERB) is employed to include samples over the complete solar zenith angle (SZA) range sampled by Terra. The BB fluxes derived from these improved NB-BB fits are compared to BB fluxes computed with a radiative transfer model.

  6. Characterization of the oceanic light field within the photic zone: Fluctuations of downward irradiance and asymmetry of horizontal radiance

    NASA Astrophysics Data System (ADS)

    Gassmann, Ewa

    Two distinctive features of underwater light field in the upper ocean were examined: the wave-induced high-frequency light fluctuations within the near-surface layer under sunny skies, and the asymmetry of horizontal radiance within the photic layer of the ocean. To characterize the spatiotemporal statistical properties of the wave-induced light fluctuations, measurements of downward plane irradiance were made with novel instrumentation within the top 10 m layer of the ocean at depths as shallow as 10 cm under sunny skies, different solar zenith angles, and weak to moderate wind speeds. It was found that the maximum intensity of light fluctuations occurs at depths as shallow as 20 cm under the most favorable conditions for wave focusing, which correspond to high sun in a clear sky with weak wind. The strong frequency dependence of light fluctuations at shallow near-surface depths indicates dominant frequency range of 1 -- 3 Hz under favorable conditions that shifts toward lower frequencies with increasing depth. The light fluctuations were found to be spatially correlated over horizontal distances varying from few up to 10 -- 20 cm at temporal scales of 0.3 -- 1 sec (at the dominant frequency of 1 -- 3 Hz). The distance of correlation showed a tendency to increase with increasing depth, solar zenith angle, and wind speed. The observed variations in spatiotemporal statistical properties of underwater light fluctuations with depth and environmental conditions are driven largely by weakening of sunlight focusing which is associated with light scattering within the water column, in the atmosphere and at the air-sea interface. To investigate the underwater horizontal radiance field, measurements of horizontal spectral radiance in two opposite directions (solar and anti-solar azimuths) within the solar principal plane were made within the photic layer of the open ocean. The ratio of these two horizontal radiances represents the asymmetry of horizontal radiance field. In

  7. Breast augmentation with extra-projected and high-cohesive Dual-Gel Prosthesis 510: a prospective study of 75 consecutive cases for a new method (the Zenith system).

    PubMed

    Riggio, Egidio

    2012-08-01

    Extra-projected Natrelle 510 belongs to a new generation of silicone breast implants. A single-surgeon prospective study set out to investigate the device's features, outcomes, and complications, and devise a proper measurement method based on the zenith system. From December 2004 to June 2010, 75 subjects (150 implants) were enrolled in four cohorts: primary augmentation (66.7%), primary mastopexy augmentation (17.3%), secondary implant exchange (9.3%), and secondary implant exchange+pexy (6.7%). The system used to select the implant correlated the point of maximal projection (vertex-zenith) and nipple position. The surgical approach included (1) narrow pocket, preferably dual-plane; (2) device vertex 1-2.5 cm beneath nipple (zenith range=12°-23°) related to a nipple-inframammary fold distance of 7-7.5 cm at maximal stretch and a nipple-sternum/lower-pole line distance of 4-5 cm; (3) inframammary fold lowered minimally; (4) vertex at ±1 cm from the midbreast meridian crossing the nipple; and (5) maximizing the biomechanical effects between soft-tissue dynamics, firmer gel pressure, and pectoralis major counterpressure to expand the lower skin (dynamic tension). Mean follow-up was 26.5 months (range=6-72); in 20 subjects; follow-up was over 3 years (average=50 months) with a 90.8% patient satisfaction rate. This rate was lower in patients with preoperative ptosis. There was inframammary preservation with 60% of the implants and modification in 40% (0.80±0.45 cm). The overall complication rate per implant was 16.6% and included wound healing/scarring (7%), malrotation (2.6%, only 1% after primary augmentation), rippling (2%), capsular contracture (1.3%), and bottoming-out (0.6%). The revision rate was 6%, of which 3.3% were pocket revisions. Greater skills are required through the learning curve, patient education, case selection, planning using the nipple-vertex relationship (the zenith system), and improved surgical manipulation. Indications and

  8. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.

  9. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  10. The UV dayglow 3, OI emissions at 989, 1027, 1152, 1304, and 1356A

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Feldman, P. D.; Gentieu, E. P.

    1980-01-01

    Rocket observations of the dayglow spectrum between 530 and 1500A were obtained on 9 January 1978 at a solar zenith angle of 56 deg. Data were obtained from 80 to 260 km with viewing angles of 40, 90, and 180 deg to the local zenith. OI emissions were observed at 989, 1027, 1152, 1304, and 1356A. Analysis of these data with a radiative transfer model using the energy dependences of currently accepted excitation cross sections, branching ratios and photoelectron fluxes shows that electron impact excitation is the primary source of these emissions. The infrared emission rates at 7990 and 11287A are also calculated in this analysis for comparison with previous observations and estimates.

  11. [Analysis of influencing factors of snow hyperspectral polarized reflections].

    PubMed

    Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin

    2010-02-01

    Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.

  12. Sensitivity of a radiative transfer model to the uncertainty in the aerosol optical depth used as input

    NASA Astrophysics Data System (ADS)

    Román, Roberto; Bilbao, Julia; de Miguel, Argimiro; Pérez-Burgos, Ana

    2014-05-01

    The radiative transfer models can be used to obtain solar radiative quantities in the Earth surface as the erythemal ultraviolet (UVER) irradiance, which is the spectral irradiance weighted with the erythemal (sunburn) action spectrum, and the total shortwave irradiance (SW; 305-2,8000 nm). Aerosol and atmospheric properties are necessary as inputs in the model in order to calculate the UVER and SW irradiances under cloudless conditions, however the uncertainty in these inputs causes another uncertainty in the simulations. The objective of this work is to quantify the uncertainty in UVER and SW simulations generated by the aerosol optical depth (AOD) uncertainty. The data from different satellite retrievals were downloaded at nine Spanish places located in the Iberian Peninsula: Total ozone column from different databases, spectral surface albedo and water vapour column from MODIS instrument, AOD at 443 nm and Angström Exponent (between 443 nm and 670 nm) from MISR instrument onboard Terra satellite, single scattering albedo from OMI instrument onboard Aura satellite. The obtained AOD at 443 nm data from MISR were compared with AERONET measurements in six Spanish sites finding an uncertainty in the AOD from MISR of 0.074. In this work the radiative transfer model UVSPEC/Libradtran (1.7 version) was used to obtain the SW and UVER irradiance under cloudless conditions for each month and for different solar zenith angles (SZA) in the nine mentioned locations. The inputs used for these simulations were monthly climatology tables obtained with the available data in each location. Once obtained the UVER and SW simulations, they were repeated twice but changing the AOD monthly values by the same AOD plus/minus its uncertainty. The maximum difference between the irradiance run with AOD and the irradiance run with AOD plus/minus its uncertainty was calculated for each month, SZA, and location. This difference was considered as the uncertainty on the model caused by the AOD

  13. Evolution of chemically processed air parcels in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.

    1994-01-01

    Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.

  14. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect.

    PubMed

    Castillo-Ruiz, Francisco J; Castro-Garcia, Sergio; Blanco-Roldan, Gregorio L; Sola-Guirado, Rafael R; Gil-Ribes, Jesus A

    2016-05-19

    Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.

  15. Parameterization of Cloud Optical Properties for a Mixture of Ice Particles for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.

  16. The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.

    2018-05-01

    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.

  17. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  18. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  19. Randomized, Double-Blinded, Double-Dummy, Active-Controlled, and Multiple-Dose Clinical Study Comparing the Efficacy and Safety of Mulberry Twig (Ramulus Mori, Sangzhi) Alkaloid Tablet and Acarbose in Individuals with Type 2 Diabetes Mellitus

    PubMed Central

    Chen, Yao

    2016-01-01

    Aims. To evaluate the efficacy and safety of mulberry twig alkaloid (SZ-A) tablet compared with acarbose in patients with type 2 diabetes. Methods. This clinical trial enrolled 38 patients who were randomized into two groups (SZ-A: 23; acarbose: 15) and were treated for 24 weeks. Patients and clinical trial staffs were masked to treatment assignment throughout the study. The primary outcome measures were glycated hemoglobin (HbA1c) and 1-hour and 2-hour postprandial and fasting plasma glucose levels from baseline to the end of treatment. Analysis included all patients who completed this study. Results. By the end of this study, HbA1c level in SZ-A group was decreased from baseline significantly (P < 0.001). No significant difference was found when compared with acarbose group (P = 0.652). Similarly, 1-hour and 2-hour postprandial plasma glucose levels in SZ-A group were decreased from baseline statistically (P < 0.05), without any significant differences compared with acarbose group (P = 0.748 and 0.558, resp.). The fasting plasma glucose levels were not significantly changed in both groups. One of 23 patients in SZ-A group (4.76%) and 5 of 15 patients in acarbose group (33.33%) suffered from gastrointestinal adverse events. Conclusions. Compared with acarbose, SZ-A tablet was effective and safe in glycemic control in patients with type 2 diabetes. PMID:27547230

  20. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  1. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    PubMed

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (P<0.001 for all variables). Between 2 weeks and 18 months after LPI, a significant decrease in angle width was observed over time in treated eyes (P<0.001 for all variables), although the change over the first 5.5 months was not statistically significant for angle width measured under gonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes

  2. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

  3. Limb-darkening functions as derived from along-track operation of the ERBE scanning radiometer for January 1985

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Manalo, Natividad; Suttles, John T.; Walker, Ira

    1989-01-01

    During January 1985, the scanning radiometer aboard the Earth Radiation Budget Satellite was operated to scan along-track. These data have been analyzed to produce limb-darkening functions for Earth emitted radiation, which relate the radiance in any given direction to the radiant exitance. Limb-darkening functions are presented in tabular form and shown as figures for 10 day cases and 12 night cases, corresponding to various scene types and latitude zones. The scene types were computed using measurements within 10 deg of zenith. The limb-darkening functions have values of 1.03 to 1.09 at zenith, with 1.06 being typical. It is found that latitude causes a variation on the order of 1 percent, except for zenith angles greater than 70 deg. These limb-darkening models are about 2 percent higher at zenith than the models derived from Nimbus 7 data.

  4. Data assimilation of GNSS zenith total delays from a Nordic processing centre

    NASA Astrophysics Data System (ADS)

    Lindskog, Magnus; Ridal, Martin; Thorsteinsson, Sigurdur; Ning, Tong

    2017-11-01

    Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.

  5. Actinometric measurements and theoretical calculations of j/O3/, the rate of photolysis of ozone to O/1D/

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.; Chameides, W. L.; Crutzen, P. J.; Fishman, J.

    1979-01-01

    The paper presents an experimental technique which measures j/O3-O(1-D)/, the rate of solar photolysis of ozone to singlet oxygen atoms. It is shown that a flow actinometer carries dilute O3 in N2O into direct sunlight where the O(1D) formed reacts with N2O to form NO which chemiluminescence detects, with a time resolution of about one minute. Measurements indicate a photolysis rate of 1.2 (+ or - .2) x 10 to the -5/s for a cloudless sky, 45 deg zenith angle, 0.345 cm ozone column and zero albedo. Finally, ground level results compare with theoretical calculations based on the UV actinic flux as a function of ozone column and solar zenith angle.

  6. Python-based dynamic scheduling assistant for atmospheric measurements by Bruker instruments using OPUS.

    PubMed

    Geddes, Alexander; Robinson, John; Smale, Dan

    2018-02-01

    Atmospheric remote sensing by instruments such as spectrometers and interferometers often requires scheduling that is dependent on external factors, for example; time and solar (or lunar) zenith angle. Such instruments manufactured by Bruker often use the software package OPUS, which, while useful, is not flexible enough for automatic, repeated, atmospheric measurements of this nature. In this brief paper, we describe ASAP, a Python tool developed to run our network of Fourier transform interferometers in New Zealand and Antarctica. It allows the automated scheduling of measurements by time, lunar, or solar zenith angle while accounting for weather or other external parameters. There is a wide range of useful functions, all packaged in a simple graphical user interface; it is available on request.

  7. Analysis of error in TOMS total ozone as a function of orbit and attitude parameters

    NASA Technical Reports Server (NTRS)

    Gregg, W. W.; Ardanuy, P. E.; Braun, W. C.; Vallette, B. J.; Bhartia, P. K.; Ray, S. N.

    1991-01-01

    Computer simulations of orbital scenarios were performed to examine the effects of orbital altitude, equator crossing time, attitude uncertainty, and orbital eccentricity on ozone observations by future satellites. These effects were assessed by determining changes in solar and viewing geometry and earth daytime coverage loss. The importance of these changes on ozone retrieval was determined by simulating uncertainties in the TOMS ozone retrieval algorithm. The major findings are as follows: (1) Drift of equator crossing time from local noon would have the largest effect on the quality of ozone derived from TOMS. The most significant effect of this drift is the loss of earth daytime coverage in the winter hemisphere. The loss in coverage increases from 1 degree latitude for + or - 1 hour from noon, 6 degrees for + or - 3 hours from noon, to 53 degrees for + or - 6 hours from noon. An additional effect is the increase in ozone retrieval errors due to high solar zenith angles. (2) To maintain contiguous earth coverage, the maximum scan angle of the sensor must be increased with decreasing orbital altitude. The maximum scan angle required for full coverage at the equator varies from 60 degrees at 600 km altitude to 45 degrees at 1200 km. This produces an increase in spacecraft zenith angle, theta, which decreases the ozone retrieval accuracy. The range in theta was approximately 72 degrees for 600 km to approximately 57 degrees at 1200 km. (3) The effect of elliptical orbits is to create gaps in coverage along the subsatellite track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced a maximum earth coverage gap of about 45 km at the perigee at nadir. (4) An attitude uncertainty of 0.1 degree in each axis (pitch, roll, yaw) produced a maximum scan angle to view the pole, and maximum solar zenith angle).

  8. Search for the sterile neutrino mixing with the ICAL detector at INO

    NASA Astrophysics Data System (ADS)

    Behera, S. P.; Ghosh, Anushree; Choubey, Sandhya; Datar, V. M.; Mishra, D. K.; Mohanty, A. K.

    2017-05-01

    The study has been carried out on the prospects of probing the sterile neutrino mixing with the magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO), using atmospheric neutrinos as a source. The so-called 3 + 1 scenario is considered for active-sterile neutrino mixing and lead to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed using the neutrino event generator NUANCE, modified for ICAL, and folded with the detector resolutions obtained by the INO collaboration from a full GEANT4-based detector simulation. A comparison has been made between the results obtained from the analysis considering only the energy and zenith angle of the muon and combined with the hadron energy due to the neutrino induced event. A small improvement has been observed with the addition of the hadron information to the muon. In the analysis we consider neutrinos coming from all zenith angles and the Earth matter effects are also included. The inclusion of events from all zenith angles improves the sensitivity to sterile neutrino mixing by about 35% over the result obtained using only down-going events. The improvement mainly stems from the impact of Earth matter effects on active-sterile mixing. The expected precision of ICAL on the active-sterile mixing is explored and the allowed confidence level (C.L.) contours presented. At the assumed true value of 10° for the sterile mixing angles and marginalization over Δ m^2_{41} and the sterile mixing angles, the upper bound at 90% C.L. (from two-parameter plots) is around 20^deg; for θ _{14} and θ _{34}, and about 12°c for θ _{24}.

  9. Global model of zenith tropospheric delay proposed based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng

    2017-07-01

    Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.

  10. Reflectance-Based Sensor Validation Over Ice Surfaces

    NASA Technical Reports Server (NTRS)

    Jaross, Glen; Dodge, James C. (Technical Monitor)

    2003-01-01

    During this period work was performed in the following areas. These areas are defined in the Work Schedule presented in the original proposal: BRDF development, Data acquisition and processing, THR Table generation and Presentations and Publications. BRDF development involves creating and/or modifying a reflectance model of the Antarctic surface. This model must, for a temporal and spatial average, be representative of the East Antarctic plateau and be expressed in terms of the three standard surface angles: solar zenith angle (SolZA), view zenith angle (SatZA), and relative azimuth angle (RelAZ). We successfully acquired a limited amount of NOAA-9 AVHRR data for radiance validation. The data were obtained from the Laboratory for Terrestrial Physics at Goddard Space Flight Center. We developed our own reading and unpacking software, which we used to select Channel 1 data (visible). We then applied geographic subsetting criteria (same as used for TOMS), and wrote only the relevant data to packed binary files. We proceeded with analysis of these data, which is not yet complete.

  11. Angular Normalization of Ground and Satellite Observations of Sun-induced Chlorophyll Fluorescence for Assessing Vegetation Productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.

  12. United States Air Force Research Initiation Program for 1987. Volume 2

    DTIC Science & Technology

    1989-04-01

    is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature

  13. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    PubMed Central

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (P<0.001 for all variables). Between 2 weeks and 18 months after LPI, a significant decrease in angle width was observed over time in treated eyes (P<0.001 for all variables), although the change over the first 5.5 months was not statistically significant for angle width measured under gonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1

  14. Novel artificial optical annular structures in the high latitude ionosphere over EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Rietveld, M. T.; Senior, A.; McCrea, I. W.; Kavanagh, A. J.; Isham, B.; Honary, F.

    2004-06-01

    The EISCAT low-gain HF facility has been used repeatedly to produce artificially stimulated optical emissions in the F-layer ionosphere over northern Scandinavia. On 12 November 2001, the high-gain HF facility was used for the first time. The pump beam zenith angle was moved in 3° steps along the north-south meridian from 3°N to 15°S, with one pump cycle per position. Only when pumping in the 9°S position were annular optical structures produced quite unexpectedly. The annuli were approximately centred on the pump beam but outside the -3 dB locus. The optical signature appears to form a cylinder, which was magnetic field-aligned, rising above the pump wave reflection altitude. The annulus always collapsed into the well-known optical blobs after ~60 s, whilst descending many km in altitude. All other pump beam directions produced optical blobs only. The EISCAT UHF radar, which was scanning from 3° to 15°S zenith angle, shows that enhanced ion-line backscatter persisted throughout the pump on period and followed the morphology of the optical signature. These observations provide the first experimental evidence that Langmuir turbulence can accelerate electrons sufficiently to produce the optical emissions at high latitudes. Why the optical annulus forms, and for only one zenith angle, remains unexplained.

  15. Matrix operator theory of radiative transfer. 2: scattering from maritime haze.

    PubMed

    Kattawar, G W; Plass, G N; Catchings, F E

    1973-05-01

    Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.

  16. Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Bauer, M. E.

    1984-01-01

    Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.

  17. Comparisons of the error budgets associated with ground-based FTIR measurements of atmospheric CH4 profiles at Île de la Réunion and Jungfraujoch.

    NASA Astrophysics Data System (ADS)

    Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine

    2010-05-01

    The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles

  18. Using Satellite Radio-Sounding Data to Investigate Variations in the Earth's Topside Ionosphere Electron Density Profiles in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Glocer, A.; Benson, R. F.; Fung, S. F.

    2016-12-01

    In order to investigate and understand the role that different drivers play on the electron density altitude profile in the topside ionosphere of the polar regions, we used satellite radio-sounding data collected during the 1960s, 1970s, and 1980s to construct a series of graphs of electron density as a function of altitude and solar zenith angle. These data were gathered by the swept-frequency topside sounders from four of the satellites from the International Satellites for Ionospheric Studies (ISIS) program: Alouette 1 and 2, and ISIS 1 and 2, and were obtained from the NASA Space Physics Data Facility. In order to control for phenomenon known to effect electron density, we restricted our data set to data collected during a specific DST range (between -10 and 40 nT), and roughly constant solar radio flux values (between 40 and 90 W*m-2*Hz-1). To look at the effect of electron precipitation, we examine two separate cases, one above an invariant latitude of 60°, which includes precipitation, and one above 75°, which excludes precipitation. Under these restrictions we gathered a total of 407,500 altitude, solar zenith angle, and electron density data pairs. We then sorted these data pairs into bins of altitude and solar zenith angle, and present graphs of the medians of these binned data. We then fit our binned data to an exponential function representing hydrostatic equilibrium in the ionosphere presented in Kitamura et. al [2011]. We present graphs which show how well this best fit equation fits our data. Our results clearly show the strong dependence of electron density with respect to solar zenith angle, and demonstrates that electron precipitation can also influence the electron density profile, particularly on the nightside. We also examine how seasonal effects, via differences in the neutral thermosphere, can affect the electron density profiles. This study provides a climatological picture of what drives the topside electron density profile in the polar

  19. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  20. The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations

    NASA Astrophysics Data System (ADS)

    Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard

    2014-05-01

    The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less

  1. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  2. Anisotropy of the permittivity field inferred from aspect-sensitive radar echoes

    NASA Technical Reports Server (NTRS)

    Waterman, A. T.

    1984-01-01

    An attempt is made to draw some quantitative conclusions regarding the anisotropy of the clear-air back-scattering mechanism based on the measured variation of echo power with zenith angle. The measurements were made by the SOUSY group of the Max Planck Institute for Aeronomy at Lindau, FRG. They installed their 47-MHz transmitter and antenna feed in the 300-meter diameter reflector at Arecibo. The resulting 1.7-degree beam was stepped successively through seven 1.7-degree intervals from 1.7 to 11.7 degrees in zenith angle, obtaining about four minutes of data at each setting. This procedure was carried out in an eastward pointing azimuth and in a northward pointing azimuth, the entire set of measurements consuming an hour and twenty minutes. Range resolution was 150 meters.

  3. Soybean canopy reflectance as a function of view and illumination geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.; Bauer, M. E.

    1981-01-01

    Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions, for various solar zenith and azimuth angles over portions of three days, in an experimental characterization of a soybean field by means of its reflectances and physical and agronomic attributes. Results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength, and row direction, as well as the state of canopy development. Shadows between rows were found to affect visible wavelength band reflectance to a greater extent than near-IR reflectance. A model describing reflectance variation as a function of projected solar and viewing angles is proposed, which approximates the visible wavelength band reflectance variations of a canopy with a well-defined row structure.

  4. Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet

    NASA Technical Reports Server (NTRS)

    Klenk, K. F.; Green, A. E. S.

    1977-01-01

    The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.

  5. Suggestions for improving the efficiency of ground-based neutron monitors for detecting solar neutrons

    NASA Technical Reports Server (NTRS)

    Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.

    1985-01-01

    On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied.

  6. Mutagenicity of streptozotocin and several other nitrosourea compounds in Salmonella typhimurium.

    PubMed

    Zimmer, D M; Bhuyan, B K

    1976-11-01

    The following nitrosourea compounds were compared for their ability to induce mutation (to histidine independence) in the histidine-requiring auxotroph Salmonella typhimurium his G46: MNU, streptozotocin (SZ, streptozocin) and its analogs SZA1 and SZA2, and the antitumor drugs BCNU, CCNU and DCNU. At equitoxic doses SZ, SZA1, SZA2 and MNU were almost equally mutagenic causing 150, 42, 140 and 170 mutants/106 survivors at 20% lethal dose (ID20) ALTHOUGH, ON A WIEGHT BASIS, SZ was the most mutagenic of all the compounds tested. At ID20 BCNU, CCNU and DCNU gave about 0.5 mutants/106 survivors. Our results show that these nitrosoureas, in common with many other drugs (such as cyclophosphamide, daunomycin, etc.) used in cancer chemotherapy, are highly mutagenic. The implication of our results in the screening of drugs for their mutagenicity to man is discussed.

  7. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    PubMed

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  8. Imaging Radar Studies of Atmospheric Winds and Waves

    DTIC Science & Technology

    1993-09-02

    3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values

  9. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk

    2015-09-01

    Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that

  10. Bidirectional reflectance measurement of zinc oxide in 0.25 to 2.5 microns spectrum

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1974-01-01

    An experimental apparatus was designed and used to measure the bidirectional reflectance of zinc oxide in the spectrum 0.25 to 2.5 microns. The nonspecular reflectance is essentially Lambert for wavelengths above 0.40 microns with the most deviation occuring for large source zenith angles. Below 0.400 microns the nonspecular reflectance is greater than Lambert in all directions and is greatest in the forward and backscatter directions. The ratio of the specular component to the nonspecular component at a zenith of 0 degrees was found to increase with source zenith and wavelength for wavelengths above 0.400 microns. Below 0.400 microns this ratio increases as wavelengths decrease. The variation of bidirectional reflectance with wavelength was found to have the characteristics absorption for Zn0 for wavelength below 0.400 microns.

  11. Automated analysis of angle closure from anterior chamber angle images.

    PubMed

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  13. A daytime measurement of the lunar contribution to the night sky brightness in LSST's ugrizy bands-initial results

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Stubbs, Christopher; Claver, Chuck

    2016-06-01

    We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

  14. Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.; Myers, D.; Stoffel, T.

    2008-12-01

    Pyranometers are used outdoors to measure solar irradiance. By design, this type of radiometer can measure the; total hemispheric (global) or diffuse (sky) irradiance when the detector is unshaded or shaded from the sun disk, respectively. These measurements are used in a variety of applications including solar energy conversion, atmospheric studies, agriculture, and materials science. Proper calibration of pyranometers is essential to ensure measurement quality. This paper describes a step-by-step method for calculating and reporting the uncertainty of the calibration, using the guidelines of the ISO 'Guide to the Expression of Uncertainty in Measurement' or GUM, that is applied tomore » the pyranometer; calibration procedures used at the National Renewable Energy Laboratory (NREL). The NREL technique; characterizes a responsivity function of a pyranometer as a function of the zenith angle, as well as reporting a single; calibration responsivity value for a zenith angle of 45 ..deg... The uncertainty analysis shows that a lower uncertainty can be achieved by using the response function of a pyranometer determined as a function of zenith angle, in lieu of just using; the average value at 45..deg... By presenting the contribution of each uncertainty source to the total uncertainty; users will be able to troubleshoot and improve their calibration process. The uncertainty analysis method can also be used to determine the uncertainty of different calibration techniques and applications, such as deriving the uncertainty of field measurements.« less

  15. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  16. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  17. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    NASA Astrophysics Data System (ADS)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  18. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  19. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Astrophysics Data System (ADS)

    Lund, Glenn

    1993-06-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  20. Laboratory-Based Bidirectional Reflectance Distribution Functions of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg, 10 deg, and 30 deg; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg. and 180 deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0o incident angle and 12% at 30 deg. incident angle. The fitted BRDF data shows a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  1. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  2. The O II /7320-7330 A/ airglow - A morphological study

    NASA Technical Reports Server (NTRS)

    Yee, J. H.; Abreu, V. J.; Hays, P. B.

    1981-01-01

    A statistical study of the 7320-30 A airglow arising from the metastable transition between aP and aD states of atomic oxygen ions was conducted by analyzing the data taken from the visible airglow experiment on the Atmosphere Explorer satellites C and E during the time periods between 1974 and 1979. Averaged column emission rate profiles as a function of solar zenith angle and solar activity variation are presented. The galactic background has been carefully subtracted. The result shows that the rate of decreasing emission as a function of solar zenith angle agrees with the theoretical calculation based upon a neutral atmosphere model and the solar spectrum as measured by the EUV spectrometer on the Atmosphere Explorer satellite. Furthermore, an expected increase with solar activity also appeared in a plot of emission brightness versus solar 10.7-cm flux.

  3. The equivalence of three techniques for estimating ground reflectance from LANDSAT digital count data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J. (Principal Investigator)

    1983-01-01

    The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.

  4. Radiation in the earth's atmosphere: its radiance, polarization, and ellipticity.

    PubMed

    Hitzfelder, S J; Plass, G N; Kattawar, G W

    1976-10-01

    The complete radiation field including polarization is calculated by the matrix operator method for a model of the real atmosphere. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0, 0.15, 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution that is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 degrees and 160 degrees for transmitted and reflected photons, respectively. This, in turn, depends on the index of refraction and size distribution of the aerosols. The neutral point position does not depend appreciably on the surface albedo and, over a considerable range, depends little on the solar zenith angle. The value of the maximum polarization in the principal plane depends on the aerosol amount, surface albedo, and solar zenith angle. It could be used to measure the aerosol amount. The details of the ellipticity curves are similar to those for scattering from pure aerosol layers and, thus, are little modified by the Rayleigh scattering. Aerosols could be identified by their characteristic ellipticity curves.

  5. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel'dovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    NASA Technical Reports Server (NTRS)

    Reese, Erik D.; Mroczkowski, Tony; Menanteau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10(exp 15) Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than = 20% level for some fraction of clusters.

  6. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    NASA Technical Reports Server (NTRS)

    Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.

  7. Optimal reconstruction angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to bemore » preferred in several contexts. 15 figures, 6 tables.« less

  8. Soybean canopy reflectance as a function of view and illumination geometry

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.

    1982-01-01

    The results of an experiment designed to characterize a soybean field by its reflectance at various view and illumination angles and by its physical and agronomic attributes are presented. Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions for various solar zenith and azimuth angles during portions of three days. An ancillary data set consisting of the agronomic and physical characteristics of the soybean field is described. The results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength and row direction, as well as the state of development of the canopy. Shadows between rows greatly affected the reflectance in the visible wavelength bands and to a lesser extent in the near infrared wavelengths. A model is proposed that describes the reflectance variation as a function of projected solar and projected viewing angles. The model appears to approximate the reflectance variations in the visible wavelength bands from a canopy with well defined row structure.

  9. Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network

    NASA Astrophysics Data System (ADS)

    Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin

    2010-05-01

    Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.

  10. {l_angle}110{r_angle} dendrite growth in aluminum feathery grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.; Rappaz, M.; Jarry, P.

    1998-11-01

    Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). Themore » [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.« less

  11. Optimization of VLf/ELF Wave Generation using Beam Painting

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Moore, R. C.

    2017-12-01

    A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.

  12. Estimation of the remote-sensing reflectance from above-surface measurements.

    PubMed

    Mobley, C D

    1999-12-20

    The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.

  13. The Critical Angle Can Override the Brewster Angle

    ERIC Educational Resources Information Center

    Froehle, Peter H.

    2009-01-01

    As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.

  14. Undetected angle closure in patients with a diagnosis of open-angle glaucoma.

    PubMed

    Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K

    2017-08-01

    The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    PubMed Central

    Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S

    2012-01-01

    Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393

  16. The polar ionosphere of venus near the terminator from early pioneer venus orbiter radio occultations.

    PubMed

    Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A

    1979-02-23

    Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.

  17. Irradiance measurement errors due to the assumption of a Lambertian reference panel

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A technique is presented for determining the error in diurnal irradiance measurements that results from the non-Lambertian behavior of a reference panel under various irradiance conditions. Spectral biconical reflectance factors of a spray-painted barium sulfate panel, along with simulated sky radiance data for clear and hazy skies at six solar zenith angles, were used to calculate the estimated panel irradiances and true irradiances for a nadir-looking sensor in two wavelength bands. The inherent errors in total spectral irradiance (0.68 microns) for a clear sky were 0.60, 6.0, 13.0, and 27.0% for solar zenith angles of 0, 45, 60, and 75 deg, respectively. The technique can be used to characterize the error of a specific panel used in field measurements, and thus eliminate any ambiguity of the effects of the type, preparation, and aging of the paint.

  18. VERITAS Observations of the Nova in V407 Cygni

    NASA Technical Reports Server (NTRS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1- 10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 10(exp -12) erg/sq cm/s (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.

  19. A three-dimensional study of 30- to 300-MeV atmospheric gamma rays

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1974-01-01

    A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.

  20. Thermophysical Properties of Selected Aerospace Materials. Part 1. Thermal Radiative Properties

    DTIC Science & Technology

    1976-01-01

    discusses the available data and information, the theoretical guidelines and other factors on which the critical evaluation, analysis, and synthesis of...text and a specification table. The former reviews and discusses the available data and information, the theoretical guidelines and other factors on...conditions 6’ Zenith angle for viewing conditions A6 Half angle of acceptance of optical system K Loss value factor X Wavelength p Reflectance p

  1. Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Huang, Guanyu; Liu, Xiong; Chance, Kelly; Yang, Kai; Bhartia, Pawan K.; Cai, Zhaonan; Allaart, Marc; Ancellet, Gérard; Calpini, Bertrand; Coetzee, Gerrie J. R.; Cuevas-Agulló, Emilio; Cupeiro, Manuel; De Backer, Hugo; Dubey, Manvendra K.; Fuelberg, Henry E.; Fujiwara, Masatomo; Godin-Beekmann, Sophie; Hall, Tristan J.; Johnson, Bryan; Joseph, Everette; Kivi, Rigel; Kois, Bogumil; Komala, Ninong; König-Langlo, Gert; Laneve, Giovanni; Leblanc, Thierry; Marchand, Marion; Minschwaner, Kenneth R.; Morris, Gary; Newchurch, Michael J.; Ogino, Shin-Ya; Ohkawara, Nozomu; Piters, Ankie J. M.; Posny, Françoise; Querel, Richard; Scheele, Rinus; Schmidlin, Frank J.; Schnell, Russell C.; Schrems, Otto; Selkirk, Henry; Shiotani, Masato; Skrivánková, Pavla; Stübi, René; Taha, Ghassan; Tarasick, David W.; Thompson, Anne M.; Thouret, Valérie; Tully, Matthew B.; Van Malderen, Roeland; Vömel, Holger; von der Gathen, Peter; Witte, Jacquelyn C.; Yela, Margarita

    2017-07-01

    We validate the Ozone Monitoring Instrument (OMI) Ozone Profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI row anomaly (RA) on the retrieval by dividing the dataset into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and midlatitudes and for pressure < ˜ 50 hPa in the high latitudes. It demonstrates clear improvement over the a priori down to the lower troposphere in the tropics and down to an average of ˜ 550 (300) hPa at middle (high) latitudes. In the tropics and midlatitudes, the profile mean biases (MBs) are less than 6 %, and the standard deviations (SDs) range from 5 to 10 % for pressure < ˜ 50 hPa to less than 18 % (27 %) in the tropics (midlatitudes) for pressure > ˜ 50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC, the ozone column from the tropopause pressure to the ozonesonde burst pressure) are within 2 % with SDs of < 5 % and the MBs of the tropospheric ozone column (TOC) are within 6 % with SDs of 15 %. In the high latitudes, the profile MBs are within 10 % with SDs of 5-15 % for pressure < ˜ 50 hPa but increase to 30 % with SDs as great as 40 % for pressure > ˜ 50 hPa. The SOC MBs increase up to 3 % with SDs as great as 6 % and the TOC SDs increase up to 30 %. The comparison generally degrades at larger solar zenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the midlatitude winter. Agreement also degrades with increasing cloudiness for pressure > ˜ 100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and midlatitudes, the post-RA comparison is considerably

  2. Investigations of interpolation errors of angle encoders for high precision angle metrology

    NASA Astrophysics Data System (ADS)

    Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa

    2018-06-01

    Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.

  3. Frequency and Angular Variations of Land Surface Microwave Emissivities: Can we Estimate SSM/T and AMSU Emissivities from SSM/I Emissivities?

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.

    1999-01-01

    To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.

  4. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  5. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  6. Computing differential refraction at all heliolatitudes and zenithal distances: a historical perspective

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.; Boscardin, S.

    2014-10-01

    Ptolemy (about 150 AC) modeled atmospheric refraction influencing Al Farghani (831), Alhazen (1020), Sacrobosco (1256) and Witelo (1278): the Sun was supposed bigger at horizon like a coin appears under water in a curved bottle. The correct work of Ibn Sahl (984) remained forgotten. Tycho measured the refraction on the 1572 supernova at various altitudes. Harriot, Kepler, Snell and Descartes found independently the refraction law after 1600. A modern formulation of vertical (0.5" zenithal to 35' at horizon) and horizontal (0.5" at all altitudes) differential refraction of solar diameter appears in Du Séjour (1786). Laplace's formula (1805) computes the vertical deformation of the solar disk, while the horizontal reduction of 0.5" is proportional to the chord's length. Dicke (1967) measured the solar oblateness to determine dynamical constraints to alternative theories of General Relativity. The Astrolabe of Rio de Janeiro measured in 1998-2009 the solar diameter at all heliolatitudes, by timing solar transits across fixed altitude circles: an equatorial excess larger than RHESSI (2008) and SDS (1992-2011) data remains after refraction's corrections. Meridian transits series measured at Rome Campidoglio (1877-1937) and Greenwich (1850-1940) behave as Rio data: the scatters between annual averages were larger than statistical dispersions of each value (Gething, 1955). Anomalous refractions measured with Rio Heliometer (2013) are low frequency seeing (0.01 Hz) acting to scales of the solar diameter (32'): they affect transits measurements with random perturbations hundreds times larger than the expected values calculated from the timing accuracy. These perturbations enlarge the differences between averages values binned either in time or heliolatitude: they are larger than statistical dispersions, suggesting a wider binning. The ``adiabatic" approach of Rio Heliometer with high frequency measurements ``freezes" the slow seeing image motion component.

  7. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    NASA Astrophysics Data System (ADS)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  8. Angle performance on optima MDxt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less

  9. A New Zenith Tropospheric Delay Grid Product for Real-Time PPP Applications over China.

    PubMed

    Lou, Yidong; Huang, Jinfang; Zhang, Weixing; Liang, Hong; Zheng, Fu; Liu, Jingnan

    2017-12-27

    Tropospheric delay is one of the major factors affecting the accuracy of electromagnetic distance measurements. To provide wide-area real-time high precision zenith tropospheric delay (ZTD), the temporal and spatial variations of ZTD with altitude were analyzed on the bases of the latest meteorological reanalysis product (ERA-Interim) provided by the European Center for Medium-Range Weather Forecasts (ECMWF). An inverse scale height model at given locations taking latitude, longitude and day of year as inputs was then developed and used to convert real-time ZTD at GPS stations in Crustal Movement Observation Network of China (CMONOC) from station height to mean sea level (MSL). The real-time ZTD grid product (RtZTD) over China was then generated with a time interval of 5 min. Compared with ZTD estimated in post-processing mode, the bias and error RMS of ZTD at test GPS stations derived from RtZTD are 0.39 and 1.56 cm, which is significantly more accurate than commonly used empirical models. In addition, simulated real-time kinematic Precise Point Positioning (PPP) tests show that using RtZTD could accelerate the BDS-PPP convergence time by up to 32% and 65% in the horizontal and vertical components (set coordinate error thresholds to 0.4 m), respectively. For GPS-PPP, the convergence time using RtZTD can be accelerated by up to 29% in the vertical component (0.2 m).

  10. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, Alejandra Parra; Bravo, Oscar Martinez; Ibargueen, Humberto Salazar

    The purpose of this work is to show the results of the analysis of a library of synthetic data corresponding to Very Inclined Showers (i.e. those with a zenith angle between 60 and 80 degrees and energies from 50 EeV to 80 EeV). Simulations were performed using the Aires software and then analyzed to narrow down the arrival angles that allow us an efficient shower reconstruction using the Offline software.

  12. Lateral and Time Distributions of Extensive Air Showers for CHICOS

    NASA Astrophysics Data System (ADS)

    Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.

    2005-04-01

    We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.

  13. Clear water radiances for atmospheric correction of coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1981-01-01

    The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.

  14. Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Kylling, A.; Burkhart, J. F.

    2015-12-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  15. Building Shadow Detection from Ghost Imagery

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Sha, J.; Yue, T.; Wang, Q.; Liu, X.; Huang, S.; Pan, Q.; Wei, J.

    2018-05-01

    Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.

  16. The spectrum of the tropical oxygen nightglow observed at 3 A resolution with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Durrance, S. T.; Kriss, G. A.; Ferguson, H. C.; Kimble, R. A.; Long, K. S.

    1992-01-01

    Ultraviolet spectra of the tropical oxygen nightglow in the range of 830 to 1850 A (in first order) at 3 A resolution were obtained with the Hopkins Ultraviolet Telescope in December 1990. The data are presented which were obtained on a setting celestial target as the zenith angle of the line-of-sight varied from 77 to 95 deg. The dominant features in the spectrum (other than geocoronal hydrogen) are O I 1304 and 1356 and the radiative recombination continuum near 911 A. The continuum is resolved and found to be consistent with an electron temperature in the range 1000-1250 K. The observed ratio of the brightness of O I 1356 to the continuum suggests that O(+)-O(-) mutual neutralization contributes about 40 percent to the 1356 A emission. The dependence of the optically thin emissions on zenith angle is consistent with a simple ionospheric model. Weak O I 989 emission is also detected, but there is no evidence for any similarly produced atomic nitrogen emissions.

  17. Radiative transfer code SHARM for atmospheric and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Lyapustin, A. I.

    2005-12-01

    An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Δ-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.

  18. Radiative transfer code SHARM for atmospheric and terrestrial applications.

    PubMed

    Lyapustin, A I

    2005-12-20

    An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.

  19. Plans for a new rio-imager experiment in Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Hagfors, T.

    1997-05-01

    To observe the spatial variations and dynamics of charged particle precipitation in the high latitude ionosphere, a riometer experiment is planned, which from the ground will image the precipitation regions over an area of 300 × 300 km with a spatial resolution of 6 km in the zenith, increasing to 12 km at 60° zenith angle. The time resolution is one second. The spatial resolution represents a considerable improvement over existing imaging systems. The experiment employs a Mill's Cross technique not used before in riometer work: two 32 element rows of antennas form the antenna array, two 32 element Butler Matrices achieve directionality, and cross-correlation yield the directional intensities.

  20. Angle classification revisited 2: a modified Angle classification.

    PubMed

    Katz, M I

    1992-09-01

    Edward Angle, in his classification of malocclusions, appears to have made Class I a range of abnormality, not a point of ideal occlusion. Current goals of orthodontic treatment, however, strive for the designation "Class I occlusion" to be synonymous with the point of ideal intermeshing and not a broad range. If contemporary orthodontists are to continue to use Class I as a goal, then it is appropriate that Dr. Angle's century-old classification, be modified to be more precise.

  1. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  2. On the Use of Deep Convective Clouds to Calibrate AVHRR Data

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Nguyen, Louis; Minnis, Patrick

    2004-01-01

    Remote sensing of cloud and radiation properties from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) satellites requires constant monitoring of the visible sensors. NOAA satellites do not have onboard visible calibration and need to be calibrated vicariously in order to determine the calibration and the degradation rate. Deep convective clouds are extremely bright and cold, are at the tropopause, have nearly a Lambertian reflectance, and provide predictable albedos. The use of deep convective clouds as calibration targets is developed into a calibration technique and applied to NOAA-16 and NOAA-17. The technique computes the relative gain drift over the life-span of the satellite. This technique is validated by comparing the gain drifts derived from inter-calibration of coincident AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) radiances. A ray-matched technique, which uses collocated, coincident, and co-angled pixel satellite radiance pairs is used to intercalibrate MODIS and AVHRR. The deep convective cloud calibration technique was found to be independent of solar zenith angle, by using well calibrated Visible Infrared Scanner (VIRS) radiances onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, which precesses through all solar zenith angles in 23 days.

  3. Field Measured Spectral Albedo-Four Years of Data from the Western U.S. Prairie

    NASA Astrophysics Data System (ADS)

    Michalsky, Joseph J.; Hodges, Gary B.

    2013-01-01

    This paper presents an initial look at four years of spectral measurements used to calculate albedo for the Colorado prairie just east of the Rocky Mountain range foothills. Some issues associated with calculating broadband albedo from thermopile sensors are discussed demonstrating that uncorrected instrument issues have led to incorrect conclusions. Normalized Difference Vegetative Index (NDVI) is defined for the spectral instruments in this study and used to demonstrate the dramatic changes that can be monitored with this very sensitive product. Examples of albedo wavelength and solar-zenith angle dependence for different stages of vegetative growth and senescence are presented. The spectral albedo of fresh snow and its spectral and solar-zenith angle dependence are discussed and contrasted with other studies of these dependencies. We conclude that fresh snow is consistent with a Lambertian reflector over the solar incidence angles measured; this is contrary to most snow albedo results. Even a slope of a degree or two in the viewed surface can explain the asymmetry in the morning and afternoon albedos for snow and vegetation. Plans for extending these spectral measurements for albedo to longer wavelengths and to additional sites are described.

  4. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  5. Seasonal Variability Study of the Tropospheric Zenithal Delay in the South America using regional Numerical Weather Prediction model

    NASA Astrophysics Data System (ADS)

    Sapucci, L. F.; Monico, J. G.; Machado, L. T.

    2007-05-01

    In 2010 a new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management) should be running operationally in South America. This new system will basically employ the positioning techniques by satellites to the management and air traffic control. However, the efficiency of this new system demands the knowledge of the behavior of the atmosphere, consequently, an appropriated Zenithal Tropospheric Delay (ZTD) modeling in a regional scale. The predictions of ZTD values from Numeric Weather Prediction (NWP), denominated here dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. Brazilian Center for Weather Forecasting and Climate Studies (CPTEC) of the National Institute for Space Research (INPE), jointly with researchers from UNESP (Sao Paulo State University), has generated operationally prediction of ZTD values to South America Continent (available in the electronic address http:satelite.cptec.inpe.br/htmldocs/ztd/zenithal.htm). The available regional version is obtained using ETA model (NWP model with horizontal resolution of 20 km and 42 levels in the vertical). The application of NWP permit assess the temporal and spatial variation of ZTD values, which is an important characteristic of this techniques. The aim of the present paper is to investigate the ZTD seasonal variability over South America continent. A variability analysis of the ZTD components [hydrostatic(ZHD) and wet(ZWD)] is also presented, as such as discussion of main factors that influence this variation in this region. The hydrostatic component variation is related with atmospheric pressure oscillation, which is influenced by relief and high pressure centers that prevail over different region of the South America continent. The wet component oscillation is due to the temperature and humidity variability, which is also influenced by relief and by synoptic

  6. Angle Performance on Optima XE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu

    2011-01-07

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less

  7. Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams

    PubMed Central

    Beims, Marcus W.; Gallas, Jason A. C.

    2016-01-01

    Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems. PMID:26732416

  8. Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams

    NASA Astrophysics Data System (ADS)

    Beims, Marcus W.; Gallas, Jason A. C.

    2016-01-01

    Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.

  9. Setting the magic angle for fast magic-angle spinning probes.

    PubMed

    Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H

    2018-06-15

    Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.

  10. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  11. Leonardo-BRDF: A New Generation Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  12. The gonial angle stripper: an instrument for the treatment of prominent gonial angle.

    PubMed

    Kyutoku, S; Yanagida, A; Kusumoto, K; Ogawa, Y

    1994-12-01

    In the Orient, a prominent gonial angle, so-called benign masseteric hypertrophy, is rather common and considered unattractive. Therefore, its surgical correction is one of the most popular forms of facial skeletal contouring. For accurate and safe osteotomy of the mandibular angle region, a gonial angle stripper was specially invented. It has a small projection that will ease identification of the osteotomy line in a narrow operative field. The tool has been clinically used in eight patients to prove its usefulness, especially for a posteriorly developed mandibular angle.

  13. A New Technique for Retrieval of Tropospheric and Stratospheric Ozone Profiles using Sky Radiance Measurements at Multiple View Angles: Application to a Brewer Spectrometer

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Krotkov, Nickolay A.; Cede, Alexander; Herman, Jay R.; Vasilkov, Alexander

    2008-01-01

    This paper describes and applies a new technique for retrieving diurnal variability in tropospheric ozone vertical distribution using ground-based measurements of ultraviolet sky radiances. The measured radiances are obtained by a polarization-insensitive modified Brewer double spectrometer located at Goddard Space Flight Center, in Greenbelt, Maryland, USA. Results demonstrate that the Brewer angular (0-72deg viewing zenith angle) and spectral (303-320 nm) measurements of sky radiance in the solar principal plane provide sufficient information to derive tropospheric ozone diurnal variability. In addition, the Brewer measurements provide stratospheric ozone vertical distributions at least twice per day near sunrise and sunset. Frequent measurements of total column ozone amounts from direct-sun observations are used as constraints in the retrieval. The vertical ozone profile resolution is shown in terms of averaging kernels to yield at least four points in the troposphere-low stratosphere, including good information in Umkehr layer 0 (0-5 km). The focus of this paper is on the derivation of stratospheric and tropospheric ozone profiles using both simulated and measured radiances. We briefly discuss the necessary modifications of the Brewer spectrometer that were used to eliminate instrumental polarization sensitivity so that accurate sky radiances can be obtained in the presence of strong Rayleigh scattering and aerosols. The results demonstrate that including a site-specific and time-dependent aerosol correction, based on Brewer direct-sun observations of aerosol optical thickness, is critical to minimize the sky radiance residuals as a function of observing angle in the optimal estimation inversion algorithm and improve the accuracy of the retrieved ozone profile.

  14. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; hide

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  15. Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution

    NASA Astrophysics Data System (ADS)

    Aas, Eyvind; HøJerslev, Niels K.

    1999-04-01

    A primary data set consisting of 70 series of angular radiance distributions observed in clear blue western Mediterranean water and a secondary set of 12 series from the more green and turbid Lake Pend Oreille, Idaho, have been analyzed. The results demonstrate that the main variation of the shape of the downward radiance distribution occurs within the Snell cone. Outside the cone the variation of the shape decreases with increasing zenith angle. The most important shape changes of the upward radiance appear within the zenith angle range 90°-130°. The variation in shape reaches its minimum around nadir, where an almost constant upward radiance distribution implies that a flat sea surface acts like a Lambert emitter within ±8% in the zenith angle interval 140°-180° in air. The ratio Q of upward irradiance and nadir radiance, as well as the average cosines μd and μu for downward and upward radiance, respectively, have rather small standard deviations, ≤10%, within the local water type. In contrast, the irradiance reflectance R has been observed to change up to 400% with depth in the western Mediterranean, while the maximum observed change of Q with depth is only 40%. The dependence of Q on the solar elevation for blue light at 5 m depth in the Mediterranean coincides with observations from the central Atlantic as well as with model computations. The corresponding dependence of μd shows that diffuse light may have a significant influence on its value. Two simple functions describing the observed angular radiance distributions are proposed, and both functions can be determined by two field observations as input parameters. The ɛ function approximates the azimuthal means of downward radiance with an average error ≤7% and of upward radiance with an error of ˜1%. The α function describes the zenith angle dependence of the azimuthal means of upward radiance with an average error ≤7% in clear ocean water, increasing to ≤20% in turbid lake water. The a

  16. Angle-stable and compressed angle-stable locking for tibiotalocalcaneal arthrodesis with retrograde intramedullary nails. Biomechanical evaluation.

    PubMed

    Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O

    2008-03-01

    Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model

  17. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    Treesearch

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  18. Estimates of Zenith Total Delay trends from GPS reprocessing with autoregressive process

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Ahmed, Furqan; Bogusz, Janusz

    2017-04-01

    Nowadays, near real-time Zenith Total Delay (ZTD) estimates from Global Positioning System (GPS) observations are routinely assimilated into numerical weather prediction (NWP) models to improve the reliability of forecasts. On the other hand, ZTD time series derived from homogeneously re-processed GPS observations over long periods have the potential to improve our understanding of climate change on various temporal and spatial scales. With such time series only recently reaching somewhat adequate time spans, the application of GPS-derived ZTD estimates to climate monitoring is still to be developed further. In this research, we examine the character of noise in ZTD time series for 1995-2015 in order to estimate more realistic magnitudes of trend and its uncertainty than would be the case if the stochastic properties are not taken into account. Furthermore, the hourly sampled, homogeneously re-processed and carefully homogenized ZTD time series from over 700 globally distributed stations were classified into five major climate zones. We found that the amplitudes of annual signals reach values of 10-150 mm with minimum values for the polar and Alpine zones. The amplitudes of daily signals were estimated to be 0-12 mm with maximum values found for the dry zone. We examined seven different noise models for the residual ZTD time series after modelling all known periodicities. This identified a combination of white plus autoregressive process of fourth order to be optimal to match all changes in power of the ZTD data. When the stochastic properties are neglected, ie. a pure white noise model is employed, only 11 from 120 trends were insignificant. Using the optimum noise model more than half of the 120 examined trends became insignificant. We show that the uncertainty of ZTD trends is underestimated by a factor of 3-12 when the stochastic properties of the ZTD time series are ignored and we conclude that it is essential to properly model the noise characteristics of

  19. The global blue-sky albedo change between 2000 - 2015 seen from MODIS

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.

    2016-12-01

    The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html

  20. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    NASA Astrophysics Data System (ADS)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and

  1. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  2. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    PubMed

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (p<0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (p<0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p<0.05). At 90°, 135° and 180°, males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (p<0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p<0.01). It can be concluded that different cutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan

    2011-01-01

    To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for

  4. Behavior of Tilted Angle Shear Connectors.

    PubMed

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  5. Growth Angle - a Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazurak, K.; Volz, M. P.; Croll, A.

    2017-01-01

    The growth angle that is formed between the side of the growing crystal and the melt meniscus is an important parameter in the detached Bridgman crystal growth method, where it determines the extent of the crystal-crucible wall gap, and in the Czochralski and float zone methods, where it influences the size and stability of the crystals. The growth angle is a non-equilibrium parameter, defined for the crystal growth process only. For a melt-crystal interface translating towards the crystal (melting), there is no specific angle defined between the melt and the sidewall of the solid. In this case, the corner at the triple line becomes rounded, and the angle between the sidewall and the incipience of meniscus can take a number of values, depending on the position of the triple line. In this work, a microscopic model is developed in which the fluid interacts with the solid surface through long range van der Waals or Casimir dispersive forces. This growth angle model is applied to Si and Ge and compared with the macroscopic approach of Herring. In the limit of a rounded corner with a large radius of curvature, the wetting of the melt on the crystal is defined by the contact angle. The proposed microscopic approach addresses the interesting issue of the transition from a contact angle to a growth angle as the radius of curvature decreases.

  6. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  7. The Solar Ultraviolet Environment at the Ocean.

    PubMed

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  8. Satellite and in situ monitoring data used for modeling of forest vegetation reflectance

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N.; Baschir, L.

    2010-10-01

    As climatic variability and anthropogenic stressors are growing up continuously, must be defined the proper criteria for forest vegetation assessment. In order to characterize current and future state of forest vegetation satellite imagery is a very useful tool. Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. A simple physical model of forest vegetation reflectance was applied and validated for Cernica forested area, near Bucharest town through two ASTER satellite data , acquired within minutes from one another ,a nadir and off-nadir for band 3 lying in the near infra red, most radiance differences between the two scenes can be attributed to the BRDF effect. Other satellite data MODIS, Landsat TM and ETM as well as, IKONOS have been used for different NDVI and classification analysis.

  9. Investigations of the radio signal of inclined showers with LOPES

    NASA Astrophysics Data System (ADS)

    Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-01-01

    We report in this paper on an analysis of 20 months of data taken with LOPES. LOPES is radio antenna array set-up in coincidence with the Grande array, both located at the Karlsruhe Institute of Technology, Germany. The data used in this analysis were taken with an antenna configuration composed of 30 inverted V-shape dipole antennas.We have restricted the analysis to a special selection of inclined showers—with zenith angle θ>40∘. These inclined showers are of particular interest because they are the events with the largest geomagnetic angles and are therefore suitable to test emission models based on geomagnetic effects.The reconstruction procedure of the emitted radio signal in EAS uses as one ingredient the frequency-dependent antenna gain pattern which is obtained from simulations. Effects of the applied antenna model in the calibration procedure of LOPES are studied. In particular, we have focused on one component of the antenna, a metal pedestal, which generates a resonance effect, a peak in the amplification pattern where it is the most affecting high zenith angles, i.e. inclined showers.In addition, polarization characteristics of inclined showers were studied in detail and compared with the features of more vertical showers for the two cases of antenna models, with and without the pedestal.

  10. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  11. Effect of the atmosphere on the color coordinates of sunlit surfaces

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Viljoen, Johan W.

    2016-02-01

    Aerosol attenuation in the atmosphere has a relatively weak spectral variation compared to molecular absorption. However, the solar spectral irradiance differs considerably for the sun at high zenith angles versus the sun at low zenith angles. The perceived color of a sunlit object depends on the object's spectral reflectivity as well as the irradiance spectrum. The color coordinates of the sunlit object, hence also the color balance in a scene, shift with changes in the solar zenith angle. The work reported here does not claim accurate color measurement. With proper calibration mobile phones may provide reasonably accurate color measurement, but the mobile phones used for taking these pictures and videos are not scientific instruments and were not calibrated. The focus here is on the relative shift of the observed colors, rather than absolute color. The work in this paper entails the theoretical analysis of color coordinates of surfaces and how they change for different colored surfaces. Then follows three separate investigations: (1) Analysis of a number of detailed atmospheric radiative transfer code (Modtran) runs to show from the theory how color coordinates should change. (2) Analysis of a still image showing how the colors of two sample surfaces vary between sunlit and shaded areas. (3) Time lapse video recordings showing how the color coordinates of a few surfaces change as a function of time of day. Both the theoretical and experimental work shows distinct shifts in color as function of atmospheric conditions. The Modtran simulations demonstrate the effect from clear atmospheric conditions (no aerosol) to low visibility conditions (5 km visibility). Even under moderate atmospheric conditions the effect was surprisingly large. The experimental work indicated significant shifts during the diurnal cycle.

  12. Spectral dependence on the correction factor of erythemal UV for cloud, aerosol, total ozone, and surface properties: A modeling study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon

    2016-07-01

    Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.

  13. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shownmore » to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.« less

  14. Perceptions of students in different phases of medical education of the educational environment: Universiti Sultan Zainal Abidin

    PubMed Central

    Rahman, Nor Iza A; Aziz, Aniza Abd; Zulkifli, Zainal; Haj, Muhammad Arshad; Mohd Nasir, Farah Hanani Binti; Pergalathan, Sharvina; Hamidi, Muhammad Ismail; Ismail, Salwani; Simbak, Nordin Bin; Haque, Mainul

    2015-01-01

    Background The Dundee Ready Education Environment Measure (DREEM) was planned and designed to quantify the educational environment precisely for medical schools and health-related professional schools. DREEM is now considered a valid and reliable tool, which is globally accepted for measuring the medical educational environment. The educational environment encountered by students has an impact on satisfaction with the course of study, perceived sense of well-being, aspirations, and academic achievement. In addition to being measurable, the educational environment can also be changed, thus enhancing the quality of medical education and the environment, and the medical education process. The objective of this study was to assess the educational environment of the Universiti Sultan Zainal Abidin (UniSZA) undergraduate medical program from the students’ perspective. The study expected to explore UniSZA medical students’ overall perceptions, perceptions of learning, teachers, atmosphere, academic self-perception, and social self-perception using the DREEM questionnaire. Methods A cross-sectional survey was conducted to study the perceptions of the students toward the educational environment of UniSZA as a new medical school, using the DREEM questionnaire. All medical students of UniSZA from Years I–V enrolled in the Bachelor of Medicine and Bachelor of Surgery programs were the target population (n=270). Therefore, the universal sampling technique was used. The data were analyzed using the SPSS 20 software. This study obtained ethical clearance from the Faculty of Medicine and Health Sciences, UniSZA. Results A total of 195 out of 270 students responded. Respondents included 31% males and 69% females. The overall DREEM scores were significantly higher (P<0.001) for females than males. Conclusion The medical students at UniSZA showed a positive perception of their educational environment. The new medical faculty, established for only a few years, has achieved an

  15. View angle effect in LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Engvall, J. L.

    1977-01-01

    The view angle effect in LANDSAT 2 imagery was investigated. The LANDSAT multispectral scanner scans over a range of view angles of -5.78 to 5.78 degrees. The view angle effect, which is caused by differing view angles, could be studied by comparing data collected at different view angles over a fixed location at a fixed time. Since such LANDSAT data is not available, consecutive day acquisition data were used as a substitute: they were collected over the same geographical location, acquired 24 hours apart, with a view angle change of 7 to 8 degrees at a latitude of 35 to 45 degrees. It is shown that there is approximately a 5% reduction in the average sensor response on the second-day acquisitions as compared with the first-day acquisitions, and that the view angle effect differs field to field and crop to crop. On false infrared color pictures the view angle effect causes changes primarily in brightness and to a lesser degree in color (hue and saturation). An implication is that caution must be taken when images with different view angles are combined for classification and a signature extension technique needs to take the view angle effect into account.

  16. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure.

    PubMed

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin

    2010-06-01

    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P < .0001, Wilcoxon signed rank test). Overall, gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Initial estimate of NOAA-9 SBUV/2 total ozone drift: Based on comparison with re-calibrated TOMS measurements and pair justification of SBUV/2

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Gu, X. U.; Mcpeters, Richard D.; Hudson, R. D.

    1990-01-01

    Newly recalibrated version 6 Total Ozone Mapping Spectrometer (TOMS) data are used as a reference measurement in a comparison of monthly means of total ozone in 10 degree latitude zones from SBUV/2 and the nadir measurements from TOMS. These comparisons indicate a roughly linear long-term drift in SBUV/2 total ozone relative to TOMS of about 2.5 Dobson units per year at the equator over the first three years of SBUV/2. The pari justification technique is also applied to the SBUV/2 measurements in a manner similar to that used for SBUV and TOMS. The higher solar zenith angles associated with the afternoon orbit of NOAA-9 and the large changes in solar zenith angle associated with its changing equator crossing time degrade the accuracy of the pair justification method relative to its application to SBUV and TOMS, but the results are consistent with the SBUV/2-TOMS comparisons, and show a roughly linear drift in SBUV/2 of 2.5 to 4.5 Dobson units per year in equatorial ozone.

  18. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  19. Neutral points of skylight polarization observed during the total eclipse on 11 August 1999.

    PubMed

    Horváth, Gábor; Pomozi, István; Gál, József

    2003-01-20

    We report here on the observation of unpolarized (neutral) points in the sky during the total solar eclipse on 11 August 1999. Near the zenith a neutral point was observed at 450 nm at two different points of time during totality. Around this celestial point the distribution of the angle of polarization was heterogeneous: The electric field vectors on the one side were approximately perpendicular to those on the other side. At another moment of totality, near the zenith a local minimum of the degree of linear polarization occurred at 550 nm. Near the antisolar meridian, at a low elevation another two neutral points occurred at 450 nm at a certain moment during totality. Approximately at the position of these neutral points, at another moment of totality a local minimum of the degree of polarization occurred at 550 nm, whereas at 450 nm a neutral point was observed, around which the angle-of-polarization pattern was homogeneous: The electric field vectors were approximately horizontal on both sides of the neutral point.

  20. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  1. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  2. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-12-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  3. Investigation of very high energy cosmic rays by means of inclined muon bundles

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.

    2018-03-01

    In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.

  4. MAVEN Mapping of Plasma Clouds Near Mars

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Tran, T.; DiBraccio, G. A.; Espley, J. R.; Soobiah, Y. I. J.

    2017-12-01

    Brace et al. identified parcels of ionospheric plasma above the nominal ionosphere of Venus, dubbed plasma clouds. These were envisioned as instabilities on the ionopause that evolved to escaping parcels of ionospheric plasma. Mars Global Surveyor (MGS) Electron Reflectometer (ER) also detected signatures of ionospheric plasma above the nominal ionopause of Mars. Initial examination of the MGS ER data suggests that plasma clouds are more prevalent at Mars than at Venus, and similarly exhibit a connection to rotations in the upstream Interplanetary Magnetic Field (IMF) as Zhang et al. showed at Venus. We examine electron data from Mars to determine the locations of plasma clouds in the near-Mars environment using MGS and MAVEN data. The extensive coverage of the MAVEN orbit enables mapping an occurrence rate of the photoelectron spectra in Solar Wind Electron Analyzer (SWEA) data spanning all relevant altitudes and solar zenith angles. Martian plasma clouds are observed near the terminator like at Venus. They move to higher altitude as solar zenith angle increases, consistent with the escaping plasma hypothesis.

  5. Free-space optical communication through a forest canopy.

    PubMed

    Edwards, Clinton L; Davis, Christopher C

    2006-01-01

    We model the effects of the leaves of mature broadleaf (deciduous) trees on air-to-ground free-space optical communication systems operating through the leaf canopy. The concept of leaf area index (LAI) is reviewed and related to a probabilistic model of foliage consisting of obscuring leaves randomly distributed throughout a treetop layer. Individual leaves are opaque. The expected fractional unobscured area statistic is derived as well as the variance around the expected value. Monte Carlo simulation results confirm the predictions of this probabilistic model. To verify the predictions of the statistical model experimentally, a passive optical technique has been used to make measurements of observed sky illumination in a mature broadleaf environment. The results of the measurements, as a function of zenith angle, provide strong evidence for the applicability of the model, and a single parameter fit to the data reinforces a natural connection to LAI. Specific simulations of signal-to-noise ratio degradation as a function of zenith angle in a specific ground-to-unmanned aerial vehicle communication situation have demonstrated the effect of obscuration on performance.

  6. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturersmore » are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.« less

  7. Mapping diffuse photosynthetically active radiation from satellite data in Thailand

    NASA Astrophysics Data System (ADS)

    Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.

    2017-12-01

    In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.

  8. Simulation of the time structure of Extensive Air Showers with CORSIKA initiated by various primary particles at Alborz-I observatory level

    NASA Astrophysics Data System (ADS)

    Bahmanabadi, Mahmud; Moghaddam, Saba Mortazavi

    2018-05-01

    A detailed simulation of showers with various zenith angles in atmosphere produced by different primary particles including gamma, proton, carbon, and iron at Alborz-I observatory level (35∘43‧N, 51∘20‧E, 1200 m a.s.l= 890 gcm-2), in the energy range 3 × 1013 eV-3 × 1015 eV, has been performed by means of the CORSIKA Monte Carlo code. The aim of this study is to examine the time structure of secondary particles in Extensive Air Showers (EAS) produced by the different primary particles. For each primary particle, the distribution of the mean values of the time delays of secondary particles relative to the first particle hitting the ground level in each EAS, <τi > = , and the distribution of their mean standard deviations, < σi > in terms of distance from the shower core are obtained. The mean thickness and profile of showers as a function of their energy, primary mass, and zenith angle is described.

  9. The Moon as a Tiny Bright Disc: Insights From Observations in the Planetarium.

    PubMed

    Carbon, Claus-Christian

    2015-01-01

    Despite a relatively constant visual angle, the size of the moon appears very variable, mostly depending on elevation and context factors--the so-called moon illusion. As our perceptual experience of the size of the moon is clearly limited to the perceptual sphere of the sky, however, we do not know whether the typical perception of the moon at its zenith reflects a veridical interpretation of its visual angle of only 0.5 degrees. When testing the moon illusion in a large-scale planetarium, we observed two important things: (a) variation in perceptual size was no longer apparent, and (b) the moon looked very much smaller than in any viewing condition in the real sky--even when comparing it at its zenith. A closer inspection of the control console of the planetarium revealed that classic-analog as well as updated-digital planetariums use projections of the moon with strongly increased sizes to compensate for the loss of a natural view of the moon in the artificial dome of the sky.

  10. Simulating halos and coronas in their atmospheric environment.

    PubMed

    David Gedzelman, Stanley

    2008-12-01

    Models are developed that simulate the light and color of the sky and of circular halos and coronas as a function of atmospheric pressure, cloud height, width, and optical depth, solar zenith angle, aerosol concentration and size, and ozone content. Halos, coronas, and skylight are treated as singly scattered sunbeams that are depleted in their passage through the atmosphere and cloud. Multiple scattering is included only for background cloud light. Halos produced by hexagonal crystal prisms and coronas produced by monodisperse droplets are visible for cloud optical depths in the range 0.0003 zenith angle. When the Sun is low in the sky, halos and coronas can be bright only at smaller cloud optical depths and tend to be faint at their bottoms when produced in high cloud layers but can be bright at the horizon when produced by narrow cloud cells near ground level.

  11. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less

  12. Ozone and nitrogen dioxide ground based monitoring by zenith sky visible spectrometry in Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Goutail, F.

    1988-01-01

    Unattended diode array spectrometers have been designed for ground based stratospheric trace species monitoring by zenith sky visible spectrometry. Measurements are performed with a 1.0 nm resolution between 290 nm and 590 nm in order to allow simultaneous evaluations of column densities of ozone, nitrogen dioxide. Field tests have shown that the species can be monitored with a precision of + or - 2 Dobson for the first and + or - 2.10 to the 15th mol/sq cm for the second, although the absolute accuracy of the method is limited by the error of the estimation of the atmospheric optical path of the scattered light. Two identical instruments were set up in January 1988, one in Antarctica at Dumont d'Urville (66 S, 140 E) to be operated all year and another one in the Arctic at ESRANGE at Kiruna (68 N; 22 E) which will operate to the final warming of spring 1988. The data are processed in real time at both stations. O3 and NO2 columns are transmitted together with surface and stratospheric temperature and winds. They are also recorded for further treatment and search for OClO and BrO. Only one month of data from Antarctica is available at the moment. Obtained during polar summer, they cannot show more than stable columns of O3 and NO2 and for the last species, the buildup of its diurnal variation.

  13. Bilateral mandibular angle fractures: clinical considerations.

    PubMed

    Boffano, Paolo; Roccia, Fabio

    2010-03-01

    The mandibular angle is a frequent site of fracture. It is a weak zone that is more exposed to fractures than other areas of the mandibular bone. The presence of incompletely erupted third molars is associated with a further increased risk of angle fractures. Our objective was to evaluate and discuss the surgical outcomes of a group of patients with bilateral mandibular angle fractures.In our study, patients with bilateral mandibular angle fractures surgically treated from January 1, 2001, to June 30, 2009, at the Division of Maxillofacial Surgery of the University of Turin were retrospectively analyzed. A combined transbuccal and intraoral approach or an intraoral approach only was adopted.Eight patients (7 men and 1 woman) underwent surgery for bilateral mandibular angle fractures. Good to satisfactory reduction of the fractures was obtained with both surgical techniques. Good to fair restored occlusion was observed postoperatively in all patients.Successful treatment of bilateral mandibular angle fractures may be achieved via different techniques. Superficially impacted third molars seem to be associated with an increased risk of angle fractures. Bilateral angle fractures are an ideal model to study the biomechanical pathogenesis of angle fractures.

  14. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.

  15. Anterior Segment Imaging for Angle Closure.

    PubMed

    Chansangpetch, Sunee; Rojanapongpun, Prin; Lin, Shan C

    2018-04-01

    To summarize the role of anterior segment imaging (AS-imaging) in angle closure diagnosis and management, and the possible advantages over the current standard of gonioscopy. Literature review and perspective. Review of the pertinent publications with interpretation and perspective in relation to the use of AS-imaging in angle closure assessment focusing on anterior segment optical coherence tomography and ultrasound biomicroscopy. Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. AS-imaging has been shown to have performance in angle closure detection compared to gonioscopy. Also, imaging has greater reproducibility and serves as better documentation for long-term follow-up than conventional gonioscopy. The qualitative and quantitative information obtained from AS-imaging enables better understanding of the underlying mechanisms of angle closure and provides useful parameters for risk assessment and possible prediction of the response to laser and surgical intervention. The latest technologies-including 3-dimensional imaging-have allowed for the assessment of the angle that simulates the gonioscopic view. These advantages suggest that AS-imaging has a potential to be a reference standard for the diagnosis and monitoring of angle closure disease in the future. Although gonioscopy remains the primary method of angle assessment, AS-imaging has an increasing role in angle closure screening and management. The test should be integrated into clinical practice as an adjunctive tool for angle assessment. It is arguable that AS-imaging should be considered first-line screening for patients at risk for angle closure. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Chinese Digital Zenith Telescope (DZT) used for Astro-geodetic Deflection of the Vertical Determination

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, B.; Wang, Z.; Yin, Z.; Hu, H.; Wang, H.; Han, Y.

    2015-12-01

    Classical optical astrometry can be used to measure and study variations of plumb line. For the earth gravity filed related researches, it is irreplaceable by technologies like GNSS、VLBI、SLR, etc. However, classical astrometric instruments have some major drawback, such as low efficiency, low automation, more operating observers, and individual error in some visual instruments. In 2011, The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) successfully developed the new digital zenith telescope prototype (DZT-1), which has the ability of highly automatic observation and data processing, even allowing unattended observation by remote control. By utilizing CCD camera as imaging terminal and high-accuracy tiltmeter to replace mercurial plate, observation efficiency of DZT is improved greatly. According to the results of data obtained from test observations, single-observation accuracy of DZT-1 is 0.15-0.3″ and one night observation accuracy up to 0.07-0.08″, which is better than the observation accuracy of classical astrometric instruments. The observations of DZT can be used to obtain the plumb line variations and the vertical deflections, which can be used for carrying out seismic, geodetic and other related geo-scientific researches. Especially the collocated observations with gravimeters and the conjoint analysis of the observation data will be helpful to recognize the anomalous motion and variation of underground mass over time, and maybe provide significant information for estimating the scale of underground anomalous mass. The information is valuable for determining the three key factors of earthquake possibly. Moreover, the project team is carrying out the development of new DZT with better performance and studying the key techniques for new instrument to make DZT play a more significant role in the astronomy and geoscience fields.

  17. Angle-Ply Weaving

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  18. The canopy camera

    Treesearch

    Harry E. Brown

    1962-01-01

    The canopy camera is a device of new design that takes wide-angle, overhead photographs of vegetation canopies, cloud cover, topographic horizons, and similar subjects. Since the entire hemisphere is photographed in a single exposure, the resulting photograph is circular, with the horizon forming the perimeter and the zenith the center. Photographs of this type provide...

  19. Quantification of HCl from high-resolution, ground-based, infrared solar spectra in the 3000 per cm region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Murcray, D. G.

    1986-01-01

    Recent ground-based infrared solar spectra at 0.02 per cm resolution in the 3000 per cm region have been analyzed for the atmospheric content of HCl. Nonlinear spectral least-squares fitting applied to spectra obtained at several zenith angles shows little sensitivity of the results to tropospheric HCl but provides an accurate measurement of the total column amount.

  20. Wafer scale oblique angle plasma etching

    DOEpatents

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  1. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  2. Neural Network (NN) retrievals of Stratocumulus cloud properties using multi-angle polarimetric observations during ORACLES

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.

    2016-12-01

    The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected

  3. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R. II.

    1989-09-12

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less

  4. Growth Angle: A Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Croll, Arne; Volz, Martin P.

    2017-01-01

    A microscopic continuum mechanical model of the growth angle is proposed. It is based on the van der Waals type framework that is used for surface force phenomena. The obtained augmented Laplace type integro-differential equations are, in general, difficult to analyze. Here we focused primarily on the particular case of equal melt and crystal surface energies. We derived an approximate equation for the meniscus shape, and obtained an analytical relationship between the contact and the growth angle. Interestingly, the same result can be obtained using the macroscopic model of Herring. The case of a macroscopically sharp corner is also considered. For this case, the macroscopic angle is not defined and it can be any angle between the contact angles of both flat surfaces. The microscopic model yields the smooth shape for the meniscus that also is not unique, but depends on the initial position of the meniscus.

  5. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic

  6. Angle closure in younger patients.

    PubMed Central

    Chang, Brian M; Liebmann, Jeffrey M; Ritch, Robert

    2002-01-01

    PURPOSE: Angle-closure glaucoma is rare in children and young adults. Only scattered cases associated with specific clinical entities have been reported. We evaluated the findings in patients in our database aged 40 or younger with angle closure. METHODS: Our database was searched for patients with angle closure who were 40 years old or younger. Data recorded included age at initial consultation; age at the time of diagnosis; gender; results of slit-lamp examination, gonioscopy, and ultrasound biomicroscopy (from 1993 onward); clinical diagnosis; and therapy. Patients with previous incisional surgery were excluded, as were patients with anterior chamber proliferative mechanisms leading to angle closure. RESULTS: Sixty-seven patients (49 females, 18 males) met entry criteria. Mean age (+/- SD) at the time of consultation was 34.4 +/- 9.4 years (range, 3-68 years). Diagnoses included plateau iris syndrome (35 patients), iridociliary cysts (8 patients), retinopathy of prematurity (7 patients), uveitis (5 patients), isolated nanophthalmos (3 patients), relative pupillary block (2 patients), Weill-Marchesani syndrome (3 patients), and 1 patient each with Marfan syndrome, miotic-induced angle closure, persistent hyperplastic primary vitreous, and idiopathic lens subluxation. CONCLUSION: The etiology of angle closure in young persons is different from that in the older population and is typically associated with structural or developmental ocular anomalies rather than relative pupillary block. Following laser iridotomy, these eyes should be monitored for recurrent angle closure and the need for additional laser or incisional surgical intervention. PMID:12545694

  7. Almucantar radio telescope report 1: A preliminary study of the capabilities of large partially steerable paraboloidal antennas

    NASA Technical Reports Server (NTRS)

    Usher, P. D.

    1971-01-01

    The almucantar radio telescope development and characteristics are presented. The radio telescope consists of a paraboloidal reflector free to rotate in azimuth but limited in altitude between two fixed angles from the zenith. The fixed angles are designed to provide the capability where sources lying between two small circles parallel with the horizon (almucantars) are accessible at any one instant. Basic geometrical considerations in the almucantar design are presented. The capabilities of the almucantar telescope for source counting and for monitoring which are essential to a resolution of the cosmological problem are described.

  8. The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1978-01-01

    Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.

  9. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  10. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by

  11. Individualized optimal release angles in discus throwing.

    PubMed

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. The Semiotic and Conceptual Genesis of Angle

    ERIC Educational Resources Information Center

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  13. SU-E-I-56: Scan Angle Reduction for a Limited-Angle Intrafraction Verification (LIVE) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, L; Zhang, Y; Yin, F

    Purpose: To develop a novel adaptive reconstruction strategy to further reduce the scanning angle required by the limited-angle intrafraction verification (LIVE) system for intrafraction verification. Methods: LIVE acquires limited angle MV projections from the exit fluence of the arc treatment beam or during gantry rotation between static beams. Orthogonal limited-angle kV projections are also acquired simultaneously to provide additional information. LIVE considers the on-board 4D-CBCT images as a deformation of the prior 4D-CT images, and solves the deformation field based on deformation models and data fidelity constraint. LIVE reaches a checkpoint after a limited-angle scan, and reconstructs 4D-CBCT for intrafractionmore » verification at the checkpoint. In adaptive reconstruction strategy, a larger scanning angle of 30° is used for the first checkpoint, and smaller scanning angles of 15° are used for subsequent checkpoints. The onboard images reconstructed at the previous adjacent checkpoint are used as the prior images for reconstruction at the current checkpoint. As the algorithm only needs to reconstruct the small deformation occurred between adjacent checkpoints, projections from a smaller scan angle provide enough information for the reconstruction. XCAT was used to simulate tumor motion baseline drift of 2mm along sup-inf direction at every subsequent checkpoint, which are 15° apart. Adaptive reconstruction strategy was used to reconstruct the images at each checkpoint using orthogonal 15° kV and MV projections. Results: Results showed that LIVE reconstructed the tumor volumes accurately using orthogonal 15° kV-MV projections. Volume percentage differences (VPDs) were within 5% and center of mass shifts (COMS) were within 1mm for reconstruction at all checkpoints. Conclusion: It's feasible to use an adaptive reconstruction strategy to further reduce the scan angle needed by LIVE to allow faster and more frequent intrafraction verification to

  14. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R.

    1991-02-26

    This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to amore » graduation or graduations on a reticle in the magnifying scope is noted.« less

  15. Further tests of plant canopy reflectance models and investigation of non-Lambertian properties of plant canopies

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W.

    1975-01-01

    The experimental bidirectional reflectance of cotton is presented and compared to the Suits vegetation model. Some wheat reflectance data are presented for a Mexican dwarf wheat. The general results are that the exchange of source position and detector position gives the same reflectance measurement if the irradiance is purely specular. This agrees with Suites. The reflectance versus sun angle and reflectance versus detector angle do not agree with the Suits predictions. There is qualitative agreement between the Suits model and reflectance versus wavelength, but quantitative agreement has not been observed. Reflectance of a vegetation canopy with detector azimuth shows a change of 10 to 40% for even sun angles near zenith, so it seems advisable to include azimuthal angles into models of vegetation.

  16. Normalization of multidirectional red and NIR reflectances with the SAVI

    NASA Technical Reports Server (NTRS)

    Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.

    1992-01-01

    Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.

  17. Northwest Angle, Minnesota

    NASA Image and Video Library

    2017-10-02

    Minnesota's Northwest Angle is the northernmost point of the continental United States. The Angle became part of the US due to a map error during the 1783 Treaty of Paris. Located in the Lake of the Woods, driving there requires crossing the US-Canada border twice. The image was acquired September 22, 2013, covers an area of 40 by 55 km, and is located at 49.2 degrees north, 95.1 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21997

  18. Comparison of Magnetospheric Magnetic Field Variations at Quasi-Zenith Orbit Based on Michibiki Observation and REPPU Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.

    2017-12-01

    We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.

  19. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less

  20. Neutrinos from the terrestrial passage of supersymmetric dark-matter Q-balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusenko, Alexander; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Shoemaker, Ian M.

    2009-07-15

    Supersymmetry implies that stable nontopological solitons, Q-balls, could form in the early universe and could make up all or part of dark matter. We show that the relic Q-balls passing through Earth can produce a detectable neutrino flux. The peculiar zenith angle dependence and a small annual modulation of this flux can be used as signatures of dark-matter Q-balls.

  1. A technique for directly comparing radiances from two satellites

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard D.

    1990-01-01

    Solar Backscattering Ultraviolet-2 (SBUV/2) instrument on NOAA-9 orbit on June 1987, solar zenith angles of the observations; plot of weekly average differences between SBUV (Nimbus-7 and SBUV/2 (NOAA-9); radiance comparisons for March 1986; time dependence of relative change between SBUV and SBUV/2; and explicit wavelength dependence are presented in viewgraph format. Each is briefly discussed.

  2. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  3. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia

    PubMed Central

    Mansour, Hader A; Talkowski, Michael E; Wood, Joel; Chowdari, Kodavali V; McClain, Lora; Prasad, Konasale; Montrose, Debra; Fagiolini, Andrea; Friedman, Edward S; Allen, Michael H; Bowden, Charles L; Calabrese, Joseph; El-Mallakh, Rif S; Escamilla, Michael; Faraone, Stephen V; Fossey, Mark D; Gyulai, Laszlo; Loftis, Jennifer M; Hauser, Peter; Ketter, Terence A; Marangell, Lauren B; Miklowitz, David J; Nierenberg, Andrew A; Patel, Jayendra; Sachs, Gary S; Sklar, Pamela; Smoller, Jordan W; Laird, Nan; Keshavan, Matcheri; Thase, Michael E; Axelson, David; Birmaher, Boris; Lewis, David; Monk, Tim; Frank, Ellen; Kupfer, David J; Devlin, Bernie; Nimgaonkar, Vishwajit L

    2012-01-01

    Objective Published studies suggest associations between circadian gene polymorphisms and bipolar I disorder (BPI), as well as schizoaffective disorder (SZA) and schizophrenia (SZ). The results are plausible, based on prior studies of circadian abnormalities. As replications have not been attempted uniformly, we evaluated representative, common polymorphisms in all three disorders. Methods We assayed 276 publicly available ‘tag’ single nucleotide polymorphisms (SNPs) at 21 circadian genes among 523 patients with BPI, 527 patients with SZ/SZA, and 477 screened adult controls. Detected associations were evaluated in relation to two published genome-wide association studies (GWAS). Results Using gene-based tests, suggestive associations were noted between EGR3 and BPI (p = 0.017), and between NPAS2 and SZ/SZA (p = 0.034). Three SNPs were associated with both sets of disorders (NPAS2: rs13025524 and rs11123857; RORB: rs10491929; p < 0.05). None of the associations remained significant following corrections for multiple comparisons. Approximately 15% of the analyzed SNPs overlapped with an independent study that conducted GWAS for BPI; suggestive overlap between the GWAS analyses and ours was noted at ARNTL. Conclusions Several suggestive, novel associations were detected with circadian genes and BPI and SZ/SZA, but the present analyses do not support associations with common polymorphisms that confer risk with odds ratios greater than 1.5. Additional analyses using adequately powered samples are warranted to further evaluate these results. PMID:19839995

  4. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  5. Longwave Radiative Flux Calculations in the TOVS Pathfinder Path A Data Set

    NASA Technical Reports Server (NTRS)

    Mehta, Amita; Susskind, Joel

    1999-01-01

    A radiative transfer model developed to calculate outgoing longwave radiation (OLR) and downwelling longwave, surface flux (DSF) from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder Path A retrieval products is described. The model covers the spectral range of 2 to 2800 cm in 14 medium medium spectral bands. For each band, transmittances are parameterized as a function of temperature, water vapor, and ozone profiles. The form of the band transmittance parameterization is a modified version of the approach we use to model channel transmittances for the High Resolution Infrared Sounder 2 (HIRS2) instrument. We separately derive effective zenith angle for each spectral band such that band-averaged radiance calculated at that angle best approximates directionally integrated radiance for that band. We develop the transmittance parameterization at these band-dependent effective zenith angles to incorporate directional integration of radiances required in the calculations of OLR and DSF. The model calculations of OLR and DSF are accurate and differ by less than 1% from our line-by-line calculations. Also, the model results are within 1% range of other line-by-line calculations provided by the Intercomparison of Radiation Codes in Climate Models (ICRCCM) project for clear-sky and cloudy conditions. The model is currently used to calculate global, multiyear (1985-1998) OLR and DSF from the TOVS Pathfinder Path A Retrievals.

  6. A fast radiative transfer method for the simulation of visible satellite imagery

    NASA Astrophysics Data System (ADS)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  7. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  8. Omni-Directional Viewing-Angle Switching through Control of the Beam Divergence Angle in a Liquid Crystal Panel

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon

    2010-01-01

    This paper proposes a method of omni-directional viewing-angle switching by controlling the beam diverging angle (BDA) in a liquid crystal (LC) panel. The LCs aligned randomly by in-cell polymer structures diffuse the collimated backlight for the bright state of the wide viewing-angle mode. We align the LCs homogeneously by applying an in-plane field for the narrow viewing-angle mode. By doing this the scattering is significantly reduced so that the small BDA is maintained as it passes through the LC layer. The dark state can be obtained by aligning the LCs homeotropically with a vertical electric field. We demonstrated experimentally the omni-directional switching of the viewing-angle, without an additional panel or backlighting system.

  9. Does the Angle of the Nail Matter for Pertrochanteric Fracture Reduction? Matching Nail Angle and Native Neck-Shaft Angle.

    PubMed

    Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William

    2018-04-01

    To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  10. Multi-technique comparison of troposphere zenith delays and gradients during CONT08

    NASA Astrophysics Data System (ADS)

    Teke, Kamil; Böhm, Johannes; Nilsson, Tobias; Schuh, Harald; Steigenberger, Peter; Dach, Rolf; Heinkelmann, Robert; Willis, Pascal; Haas, Rüdiger; García-Espada, Susana; Hobiger, Thomas; Ichikawa, Ryuichi; Shimizu, Shingo

    2011-07-01

    CONT08 was a 15 days campaign of continuous Very Long Baseline Interferometry (VLBI) sessions during the second half of August 2008 carried out by the International VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere zenith total delays (ZTD) and gradients during CONT08 were compared with those derived from observations with the Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVR) co-located with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic techniques was optimized for each technique. In addition to space geodetic techniques and WVR, ZTD and gradients from numerical weather models (NWM) were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency (JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients were computed between the troposphere estimates of the various techniques for all eleven CONT08 co-located sites. ZTD from space geodetic techniques generally agree at the sub-centimetre level during CONT08, and—as expected—the best agreement is found for intra-technique comparisons: between the Vienna VLBI Software and the combined IVS solutions as well as between the Center for Orbit Determination (CODE) solution and an IGS PPP time series; both intra-technique comparisons are with standard deviations of about 3-6 mm. The best inter space geodetic technique agreement of ZTD during CONT08 is found between the combined IVS and the IGS solutions with a mean standard deviation of about 6 mm over all sites, whereas the agreement with numerical weather models is between 6 and 20 mm. The standard

  11. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  12. The correlation between calcaneal valgus angle and asymmetrical thoracic-lumbar rotation angles in patients with adolescent scoliosis.

    PubMed

    Park, Jaeyong; Lee, Sang Gil; Bae, Jongjin; Lee, Jung Chul

    2015-12-01

    [Purpose] This study aimed to provide a predictable evaluation method for the progression of scoliosis in adolescents based on quick and reliable measurements using the naked eye, such as the calcaneal valgus angle of the foot, which can be performed at public facilities such as schools. [Subjects and Methods] Idiopathic scoliosis patients with a Cobb's angle of 10° or more (96 females, 22 males) were included in this study. To identify relationships between factors, Pearson's product-moment correlation coefficient was computed. The degree of scoliosis was set as a dependent variable to predict thoracic and lumbar scoliosis using ankle angle and physique factors. Height, weight, and left and right calcaneal valgus angles were set as independent variables; thereafter, multiple regression analysis was performed. This study extracted variables at a significance level (α) of 0.05 by applying a stepwise method, and calculated a regression equation. [Results] Negative correlation (R=-0.266) was shown between lumbar lordosis and asymmetrical lumbar rotation angles. A correlation (R=0.281) was also demonstrated between left calcaneal valgus angles and asymmetrical thoracic rotation angles. [Conclusion] Prediction of scoliosis progress was revealed to be possible through ocular inspection of the calcaneus and Adams forward bending test and the use of a scoliometer.

  13. Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Barry M.; Cebula, Richard P.; Heath, Donald F.; Fleig, Albert J.

    1988-01-01

    The archived tape products from the spectral scan mode measurements of solar irradiance (SUNC tapes) and Earth radiance (EARTH tapes) by the Solar Backscatter UV (SBUV) instrument aboard Nimbus 7 are described. Incoming radiation from 160 to 400 nm is measured at intervals of 0.2 nm. The scan-to-scan repeatability of the solar irradiance measurements ranges from approximately 0.5 to 1 percent longward of 280 nm, to 2 percent around 210 nm and 4 percent near 175 nm. The repeatability of the Earth radiance values ranges from 2 to 3 percent at longer wavelengths and low zenith angles to 10 percent at shorter wavelengths and high zenith angles. The tape formats are described in detail, including file structure and contents of each type of record. Catalogs of the tapes and the time period covered are provided, along with lists of the days lacking solar irradiance measurements and the days dedicated to Earth radiance measurements. The method for production of the tapes is outlined and quality control measures are described. How radiances and irradiances are derived from the raw counts, the corrections for changes in instrument sensitivity, and related uncertainties are discussed.

  14. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE PAGES

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 10 19 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array atmore » an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 10 7 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln N µ/d ln E of muons with increasing energy between 4 × 10 18 eV and 5 × 10 19 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  15. Infrared radiative transfer through a regular array of cuboidal clouds

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Weinman, J. A.

    1981-01-01

    Infrared radiative transfer through a regular array of cuboidal clouds is studied and the interaction of the sides of the clouds with each other and the ground is considered. The theory is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream approximation. It is shown that geometrical considerations often dominate over the microphysical aspects of radiative transfer through the clouds. For example, the difference in simulated 10 micron brightness temperature between black isothermal cubic clouds and cubic clouds of optical depth 10, is less than 2 deg for zenith angles less than 50 deg for all cloud fractions when viewed parallel to the array. The results show that serious errors are made in flux and cooling rate computations if broken clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy and clear sky radiances are in error by 2 to 8 K in brightness temperature for cubic clouds over a wide range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.

  16. Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere.

    PubMed

    Plass, G N; Kattawar, G W

    1970-05-01

    The polarization of the reflected and transmitted radiation is calculated for a realistic model of the earth's atmosphere at five wavelengths ranging from 0.27 micro to 1.67 micro. The single scattering matrix is calculated from the Mie theory for an aerosol size distribution appropriate for our atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere by a Monte Carlo method. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering varies with height. The proportion of aerosol to Rayleigh scattering is adjusted for each wavelength; ozone absorption is included where appropriate. The polarization is presented as a function of the zenith and azimuthal angle for six values of the earth's albedo, two values of the solar zenith angle, and four values of the total aerosol concentration. In general the polarization decreases as the wavelength increases and as the total aerosol concentration increases (because of the increasing importance of aerosol scattering). In most situations the polarization is much more sensitive than the radiance to changes in the parameters which specify the atmosphere.

  17. Dark matter at DeepCore and IceCube

    NASA Astrophysics Data System (ADS)

    Barger, V.; Gao, Y.; Marfatia, D.

    2011-03-01

    With the augmentation of IceCube by DeepCore, the prospect for detecting dark matter annihilation in the Sun is much improved. To complement this experimental development, we provide a thorough template analysis of the particle physics issues that are necessary to precisely interpret the data. Our study is about nitty-gritty and is intended as a framework for detailed work on a variety of dark matter candidates. To accurately predict the source neutrino spectrum, we account for spin-correlations of the final state particles and the helicity-dependence of their decays, and absorption effects at production. We fully treat the propagation of neutrinos through the Sun, including neutrino oscillations, energy losses and tau regeneration. We simulate the survival probability of muons produced in the Earth by using the Muon Monte Carlo program, reproduce the published IceCube effective area, and update the parameters in the differential equation that approximates muon energy losses. To evaluate the zenith-angle dependent atmospheric background event rate, we track the Sun and determine the time it spends at each zenith-angle. Throughout, we employ neutralino dark matter as our example.

  18. A BRDF study on the visual appearance properties of titanium in the heating process

    NASA Astrophysics Data System (ADS)

    Liu, Yanlei; Yu, Kun; Li, Longfei; Zhao, Yuejin; Liu, Zilong; Liu, Yufang

    2018-04-01

    Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials, i.e. the visual appearance properties of materials. In this letter, the visual appearance properties of titanium in the heating process are investigated by BRDF. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The in-plane spectral BRDF in visible region of heated commercial pure Ti at different incident and reflected zenith angles are measured. The experimental result indicates that the change tendency of BRDF vs. wavelength is not influenced by incident and reflected zenith angle, which implying that the colours of Ti may be pigment colouration rather than the structural colouration. Scanning electron microscopy (SEM) and the X-ray diffraction (XRD) testing are performed, and no titanium oxides are detected. The testing results imply that the colours may be generated by intermediate products during heated process. The powder samples are prepared, and the same colours as that of flake samples indirectly prove the validity of our conclusion. In addition, the spectral BRDF of optically smooth samples are measured, the results verify the reliability of our conclusion.

  19. Sensitivity of erythemal UV/global irradiance ratios to atmospheric parameters: application for estimating erythemal radiation at four sites in Thailand

    NASA Astrophysics Data System (ADS)

    Buntoung, Sumaman; Janjai, Serm; Nunez, Manuel; Choosri, Pranomkorn; Pratummasoot, Noppamas; Chiwpreecha, Kulanist

    2014-11-01

    Factors affecting the ratio of erythemal UV (UVER) to broadband (G) irradiance were investigated in this study. Data from four solar monitoring sites in Thailand, namely Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla were used to investigate the UVER/G ratio in response to geometric and atmospheric parameters. These comprised solar zenith angle, aerosol load, total ozone column, precipitable water and clearness index. A modeling scheme was developed to isolate and examine the effect of each individual environmental parameter on the ratio. Results showed that all parameters with the exception of solar zenith angle and clearness index influenced the ratios in a linear manner. These results were also used to develop a semi-empirical model for estimating hourly erythemal UV irradiance. Data from 2009 to 2010 were used to construct the ratio model while validation was performed using erythemal UV irradiance at the above four sites in 2011. The validation results showed reasonable agreement with a root mean square difference of 13.5% and mean bias difference of - 0.5%, under all sky conditions and 10.9% and - 0.3%, respectively, under cloudless conditions.

  20. Mesospheric ozone measurements by SAGE II

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Cunnold, D. M.

    1994-01-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  1. The ultraviolet dayglow at solar maximum. 1 - Far UV spectroscopy at 3.5 A resolution

    NASA Technical Reports Server (NTRS)

    Eastes, R. W.; Feldman, P. D.; Gentieu, E. P.; Christensen, A. B.

    1985-01-01

    The earth's far ultraviolet dayglow (1080-1515 A) was observed at about 3.5 A resolution during a period of high solar activity near solar maximum om June 27, 1980. The observations were made at local noon by rocket-borne spectrometers viewing toward the earth's northern limb at 90 deg zenith angle (ZA) at altitudes between 100 and 245 km, and at 98 deg ZA between 245 and 260 km. The zenith angle was 8.9 deg. These spectra are compared with earlier lower-resolution dayglow data obtained during a period of lower solar activity and with auroral spectra. The brightness ratio of O I 1356 to the N2 Lyman-Birge-Hopfield (LBH) system, an indicator of the O to N2 density ratio, is lower than that previously measured at mid-latitudes and closer to the value found in aurorae. In the LBH system a depletion of the bands originating on the v-prime = 3 vibrational level of the excited state is found. Some weak N2 Birge-Hopfield bands and N I lines only marginally detected previously in the dayglow are confirmed.

  2. Parameterization of albedo, thermal inertia, and surface roughness of desert scrub/sandy soil surface

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Mccumber, M.

    1986-01-01

    Spectral albedo, A sub n, for the direct solar beam is defined as A sub n (r sub i,s, theta sub 0) = r sub i exp(-s tan theta sub 0)1-I(s) where I(s) is the integral over all reflection angles describing the interception by the absorbing plants of the flux reflected from the soil, r sub i soil reflectance, assumed Lambertian, S the projection on a vertical plane of plants per unit surface area, and theta sub 0 is the solar zenith angle. Hemispheric reflectance for the direct solar beam equals 1-I(s) times the reflectance to the zenith. The values of s of 0.1, 0.2, and 0.3 respectively quantify sparse, moderately dense, and very dense desert scrub. Thin plants are assumed to be of negligible thermal inertia, and thus directly yield the absorbed insolation to the atmosphere. Surface thermal inertia is therefore effectively reduced. The ratio of surface roughness height to plant height is parameterized for sparse, moderately dense, and very dense desert-scrub as a function of s based on data expressing the dependence of this ratio on plant silhouette.

  3. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    PubMed

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  4. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    NASA Technical Reports Server (NTRS)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  5. A small CCD zenith camera (ZC-G1) - developed for rapid geoid monitoring in difficult projects

    NASA Astrophysics Data System (ADS)

    Gerstbach, G.; Pichler, H.

    2003-10-01

    Modern Geodesy by terrestrial or space methods is accurate to millimetres or even better. This requires very exact system definitions, together with Astronomy & Physics - and a geoid of cm level. To reach this precision, astrogeodetic vertical deflections are more effective than gravimetry or other methods - as shown by the 1st author 1996 at many projects in different European countries and landscapes. While classical Astrogeodesy is rather complicated (time consuming, heavy instruments and observer's experience) new electro-optical methods are semi-automatic and fill our "geoid gap" between satellite resolution (150 km) and local requirements (2-10 km): With CCD we can speed up and achieve high accuracy almost without observer's experience. In Vienna we construct a mobile zenith camera guided by notebook and GPS: made of Dur-Al, f=20 cm with a Starlite MX-sensor (752×580 pixels à 11μm). Accuracy ±1" within 10 min, mounted at a usual survey tripod. Weight only 4 kg for a special vertical axis, controlled by springs (4×90°) and 2 levels (2002) or sensor (2003). Applications 2003: Improving parts of Austrian geoid (±4 cm→2 cm); automatic astro-points in alpine surveys (vertical deflection effects 3-15 cm per km). Transform of GPS heights to ±1 cm. Tunneling study: heighting up to ±0.1 mm without external control; combining astro-topographic and geological data. Plans 2004: Astro control of polygons and networks - to raise accuracy and economy by ~40% (Sun azimuths of ±3"; additional effort only 10-20%). Planned with servo theodolites and open co-operation groups.

  6. Modified Angle's Classification for Primary Dentition.

    PubMed

    Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita

    2017-01-01

    This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  7. Modified Angle's Classification for Primary Dentition

    PubMed Central

    Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita

    2017-01-01

    Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry. PMID:29326514

  8. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  9. Hong's grading for evaluating anterior chamber angle width.

    PubMed

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  10. Contact angle hysteresis on superhydrophobic stripes.

    PubMed

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  11. An angle-by-angle approach to predicting broadband high-frequency sound fields in rectangular enclosures with experimental comparison.

    PubMed

    Franzoni, Linda P; Elliott, Christopher M

    2003-10-01

    Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.

  12. Energy spectrum of cascades generated by muons in Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    Spectrum of cascades generated by cosmic ray muons underground is presented. The mean zenith angle of the muon arrival is theta=35 deg the depth approx. 1000 hg/sq cm. In cascades energy range 700 GeV the measured spectrum is in agreement with the sea-level integral muon spectrum index gamma=3.0. Some decrease of this exponent has been found in the range 4000 Gev.

  13. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  14. Effects of diurnal, lighting, and angle-of-incidence variation on anterior segment optical coherence tomography (AS-OCT) angle metrics.

    PubMed

    Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas

    2017-03-23

    First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p < 0.05) compared to room lighting 'ON'. There does not appear to be significant diurnal variation in AS-OCT parameters in normal individuals, but lighting conditions need to be strictly controlled since variation in lighting led to significant variability in AS-OCT parameters. No changes in ACA parameters were noted by varying the angle

  15. Beyond Euler angles: exploiting the angle-axis parametrization in a multipole expansion of the rotation operator.

    PubMed

    Siemens, Mark; Hancock, Jason; Siminovitch, David

    2007-02-01

    Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials).

  16. Simple Map in Action-Angle Coordinates.

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-04-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).

  17. Ethnic differences in primary angle-closure glaucoma.

    PubMed

    Yip, Jennifer L Y; Foster, Paul J

    2006-04-01

    Observational studies from different countries have shown that populations of East Asian origin have a higher frequency of primary angle-closure glaucoma compared with those of European or African descent. As half of all cases of glaucoma reside in Asia, and with primary angle-closure glaucoma carrying a higher rate of visual morbidity, primary angle-closure glaucoma poses an important public health problem; however, the inconsistent use of techniques and definitions to detect and diagnose primary angle-closure glaucoma has resulted in difficulties in interpreting the accuracy and comparability of such data. Therefore it is important to review these studies in the light of a consistent classification system. There are increasing reports that support previous findings on the incidence and prevalence of primary angle-closure glaucoma in different ethnic groups. There have also been further investigations into the mechanism and natural history of primary angle-closure glaucoma in Asian populations. International investigations into primary angle-closure glaucoma have demonstrated reproducible evidence that ethnic variations do exist. Cross-sectional studies in this area have also suggested that differences in anterior chamber depth, together with its association with peripheral anterior synechiae, may be part of the underlying mechanism behind these differences. The ideas generated need to be further explored with longitudinal data of changes in anterior chamber depth and peripheral anterior synechiae in different populations. The detailed mechanisms behind the development of angle-closure and primary angle-closure glaucoma should also be investigated.

  18. Two Comments on Bond Angles

    NASA Astrophysics Data System (ADS)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  19. Effect of laser peripheral iridotomy on anterior chamber angle anatomy in primary angle closure spectrum eyes

    PubMed Central

    Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504

  20. Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns

    ERIC Educational Resources Information Center

    Host, Erin; Baynham, Emily; McMaster, Heather

    2015-01-01

    Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…

  1. Particle chaos and pitch angle scattering

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1995-01-01

    Pitch angle scattering is a factor that helps determine the dawn-to-dusk current, controls particle energization, and it has also been used as a remote probe of the current sheet structure. Previous studies have interpreted their results under the exception that randomization will be greatest when the ratio of the two timescales of motion (gyration parallel to and perpendicular to the current sheet) is closet to one. Recently, the average expotential divergence rate (AEDR) has been calculated for particle motion in a hyperbolic current sheet (Chen, 1992). It is claimed that this AEDR measures the degree of chaos and therefore may be thought to measure the randomization. In contrast to previous expectations, the AEDR is not maximized when Kappa is approximately equal to 1 but instead increases with decreasing Kappa. Also contrary to previous expectations, the AEDR is dependent upon the parameter b(sub z). In response to the challenge to previous expectations that has been raised by this calculation of the AEDR, we have investigated the dependence of a measure of particle pitch angle scattering on both the parameters Kappa and b(sub z). We find that, as was previously expected, particle pitch angle scattering is maximized near Kappa = 1 provided that Kappa/b(sub z) greater than 1. In the opposite regime, Kappa/b(sub z) less than 1, we find that particle pitch angle scattering is still largest when the two timescales are equal, but the ratio of the timescales is proportional to b(sub z). In this second regime, particle pitch angle scattering is not due to randomization, but is instead due to a systematic pitch angle change. This result shows that particle pitch angle scattering need not be due to randomization and indicates how a measure of pitch angle scattering can exhibit a different behavior than a measure of chaos.

  2. Pitch angle of galactic spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michiko@mail.doshisha.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fittingmore » formula. This dependence is explained by the swing amplification mechanism.« less

  3. Gonioscopy in primary angle closure glaucoma.

    PubMed

    Bruno, Christina A; Alward, Wallace L M

    2002-06-01

    Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae.

  4. Contact angle distribution of particles at fluid interfaces.

    PubMed

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  5. Correlations between Preoperative Angle Parameters and Postoperative Unpredicted Refractive Errors after Cataract Surgery in Open Angle Glaucoma (AOD 500).

    PubMed

    Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun; Seong, Gong Je

    2017-03-01

    To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R²=0.404). Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors.

  6. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  7. Impulsivity across the psychosis spectrum: Correlates of cortical volume, suicidal history, and social and global function.

    PubMed

    Nanda, Pranav; Tandon, Neeraj; Mathew, Ian T; Padmanabhan, Jaya L; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S

    2016-01-01

    Patients with psychotic disorders appear to exhibit greater impulsivity-related behaviors relative to healthy controls. However, the neural underpinning of this impulsivity remains uncertain. Furthermore, it remains unclear how impulsivity might differ or be conserved between psychotic disorder diagnoses in mechanism and manifestation. In this study, self-reported impulsivity, measured by Barratt Impulsiveness Scale (BIS), was compared between 305 controls (HC), 139 patients with schizophrenia (SZ), 100 with schizoaffective disorder (SZA), and 125 with psychotic bipolar disorder (PBP). In each proband group, impulsivity was associated with regional cortical volumes (using FreeSurfer analysis of T1 MRI scans), suicide attempt history, Global Assessment of Functioning (GAF), and Social Functioning Scale (SFS). BIS scores were found to differ significantly between participant groups, with SZA and PBP exhibiting significantly higher impulsivity than SZ, which exhibited significantly higher impulsivity than HC. BIS scores were significantly related to suicide attempt history, and they were inversely associated with GAF, SFS, and bilateral orbitofrontal cortex (OFC) volume in both SZA and PBP, but not SZ. These findings indicate that psychotic disorders, particularly those with prominent affective symptoms, are characterized by elevated self-reported impulsivity measures. Impulsivity's correlations with suicide attempt history, GAF, and SFS suggest that impulsivity may be a mediator of clinical outcome. The observed impulsivity-OFC correlations corroborate the importance of OFC deficits in impulsivity. These correlations' presence in SZA and PBP but not in SZ suggests that impulsivity may have different underlying mechanisms in affective and non-affective psychotic disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  9. A thermodynamic model of contact angle hysteresis.

    PubMed

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  10. Solar cell angle of incidence corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  11. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  12. A New Method to Cross Calibrate and Validate TOMS, SBUV/2, and SCIAMACHY Measurements

    NASA Technical Reports Server (NTRS)

    Ahmad, Ziauddin; Hilsenrath, Ernest; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A unique method to validate back scattered ultraviolet (buv) type satellite data that complements the measurements from existing ground networks is proposed. The method involves comparing the zenith sky radiance measurements from the ground to the nadir radiance measurements taken from space. Since the measurements are compared directly, the proposed method is superior to any other method that involves comparing derived products (for example, ozone), because comparison of derived products involve inversion algorithms which are susceptible to several type of errors. Forward radiative transfer (RT) calculations show that for an aerosol free atmosphere, the ground-based zenith sky radiance measurement and the satellite nadir radiance measurements can be predicted with an accuracy of better than 1 percent. The RT computations also show that for certain values of the solar zenith angles, the radiance comparisons could be better than half a percent. This accuracy is practically independent of ozone amount and aerosols in the atmosphere. Experiences with the Shuttle Solar Backscatter Ultraviolet (SSBUV) program show that the accuracy of the ground-based zenith sky radiance measuring instrument can be maintained at a level of a few tenth of a percent. This implies that the zenith sky radiance measurements can be used to validate Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV/2), and The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) radiance data. Also, this method will help improve the long term precision of the measurements for better trend detection and the accuracy of other BUV products such as tropospheric ozone and aerosols. Finally, in the long term, this method is a good candidate to inter-calibrate and validate long term observations of upcoming operational instruments such as Global Ozone Monitoring Experiment (GOME-2), Ozone Mapping Instrument (OMI), Ozone Dynamics Ultraviolet Spectrometer (ODUS

  13. Deflection angle detecting system for the large-angle and high-linearity fast steering mirror using quadrant detector

    NASA Astrophysics Data System (ADS)

    Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao

    2018-02-01

    A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.

  14. A gallery approach for off-angle iris recognition

    NASA Astrophysics Data System (ADS)

    Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher

    2015-05-01

    It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.

  15. The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses

    NASA Astrophysics Data System (ADS)

    Bottomley, P. A.; Ouwerkerk, R.

    A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (<90°) and a single sequence-repetition period, TR, is presented, The flip angles are chosen to optimize both the signal-to-noise ratio per unit time relative to the best possible Ernst-angle performance and the sensitivity with which a measurement of R can resolve differences in T1. A flip-angle pair at of around (60°, 15°) yields 70-79% of the maximum achievable Ernst-angle signal-to-noise ratio and a near-linear dependence of R on TR/ T1 with gradient of about 2:1 over the range 0.1 ≤ TR/ T1 ≤ 1. Errors in hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low

  16. Correlations between Preoperative Angle Parameters and Postoperative Unpredicted Refractive Errors after Cataract Surgery in Open Angle Glaucoma (AOD 500)

    PubMed Central

    Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun

    2017-01-01

    Purpose To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. Materials and Methods This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. Results In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R2=0.404). Conclusion Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors. PMID:28120576

  17. Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy.

    PubMed

    Narayanaswamy, Arun; Vijaya, Lingam; Shantha, B; Baskaran, Mani; Sathidevi, A V; Baluswamy, Sukumar

    2004-01-01

    Comparison of anterior chamber angle measurements using ultrasound biomicroscopy (UBM) and gonioscopy. Five hundred subjects were evaluated for grading of angle width by the Shaffer method. UBM was done in the same group to document angle width, angle opening distance (AOD 500), and anterior chamber depth. Biometric parameters were documented in all subjects. UBM and gonioscopic findings were compared. A study was conducted in 282 men and 218 women with a mean age of 57.32 +/- 12.48 years. Gonioscopic grading was used to segregate occludable (slit-like, grades 1 and 2) from nonoccludable (grades 3 and 4) angles. Subjective assessment by gonioscopy resulted in an overestimation of angle width within the occludable group when compared with values obtained by UBM. This did not affect the segregation of occludable versus nonoccludable angles by gonioscopy. Biometric parameters in eyes with occludable angles were significantly lower in comparison with eyes with nonoccludable angles, except for lens thickness. AOD 500 correlated well with angle width. We concluded that clinical segregation into occludable and nonoccludable angles by an experienced observer using gonioscopy is fairly accurate. However, UBM is required for objective quantification of angles, and AOD 500 can be a reliable and standard parameter to grade angle width.

  18. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    . We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to calculate from such escape fluxes derived over a limited area and under limited conditions. A thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  19. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to

  20. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data

  1. [Visual cuing effect for haptic angle judgment].

    PubMed

    Era, Ataru; Yokosawa, Kazuhiko

    2009-08-01

    We investigated whether visual cues are useful for judging haptic angles. Participants explored three-dimensional angles with a virtual haptic feedback device. For visual cues, we use a location cue, which synchronizes haptic exploration, and a space cue, which specifies the haptic space. In Experiment 1, angles were judged more correctly with both cues, but were overestimated with a location cue only. In Experiment 2, the visual cues emphasized depth, and overestimation with location cues occurred, but space cues had no influence. The results showed that (a) when both cues are presented, haptic angles are judged more correctly. (b) Location cues facilitate only motion information, and not depth information. (c) Haptic angles are apt to be overestimated when there is both haptic and visual information.

  2. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  3. Angle imaging: Advances and challenges

    PubMed Central

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  4. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  5. Definition, transformation-formulae and measurements of tipvane angles

    NASA Astrophysics Data System (ADS)

    Bruining, A.

    1987-10-01

    The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.

  6. Physiological response of wild rainbow trout to angling: Impact of angling duration, fish size, body condition, and temperature

    USGS Publications Warehouse

    Meka, Julie M.; McCormick, S.D.

    2005-01-01

    This study evaluated the immediate physiological response of wild rainbow trout to catch-and-release angling in the Alagnak River, southwest Alaska. Information was recorded on individual rainbow trout (n = 415) captured by angling including landing time and the time required to remove hooks (angling duration), the time to anesthetize fish in clove oil and withdraw blood, fish length and weight, and water temperature at capture locations. Plasma cortisol, glucose, ions (sodium, potassium, chloride), and lactate were analyzed to determine the effects of angling duration, fish size, body condition, and temperature. Levels of plasma ions did not change significantly during the observed physiological response and levels of plasma glucose were sometimes influenced by length (2000, 2001), body condition (2001), or temperature (2001). Levels of plasma cortisol and lactate in extended capture fish (angling duration greater than 2 min) were significantly higher than levels in rapid capture fish (angling duration less than 2 min). Rapid capture fish were significantly smaller than extended capture fish, reflecting that fish size influenced landing and handling times. Fish size was related to cortisol and lactate in 2002, which corresponded to the year when larger fish were captured and there were longer landing times. Body condition (i.e., weight/length regression residuals index), was significantly related to lactate in 2000 and 2001. Water temperatures were higher in 2001 (mean temperature ± S.E., 13 ± 2oC) than in 2002 (10 ± 2oC), and fish captured in 2001 had significantly higher cortisol and lactate concentrations than fish captured in 2002. The pattern of increase in plasma cortisol and lactate was due to the amount of time fish were angled, and the upper limit of the response was due to water temperature. The results of this study indicate the importance of minimizing the duration of angling in order to reduce the sublethal physiological disturbances in wild

  7. Gimbal-Angle Vectors of the Nonredundant CMG Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Bang, Hyochoong

    2018-05-01

    This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.

  8. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  9. The comparison of BRDF model and validation of MCD43 products by the 2013 Dunhuang Gobi experiments

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na

    2014-11-01

    BRDF has numerous applications in on-orbit satellites vicarious calibration. The 2013 Dunhuang Gobi surface directional reflectance measurements experiment were held during Aug. 20 to Aug. 28. In order to match the spatial resolution (0.25-1.25km) of meteorological satellites, 3*3 sample points were selected covering the 10*10km area. All the data were measured during (3 hours before and after) the noon without taking into account the large sun zenith angle because of the lack of the satellite passing through. Totally 9 groups of directional reflectance (DREF) were measured by the use of ASD (350-2500nm), standard reference board and a portable DREF measurement system. At each point, DREF were measured by different observation zenith angle (0, 20, 40 and 60 degree) and azimuth angle (0, 45, 90, 135, 180, 225, 270, 315 and 360 degree) in 30 minutes. Different BRDF models were selected such as Walthall, Sine Walthall, Hapke, Roujean and Ross-Li. The model coefficients were derived corresponding to the observed data. The relative differences (RD) of the models with respect to the measured values were calculated. The accuracy of MCD43 products in the Julian day of 233 and 241 were also validated. Results showed that Ross-Li model had the smallest RD. The RD between the DREF from MCD43 products and the measured values were 10.26%(233) and 8.96% (241)@550nm, respectively.

  10. Retrieval Algorithm for Broadband Albedo at the Top of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ho; Lee, Kyu-Tae; Kim, Bu-Yo; Zo, ll-Sung; Jung, Hyun-Seok; Rim, Se-Hun

    2018-05-01

    The objective of this study is to develop an algorithm that retrieves the broadband albedo at the top of the atmosphere (TOA albedo) for radiation budget and climate analysis of Earth's atmosphere using Geostationary Korea Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI) data. Because the GK-2A satellite will launch in 2018, we used data from the Japanese weather satellite Himawari-8 and onboard sensor Advanced Himawari Imager (AHI), which has similar sensor properties and observation area to those of GK-2A. TOA albedo was retrieved based on reflectance and regression coefficients of shortwave channels 1 to 6 of AHI. The regression coefficient was calculated using the results of the radiative transfer model (SBDART) and ridge regression. The SBDART used simulations of the correlation between TOA albedo and reflectance of each channel according to each atmospheric conditions (solar zenith angle, viewing zenith angle, relative azimuth angle, surface type, and absence/presence of clouds). The TOA albedo from Himawari-8/AHI were compared to that from the National Aeronautics and Space Administration (NASA) satellite Terra with onboard sensor Clouds and the Earth's Radiant Energy System (CERES). The correlation coefficients between the two datasets from the week containing the first day of every month between 1st August 2015 and 1st July 2016 were high, ranging between 0.934 and 0.955, with the root mean square error in the 0.053-0.068 range.

  11. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  12. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    PubMed

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  13. Validation of OMPS Ozone Profile Data with Expanded Dataset from Brewer and Automated Dobson Network.

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Weatherhead, E.; Cede, A.; Oltmans, S. J.; Kireev, S.; Maillard, E.; Bhartia, P. K.; Flynn, L. E.

    2005-12-01

    The first NPOESS satellite is scheduled to be launched in 2010 and will carry the Ozone Mapping and Profiler Suite (OMPS) instruments for ozone monitoring. Prior this, the OMPS instruments and algorithms will be tested by flight on the NPOESS/NPP satellite, scheduled for launch in 2008. Pre-launch planning for validation, post launch data validation and verification of the nadir and limb profile algorithm are key components for insuring that the NPOESS will produce a high quality, reliable ozone profile data set. The heritage of satellite instrument validation (TOMS, SBUV, GOME, SCIAMACHY, SAGE, HALOE, ATMOS, etc) has always relied upon surface-based observations. While the global coverage of satellite observations is appealing for validating another satellite, there is no substitute for the hard reference point of a ground-based system such as the Dobson or Brewer network, whose instruments are routinely calibrated and intercompared to standard references. The standard solar occultation instruments, SAGE II and HALOE are well beyond their planned lifetimes and might be inoperative during the OMPS period. The Umkehr network has been one of the key data sets for stratospheric ozone trend calculations and has earned its place as a benchmark network for stratospheric ozone profile observations. The normalization of measurements at different solar zenith angle (SZAs) to the measurement at the smallest SZA cancels out many calibration parameters, including the extra-terrestrial solar flux and instrumental constant, thus providing a "self-calibrating" technique in the same manner relied upon by the occultation sensors on satellites. Moreover, the ground-based Umkehr measurement is the only technique that provides data with the same altitude resolution and in the same units (DU) as do the UV-nadir instruments (SBUV-2, GOME-2, OMPS-nadir), i.e., as ozone amount in pressure layers, whereas, occultation instruments measure ozone density with height. A new Umkehr algorithm

  14. Wide-angle imaging system with fiberoptic components providing angle-dependent virtual material stops

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1993-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  15. Dynamic Camouflage in Benthic and Pelagic Cephalopods: An Interdisciplinary Approach to Crypsis Based on Color, Reflection, and Bioluminescence

    DTIC Science & Technology

    2010-01-01

    cephalopod and model both the shallow and deep-water world from the animals’ points of view. Report Documentation Page Form ApprovedOMB No...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3. To... solar zenith angles including noon and sunset conditions. Five of these deployments were made with the optical sensors oriented horizontally. Ten

  16. The hallux valgus angle of the margo medialis pedis as an alternative to the measurement of the metatarsophalangeal hallux valgus angle.

    PubMed

    Klein, Christian; Kinz, Wieland; Zembsch, Alexander; Groll-Knapp, Elisabeth; Kundi, Michael

    2014-04-21

    Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis.Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. The correlations between the hallux valgus angles determined by the three different methods were all above r=0.89 (p<0.001) and thus highly significant. The values obtained by measuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the metatarsophalangeal angle. Because the hallux valgus angles

  17. The hallux valgus angle of the margo medialis pedis as an alternative to the measurement of the metatarsophalangeal hallux valgus angle

    PubMed Central

    2014-01-01

    Background Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Methods Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis. Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. Results The correlations between the hallux valgus angles determined by the three different methods were all above r = 0.89 (p < 0.001) and thus highly significant. The values obtained by measuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Conclusions Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the

  18. Tachometer Derived From Brushless Shaft-Angle Resolver

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.

    1995-01-01

    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  19. Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages.

    PubMed

    Mendez Astudillo, Jorge; Lau, Lawrence; Tang, Yu-Ting; Moore, Terry

    2018-02-14

    As Global Navigation Satellite System (GNSS) signals travel through the troposphere, a tropospheric delay occurs due to a change in the refractive index of the medium. The Precise Point Positioning (PPP) technique can achieve centimeter/millimeter positioning accuracy with only one GNSS receiver. The Zenith Tropospheric Delay (ZTD) is estimated alongside with the position unknowns in PPP. Estimated ZTD can be very useful for meteorological applications, an example is the estimation of water vapor content in the atmosphere from the estimated ZTD. PPP is implemented with different algorithms and models in online services and software packages. In this study, a performance assessment with analysis of ZTD estimates from three PPP online services and three software packages is presented. The main contribution of this paper is to show the accuracy of ZTD estimation achievable in PPP. The analysis also provides the GNSS users and researchers the insight of the processing algorithm dependence and impact on PPP ZTD estimation. Observation data of eight whole days from a total of nine International GNSS Service (IGS) tracking stations spread in the northern hemisphere, the equatorial region and the southern hemisphere is used in this analysis. The PPP ZTD estimates are compared with the ZTD obtained from the IGS tropospheric product of the same days. The estimates of two of the three online PPP services show good agreement (<1 cm) with the IGS ZTD values at the northern and southern hemisphere stations. The results also show that the online PPP services perform better than the selected PPP software packages at all stations.

  20. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  1. Phase-angle controller for Stirling engines

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1980-01-01

    An actuator includes a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a Stirling engine and a crankshaft for the displacer portion of the engine. The restraint link is releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft. A second embodiment incorporates a hydraulic coupler for use in varying the phase angle of gear-coupled crank fpr a Stirling engine whereby phase angle changes are obtainable.

  2. Preferred nasolabial angle in Middle Eastern population.

    PubMed

    Alharethy, Sami

    2017-05-01

    To define the preferred nasolabial angle measurement in Middle Eastern population. An observational study was conducted from January 2012 to January 2016 at the Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia. A total of 1027 raters, 506 males, and 521 females were asked to choose the most ideal nasolabial angle for 5 males and 5 females lateral photographs whose nasolabial angle were modified with Photoshop into the following angles (85°, 90°, 95°, 100°, 105°, and 110°). Male raters preferred the angle of 89.5° ± 3.5° (mean ± SD) for males and 90.8° ± 5.6° for females. While female raters preferred the angle of 89.3° ± 3.8° for males and 90.5° ± 4.8° for females. ANOVA test compare means among groups: p: 0.342, and there is no statistically significant difference between groups. The results of our study showed an even more acute angles than degrees found in the literature. It shows that what young generation in our region prefers and clearly reflects that what could be explained as under rotation of the nasal tip in other cultures is just the ideal for some Middle Eastern population.

  3. Normal Q-angle in an adult Nigerian population.

    PubMed

    Omololu, Bade B; Ogunlade, Olusegun S; Gopaldasani, Vinod K

    2009-08-01

    The Q-angle has been studied among the adult Caucasian population with the establishment of reference values. Scientists are beginning to accept the concept of different human races. Physical variability exists between various African ethnic groups and Caucasians as exemplified by differences in anatomic features such as a flat nose compared with a pointed nose, wide rather than narrow faces, and straight rather than curly hair. Therefore, we cannot assume the same Q-angle values will be applicable to Africans and Caucasians. We established a baseline reference value for normal Q-angles among asymptomatic Nigerian adults. The Q-angles of the left and right knees were measured using a goniometer in 477 Nigerian adults (354 males; 123 females) in the supine and standing positions. The mean Q-angles for men were 10.7 degrees +/- 2.2 degrees in the supine position and 12.3 degrees +/- 2.2 degrees in the standing position in the right knee. The left knee Q-angles in men were 10.5 degrees +/- 2.6 degrees in the supine position and 11.7 degrees +/- 2.8 degrees in the standing position. In women, the mean Q-angles for the right knee were 21 degrees +/- 4.8 degrees in the supine position and 22.8 degrees +/- 4.7 degrees in the standing position. The mean Q-angles for the left knee in women were 20.9 degrees +/- 4.6 degrees in the supine position and 22.7 degrees +/- 4.6 degrees in the standing position. We observed a difference in Q-angles in the supine and standing positions for all participants. The Q-angle in adult Nigerian men is comparable to that of adult Caucasian men, but the Q-angle of Nigerian women is greater than that of their Caucasian counterparts.

  4. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen R.; Warren, Stephen G.; Brandt, Richard E.; Grenfell, Thomas C.; Six, Delphine

    2006-09-01

    The bidirectional reflectance distribution function (BRDF) of snow was measured from a 32-m tower at Dome C, at latitude 75°S on the East Antarctic Plateau. These measurements were made at 96 solar zenith angles between 51° and 87° and cover wavelengths 350-2400 nm, with 3- to 30-nm resolution, over the full range of viewing geometry. The BRDF at 900 nm had previously been measured at the South Pole; the Dome C measurement at that wavelength is similar. At both locations the natural roughness of the snow surface causes the anisotropy of the BRDF to be less than that of flat snow. The inherent BRDF of the snow is nearly constant in the high-albedo part of the spectrum (350-900 nm), but the angular distribution of reflected radiance becomes more isotropic at the shorter wavelengths because of atmospheric Rayleigh scattering. Parameterizations were developed for the anisotropic reflectance factor using a small number of empirical orthogonal functions. Because the reflectance is more anisotropic at wavelengths at which ice is more absorptive, albedo rather than wavelength is used as a predictor in the near infrared. The parameterizations cover nearly all viewing angles and are applicable to the high parts of the Antarctic Plateau that have small surface roughness and, at viewing zenith angles less than 55°, elsewhere on the plateau, where larger surface roughness affects the BRDF at larger viewing angles. The root-mean-squared error of the parameterized reflectances is between 2% and 4% at wavelengths less than 1400 nm and between 5% and 8% at longer wavelengths.

  5. Can orbital angle morphology distinguish dogs from wolves?

    PubMed

    Janssens, Luc; Spanoghe, Inge; Miller, Rebecca; Van Dongen, Stefan

    For more than a century, the orbital angle has been studied by many authors to distinguish dog skulls from their progenitor, the wolf. In early studies, the angle was reported to be different between dogs (49°-55°) and wolves (39°-46°). This clear difference was, however, questioned in a more recent Scandinavian study that shows some overlap. It is clear that in all studies several methodological issues were unexplored or unclear and that group sizes and the variety of breeds and wolf subspecies were small. Archaeological dog skulls had also not been studied. Our goal was to test larger and more varied groups and add archaeological samples as they are an evolutionary stage between wolves and modern dogs. We also tested the influence of measuring methods, intra- and inter-reliability, angle symmetry, the influence of variations in skull position and the possibility of measuring and comparing this angle on 3D CT scan images. Our results indicate that there is about 50 % overlap between the angle range in wolves and modern dogs. However, skulls with a very narrow orbital angle were only found in wolves and those with a very wide angle only in dogs. Archaeological dogs have a mean angle very close to the one of the wolves. Symmetry is highest in wolves and lowest in archaeological dogs. The measuring method is very reliable, for both inter- and intra-reliability (0.99-0.97), and most skull position changes have no statistical influence on the angle measured. Three-dimensional CT scan images can be used to measure OA, but the angles differ from direct measuring and cannot be used for comparison. Evolutionary changes in dog skulls responsible for the wider OA compared to wolf skulls are mainly the lateralisation of the zygomatic process of the frontal bone. Our conclusion is that the orbital angle can be used as an additional morphological measuring method to discern wolves from recent and archaeological dogs. Angles above 60° are certainly from recent dogs. Angles

  6. Can a surgeon drill accurately at a specified angle?

    PubMed Central

    Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I

    2016-01-01

    Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5  or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423

  7. Quantitative 3D model of light transmittance through translucent rocks applied to the hypolithic microbial community.

    PubMed

    Jolitz, Rebecca D; McKay, Christopher P

    2013-07-01

    In extreme desert environments, photosynthetic microorganisms often live on the buried undersides of translucent rocks. Computing the light level reaching these locations requires 3D modeling of a finite rock. We report on Monte Carlo calculations of skylight and sunlight transmission through a partially buried flat cylindrical rock using one billion photons per simulation. Transmitted light level drops inversely with increasing rock opacity, as expected for purely scattering media. For a half-buried rock with an extinction coefficient of 0.1 cm(-1) (opacity of 0.2), transmission at the bottom is 64 % for sunlight at a solar zenith angle of 60° and 82 % for skylight. Transmitted light level increases slowly with increasing scattering asymmetry factor of the rock independent of illumination or depth buried. Transmitted sunlight at zenith through a thick half-buried rock (opacity of 0.6) is six times brighter at the bottom than the subsurface sides. Skylight transmits equally to the subsurface sides and bottom. When the sun is not straight overhead, the sunward side of the rock is brighter than the underside of the rock. Compared to the sunlight transmitted to the bottom, transmitted sunlight inclined at 60° is 24 times brighter at the subsurface side towards the sun and 14 times brighter at the subsurface side 70° away from the sun. Transmitted sunlight emitted from zenith and skylight is uniformly bright at the bottom regardless of how deeply the rock is buried. Sunlight not at zenith transmits preferentially to the sunward bottom edge depending on the depth the rock is buried.

  8. Angle closure glaucoma in congenital ectropion uvea.

    PubMed

    Wang, Grace M; Thuente, Daniel; Bohnsack, Brenda L

    2018-06-01

    Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months) and required additional surgery (cycloablation or trabeculectomy). Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control.

  9. The Effect of Suture Anchor Insertion Angle on Calcaneus Pullout Strength: Challenging the Deadman's Angle.

    PubMed

    Weiss, William M; Saucedo, Ramon P; Robinson, John D; Lo, Chung-Chieh Jason; Morris, Randal P; Panchbhavi, Vinod K

    2017-10-01

    Refractory cases of Achilles tendinopathy amenable to surgery may include reattachment of the tendon using suture anchors. However, there is paucity of information describing the optimal insertion angle to maximize the tendon footprint and anchor stability in the calcaneus. The purpose of this investigation is to compare the fixation strength of suture anchors inserted at 90° and 45° (the Deadman's angle) relative to the primary compressive trabeculae of the calcaneus. A total of 12 matched pairs of adult cadaveric calcanei were excised and potted to approximate their alignment in vivo. Each pair was implanted with 5.5-mm bioabsorbable suture anchors placed either perpendicular (90°) or oblique (45°) to the primary compressive trabeculae. A tensile load was applied until failure of anchor fixation. Differences in failure load and stiffness between anchor fixation angles were determined by paired t-tests. No significant differences were detected between perpendicular and oblique suture anchor insertion relative to primary compressive trabeculae in terms of load to failure or stiffness. This investigation suggests that the fixation strength of suture anchors inserted perpendicular to the primary compression trabeculae and at the Deadman's angle are possibly comparable. Biomechanical comparison study.

  10. More than just tapping: index finger-tapping measures procedural learning in schizophrenia.

    PubMed

    Da Silva, Felipe N; Irani, Farzin; Richard, Jan; Brensinger, Colleen M; Bilker, Warren B; Gur, Raquel E; Gur, Ruben C

    2012-05-01

    Finger-tapping has been widely studied using behavioral and neuroimaging paradigms. Evidence supports the use of finger-tapping as an endophenotype in schizophrenia, but its relationship with motor procedural learning remains unexplored. To our knowledge, this study presents the first use of index finger-tapping to study procedural learning in individuals with schizophrenia or schizoaffective disorder (SCZ/SZA) as compared to healthy controls. A computerized index finger-tapping test was administered to 1169 SCZ/SZA patients (62% male, 88% right-handed), and 689 healthy controls (40% male, 93% right-handed). Number of taps per trial and learning slopes across trials for the dominant and non-dominant hands were examined for motor speed and procedural learning, respectively. Both healthy controls and SCZ/SZA patients demonstrated procedural learning for their dominant hand but not for their non-dominant hand. In addition, patients showed a greater capacity for procedural learning even though they demonstrated more variability in procedural learning compared to healthy controls. Left-handers of both groups performed better than right-handers and had less variability in mean number of taps between non-dominant and dominant hands. Males also had less variability in mean tap count between dominant and non-dominant hands than females. As expected, patients had a lower mean number of taps than healthy controls, males outperformed females and dominant-hand trials had more mean taps than non-dominant hand trials in both groups. The index finger-tapping test can measure both motor speed and procedural learning, and motor procedural learning may be intact in SCZ/SZA patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Computer programs for calculation of sting pitch and roll angles required to obtain angles of attack and sideslip on wind tunnel models

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.

    1988-01-01

    Two programs have been developed to calculate the pitch and roll angles of a wind-tunnel sting drive system that will position a model at the desired angle of attack and and angle of sideslip in the wind tunnel. These programs account for the effects of sting offset angles, sting bending angles and wind-tunnel stream flow angles. In addition, the second program incorporates inputs from on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented in the report and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  12. RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning.

    PubMed

    Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo

    2018-05-08

    Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.

  13. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    Directional reflectance distributions spanning the entire existent hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using the rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Analysis of field data showed unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends were proposed. A 3-D model was developed and is unique in that it predicts: (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy; (2) the spectral absorption as a function of location within the scene; and (3) the directional spectral radiance as a function of the sensor's location within the scene. Initial verification of the model as applied to a soybean row crop showed that the simulated directional data corresponded relatively well in gross trends to the measured data. The model was expanded to include the anisotropic scattering properties of leaves as a function of the leaf orientation distribution in both the zenith and azimuth angle modes.

  14. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-05-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°-75° and 75°-90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 ×1 017 eV - 2.5 ×1 019 eV is Eν2d Nν/d Eν<6.4 ×10-9 GeV cm-2 s-1 sr-1 .

  15. Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-10-01

    The evolution of the muon content of very high energy air showers (EAS) in the atmosphere is investigated with data of the KASCADE-Grande observatory. For this purpose, the muon attenuation length in the atmosphere is obtained to Λμ = 1256 ± 85-232+229 (syst) g/cm2 from the experimental data for shower energies between 1016.3 and 1017.0 eV. Comparison of this quantity with predictions of the high-energy hadronic interaction models QGSJET-II-02, SIBYLL 2.1, QGSJET-II-04 and EPOS-LHC reveals that the attenuation of the muon content of measured EAS in the atmosphere is lower than predicted. Deviations are, however, less significant with the post-LHC models. The presence of such deviations seems to be related to a difference between the simulated and the measured zenith angle evolutions of the lateral muon density distributions of EAS, which also causes a discrepancy between the measured absorption lengths of the density of shower muons and the predicted ones at large distances from the EAS core. The studied deficiencies show that all four considered hadronic interaction models fail to describe consistently the zenith angle evolution of the muon content of EAS in the aforesaid energy regime.

  16. Measurement of the Multi-TEV Gamma-Ray Flare Spectra of Markarian 421 and Markarian 501

    NASA Astrophysics Data System (ADS)

    Krennrich, F.; Biller, S. D.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Breslin, A. C.; Buckley, J. H.; Burdett, A. M.; Gordo, J. Bussons; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Fegan, D. J.; Finley, J. P.; Gaidos, J. A.; Hall, T.; Hillas, A. M.; Lamb, R. C.; Lessard, R. W.; Masterson, C.; McEnery, J. E.; Mohanty, G.; Moriarty, P.; Quinn, J.; Rodgers, A. J.; Rose, H. J.; Samuelson, F. W.; Sembroski, G. H.; Srinivasan, R.; Vassiliev, V. V.; Weekes, T. C.

    1999-01-01

    The energy spectrum of Markarian 421 in flaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is fitted reasonably well by a simple power law: J(E)=E-2.54+/-0.03+/-0.10 photons m-1 s-1 TeV-1, where the first set of errors is statistical and the second set is systematic. This is in contrast to our recently reported spectrum of Markarian 501, which over a similar energy range has substantial curvature. The differences in TeV energy spectra of gamma-ray blazars reflect both the physics of the gamma-ray production mechanism and possibly differential absorption effects at the source or in the intergalactic medium. Since Markarian 421 and Markarian 501 have almost the same redshift (0.031 and 0.033, respectively), the difference in their energy spectra must be intrinsic to the sources and not due to intergalactic absorption, assuming the intergalactic infrared background is uniform.

  17. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.

    PubMed

    Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y

    2015-11-20

    Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.

  18. Top-of-atmosphere radiative fluxes - Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data

    NASA Technical Reports Server (NTRS)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1992-01-01

    The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.

  19. Results from the search for eV-sterile neutrinos with IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; IceCube Collaboration

    2017-09-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy. Using IceCubes full detector configuration we have performed searches for eV-scale sterile neutrinos. Such a sterile neutrino, motivated by the anomalies observed in short-baseline experiments, is expected to have a significant effect on {\\bar{ν }}μ survival probability due to matter-induced resonant effects for energies of order 1 TeV. This effect makes this search unique and sensitive to small sterile mixing angle values. This work comprises results obtained using up-going muon neutrinos taken with one year of full detector configuration.

  20. A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    NASA Astrophysics Data System (ADS)

    Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.

    2014-06-01

    Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10-5). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-k approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (-0.06, 0.05) and (-0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and