Sample records for zeolite catalyzed solvent-free

  1. Solvent-Free Synthesis of Zeolites: Mechanism and Utility.

    PubMed

    Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou

    2018-05-08

    Zeolites have been extensively studied for years in different areas of chemical industry, such as shape selective catalysis, ion-exchange, and gas adsorption and separation. Generally, zeolites are prepared from solvothermal synthesis in the presence of a large amounts of solvents such as water and alcohols in sealed autoclaves under autogenous pressure. Water has been regarded as essential to synthesize zeolites for fast mass transfer of reactants, but it occupies a large space in autoclaves, which greatly reduces the yield of zeolite products. Furthermore, polluted wastes and relatively high pressure due to the presence of water solvent in the synthesis also leads to environmental and safety issues. Recently, inspired by great benefits of solvent-free synthesis, including the environmental concerns, energy consumption, safety, and economic cost, researchers continually challenge the rationale of the solvent and reconsider the age-old question "Do we actually need solvents at all in zeolite synthesis?" In this Account, we briefly summarize our efforts to rationally synthesize zeolites via a solvent-free route. Our research demonstrates that a series of silica, aluminosilicate, and aluminophosphate-based zeolites can be successfully prepared by mixing, grinding, and heating starting solid materials under solvent-free conditions. Combining an organotemplate-free synthesis with a solvent-free approach maximizes the advantages resulting in a more sustainable synthetic route, which avoids using toxic and costly organic templates and the formation of harmful gases by calcination of organic templates at high temperature. Furthermore, new insights into the solvent-free crystallization process of zeolites have been provided by modern techniques such as NMR and UV-Raman spectroscopy, which should be helpful in designing new zeolite structures and developing novel routes for synthesis of zeolites. The role of water and the vital intermediates during the crystallization of

  2. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  3. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Long; Alamillo, Ricardo; Elliott, William A.

    Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less

  4. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  5. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene.

    PubMed

    Chan, Bun; Radom, Leo

    2008-07-30

    Ab initio molecular orbital theory and density functional theory calculations have been used to study the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol and the hydrogenation of C2H 4 to ethane, with the aim of designing an effective zeolite catalyst for these reactions. Both Brønsted acid (XH) and alkali metal (XM) sites in model zeolites (-X-Al-XH- or -X-Al-XM-) have been examined. It is found that appropriately designed zeolites can provide excellent catalysis for these reactions, particularly for the hydrogenation of CO2, HCO2H and CH2O, with uncatalyzed barriers of more than 300 kJ mol(-1) being reduced to as little as 17 kJ mol(-1) (in the case of CH2O). The reaction barrier depends on the acidity of the XH moiety or the nature of the metal cation M in the XM moiety, and the basicity of the adjacent X group in the catalyst. For a catalyst based on alkali metal zeolites (XM), the catalytic activity is relatively insensitive to the nature of X in the XM group. As a result, the catalytic activity for these types of zeolites increases as X becomes more basic. We propose that alkali metal zeolites with Ge and N incorporated into the framework could be very effective catalysts for hydrogenation processes.

  6. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  7. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol.

    PubMed

    Wang, Yu-Yuan; Chou, Hsin-Yu; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Optimization of sodium loading on zeolite HY for catalyzed transesterification of triolein in excess methanol to biodiesel was studied. Zeolite HY catalyst was activated by loading sodium ions to their surface via an ion-exchange method. The effects of ion-exchange process parameters, including the temperature, the process time, the pH value, as well as concentrations and sources of Na(+) cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated. Most of these Na(+)-activated zeolite HY catalysts could really facilitate the catalyzed transesterification reaction of triolein to biodiesel at a lower temperature near 65°C. Consequently, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C. Moreover, the durability of zeolite catalysts was examined as well. Catalytic performance tests of these zeolite catalysts in transesterification did not show a significant decrease in catalysis at least for three batch cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.

    PubMed

    Danish, Muhammad; Gu, Xiaogang; Lu, Shuguang; Naqvi, Muhammad

    2016-07-01

    Chlorinated organic solvents (COSs) are extensively detected in contaminated soil and groundwater that pose long-term threats to human life and environment. In order to degrade COSs effectively, a novel catalytic composite of natural zeolite-supported nano zero valent iron (Z-nZVI) was synthesized in this study. The performance of Z-nZVI-catalyzed sodium percarbonate (SPC) in a heterogeneous Fenton-like system was investigated for the degradation of COSs such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). The surface characteristics and morphology of the Z-nZVI composite were tested using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Total pore volume, specific surface area, and pore size of the natural zeolite and the Z-nZVI composite were measured using Brunauer-Emmett-Teller (BET) method. SEM and TEM analysis showed significant elimination of aggregation and well dispersion of iron nano particles on the framework of natural zeolite. The BET N2 measurement analysis indicated that the surface area of the Z-nZVI composite was 72.3 m(2)/g, much larger than that of the natural zeolite (0.61 m(2)/g). For the contaminant analysis, the samples were extracted with n-hexane and analyzed through gas chromatograph. The degradation of 1,1,1-TCA and TCE in the Z-nZVI-catalyzed percarbonate system were 48 and 39 % respectively, while strong augmentation was observed up to 83 and 99 %, respectively, by adding the reducing agent (RA), hydroxyl amine (NH2OH•HCl). Probe tests validated the presence of OH(●) and O2 (●-) which were responsible for 1,1,1-TCA and TCE degradation, whereas both free radicals were strengthened with the addition of RA. In conclusion, the Z-nZVI/SPC oxidation with reducing agent shows potential technique for degradation of groundwater contaminated by 1,1,1-TCA and TCE.

  9. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    PubMed

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SOLVENT-FREE ACCELERATED ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Abstract: A solvent-free approach for organic synthesis is described which involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst or catalyzed by the surfaces of inexpensive and recyclable mineral supports such as alumina, silica, clay, or...

  11. 'GREENER' SOLVENT-FREE CHEMICAL SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Solvent-free approach that involves microwave (MW) irradiation of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage...

  12. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions.

    PubMed

    Zhang, Yonghong; Wang, Bin; Zhang, Xiaomei; Huang, Jianbin; Liu, Chenjiang

    2015-02-26

    We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  13. CHEMISTRY UNDER 'GREENER' CONDITIONS: SOLVENT-FREE SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Solvent-free approach is emphasized that involves microwave (MW) irradiation of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces which is applicable to a wide range of cleavag...

  14. ORGANIC SYNTHESES IN SOLVENT-FREE AND AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  15. CHEMISTRY UNDER NON-TRADITIONAL CONDITIONS: SOLVENT-FREE SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) irradiation of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable mineral supports such as alumina, silica, clay, or "doped" surfaces is presented which is applicable to a wide range of cleava...

  16. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure ofmore » zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.« less

  17. Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition.

    PubMed

    Waghmare, Govind V; Rathod, Virendra K

    2016-09-01

    The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100W (ultrasound intensity - 7356.68Wm(-2)), duty cycle 50% and temperature (50°C) in a relatively short reaction time (2h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion. Copyright © 2016. Published by Elsevier B.V.

  18. Hydrothermal synthesis of free-template zeolite T from kaolin

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.

    2017-12-01

    Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.

  19. 'GREENER' CHEMICAL SYNTHESES USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  20. Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium

    PubMed Central

    Zou, Bin; Ren, Shoujie

    2016-01-01

    Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088

  1. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  2. The role of proton shuttling mechanisms in solvent-free and catalyst-free acetalization reactions of imines.

    PubMed

    Lillo, Victor J; Mansilla, Javier; Saá, José M

    2018-06-06

    Proton transfer is central to the understanding of chemical processes. More so in addition reactions of the type NuH + E → Nu-EH taking place under solvent-free and catalyst-free conditions. Herein we show that the addition of alcohols or amines (the NuH component) to imine derivatives (the E component), in 1 : 1 ratio, under solvent-free and catalyst-free conditions, are efficient methods to access N,O and N,N-acetal derivatives. In addition, computational studies reveal that they are catalyzed reactions involving two or even three NuH molecules operating in a cooperative manner as H-bonded NuH(NuH)nNuH associates (many body effects) in the transition state through a concerted proton shuttling mechanism (addition of alcohols) or stepwise proton shuttling mechanism (addition of amines), thereby facilitating the key proton transfer step.

  3. Effect of zeolite catalyst on sugar dehydration for 5-Hydroxymethylfurfural synthesis

    NASA Astrophysics Data System (ADS)

    Mostapha, Marhaini; Jahar, Noorhasmiera Abu; Chin, Siew Xian; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani; Aizat, Wan M.; Azizan, Kamalrul Azlan

    2016-11-01

    The effectiveness in the dehydration of sugars into 5-Hydroxymethylfurfural is related to the catalyst existence. A comprehensive synthesis of 5-Hydroxymethylfurfural from fructose, glucose and sucrose (3.73 mmol) with and without addition zeolite catalyst was performed in this study. The reactions were carried out in water-methanol solvent system for 3 hours reaction time at 180°C temperature. The catalytic results from HPLC showed that the reaction with zeolite increases the yield of 5-Hydroxymethylfurfural with 51.72 %, 34.01% and 50.10% for fructose, glucose and sucrose respectively. The study suggests that zeolites promote the isomerization of glucose into fructose to occur and simultaneously catalyze the dehydration of fructose into 5-Hydroxymethylfurfural. Only slight changes on FT-IR spectra of use zeolite after the reaction was observed. Thus suggest that zeolite was a potential catalyst for catalytic reaction for the conversion of sugar into 5-Hydroxymethylfurfural.

  4. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.

    PubMed

    Zou, Bin; Ren, Shoujie; Ye, X Philip

    2016-12-08

    Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    PubMed

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis.

    PubMed

    Yang, Guolong; Yang, Ruoxi; Hu, Jingbo

    2015-01-01

    Lysophosphatidylcholine (LPC) is amphiphilic substance, and possesses excellent physiological functions. In this study, LPC was prepared through ethanolysis of phosphatidylcholine (PC) in n-hexane or solvent free media catalyzed by Novozym 435 (from Candida antarctica), Lipozyme TLIM (from Thermomcyces lanuginosus) and Lipozyme RMIM (from Rhizomucor miehei). The results showed that three immobilized lipases from Candida Antarctica, Thermomcyces lanuginosus and Rhizomucor miehei could catalyze ethanolysis of PC efficiently. In n-hexane, the LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TLIM and Lipozyme RMIM could reach to 98.5 ± 1.6%, 94.6 ± 1.4% and 93.7 ± 1.8%, respectively. In solvent free media, the highest LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TL IM and Lipozyme RM IM were 97.7 ± 1.7%, 93.5 ± 1.2% and 93.8 ± 1.9%, respectively. The catalytic efficiencies of the three lipases were in the order of Novozyme 435 > Lipozyme TLIM > Lipozyme RMIM. Furthermore, their catalytic efficiencies in n-hexane were better than those in solvent free media.

  7. Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite.

    PubMed

    Silva, Alexander Martins; Nascimento, Marco Antonio Chaer

    2008-09-25

    A theoretical study on the nitration of methane by acyl nitrate catalyzed by HZSM-5 zeolite is reported. The zeolite was represented by a "double ring" 20T cluster. The calculations were performed at the DFT/X3LYP/6-31G** and MP2/6-31G** levels. The first step of the mechanism involves the protonation of the acyl nitrate by the zeolite and the formation of a nitronium-like ion. The reaction proceeds through a concerted step with the attack of the methane molecule by the nitronium-like ion and the simultaneous transfer of a proton from the methane molecule to the zeolite, thus reconstructing the acidic site. The activation energies for the first and second steps of this reaction are, respectively, 14.09 and 10.14 kcal/mol at X3LYP/6-31G** level and 16.68 and 13.85 kcal/mol at the MP2/6-31G**.

  8. 'GREENER' ORGANIC SYNTHESES AND TRANSFORMATIONS USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  9. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  10. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  11. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State.

    PubMed

    Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo

    2016-11-04

    The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).

  12. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system

    PubMed Central

    Phuah, Eng-Tong; Lee, Yee-Ying; Tang, Teck-Kim

    2018-01-01

    Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor. PMID:29401481

  13. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  14. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  15. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  16. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    EPA Science Inventory

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  17. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-08

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.

  18. CIT-9: A Fault-Free Gmelinite Zeolite.

    PubMed

    Dusselier, Michiel; Kang, Jong Hun; Xie, Dan; Davis, Mark E

    2017-10-16

    A synthetic, fault-free gmelinite (GME) zeolite is prepared using a specific organic structure-directing agent (OSDA), cis-3,5-dimethylpiperidinium. The cis-isomers align in the main 12-membered ring (MR) channel of GME. Trans-isomer OSDA leads to the small-pore zeolite SSZ-39 with the OSDA in its cages. Data from N 2 -physisorption and rotation electron diffraction provide evidence for the openness of the 12 MR channel in the GME 12×8×8 pore architecture and the absence of stacking faults, respectively. CIT-9 is hydrothermally stable when K + -exchanged, while in the absence of exchange, the material transforms into an aluminous AFI-zeolite. The process of this phase-change was followed by in situ variable temperature powder X-ray diffraction. CIT-9 has the highest Si/Al ratio reported for GME, and along with its good porosity, opens the possibility of using GME in a variety of applications including catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.

    PubMed

    Vjunov, Aleksei; Derewinski, Miroslaw A; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A

    2015-08-19

    The location and stability of Brønsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cyclohexanol. The catalytically active hydronium ions originate from Brønsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Brønsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Brønsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.

  20. Functionalized SBA-15 supported nickel (II)–oxime–imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2016-05-15

    A new oxime–imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH{sub 2}-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO{sub 4}){sub 2} to yield the functionalized nickel catalyst SBA-15-NH{sub 2}-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH{sub 2}-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant. - Graphical abstract: A new well characterized oxime–imine functionalized highlymore » ordered mesoporous SBA-15-NH{sub 2}-DAMO-Ni complex catalyzes the one-pot oxidation of olefins under solvent free mild conditions.« less

  1. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS II

    Michael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  2. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  4. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production.

    PubMed

    Kabir, G; Mohd Din, A T; Hameed, B H

    2018-02-01

    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite. Copyright © 2017. Published by Elsevier Ltd.

  5. Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.

    PubMed

    Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe

    2013-07-01

    The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II DECHEMA; GREEN SOLVENTS FOR CATALYSIS - ENVIRONMENTALLY BENIGN REACTION MEDIA

    EPA Science Inventory

    Green catalyzed oxidation of hydrocarbons in alternative solvent systems generated by PARIS II
    Thomas M. Becker, Michael A. Gonzalez, Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Mar...

  7. Greener and rapid access to bio-active heterocycles: one-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles

    EPA Science Inventory

    A novel one-pot solvent free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles by condensation of acid hydrazide and triethyl orthoalkanates under microwave irradiations is reported. This green protocol was catalyzed efficiently by solid supported Nafion®NR50 and phosphorus p...

  8. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, G.; Mayavel, P.; Thirumurthy, K.

    2012-06-01

    Some 2E aryl chalcones have been synthesized using greener catalyst Fly-ash:H2SO4 assisted solvent free environmentally benign Crossed-Aldol reaction. The yields of chalcones are more than 90%. The synthesized chalcones are characterized by their physical constants and spectral data.

  9. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  10. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  11. Highly efficient enzymatic acetylation of flavonoids: Development of solvent-free process and kinetic evaluation

    DOE PAGES

    Milivojevic, Ana; Corovic, Marija; Carevic, Milica; ...

    2017-09-23

    Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less

  12. Highly efficient enzymatic acetylation of flavonoids: Development of solvent-free process and kinetic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milivojevic, Ana; Corovic, Marija; Carevic, Milica

    Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less

  13. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.

    PubMed

    Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang

    2011-11-04

    Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst.

  14. Theoretical studies of the transition state structures and free energy barriers for base-catalyzed hydrolysis of amides

    PubMed Central

    Xiong, Ying; Zhan, Chang-Guo

    2010-01-01

    The transition state structures and free energy barriers for the rate-determining step (i.e. the formation of a tetrahedral intermediate) of base-catalyzed hydrolysis of a series of amides in aqueous solution have been studied by performing first-principle electronic structure calculations using a hybrid supermolecule-polarizable continuum approach. The calculated results and a revisit of recently reported experimental proton inventory data reveal that the favorable transition state structure optimized for the tetrahedral intermediate formation of hydroxide ion-catalyzed hydrolysis of formamide may have three solvating water molecules remaining on the attacking hydroxide oxygen and two additional water molecules attached to the carbonyl oxygen of formamide. The calculated results have also demonstrated interesting substituent effects on the optimized transition state geometries, on the transition-state stabilization, and on the calculated free energy barriers for the base-catalyzed hydrolysis of amides. When some or all of the hydrogen atoms of formamide are replaced by methyl groups, the total number of water molecules hydrogen-bonding with the attacking hydroxide in the transition state decreases from three for formamide to two for N-methylacetamide, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). The larger substituents of the amide hinder the solvent water molecules approaching the attacking hydroxide oxygen in the transition state and, therefore, destabilize the transition state structure and increase the free energy barrier. By using the optimized most favorable transition state structures, the calculated free energy barriers, i.e. 21.6 (or 21.7), 22.7, 23.1, and 26.0 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively, are in good agreement with the available experimental free energy barriers, i.e. 21.2, 21.5, 22.6, and 24.1 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively. PMID:17107116

  15. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    PubMed

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  16. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites

    PubMed Central

    Bermejo-Deval, Ricardo; Assary, Rajeev S.; Nikolla, Eranda; Moliner, Manuel; Román-Leshkov, Yuriy; Hwang, Son-Jong; Palsdottir, Arna; Silverman, Dorothy; Lobo, Raul F.; Curtiss, Larry A.; Davis, Mark E.

    2012-01-01

    Isomerization of sugars is used in a variety of industrially relevant processes and in glycolysis. Here, we show that hydrophobic zeolite beta with framework tin or titanium Lewis acid centers isomerizes sugars, e.g., glucose, via reaction pathways that are analogous to those of metalloenzymes. Specifically, experimental and theoretical investigations reveal that glucose partitions into the zeolite in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center, isomerizes into the acyclic form of fructose, and finally ring closes to yield the furanose product. The zeolite catalysts provide processing advantages over metalloenzymes such as an ability to work at higher temperatures and in acidic conditions that allow for the isomerization reaction to be coupled with other important conversions. PMID:22665778

  17. Field trial of solvent-free emulsion in Oregon : appendices.

    DOT National Transportation Integrated Search

    2003-03-01

    This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...

  18. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  19. Extending the solvent-free MALDI sample preparation method.

    PubMed

    Hanton, Scott D; Parees, David M

    2005-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.

  20. A novel protocol for solvent-free synthesis of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-ones catalyzed by metal oxide-MWCNTs nanocomposites

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Gandomi-Ravandi, Soheila

    2014-09-01

    A Biginelli-like condensation is described using acetophenone as active methylene compound with aldehydes and urea to furnish pyrimidinone analogues under solvent-free conditions. In this paper, besides the preparation of nanocomposites based on MWCNTs, our investigations have been focused on the catalytic efficiency of metal oxide-MWCNTs composites. The requisites of a good catalyst are high activity, selectivity, reusability, reasonable cost and long lifetime. The application of solvent-free conditions and transition metal oxides decorated-MWCNTs (MOx-MWCNTs) nanocomposites as attractive, effective and reusable catalysts leads to the efficient synthesis of 4,6-diaryl-3,4-dihydropyrimidin-2-(1H)-ones. This recyclable heterogeneous catalytic system provides a simple strategy to generate a variety of pyrimidinones under solvent-free conditions. Utilization of easy reaction condition, recyclable green catalyst, reduced environmental impacts and simple work-up make this methodology as an interesting option for the eco-friendly synthesis of Biginelli-like compounds.

  1. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  2. Field trial of solvent-free emulsion in Oregon : final report.

    DOT National Transportation Integrated Search

    2003-03-01

    This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...

  3. Adsorption of Free Fatty Acid (FFA) in Low-Grade Cooking Oil Used Activated Natural Zeolite as Adsorbent

    NASA Astrophysics Data System (ADS)

    Larasati Tres Ayu Putranti, Monika; Kompiang Wirawan, Sang; Made Bendiyasa, I.

    2018-01-01

    Adsorption of free fatty acid (FFA) in low-grade cooking oil using active natural zeolite adsorbent was done as an effort to improve the quality of low-grade cooking oil so that it can fulfill the standard of fried oil which has been set on SNI 01-3741-2013. Adsorption was carried out with natural zeolite which activated with HCl and NaOH solution followed by the calcination process. The results showed that the NaOH activated zeolite decreased FFA content in low-grade cooking oil more than the HCl activated natural zeolite, with optimum NaOH concentration was 0.75 M. In the adsorption equilibrium analysis with temperature variation (25 °C, 40 °C, 80 °C ), obtained that adsorption of FFA with NaOH activated natural zeolite follows Adsorption Isotherm Freundlich Model with equilibrium constant value was 20,5873; 0,9629 dan 0,8053.

  4. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.

    PubMed

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir; Tuck Whye, Wong; Ibrahim Akos, Noel; Heidar Pour, Raheleh; Ali Yussuf, Abdirahman

    2014-06-15

    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Methyltrioxorhenium-catalyzed epoxidation of homoallylic alcohols with hydrogen peroxide.

    PubMed

    Yamazaki, Shigekazu

    2012-11-02

    Homoallylic alcohols were efficiently converted to the corresponding 3,4-epoxy alcohols in excellent yields by methyltrioxorhenium (MTO)-catalyzed epoxidation with aqueous hydrogen peroxide as the terminal oxidant and 3-methylpyrazole (10 mol %) as an additive. The epoxidations of homoallylic alcohols proceeded under organic solvent-free conditions faster than those in dichloromethane.

  6. Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

    PubMed Central

    Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.

    2015-01-01

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174

  7. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    PubMed

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  8. Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl E 2-propen-1-ones

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthi, K.; Mala, V.; Sakthinathan, S. P.; Kamalakkannan, D.; Suresh, R.; Vanangamudi, G.; Thirunarayanan, G.

    2013-08-01

    Totally 38 aryl E 2-propen-1-ones including nine substituted styryl 4-iodophenyl ketones have been synthesised using solvent-free SiO2-H3PO4 catalyzed Aldol condensation between respective methyl ketones and substituted benzaldehydes under microwave irradiation. The yields of the ketones are more than 80%. The synthesised chalcones were characterized by their analytical, physical and spectroscopic data. The spectral frequencies of synthesised substituted styryl 4-iodophenyl ketones have been correlated with Hammett substituent constants, F and R parameters using single and multi-linear regression analysis. The antimicrobial activities of 4-iodophenyl chalcones have been studied using Bauer-Kirby method.

  9. The first characterization of free radicals formed from cellular COX-catalyzed peroxidation.

    PubMed

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y

    2013-04-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The First Characterization of Free Radicals Formed From Cellular COX-Catalyzed Peroxidation

    PubMed Central

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y.

    2014-01-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid(AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and 2-series of prostaglandins(PGs2), respectively. Unlike PGs2, which are generally viewed as pro-inflammatory and pro-carcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs. AA. The aim of this study was to refine the LC/MS and spin-trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs. DGLA and their association with cancer cell growth was assessed (cell proliferation via MTS and cell cycle distribution via PI staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. PMID:23261941

  11. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.

  12. Free energy landscape for glucose condensation reactions.

    PubMed

    Liu, Dajiang; Nimlos, Mark R; Johnson, David K; Himmel, Michael E; Qian, Xianghong

    2010-12-16

    Ab initio molecular dynamics and metadynamics simulations were used to determine the free energy surfaces (FES) for the acid catalyzed β-D-glucose condensation reaction. Protonation of C1-OH on the β-D-glucose, breakage of the C1-O1 bond, and the formation of C1 carbocation is the rate-limiting step. The effects of solvent on the reaction were investigated by determining the FES both in the absence and presence of solvent water. It was found that water played a critical role in these reactions. The reaction barrier for the proton-catalyzed glucose condensation reaction is solvent induced because of proton's high affinity for water. During these simulations, β-D-glucose conversion to α-d-glucose process via the C1 carbocation was also observed. The associated free energy change and activation barrier for this reaction were determined.

  13. Examination of the solventlike nature of zeolites based on a solvatochromic indicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, P.K.; Turbeville, W.

    1991-05-16

    Zeolites are crystalline aluminosilicates with cages and channel systems that can host a variety of organic transformations. This intracrystalline space is akin to a solvent, and description of this space in terms of solventlike properties is appropriate. The concept of solvatochromic indicators has been successfully used to define the physicochemical properties of organic solvents. In this study, the authors have investigated the electronic and Raman spectroscopy of the molecule N-(2-hydroxybenzylidene)aniline and established a quantitative correlation between the spectral intensities of the benzenoid and zwitterionic forms of this molecule and the {alpha}-value of various hydroxylic solvents. The {alpha} value is amore » measure of the hydrogen bond donor ability of the solvent. This correlation has been used to establish an {alpha} value scale for a series of faujasitic zeolites with varying Si/Al ratios. It was found that the {alpha} value of the zeolite increased with Si/Al ratio to reach a maximum around 7.8, followed by a decrease at higher Si/Al ratios. Since Na{sup +}-exchanged zeolites were examined in all cases, the interaction of the anil molecule in its zwitterionic form with Lewis acids (Na{sup +}) and bases (oxygen of the framework) was considered to be responsible for its formation. The Si/Al ratio of the framework determines the acid-base character of the zeolite and is reflected in a quantitative manner by the {alpha} value determined in this study.« less

  14. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  15. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  16. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature.

    PubMed

    Bustamante, Eugenia L; Fernández, José L; Zamaro, Juan M

    2014-06-15

    The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Studying Zeolite Catalysts with a 2D Model System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  18. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine

    PubMed Central

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-01-01

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow the similar catalytic reaction mechanism, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2a/TS2b should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal/mol) is 2.5 kcal/mol lower than that for the BChE-catalyzed hydrolysis (20.8 kcal/mol). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal/mol for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2a relative to TS2b. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  19. Free energy landscape of protein folding in water: explicit vs. implicit solvent.

    PubMed

    Zhou, Ruhong

    2003-11-01

    The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt

  20. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  2. Solvent-Free Self-Assembly to the Synthesis of Nitrogen-Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO2.

    PubMed

    Liu, Fujian; Huang, Kuan; Wu, Qin; Dai, Sheng

    2017-07-01

    A solvent-free induced self-assembly technology for the synthesis of nitrogen-doped ordered mesoporous polymers (N-OMPs) is developed, which is realized by mixing polymer precursors with block copolymer templates, curing at 140-180 °C, and calcination to remove the templates. This synthetic strategy represents a significant advancement in the preparation of functional porous polymers through a fast and scalable yet environmentally friendly route, since no solvents or catalysts are used. The synthesized N-OMPs and their derived catalysts are found to exhibit competitive CO 2 capacities (0.67-0.91 mmol g -1 at 25 °C and 0.15 bar), extraordinary CO 2 /N 2 selectivities (98-205 at 25 °C), and excellent activities for catalyzing conversion of CO 2 into cyclic carbonate (conversion >95% at 100 °C and 1.2 MPa for 1.5 h). The solvent-free technology developed in this work can also be extended to the synthesis of N-OMP/SiO 2 nanocomposites, mesoporous SiO 2 , crystalline mesoporous TiO 2 , and TiPO, demonstrating its wide applicability in porous material synthesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  4. Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite

    NASA Astrophysics Data System (ADS)

    Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.

    2013-11-01

    The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.

  5. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2018-06-13

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  6. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics.

    PubMed

    Braschi, I; Blasioli, S; Buscaroli, E; Montecchio, D; Martucci, A

    2016-05-01

    High silica zeolite Y has been positively evaluated to clean-up water polluted with sulfonamides, an antibiotic family which is known to be involved in the antibiotic resistance evolution. To define possible strategies for the exhausted zeolite regeneration, the efficacy of some chemico-physical treatments on the zeolite loaded with four different sulfonamides was evaluated. The evolution of photolysis, Fenton-like reaction, thermal treatments, and solvent extractions and the occurrence in the zeolite pores of organic residues eventually entrapped was elucidated by a combined thermogravimetric (TGA-DTA), diffractometric (XRPD), and spectroscopic (FT-IR) approach. The chemical processes were not able to remove the organic guest from zeolite pores and a limited transformation on embedded molecules was observed. On the contrary, both thermal treatment and solvent extraction succeeded in the regeneration of the zeolite loaded from deionized and natural fresh water. The recyclability of regenerated zeolite was evaluated over several adsorption/regeneration cycles, due to the treatment efficacy and its stability as well as the ability to regain the structural features of the unloaded material. Copyright © 2015. Published by Elsevier B.V.

  7. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    PubMed

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  8. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  9. SOLVENT-FREE SONOCHEMICAL PREPARATION OF IONIC LIQUIDS

    EPA Science Inventory

    An ultrasound-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methylimidazolium (AMIM) halides, that proceeds via efficient reaction of 1-methyl imidazole with alkyl halides/terminal dihalides under solvent-free conditions, is described.

  10. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  11. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  12. Functionalized SBA-15 supported nickel (II)-oxime-imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    NASA Astrophysics Data System (ADS)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim; Ali, Mahammad

    2016-05-01

    A new oxime-imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH2-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO4)2 to yield the functionalized nickel catalyst SBA-15-NH2-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH2-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant.

  13. Application of a new amidophosphite ligand to Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid derivatives in supercritical carbon dioxide: activation effect of protic Co-solvents.

    PubMed

    Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A

    2011-09-01

    New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.

  14. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  15. 'water splitting' by titanium exchanged zeolite A. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznicki, S.M.; Eyring, E.M.

    1978-09-01

    Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less

  16. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  17. New Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Benzotriazolium-Based Ionic Liquids under Solvent-Free Conditions.

    PubMed

    Liu, Zhiqing; Ma, Rong; Cao, Dawei; Liu, Chenjiang

    2016-04-07

    An efficient synthesis of novel 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives, using Brønsted acidic ionic liquid [C₂O₂BBTA][TFA] as a catalyst, from the condensation of aryl aldehyde, β-ketoester and urea was described. Reactions proceeded smoothly for 40 min under solvent-free conditions and gave the desirable products with good to excellent yields (up to 99%). The catalyst could be easily recycled and reused with similar efficacies for at least six cycles.

  18. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor.

  19. MICROWAVE-FACILITATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-expedited solvent-free synthetic protocols in multi-component (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of heterocyclic compounds from in situ generated intermediates. R...

  20. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  1. EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...

  2. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  3. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  4. Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide

    NASA Astrophysics Data System (ADS)

    Yu, Huiyou; Wang, Xinde; Zhu, Yuanshuai; Zhuang, Guilin; Zhong, Xing; Wang, Jian-guo

    2013-09-01

    Graphene oxide (GO), prepared from oxidation of graphite powders using a modified Hummers method, exhibits a promising catalytic activity and a high selectivity for the solvent-free catalytic dehydrative etherification of benzyl alcohol (BA). A maximum yield (85.4%) of dibenzyl ether (DE) was achieved at 150 °C for 24 h when the BA/GO ration was 20 ml/g under solvent-free condition. This discovery provided a new insight into the development of GO as a carbocatalysts for a variety of applications in carbocatalysis.

  5. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    PubMed

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    PubMed

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  7. Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: a complementary approach.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Lange, Catherine M; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2012-06-15

    Polyamides (PA) belong to the most used classes of polymers because of their attractive chemical and mechanical properties. In order to monitor original PA design, it is essential to develop analytical methods for the characterization of these compounds that are mostly insoluble in usual solvents. A low molecular weight polyamide (PA11), synthesized with a chain limiter, has been used as a model compound and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the solvent-based approach, specific solvents for PA, i.e. trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP), were tested. Solvent-based sample preparation methods, dried-droplet and thin layer, were optimized through the choice of matrix and salt. Solvent-based (thin layer) and solvent-free methods were then compared for this low solubility polymer. Ultra-high-performance liquid chromatography/electrospray ionization (UHPLC/ESI)-TOF-MS analyses were then used to confirm elemental compositions through accurate mass measurement. Sodium iodide (NaI) and 2,5-dihydroxybenzoic acid (2,5-DHB) are, respectively, the best cationizing agent and matrix. The dried-droplet sample preparation method led to inhomogeneous deposits, but the thin-layer method could overcome this problem. Moreover, the solvent-free approach was the easiest and safest sample preparation method giving equivalent results to solvent-based methods. Linear as well as cyclic oligomers were observed. Although the PA molecular weights obtained by MALDI-TOF-MS were lower than those obtained by (1)H NMR and acido-basic titration, this technique allowed us to determine the presence of cyclic and linear species, not differentiated by the other techniques. TFA was shown to induce modification of linear oligomers that permitted cyclic and linear oligomers to be clearly highlighted in spectra. Optimal sample preparation conditions were determined for the MALDI-TOF-MS analysis of PA11, a

  8. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  9. Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Vasquez, Magdaleno R.

    2018-02-01

    Silver-exchanged zeolite-chitosan (AgZ-Ch) composites with varying AgZ content were prepared by solvent casting and modified under argon (Ar) plasma excited by a 13.56 MHz radio frequency (RF) power source. Silver (Ag) was successfully incorporated in a natural zeolite host without losing its antibacterial activity against Escherichia coli and Staphylococcus aureus. The AgZ particles were incorporated into a chitosan matrix without making significant changes in the matrix structure. The composites also exhibited antibacterial sensitivity due to the inclusion of AgZ. Plasma treatment enhanced the surface wettability of polar and nonpolar test liquids of the composites. The average increase in total surface free energy after treatment was around 49% with the polar component having a significant change. Cytocompatibility tests showed at least 87% cell viability for pristine and plasma-treated composites comparable with supplemented RPMI as positive control. Hemocompatibility tests revealed that pristine composites does not promote hemolysis and the blood clotting ability is less than 10 min. Coupled with antibacterial property, the fabricated composites have promising biomedical applications.

  10. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    DTIC Science & Technology

    2012-03-01

    For example, synthetic zeolites could be used to separate molecular isotopes of hydrogen [12; 10] as could thermal diffusion and gas chromatography... thermal muon flux is large (see Chapter 8). Reactions which have the potential of increasing the muon-catalyzed fusion rate and reactions that could...the remainder of this document. Changes to the muon-catalyzed fusion cycle, that are expected to occur when the thermal muon flux is high, are

  11. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.

    PubMed

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.

  12. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  13. Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.

    PubMed

    Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S

    2012-09-01

    The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Mobil/Badger to market zeolite-based cumene technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotman, D.

    1993-02-24

    Badger (Cambridge, MA) and Mobil (Fairfax, VA) are ready to jointly license a new cumene technology that they say achieves higher yields and product purity than existing processes. The zeolite-based technology is scheduled to be introduced at next month's DeWitt Petrochemical Review in Houston. The Mobil/Badger technology aims to challenge the dominant position of UOP's (Des Plaines, IL) solid phosphoric acid (SPA) catalyst process - which accounts for 80%-90% of the world's cumene production. In addition, Monsanto/Kellogg's aluminum chloride-based technology has gained significant momentum since its introduction in the 1980s. And late last year, ABB Lummus Crest (Bloomfield, NJ) alsomore » began marketing a zeolite-based cumene technology. While all the technologies make cumene via the alkylation of benzene with propylene, the Mobil/Badger process uses a zeolite-containing catalyst designed by Mobil to selectively catalyze the benzene/propylene reaction, avoiding unwanted propylene oligomerization. Because the olefin reactions are so fast, says Frank A. Demers, Badger's v.p./technology development and marketing, other zeolite technologies are forced to use complex reactor arrangements to stop the propylene-propylene reactions. However, he says, Mobil has designed a catalyst that wants to react benzene with propylene to make cumene.'« less

  15. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    PubMed

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  16. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  17. Molecular interactions of alcohols with zeolite BEA and MOR frameworks.

    PubMed

    Stückenschneider, Kai; Merz, Juliane; Schembecker, Gerhard

    2013-12-01

    Zeolites can adsorb small organic molecules such as alcohols from a fermentation broth. Also in the zeolite-catalyzed conversion of alcohols to biofuels, biochemicals, or gasoline, adsorption is the first step. Several studies have investigated the adsorption of alcohols in different zeolites experimentally, but computational investigations in this field have mostly been restricted to zeolite MFI. In this study, the adsorption of C1-C4 alcohols in BEA and MOR was investigated using density functional theory (DFT). Calculated adsorption geometries and the corresponding energies of the designed cluster models were comparable to periodic calculations, and the adsorption energies were in the same range as the corresponding computational and experimental values reported in the literature for zeolite MFI. Thus, BEA and MOR may be good adsorption materials for alcohols in the field of downstream processing and catalysis. Aside from the DFT calculations, adsorption isotherms were determined experimentally in this study from aqueous solutions. For BEA, the adsorption of significant amounts of alcohol from aqueous solution was observed experimentally. In contrast, MOR was loaded with only a very small amount of alcohol. Although differences were found between the affinities obtained from gas-phase DFT calculations and those observed experimentally in aqueous solution, the computational data presented here represent molecular level information on the geometries and energies of C1-C4 alcohols adsorbed in zeolites BEA and MOR. This knowledge should prove very useful in the design of zeolite materials intended for use in adsorption and catalytic processes, as it allows adsorption behavior to be predicted via judiciously designed computational models.

  18. Citrus Juice: Green and Natural Catalyst for the Solvent-free Silica Supported Synthesis of β-Enaminones Using Grindstone Technique.

    PubMed

    Marvi, Omid; Fekri, Leila Zare

    2018-01-01

    Citrus Juice as an efficient, cost-effective and green catalyst employed for one-pot synthesis of various β-substituted enaminones through the reaction of β- dicarbonyl compounds with different primary amines in a solvent-free conditions on silica gel as solid surface using grindstone technique in high yields and short reaction times. The presented procedure is operationally simple, practical and green. The wide application of this procedure is demonstrated by the use of various substituted amines to react with β-dicarbonyl compounds. The method was successfully applied for primary amines (15 entries) and the related enaminones were well synthesized in good to excellent yields. Melting points were measured on an Electro thermal 9100 apparatus. 1HNMR and 13C NMR spectra were recorded on a FTNMR BRUKER DRX 500 Avence spectrometer. Chemical shifts were given in ppm from TMS as internal references and CDCl3 was used as the solvent as well. The IR spectra were recorded on a Perkin Elmer FT-IR GX instrument. The chemicals used in this work were purchased from Merck and Fluka chemical companies. Grinding synthesis of citrus juice catalyzed enamination of 1,3-dicarbonyls (acetylacetone, methyl and ethyl-3-oxobutanoate) with various primary amines (aromatic and aliphatic) under solvent-free silica supported conditions was examined and studied (15 entries) and the obtained enaminones were well synthesized in good to excellent yields. Furthermore, the effect of various catalysts on the yield and reaction time for grinding synthesis of 3-phenylamino- but- 2- enoic acid ethyl ester (1) by this method has evaluated as well. A novel, efficient and green protocol for the grinding synthesis of enaminones using citrus juice as natural catalyst has been presented. This methodology is user friendly, green and low cost procedure under mild reaction condition with faster reaction rates. The citrus juice is inexpensive and non-toxic which makes the process convenient, more economic

  19. Investigation on the porosity of zeolite NU-88 by means of positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Consolati, G.; Mariani, M.; Millini, R.; Quasso, F.

    2009-08-01

    Seven well characterized zeolites were investigated by positron annihilation lifetime spectroscopy. The lifetime spectra were analysed in four discrete components. The third one was associated with ortho-positronium annihilation in the channels, framed in terms of infinite cylinders. Differences between the radii determined from the positron annihilation technique and X-ray diffraction data were found and explained in terms of the physical structure of the channel. An analogous study on a high-silica NU-88 zeolite gave a value of 0.33 nm for the corresponding radius, in agreement with Ar and N 2 adsorption data as well as with the catalytic behaviour of this zeolite in several acid catalyzed reactions. The longest lifetime component in NU-88 reveals the existence of mesopores, with average radius of about 1.8 nm, which could explain the importance of hydrogen transfer reactions in this zeolite.

  20. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    NASA Astrophysics Data System (ADS)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  1. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  2. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.

    PubMed

    Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe

    2016-06-22

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    USDA-ARS?s Scientific Manuscript database

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  4. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  5. SbCl3-catalyzed one-pot synthesis of 4,4′-diaminotriarylmethanes under solvent-free conditions: Synthesis, characterization, and DFT studies

    PubMed Central

    2011-01-01

    Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373

  6. Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents

    NASA Technical Reports Server (NTRS)

    Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)

    2001-01-01

    Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.

  7. Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of D-Glucose to L-Sorbose via Intramolecular C5-C1 Hydride Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gounder, Rajamani; Davis, Mark E.

    Pure-silica zeolite beta containing Lewis acidic framework Ti 4+ centers (Ti-Beta) is shown to catalyze the isomerization of D-glucose to L-sorbose via an intramolecular C5–C1 hydride shift. Glucose–sorbose isomerization occurs in parallel to glucose–fructose isomerization on Ti-Beta in both water and methanol solvents, with fructose formed as the predominant product in water and sorbose as the predominant product in methanol (at 373 K) at initial times and over the course of >10 turnovers. Isotopic tracer studies demonstrate that 13C and D labels placed respectively at the C1 and C2 positions of glucose are retained respectively at the C6 and C5more » positions of sorbose, consistent with its formation via an intramolecular C5–C1 hydride shift isomerization mechanism. This direct Lewis acid-mediated pathway for glucose–sorbose isomerization appears to be unprecedented among heterogeneous or biological catalysts and sharply contrasts indirect base-mediated glucose–sorbose isomerization via 3,4-enediol intermediates or via retro-aldol fragmentation and recombination of sugar fragments. Measured first-order glucose–sorbose isomerization rate constants (per total Ti; 373 K) for Ti-Beta in methanol are similar for glucose and glucose deuterated at the C2 position (within a factor of ~1.1), but are a factor of ~2.3 lower for glucose deuterated at each carbon position, leading to H/D kinetic isotope effects expected for kinetically relevant intramolecular C5–C1 hydride shift steps. Optical rotation measurements show that isomerization of D-(+)-glucose (92% enantiomeric purity) with Ti-Beta in water (373 K) led to the formation of L-(-)-sorbose (73% enantiomeric purity) and D-(-)-fructose (87% enantiomeric purity) as the predominant stereoisomers, indicating that stereochemistry is preserved at carbon centers not directly involved in intramolecular C5–C1 or C2–C1 hydride shift steps, respectively. This new Lewis acid-mediated rearrangement of glucose

  8. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    PubMed

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of solvents on the electrochemical properties of binder-free sulfur cathode films in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Ho-Suk; Kim, Byeong-Wook; Park, Jin-Woo

    Highlights: • The binder-free sulfur electrode with high sulfur contents of 75 wt.% was fabricated. • The binder-free sulfur electrode using NMP solvents showed 784 mAh g{sup −1} after 40 cycles. • The solvent affect the electrochemical properties of binder-free sulfur electrode films. - Abstract: The effects of solvents on the preparation of sulfur cathodes were investigated by fabricating binder-free sulfur electrode films using three different solvents: 1-methyl-2-pyrrolidinone (NMP), acetonitrile, and deionized water. These solvents are commonly employed to dissolve binders used to prepare sulfur cathodes for lithium–sulfur batteries. The sulfur electrode fabricated with NMP had a higher discharge capacitymore » and longer cycle life than the ones fabricated with acetonitrile and deionized water. Better adhesion between the current collector and the sulfur electrode accounted for the improved capacity and cycle life of the battery. In addition, the stability of the electrode in the electrolyte was a result of the solubility of sulfur in the solvent. We thus concluded that the solvents used in the fabrication of sulfur electrodes had a positive influence on the electrochemical properties of Li–S batteries.« less

  10. Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins.

    PubMed

    Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas

    2017-05-16

    Biomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA. These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in

  11. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.

  12. Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids.

    PubMed

    Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen

    2014-10-02

    An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.

  13. AN EXPEDITIOUS SOLVENT-FREE ROUTE TO IONIC LIQUIDS USING MICROWAVES

    EPA Science Inventory

    A microwave-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methyl imidazolium (IMIM) halides, that proceeds via efficient raction of 1-methyl imidazole with alkylhalides/terminal dihalides under solvent-free conditions, is described.

  14. Solvent-free, supersoft and superelastic bottlebrush melts and networks

    NASA Astrophysics Data System (ADS)

    Daniel, William F. M.; Burdyńska, Joanna; Vatankhah-Varnoosfaderani, Mohammad; Matyjaszewski, Krzysztof; Paturej, Jarosław; Rubinstein, Michael; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2016-02-01

    Polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules. The brush-like architecture expands the diameter of the polymer chains, diluting their entanglements without markedly increasing stiffness. This adjustable interplay between chain diameter and stiffness makes it possible to tailor the network's elastic modulus and extensibility without the complications associated with a swollen gel. The bottlebrush melts and elastomers exhibit an unprecedented combination of low modulus (~100 Pa), high strain at break (~1,000%), and extraordinary elasticity, properties that are on par with those of designer gels.

  15. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD - )/pDQTES and DQ101 (MG1655 fadD - )/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD - )-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD - )/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD - )/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  16. Advances in nanosized zeolites

    NASA Astrophysics Data System (ADS)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  17. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  18. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  19. Photo-triggered solvent-free metamorphosis of polymeric materials.

    PubMed

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  20. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    PubMed

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  1. [What a physician should know about zeolites].

    PubMed

    Boranić, M

    2000-01-01

    Zeolites are natural and synthetic hydrated crystalline aluminosilicates endowed with absorptive and ion exchange properties. They have found numerous and multifarous applications--in industry as catalysts and absorbents, in water sanitation for the removal of ammonia and heavy metals, in agriculture as fertilizers, and in animal husbandry as the absorbents of excreted material and as food additives. Medical applications have included the use in filtration systems for anesthesia or dialysis and as the contrast materials in NMR imaging. Recently, zeolite powders for external use have found application as deodorants, antimycotic agents and wound dressings. Peroral use of encapsulated zeolite powders enriched with vitamins, oligoelements or other ingredients has been claimed to exert beneficial medical effects. Ingestion of zeolites may be considered analogous to the clay eating (geophagia), considered in traditional medicine as a remedy for various illnesses. Being amphoteric, zeolites are partly soluble in acid or alkaline media, but within the physiological pH range the solubility is generally low. Minimal amounts of free aluminium or silicium from the ingested zeolites are resorbed from the gut. The bulk of ingested zeolite probably remains undissolved in the gut. In view of the ion exchange properties, zeolites may be expected to change the ionic content, pH and buffering capacity of the gastrointestinal secretions and to affect the transport through the intestinal epithelium. In addition, zeolites could affect the bacterial flora and the resorption of bacterial products, vitamins and oligoelements. The contact of zeolite particles with gastrointestinal mucosa may elicit the secretion of cytokines with local and systemic actions. Reactive silicium ions might react with biomolecules of the intestinal epithelium, and if resorbed, do so in other cells. Mutagenic and carcinogenic effects of zeolite particles have been described, resembling such effects of asbestos

  2. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.

  3. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    PubMed

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?

    NASA Astrophysics Data System (ADS)

    Zhou, Ruhong; Berne, Bruce J.

    2002-10-01

    The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  5. Synthesis of (E)-2-Styrylchromones and Flavones by Base-Catalyzed Cyclodehydration of the Appropriate β-Diketones Using Water as Solvent.

    PubMed

    Pinto, Joana; Silva, Vera L M; Silva, Ana M G; Silva, Artur M S

    2015-06-22

    A low cost, safe, clean and environmentally benign base-catalyzed cyclodehydration of appropriate β-diketones affording (E)-2-styrylchromones and flavones in good yields is disclosed. Water was used as solvent and the reactions were heated using classical and microwave heating methods, under open and closed vessel conditions. β-Diketones having electron-donating and withdrawing substituents were used to evaluate the reaction scope. The reaction products were isolated in high purity by simple filtration and recrystallization from ethanol, when using 800 mg of the starting diketone under classical reflux heating conditions.

  6. Solvent-dependent reactions for the synthesis of β-keto-benzo-δ-sultone scaffolds via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences.

    PubMed

    Ghandi, Mehdi; Bozcheloei, Abolfazl Hasani; Nazari, Seyed Hadi; Sadeghzadeh, Masoud

    2011-12-16

    We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

  7. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  8. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  9. ENVIRONMENTALLY BENIGN ORGANIC TRANSFORMATIONS USING MICROWAVE IRRADIATION UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocols...

  10. MICROWAVE-INDUCED, SOLVENT-FREE TRANSFORMATIONS OF BENZOHETERACYCLANONES BY HTIB (KOSER'S REAGENT)

    EPA Science Inventory

    The microwave-activated reaction of [hydroxy(tosyloxy)iodo]benzene (HTIB) with various chromanones, thiochromanones and dihydroquinolones under solvent-free conditions has been studied. In addition to the common dehydrogenation, 2,3-migration has also been observed in the case of...

  11. Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Koh, Tokuyuki; Toyoshima, Kenji; Nakamori, Kouta; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Shinamura, Shoji; Kudo, Kazuhiro

    2017-07-01

    A solvent-free printing process for printed electronics is successfully developed using toner-type patterning of organic semiconductor toner particles and the subsequent thin-film formation. These processes use the same principle as that used for laser printing. The organic thin-film transistors are prepared by electrically distributing the charged toner onto a Au electrode on a substrate film, followed by thermal lamination. The thermal lamination is effective for obtaining an oriented and crystalline thin film. Toner printing is environmentally friendly compared with other printing technologies because it is solvent free, saves materials, and enables easy recycling. In addition, this technology simultaneously enables both wide-area and high-resolution printing.

  12. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  13. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  14. A novel and organic solvent-free preparation of solid lipid nanoparticles using natural biopolymers as emulsifier and stabilizer.

    PubMed

    Xue, Jingyi; Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Luo, Yangchao

    2017-10-05

    In this work, a new and novel organic solvent-free and synthetic surfactant-free method was reported to fabricate stable solid lipid nanoparticles (SLNs) from stearic acid, sodium caseinate (NaCas) and pectin, as well as water. Melted stearic acid was directly emulsified into an aqueous phase containing NaCas and pectin, followed by pH adjustment and thermal treatment to induce the formation of a compact and dense polymeric coating which stabilized SLNs. The preparation procedures and formulations were comprehensively optimized. The inter- and intra-molecular interactions among three ingredients were characterized by fluorescence and Fourier transform infrared spectroscopies. The stability of as-prepared SLNs was evaluated under simulated gastrointestinal conditions, and compared with traditional SLNs prepared with organic solvents. Our results revealed that the SLNs prepared from this organic solvent-free method had superior physicochemical properties over the traditional SLNs, including smaller size and better stability. Furthermore, redispersible SLNs powders were obtained by nano spray drying, but only the SLNs prepared by organic solvent-free method had sub-micron scale, uniform and spherical morphology. The organic solvent-free preparation method was proved to be a promising approach to prepare stable and uniform SLNs for potential oral delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

    PubMed Central

    Zhou, Ruhong; Berne, Bruce J.

    2002-01-01

    The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327

  16. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water?

    PubMed

    Zhou, Ruhong; Berne, Bruce J

    2002-10-01

    The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  17. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    PubMed

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  18. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients

    PubMed Central

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h. PMID:26904539

  19. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH 3) 4](NO 3) 2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  20. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media.

    PubMed

    Zeuner, Birgitte; Kontogeorgis, Georgios M; Riisager, Anders; Meyer, Anne S

    2012-02-15

    Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    PubMed

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-03

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. Copyright © 2015, American Association for the Advancement of Science.

  2. A Laboratory Study of Natural Zeolite for Treatment of Fluorinated Water

    NASA Astrophysics Data System (ADS)

    Pandey, A.

    2015-12-01

    Fluoride contamination is mainly induced in ground water by chemical interaction between water and fluoride bearing rocks and natural fluoridation is further catalyzed by anthropogenic activities. Elevated fluoride concentrations in the water bodies above the permissible limits are not only degrading water for drinking purposes but also to the agricultural, industrial as well as daily household needs. Fluoride content in water has been constantly a subject of serious concern to the concerned authorities. It is significantly contributing in increasing tolls of arthritis, brain and kidney diseases, cancer, male fertility issues and cases of thyroid diseases. Hence, the present study has been conducted to investigate the possibility of treating fluorinated water using zeolites. The capabilities of natural zeolites are attributed to their catalytic, molecular sieve, adsorption and ion-exchange properties which have been utilized in our laboratory experiment. The experiment was carried out in two phases. In the first phase of the experiment, the properties of zeolites were tested in solid and liquid phases using ICP-OES, SEM, EDX and IC tests. Physio-chemical alterations induced by zeolites in the fluid chemistry were monitored by analyzing fluid sample regularly for pH, redox potential, electrical conductivity and total dissolved solids, and by conducting metal and anion tests. In second phase, zeolite was used for treatment of fluorinated water with known concentration of fluoride, and the geochemical processes associated with fluoride remediation were monitored by conducting non-invasive, invasive geochemical and physical measurements at regular time periods on the water samples collected from both control column and the experiment column. Results thus obtained in this study showed decrease in fluoride concentration over time, indicating the possibility of use of zeolites in treatment of fluorinated water.

  3. Desilication of ZSM-5 zeolites for mesoporosity development using microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Zubair; Jun, Jong Won; Kim, Chul-Ung

    2015-01-15

    Highlights: • Microwaves have beneficial effects on desilication of zeolites. • Produced mesopores with microwaves have narrow pore-size distribution. • Advantages and disadvantages of various desilicating agents were also reported. - Abstract: Mesoporous ZSM-5 zeolite was obtained by desilication in alkaline solutions with microwave (MW) and conventional electric (CE) heating under hydrothermal conditions. Both methods were effective in the production of mesoporous zeolites; however, MW was more efficient than CE as it led to well-defined mesopores with relatively small sizes and a narrow size distribution within a short treatment time. Moreover, the mesoporous ZSM-5 obtained through this method was effectivemore » in producing less bulky products from an acid-catalyzed reaction, specifically the butylation of phenol. Finally, various bases were found to have advantages and disadvantages in desilication. NaOH was the most reactive; however, macroporosity could develop easily under a severe condition. Ammonia water was weakly reactive; however, it could be used to precisely control the pore architecture, and no ion exchange is needed for acid catalysis. Organic amines such as ethylenediamine can also be used in desilication.« less

  4. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  5. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    PubMed Central

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  6. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    PubMed

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  7. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  8. Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2017-12-01

    Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.

  9. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  10. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    NASA Astrophysics Data System (ADS)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  11. [The mutagenic action of the dust of natural zeolites and chrysotile asbestos].

    PubMed

    Durnev, A D; Suslova, T B; Cheremisina, Z P; Dubovskaia, O Iu; Nigarova, E A; Korkina, L G; Seredenin, S B; Velichkovskiĭ, B T

    1990-01-01

    The cell chemiluminescence method was used to demonstrate the ability of asbest and zeolite dusts from 8 deposits of the USSR to induce generation of free oxygen radicals in the phagocytosing cells suspension. It has been found that asbest and zeolite (0.01 and 0.05 mg/ml) increase levels of cells with chromosome aberrations in human cell cultures. The cytogenetic effect of asbest was inhibited by superoxide dismutase (50 mg/ml). The damaging effect of zeolite was decreased by the pharmacological drug bemithyl (0.007-0.07 mM) and completely eliminated by catalase (20 mg/ml). The results obtained indicate that mutagenic effect of dust particles of asbest and zeolite is mediated by oxygen radicals.

  12. HYDROGENATION OF POLYCYCLIC AROMATIC COMPOUNDS USING NI SUPPORT ON H-BETA ZEOLITE IN SUPERCRITICAL CARBON DIOXIDE

    EPA Science Inventory

    The primary rationale for use of supercritical carbon dioxide as a solvent in hydrogenation is the elimination of mass transfer limitations, through enhancement of the solubility of hydrogen at the reaction locus. Hydrogenation of anthracene was performed using NiHB-zeolite catal...

  13. Mechanism insight into the cyanide-catalyzed benzoin condensation: a density functional theory study.

    PubMed

    He, Yunqing; Xue, Ying

    2010-09-02

    The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.

  14. QM/MM MD and free energy simulation study of methyl transfer processes catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-01-16

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here we review the results of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  15. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    NASA Astrophysics Data System (ADS)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  16. Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2014-10-01

    The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.

  17. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    PubMed Central

    Smyslova, Petra; Popa, Igor; Lyčka, Antonín; Tejral, Gracian; Hlavac, Jan

    2015-01-01

    Copper-free click reactions between a dibenzoazocine derivative and azides derived from 5-methyluridine were investigated. The non-catalyzed reaction yielded both regioisomers in an approximately equivalent ratio. The NMR spectra of each regioisomer revealed conformational isomery. The ratio of isomers was dependent on the type of regioisomer and the type of solvent. The synthesis of various analogs, a detailed NMR study and computational modeling provided evidence that the isomery was dependent on the interaction of the azocine and pyrimidine parts. PMID:26673606

  18. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    PubMed Central

    Goossens, Spencer; Mehdizadeh Rahimi, Ali

    2017-01-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  19. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    NASA Astrophysics Data System (ADS)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.

    2017-03-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  20. Thermal transpiration in zeolites: A mechanism for motionless gas pumps

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen K.; Gianchandani, Yogesh B.

    2008-11-01

    We explore the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump. The nanopores in clinoptilolite enable the required free-molecular flow, even at atmospheric pressure. The pump utilizes a foil heater located between zeolite disks in a plastic package. A 2.3mm thick zeolite disk generates a typical gas flow rate of 6.6×10-3 cc/min-cm2 with an input power of <300mW/cm2. The performance is constrained by imperfections in clinoptilolite, which provide estimated leakage apertures of 10.2-13.5μm/cm2 of flow cross section. The transient response of the pump is studied to quantify nonidealities.

  1. Vinyl azides derived from allenes: thermolysis leading to multisubstituted 1,4-pyrazines and Mn(III)-catalyzed photochemical reaction leading to pyrroles.

    PubMed

    Sajna, K V; Kumara Swamy, K C

    2012-10-05

    Thermolysis of phosphorus-based vinyl azides under solvent- and catalyst-free conditions furnished a new route for 1,4-pyrazines. A simple one-pot, Mn(III)-catalyzed photochemical route has been developed for multisubstituted pyrroles starting from allenes and 1,3-dicarbonyls via in situ-generated vinyl azides. The utility of new phosphorus-based pyrroles is also demonstrated in the Horner reaction. The structures of key products are unequivocally confirmed by X-ray crystallography.

  2. Alcohols as hydrogen-donor solvents for treatment of coal

    DOEpatents

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  3. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    PubMed Central

    Steelandt, Julie; Salmon, Damien; Gilbert, Elodie; Almouazen, Eyad; Renaud, François NR; Roussel, Laurène; Haftek, Marek; Pirot, Fabrice

    2014-01-01

    Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration) as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC) suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus) and one fungal strain (Candida albicans) cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the production of nanomaterials exhibiting antimicrobial activity, suitable stability, and easily incorporable as a new ingredient in various pharmaceutical products. PMID:25278751

  4. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.

    PubMed

    Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas

    2015-05-01

    Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.

  5. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  6. Greening Wittig Reactions: Solvent-Free Synthesis of Ethyl Trans-Cinnamate and Trans-3-(9-Anthryl)-2-Propenoic Acid Ethyl Ester

    ERIC Educational Resources Information Center

    Nguyen, Kim Chi; Weizman, Haim

    2007-01-01

    Green procedure is used to create solvent-free alternatives for conventional Wittig reactions, which are widely used to install a double bond in a highly selective manner. Solvent-free reactions reduce health and environmental risks and provide a basis for an inquiry-based discussion of the stereochemistry of the Wittig reaction and the factors…

  7. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites.

    PubMed

    Figueiredo, Hugo; Quintelas, Cristina

    2014-06-15

    This review aims to present a global view of the efforts conducted to convert zeolites into efficient supports for the removal of heavy metal oxyanions. Despite lacking affinity for these species, due to inherent charge repulsion between zeolite framework and anionic species, zeolites have still received considerable attention from the scientific community, since their versatility allowed tailoring them to answer specific requirements. Different processes for the removal and recovery of toxic metals based on zeolites have been presented. These processes resort to modification of the zeolite surface to allow direct adsorption of oxyanions, or by combination with reducing agents for oxyanions that allow ion-exchange with the converted species by the zeolite itself. In order to testify zeolite versatility, as well as covering the wide array of physicochemical constraints that oxyanions offer, chromium and arsenic oxyanions were selected as model compounds for a review of treatment/remediation strategies, based on zeolite modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  9. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting; ...

    2018-04-16

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  10. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.

    PubMed

    Vorobjev, Y N; Almagro, J C; Hermans, J

    1998-09-01

    A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded

  11. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.

    PubMed

    Lee, Michael S; Olson, Mark A

    2013-07-28

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and∕or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  12. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Olson, Mark A.

    2013-07-01

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and/or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  13. Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.

    PubMed

    Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D

    2018-06-19

    The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  15. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  16. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    PubMed

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  17. A Simple and Efficient Synthesis of 4-Arylacridinediones and 6-Aryldiindeno[1,2-b:2,1-e]pyridinediones using CuI Nanoparticles as Catalyst under Solvent-Free Conditions.

    PubMed

    Abdolmohammadi, Shahrzad; Dahi-Azar, Saman; Mohammadnejad, Mahdieh; Hosseinian, Akram

    2017-01-01

    The importance of acridine core structure and other heterocycles containing its framework is well known, as they are found in numerous compounds with a variety of biological effects. Pyridine is also an important solvent and heterocyclic nucleus for the design and synthesis of novel molecules with biological properties. It occurs in several natural compounds which are used as a precursor in agrochemicals and pharmaceuticals. The utility of nanostructured metal salts because of their small size and high surface area as catalysts in organic synthesis has drawn special attention due to their better properties such as slower reaction rate, reusability of the catalyst, and higher yields of products compared to the bulk size. Nanosized copper iodide is one reusable Lewis acid catalyst which has revealed several catalytic activities for the synthesis of organic compounds and others. As part of our recent study to develop heterocyclic syntheses using nanostructured catalysts, we now report an efficient and clean synthetic route to 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridinediones via a condensation reaction catalyzed by CuI nanoparticles under solvent-free conditions. The present work deals with the condensation reaction of aromatic aldehydes, ammonium acetate and active methylene compounds comprising dimedone or 1,3- indanedione in the presence of a catalytic amount of the synthesized CuI nanoparticles could be applied for the solvent-free preparation of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1- e]pyridinediones at 70 °C within 60 min. A series of 9-aryl-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridine-5,7-diones were synthesized in high to excellent yields via a simple one-pot three-component coupling reaction using the synthesized CuI nanoparticles as an efficient and recyclable catalyst. All synthesized compounds were well characterized by their satisfactory elemental analyses, IR, 1

  18. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations.

    PubMed

    Oleksiak, Matthew D; Ghorbanpour, Arian; Conato, Marlon T; McGrail, B Peter; Grabow, Lars C; Motkuri, Radha Kishan; Rimer, Jeffrey D

    2016-11-02

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H 2 O relative to other light gases (e.g., H 2 , N 2 , CO 2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO 2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  20. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  1. DDR-type zeolite membrane synthesis, modification and gas permeation studies

    DOE PAGES

    Yang, Shaowei; Cao, Zishu; Arvanitis, Antonios; ...

    2016-01-22

    DDR-type zeolite membrane was synthesized on porous α-alumina substrate by hydrothermal treatment of a ball-milled Sigmal-1 crystal seed layer in an aluminum-free precursor solution containing 1-Adamantylamine as the structure directing agent (SDA). The as-synthesized DDR zeolite membranes were defect-free but the supported zeolite layers were susceptible to crack development during the subsequent high-temperature SDA removal process. The cracks were effectively eliminated by the liquid phase chemical deposition method using tetramethoxysilane as the precursor for silica deposits. The modified membrane was extensively studied for H 2, He, O 2, N 2, CO 2, CH 4, and i-C 4H 10 pure gasmore » permeation and CO 2/CH 4 mixture separation. At 297 K and 2-bar feed gas pressure, the membrane achieved a CO 2/CH 4 separation factor of ~92 for a feed containing 90% CO 2, which decreased to 62 for a feed containing 10% CO 2 with the CO 2 permeance virtually unchanged at ~1.8×10 –7 mol/m• sup>2 s • Pa regardless of the feed composition. It also exhibited an O 2/N 2 permselectivity of 1.8 at 297 K. Furthermore, the gas permeation behaviors of the current aluminum-containing DDR type zeolite membrane are generally in good agreement with the findings in both experimental and theoretical studies on the pure-silica DDR membranes in recent literature.« less

  2. Copper-catalyzed trifluoromethylthiolation of aryl halides with diverse directing groups.

    PubMed

    Xu, Jiabin; Mu, Xin; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2014-08-01

    The expansion of cross-coupling components in Cu-catalyzed C-X bond forming reactions have received much attention recently. A novel Cu-catalyzed trifluoromethylthiolation of aryl bromides and iodides with the assistance of versatile directing groups such as pyridyl, methyl ester, amide, imine and oxime was reported. CuBr was used as the catalyst, and 1,10-phenanthroline as the ligand. By changing the solvent from acetonitrile to DMF, the coupling process could even take place at room temperature.

  3. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    PubMed Central

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823

  5. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  6. Iodine-Catalyzed Isomerization of Dimethyl Muconate.

    PubMed

    Settle, Amy E; Berstis, Laura; Zhang, Shuting; Rorrer, Nicholas A; Hu, Haiming; Richards, Ryan M; Beckham, Gregg T; Crowley, Michael F; Vardon, Derek R

    2018-06-11

    cis,cis-Muconic acid is a platform bio-based chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations owing to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely because of solvent complexation with iodine. Under select conditions, ttDMM yields of 95 % were achieved in <1 h with methanol, followed by high purity recovery (>98 %) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for bio-based chemicals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability

    NASA Astrophysics Data System (ADS)

    Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa

    2016-09-01

    The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.

  8. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.

    PubMed

    Aguilar, David; Contel, Maria; Urriolabeitia, Esteban P

    2010-08-09

    Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three- and two-component synthesis catalyzed by gold compounds and nanoparticles (Au-NP) under mild conditions. The use of dichloromethane allows for the activation of two C-Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cycloaurated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.

  9. Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation.

    PubMed

    Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei

    2013-03-12

    In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.

  10. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  11. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  12. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    PubMed

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  13. SOLVENT-FREE REDUCTION OF AROMATIC NITRO COMPOUNDS WITH ALUMINA-SUPPORTED HYDRAZINE UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In a solvent-free microwave-expedited process, aromatic nitro compounds are readily reduced to the corresponding amino compounds in good yield with hydrazine hydrate supported on alumina in presence of FeCl3, 6H2), Fe(III) oxide hydroxide or Fe(III) oxides.

  14. Solvent and substituent effects on aggregation constants of perylene bisimide π-stacks--a linear free energy relationship analysis.

    PubMed

    Chen, Zhijian; Fimmel, Benjamin; Würthner, Frank

    2012-08-14

    A series of six perylene bisimides (PBIs) with hydrophilic and hydrophobic side chains at the imide nitrogens were applied for a comparative study of the solvent and structural effects on the aggregation behaviour of this class of dyes. A comparison of the binding constants in tetrachloromethane at room temperature revealed the highest binding constant of about 10(5) M(-1) for a PBI bearing 3,4,5-tridodecyloxyphenyl substituents at the imide nitrogens, followed by 3,4,5-tridodecylphenyl and alkyl-substituted PBIs, whereas no aggregation could be observed in the accessible concentration range for PBIs equipped with bulky 2,6-diisopropylphenyl substituents at the imide nitrogens. The aggregation behaviour of three properly soluble compounds was investigated in 17 different solvents covering a broad polarity range from nonpolar n-hexane to highly polar DMSO and water. Linear free energy relationships (LFER) revealed a biphasic behaviour between Gibbs free energies of aggregation and common empirical solvent polarity scales indicating particularly strong π-π stacking interactions in nonpolar aliphatic and polar alcoholic solvents whilst the weakest binding is observed in dichloromethane and chloroform. Accordingly, PBI aggregation is dominated by electrostatic interactions in nonpolar solvents and by solvophobic interactions in protic solvents. In water, the aggregation constant is increased far beyond LFER expectations pointing at a pronounced hydrophobic effect.

  15. Organic solvent-free sugar-based transparency nanopatterning material derived from biomass for eco-friendly optical biochips using green lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2014-05-01

    An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.

  16. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl 2·6H 2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl 2·nH 2O is then ammoniated directly using liquefied NH 3 in the absence of solvent to form MgCl 2·6NH 3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl 2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques.more » Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH 2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.« less

  17. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    PubMed

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Removal of paraquat solution onto zeolite material

    NASA Astrophysics Data System (ADS)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  19. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    USDA-ARS?s Scientific Manuscript database

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  20. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  1. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes.

    PubMed

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-23

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  2. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    PubMed Central

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  3. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  4. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  5. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method.

    PubMed

    Imperiale, Julieta C; Bevilacqua, Gabriela; Rosa, Paulo de Tarso Vieira E; Sosnik, Alejandro

    2014-12-01

    This work investigated the production of pure indinavir free base nanoparticles by a supercritical anti-solvent method to improve the drug dissolution in intestine-like medium. To increase the dissolution of the drug by means of a supercritical fluid processing method. Acetone was used as solvent and supercritical CO2 as antisolvent. Products were characterized by dynamic light scattering (size, size distribution), scanning electron microscopy (morphology), differential scanning calorimetry (thermal behaviour) and X-rays diffraction (crystallinity). Processed indinavir resulted in particles of significantly smaller size than the original drug. Particles showed at least one dimension at the nanometer scale with needle or rod-like morphology. Results of X-rays powder diffraction suggested the formation of a mixture of polymorphs. Differential scanning calorimetry analysis showed a main melting endotherm at 152 °C. Less prominent transitions due to the presence of small amounts of bound water (in the raw drug) or an unstable polymorph (in processed IDV) were also visible. Finally, drug particle size reduction significantly increased the dissolution rate with respect to the raw drug. Conversely, the slight increase of the intrinsic solubility of the nanoparticles was not significant. A supercritical anti-solvent method enabled the nanonization of indinavir free base in one single step with high yield. The processing led to faster dissolution that would improve the oral bioavailability of the drug.

  6. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed thatmore » the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.« less

  7. From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.

    PubMed

    Gavish, Nir; Elad, Doron; Yochelis, Arik

    2018-01-04

    The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.

  8. SOLVENT-FREE FACILE SYNTHESIS OF NOVEL α-TOSYLOXY β-KETO SULFONES USING [HYDROXY(TOSYLOXY)IODO]BENZENE

    EPA Science Inventory

    A facile, general and high yielding protocol for the synthesis of novel α-tosyloxy β-keto sulfones is described utilizing relatively non-toxic, [hydroxy(tosyloxy)iodo]benzene, under solvent-free conditions at room temperature.

  9. Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from NMR Spectroscopy and DFT Calculations.

    PubMed

    Dai, Weili; Wang, Chuanming; Yi, Xianfeng; Zheng, Anmin; Li, Landong; Wu, Guangjun; Guan, Naijia; Xie, Zaiku; Dyballa, Michael; Hunger, Michael

    2015-07-20

    Experimental evidence for the presence of tert-butyl cations, which are important intermediates in acid-catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with (1)H/(13)C magic-angle-spinning NMR spectroscopy, the tert-butyl cation was successfully identified on zeolite H-ZSM-5 upon conversion of isobutene by capturing this intermediate with ammonia. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A FACILE ONE-POT SYNTHESIS OF β-KETO SULFONES FROM KETONES UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    An easy solvent-free method is described for the conversion of ketones into β-keto sulfones in high yields that involves in situ generation of α-tosyloxyketones followed by nucleophilic substitution with sodium arene sulfinate in presence of tetra-butylammonium bromide at ...

  11. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.

    PubMed

    Masoumifard, Nima; Guillet-Nicolas, Rémy; Kleitz, Freddy

    2018-04-01

    The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir

    2017-02-01

    In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.

  13. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    EPA Science Inventory

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  14. Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells.

    PubMed

    Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan

    2016-12-21

    Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.

  15. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  16. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    PubMed

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    PubMed

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  18. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    PubMed Central

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  19. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.

    PubMed

    Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou

    2015-12-01

    The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.

  20. ODC-Free Solvent Implementation for Phenolics Cleaning

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)

    2001-01-01

    During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.

  1. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  2. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition.

    PubMed

    Wang, Zhengbao; Ge, Qinqin; Shao, Jia; Yan, Yushan

    2009-05-27

    We demonstrate for the first time that by one single hydrothermal synthesis a zeolite LTA membrane with a high flux of 9.0 kg/m(2) h and high water/ethanol separation factor of 10,000 could be formed on a ceramic hollow fiber that is known for its ability to form a compact module. The flux is the highest reported in the literatures. A novel seeding method, dipcoating-wiping, is key to obtaining zeolite membranes with high separation performance because it reproducibly produces a uniform and trace seed layer on the support. This new seeding method is expected to have serious implications for making defect-free zeolite films and membranes for many applications. The membranes reported here have the potential to solve the key problems that have prevented zeolite membranes from widespread use for biofuel production.

  3. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Treesearch

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  4. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite).

    PubMed

    Nakane, T; Gomyo, H; Sasaki, I; Kimoto, Y; Hanzawa, N; Teshima, Y; Namba, T

    2006-08-01

    The causative substances for axillary osmidrosis, which are often found in apocrine sweat, are the decomposed/denatured products of short-chain fatty acid and other biological metabolite compounds produced by axillary-resident bacteria. Conventional underarm deodorants suppress the process of odour production mostly by the following mechanism: (1) suppression of perspiration, (2) reduction in numbers of resident bacteria, (3) deodorization and (4) masking. The most important and effective method to reduce odour is to suppress the growth of resident bacteria with antimicrobials, which have several drawbacks, especially in their safety aspect. To solve these problems, we focused on Ag-zeolite (silver-exchanged zeolite) that hold stable Ag, an inorganic bactericidal agent, in its structure, and therefore, poses less risk in safety. Its bactericidal effect on skin-resident bacteria was found to be excellent and comparable with that of triclosan, a most frequently used organic antimicrobial in this product category. The dose-response study of Ag-zeolite powder spray (0-40 w/w%) using 39 volunteers revealed that 5-40 w/w% Ag-zeolite could show a sufficient antimicrobial effect against skin-resident bacteria. The comparison study using 0.2 w/w% triclosan as the control and 10 w/w% Ag-zeolite indicated that: (1) one application of the powder spray containing 10 w/w% Ag-zeolite could show a sufficient antimicrobial effect against the resident bacteria and its effect continued for 24 h, (2) a powder spray containing 0.2 w/w% triclosan was unable to show a sufficient antimicrobial effect, and (3) no adverse event was observed. These studies show that Ag-zeolite has a superior antimicrobial ability that is rarely found in conventional antimicrobials used in deodorant products and a strong antiaxillary odour deodorant ability because of its long-lasting effect. During clinical study, patch tests with humans and other clinical studies of this product showed no adverse events

  5. Zeolite A imidazolate frameworks

    NASA Astrophysics Data System (ADS)

    Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M.

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  6. Zeolite A imidazolate frameworks.

    PubMed

    Hayashi, Hideki; Côté, Adrien P; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and beta-cages for FAU, alpha- and beta-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  7. Catalytic conversion of Chlorella pyrenoidosa to biofuels in supercritical alcohols over zeolites.

    PubMed

    Yang, Le; Ma, Rui; Ma, Zewei; Li, Yongdan

    2016-06-01

    Microalgae have been considered as the feedstock for the third generation biofuels production, given its high lipid content and fast productivity. Herein, a catalytic approach for microalgae liquefaction to biocrude is examined in a temperature range of 250-300°C in methanol and ethanol over zeolites. Higher biocrude yield was achieved in ethanol and at lower temperatures, while better quality biocrude with higher light biocrude ratio and lower average molecular weight (Mw) was favored in methanol and at higher temperatures. Application of zeolites improves the biocrude quality significantly. Among the catalysts, HY shows the strongest acidity and performs the best to produce high quality biocrude. Solid residues have been extensively explored with thermal gravity analysis and elemental analysis. It is reported for the first time that up to 99wt.% of sulfur is deposited in the solid residue at 250°C for both solvents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of Fe3O4 addition on removal of ammonium by zeolite NaA.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-01-15

    Magnetic zeolite NaA with different Fe(3)O(4) loadings was prepared by hydrothermal synthesis based on metakaolin and Fe(3)O(4). The effect of added Fe(3)O(4) on the removal of ammonium by zeolite NaA was investigated by varying the Fe(3)O(4) loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe(3)O(4) apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudo-second-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe(3)O(4). According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synthesis and characterization of Sn/zeolite and catalytic activity test in the esterification reaction of sludge oil

    NASA Astrophysics Data System (ADS)

    Alimuddin, Andi Hairil; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Prawatya, Yopa Eka; Astar, Ismail; Yustira, Yudi

    2017-03-01

    Synthesis of Sn-Zeolite has been made to use for esterification reaction of free fatty acids in sludge oil. Catalyst characterization was accomplished using X-Ray Diffraction (XRD), X-Ray Flourecence (XRF), and Fourier Transform Infra Red (FTIR). Catalyst Sn/zeolite was synthesized by impregnated Sn of SnCl2 into the zeolite. The amount of Sn impregnated base on the value of cation exchange capacity (CEC) of zeolites. Esterification reaction of fatty acids from sludge oil using Sn/Zeolite catalyst was did by variated the reaction time. XRD analysis results showed that the catalyst Sn/zeolite was dominated by modernit and quartz. XRF analysis results was increasing amount of Sn metal and the Si/Al ratio on Sn/zeolite catalyst along with addition of Sn metal. FTIR analysis results showed that the catalyst synthesized had Bronsted acid side (the spectrum 1639.4; 1656.7; 1654.8 cm-1) and the Lewis acid (spectrum 1400.2 and 1402.2 cm-1). The results showed that the optimum conditions of esterification reaction in 4 hours reaction time, 5% concentration of the catalyst, and molar ratio was about 1:10 with a conversion percentage of products reached 96.00%, which can be achieved with a ratio was about 4:1 between Sn and zeolite on Sn/zeolite catalyst.

  10. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    PubMed

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  12. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    PubMed

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  13. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  14. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  15. Diagnosing the Internal Architecture of Zeolite Ferrierite

    PubMed Central

    Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong

    2017-01-01

    Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081

  16. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  17. High surface area nanocrystalline hausmannite synthesized by a solvent-free route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Miranda, Daniel; Ponrouch, Alexandre; Pons, Josefina

    Highlights: ► High surface area Mn{sub 3}O{sub 4} nanoparticles obtained by a solvent-free low temperature route. ► 3,6,9-Trioxadecanoic acid allows to obtain nanocrystalline hausmannite. ► Tape casted electrodes show up to 300 mAh g{sup −1} capacity after more than 40 cycles at a C/3 rate. ► Upper cut off voltage strongly influences capacity retention upon cycling at high C rates. -- Abstract: Nanocrystalline high surface area Mn{sub 3}O{sub 4} powder was obtained at low temperature by a solvent-free route. The precursor was a mixture of manganese (II) acetate, 3,6,9-trioxadecanoic acid (TODA) and ammonium acetate that were intimately mixed by groundingmore » in an agate mortar. Nanocrystalline Mn{sub 3}O{sub 4} was obtained by thermal treatment at 120 °C. Powder X-ray diffraction, selected area electron diffraction, high resolution transmission electron microscopy, and Fourier transformed infrared characterization confirmed the formation of the hausmannite phase. The as-prepared mesoporous material has high specific surface area (120 m{sup 2} g{sup −1}). The performances of tape casted Mn{sub 3}O{sub 4} nanopowder electrodes were investigated as anode material for lithium ion batteries. High capacity values were achieved at diverse C rates. Capacity fading was found to be dependent on the upper cut off voltage, the presence of a plateau at 2.25 V vs. Li{sup +}/Li being detrimental for long term cyclability.« less

  18. Caffeine-catalyzed gels.

    PubMed

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    PubMed Central

    Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji

    2013-01-01

    Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241

  20. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  1. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of

  2. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    NASA Astrophysics Data System (ADS)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  3. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Dinh, Toan; Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Qamar, Afzaal; Woodfield, Peter; Zhu, Yong; Nguyen, Nam-Trung; Viet Dao, Dzung

    2017-06-01

    In this paper, we report on a low-cost, environment-friendly and wearable thermal flow sensor, which can be manufactured in-house using pencil graphite as a sensing hot film and biodegradable printing paper as a substrate, without using any toxic solvents or cleanroom facilities. The hot film flow sensor offers excellent performance such as high signal-to-noise ratio (≥slant 40 for an air flow velocity of 1 m s-1), high sensitivity to airflow (53.7 mV(m s-1)-0.8) and outstanding long-term stability (almost no drift in 24 h). The sensor can be comfortably affixed to the philtrum of patients and measures human respiration in realtime. The results indicate that the wearable thermal flow sensors fabricated by this solvent-free and user-friendly method could be employed in human respiratory monitoring.

  4. 21 CFR 582.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 582.40 Section 582.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  5. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 182.40 Section 182.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  6. Investigation of solvent-free MALDI-TOFMS sample preparation methods for the analysis of organometallic and coordination compounds.

    PubMed

    Hughes, Laura; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2009-01-15

    An investigation of various solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample preparation methods for the characterization of organometallic and coordination compounds is described. Such methods are desirable for insoluble materials, compounds that are only soluble in disadvantageous solvents, or complexes that dissociate in solution, all of which present a major "difficulty" to most mass spectrometry techniques. First-row transition metal acetylacetonate complexes, which have been characterized previously by solution preparation MALDI-TOFMS, were used to evaluate the various solvent-free procedures. These procedures comprise two distinct steps: the first being the efficient "solids mixing" (the mixing of sample and matrix), and the second being the effective transfer of the sample/matrix mixture to the MALDI target plate. This investigation shows that vortex mixing is the most efficient first step and that smearing using a microspatula is the most effective second step. In addition, the second step is shown to be much more critical than the first step in obtaining high-quality data. Case studies of truly insoluble materials highlight the importance of these techniques for the wider chemistry community.

  7. Fabrication of MTN-type zeolite by self-assembling of supramolecular compound

    NASA Astrophysics Data System (ADS)

    Huang, Aisheng; Caro, Jürgen

    2009-10-01

    MTN-type (Zeolite Socony Mobil Thirty-Nine) zeolite was prepared at 473 K by a novel method through self-assembling of a supramolecular compound called 2,4,6-tris (4-pyridyl) triazine (TPT) in DMF (N,N-dimethylformamide). The effects of fluoride, DMF and germanium on the synthesis of MTN-type zeolite were investigated. The crystallization was facilitated by adding fluoride to the synthesis solution, resulting in the formation of highly crystalline MTN samples, while some amorphous phase was observed in fluoride-free batches. DMF was required to obtain a highly crystalline MTN sample, since TPT dissolves easier in DMF than in water, thus facilitating the self-assembling of TPT into a 3D network to structure the MTN framework. The MTN structure could be synthesized at low germanium content (Ge/Si≤0.18), while AST (AlPO 4-sixteen) as a foreign phase is formed at high germanium substitution (Ge/Si≥0.5).

  8. Rational enhancement of enzyme performance in organic solvents. Final technical report, 1992--1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klibanov, A.M.

    1996-12-31

    This research focused on the following: the dependence of enzymatic activity of several model hydrolases in nonaqueous solvents; control of substrate selectivity of the protease subtilisin Carlsberg by the solvent; control of catalytic activity and enantioselectivity of this enzyme in organic solvents by immobilization support; lipase-catalyzed acylation of sugars in anhydrous hydrophobic media; the possibility of accelerating enzymatic processes in organic solvents by certain cosolvents; whether lipase catalysis in organic solvents can be enhanced by introducing interfaces in the in the reaction medium; the structure of proteins suspended in organic solvents; improving enzymatic enantioselectivity in organic solvents; analyzing the plungemore » in enzymatic activity upon replacing water with organic solvents; and the structural basis for the phenomenon of molecular memory of imprinted proteins in organic solvents.« less

  9. Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization

    PubMed Central

    Noh, Ye Ji; Joh, Han-Ik; Yu, Jaesang; Hwang, Soon Hyoun; Lee, Sungho; Lee, Cheol Ho; Kim, Seong Yun; Youn, Jae Ryoun

    2015-01-01

    The drying process of graphene-polymer composites fabricated by solution-processing for excellent dispersion is time consuming and suffers from a restacking problem. Here, we have developed an innovative method to fabricate polymer composites with well dispersed graphene particles in the matrix resin by using solvent free powder mixing and in-situ polymerization of a low viscosity oligomer resin. We also prepared composites filled with up to 20 wt% of graphene particles by the solvent free process while maintaining a high degree of dispersion. The electrical conductivity of the composite, one of the most significant properties affected by the dispersion, was consistent with the theoretically obtained effective electrical conductivity based on the mean field micromechanical analysis with the Mori-Tanaka model assuming ideal dispersion. It can be confirmed by looking at the statistical results of the filler-to-filler distance obtained from the digital processing of the fracture surface images that the various oxygenated functional groups of graphene oxide can help improve the dispersion of the filler and that the introduction of large phenyl groups to the graphene basal plane has a positive effect on the dispersion. PMID:25771823

  10. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    PubMed

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  11. Activated and Micronized Zeolite in the Modulation of Cellular Oxidative Stress in Mexican Smokers: A Randomized Clinical Trial.

    PubMed

    Atitlán-Gil, Alfonso; Bretón-de la Loza, Martín M; Jiménez-Ortega, José C; Belefant-Miller, Helen; Betanzos-Cabrera, Gabriel

    2017-01-01

    Activated and micronized zeolites are used as detoxifying agents in humans. Detoxification is attributed to their ability to reduce lipid peroxidation by scavenging free radicals. To evaluate activated and micronized zeolites as modulators of cellular oxidative stress in Mexican smokers without lung diseases. Randomized clinical trial. Subjects were randomly divided into three groups: activated and micronized zeolites, n = 29; vitamin E, an accepted antioxidant, n = 29; and maltodextrin as control, n = 27. Each group received the corresponding supplementation, dissolved in water, once a day for 30 days as follows: activated and micronized zeolites, 5.4 g activated and micronized zeolite; vitamin E, 400 mg D-alpha tocopheryl acetate; and maltodextrin, 250 mg of maltodextrin. The thiobarbituric acid reactive substances assay was used to screen for lipid peroxidation. Catalase activity, plasma antioxidant capacity, and hydrogen peroxide levels were also measured. Results were analyzed by a one-way ANOVA and post hoc test of Bonferroni. Subjects administered activated and micronized zeolites had equivalent antioxidant activities as subjects administered vitamin E. Activated and micronized zeolites may be useful as a modulator of oxidative stress in smokers. However, inclusion of a comparison group of non-smokers would be useful in future studies to assess the degree to which zeolites reverse the oxidant stress.

  12. Vegetable Oil Derived Solvent, and Catalyst Free “Click Chemistry” Thermoplastic Polytriazoles

    PubMed Central

    Floros, Michael C.; Leão, Alcides Lopes; Narine, Suresh S.

    2014-01-01

    Azide-alkyne Huisgen “click” chemistry provides new synthetic routes for making thermoplastic polytriazole polymers—without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the “odd-even” effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries. PMID:25032224

  13. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    PubMed

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  14. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  15. Zeolites: Exploring Molecular Channels

    ScienceCinema

    Arslan, Ilke; Derewinski, Mirek

    2018-05-16

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  16. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  17. Zeolites: Exploring Molecular Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  18. Solvent-Free Synthesis of Chalcones

    ERIC Educational Resources Information Center

    Palleros, Daniel R.

    2004-01-01

    The synthesis of twenty different chalcones in the absence of solvent is presented. The results indicated that out of the twenty different chalcones investigated seventeen can be obtained in a matter of minutes by mixing the corresponding benzaldehyde and acetophenone in the presence of solid NaOH in a mortar with pestle.

  19. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2

  20. Mechanistic studies on the Pd-catalyzed vinylation of aryl halides with vinylalkoxysilanes in water: the effect of the solvent and NaOH promoter.

    PubMed

    Gordillo, Alvaro; Ortuño, Manuel A; López-Mardomingo, Carmen; Lledós, Agustí; Ujaque, Gregori; de Jesús, Ernesto

    2013-09-18

    The mechanism of the Pd-catalyzed vinylation of aryl halides with vinylalkoxysilanes in water has been studied using different catalytic precursors. The NaOH promoter converts the initial vinylalkoxysilane into a highly reactive water-soluble vinylsilanolate species. Similarly, deuterium-labeling experiments have shown that, irrespective of the catalytic precursor used, vinylation occurs exclusively at the CH vinylic functionality via a Heck reaction and not at the C-Si bond via a Hiyama cross-coupling. The involvement of a Heck mechanism is interpreted in terms of the reduced nucleophilicity of the base in water, which disfavors the transmetalation step. The Heck product (β-silylvinylarene) undergoes partial desilylation, with formation of a vinylarene, by three different routes: (a) hydrolytic desilylation by the aqueous solvent (only at high temperature); (b) transmetalation of the silyl olefin on the PdH Heck intermediate followed by reductive elimination of vinylarene; (c) reinsertion of the silyl olefin into the PdH bond of the Heck intermediate followed by β-Si syn-elimination. Both the Hiyama and Heck catalytic cycles and desilylation mechanisms b and c have been computationally evaluated for the [Pd(en)Cl2] precursor in water as solvent. The calculated Gibbs energy barriers support the reinsertion route proposed on the basis of the experimental results.

  1. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  3. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  4. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  5. Rapid screening of the antimicrobial efficacy of Ag zeolites.

    PubMed

    Tosheva, L; Belkhair, S; Gackowski, M; Malic, S; Al-Shanti, N; Verran, J

    2017-09-01

    A semi-quantitative screening method was used to compare the killing efficacy of Ag zeolites against bacteria and yeast as a function of the zeolite type, crystal size and concentration. The method, which substantially reduced labor, consumables and waste and provided an excellent preliminary screen, was further validated by quantitative plate count experiments. Two pairs of zeolite X and zeolite beta with different sizes (ca. 200nm and 2μm for zeolite X and ca. 250 and 500nm for zeolite beta) were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) at concentrations in the range 0.05-0.5mgml -1 . Reduction of the zeolite crystal size resulted in a decrease in the killing efficacy against both microorganisms. The semi-quantitative tests allowed convenient optimization of the zeolite concentrations to achieve targeted killing times. Zeolite beta samples showed higher activity compared to zeolite X despite their lower Ag content, which was attributed to the higher concentration of silver released from zeolite beta samples. Cytotoxicity measurements using peripheral blood mononuclear cells (PBMCs) indicated that Ag zeolite X was more toxic than Ag zeolite beta. However, the trends for the dependence of cytotoxicity on zeolite crystal size at different zeolite concentrations were different for the two zeolites and no general conclusions about zeolite cytotoxicity could be drawn from these experiments. This result indicates a complex relationship, requiring the necessity for individual cytotoxicity measurements for all antimicrobial applications based on the use of zeolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enzymatically catalyzed synthesis of low-calorie structured lipid in a solvent-free system: optimization by response surface methodology.

    PubMed

    Han, Lu; Xu, Zijian; Huang, Jianhua; Meng, Zong; Liu, Yuanfa; Wang, Xingguo

    2011-12-14

    A kind of low-calorie structured lipid (LCSL) was obtained by interesterification of tributyrin (TB) and methyl stearate (St-ME), catalyzed by a commercially immobilized 1,3-specific lipase, Lipozyme RM IM from Rhizomucor miehei . The condition optimization of the process was conducted by using response surface methodology (RSM). The optimal conditions for highest conversion of St-ME and lowest content LLL-TAG (SSS and SSP; S, stearic acid; P, palmitic acid) were determined to be a reaction time 6.52 h, a substrate molar ratio (St-ME:TB) of 1.77:1, and an enzyme amount of 10.34% at a reaction temperature of 65 °C; under these conditions, the actually measured conversion of St-ME and content of LLL-TAG were 78.47 and 4.89% respectively, in good agreement with predicted values. The target product under optimal conditions after short-range molecular distillation showed solid fat content (SFC) values similar to those of cocoa butter substitutes (CBS), cocoa butter equivalent (CBE), and cocoa butters (CB), indicating its application for inclusion with other fats as cocoa butter substitutes.

  7. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  8. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  9. Anharmonicity and confinement in zeolites: Structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5

    DOE PAGES

    Alexopoulos, Konstantinos; Lee, Mal -Soon; Liu, Yue; ...

    2016-03-21

    Here, to account for thermal and entropic effects caused by the dynamics of the motion of the reaction intermediates, ethanol adsorption on the Brønsted acid site of the H-ZSM-5 catalyst has been studied at different temperatures and ethanol loadings using ab initio molecular dynamics (AIMD) simulations, infrared (IR) spectroscopy and calorimetric measurements. At low temperatures (T ≤ 400 K) and ethanol loading, a single ethanol molecule adsorbed in H-ZSM-5 forms a Zundel-like structure where the proton is equally shared between the oxygen of the zeolite and the oxygen of the alcohol. At higher ethanol loading, a second ethanol molecule helpsmore » to stabilize the protonated ethanol at all temperatures by acting as a solvating agent. The vibrational density of states (VDOS), as calculated from the AIMD simulations, are in excellent agreement with measured IR spectra for C 2H 5OH, C 2H 5OD and C 2D 5OH isotopomers and support the existence of both monomers and dimers. A quasi-harmonic approximation (QHA), applied to the VDOS obtained from the AIMD simulations, provides estimates of adsorption free energy within ~10 kJ/mol of the experimentally determined quantities, whereas the traditional approach, employing harmonic frequencies from a single ground state minimum, strongly overestimates the adsorption free energy by at least ~30 kJ/mol. This discrepancy is traced back to the inability of the harmonic approximation to represent the contributions to the vibrational motions of the ethanol molecule upon confinement in the zeolite. KA, MFR, GBM were supported by the Long Term Structural Methusalem Funding by the Flemish Government – grant number BOF09/01M00409. MSL, VAG, RR and JAL were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley

  10. Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Khalaj, Mehdi

    2015-09-01

    In this paper, we report the preparation of Natrolite zeolite supported copper nanoparticles as a heterogeneous catalyst for 1,3-diploar cycloaddition and synthesis aryl nitriles from aryl iodides under ligand-free conditions. The catalyst was characterized using XRD, SEM, TEM, EDS and TG-DTA. The experimental procedure is simple, the products are formed in high yields and the catalyst can be recycled and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    PubMed

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  12. In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support

    NASA Astrophysics Data System (ADS)

    Baig, Mirza A.; Patel, Faheemuddin; Alhooshani, Khalid; Muraza, Oki; Wang, Evelyn N.; Laoui, Tahar

    2015-12-01

    LTA zeolite layer was successfully grown on a superhydrophilic mesoporous titania layer coated onto porous α-alumina substrate. Mesoporous titania layer was formed as an intermediate bridge in the pore size variation between the macroporous α-alumina support and micro-porous LTA zeolite layer. In-situ aging microwave heating synthesis method was utilized to deposit the LTA zeolite layer. Mesoporous titania layer was pre-treated with UV photons and this was observed to have played a major role in improving the surface hydrophilicity of the substrate leading to formation of increased number of Ti-OH groups on the surface. This increase in Ti-OH groups enhanced the interaction between the synthesis gel and the substrate leading to strong attachment of the amorphous gel on the substrate, thus enhancing coverage of the LTA zeolite layer to almost the entire surface of the 1-inch (25.4 mm) diameter membrane. LTA zeolite layer was developed via in-situ aged under microwave irradiation to study the effect of synthesis parameters such as in-situ aging time and synthesis time on the formation of the LTA zeolite layer. Optimized process parameters resulted in the formation of crack-free porous zeolite layer yielding a zeolite-titania-alumina multi-layer membrane with a gradient in porosity.

  13. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  14. Iron-catalyzed cross-coupling of imidoyl chlorides with Grignard reagents.

    PubMed

    Ottesen, Lars K; Ek, Fredrik; Olsson, Roger

    2006-04-27

    [reaction: see text] A general, high yielding rapid iron-catalyzed cross-coupling reaction between Grignard reagents and imidoyl chlorides is described. These reactions are typically completed within 5 min, resulting in high yields of 71-96% using 5% iron catalyst in a THF-NMP solvent mixture. Functionalized imidoyl chlorides (e.g., R = CO(2)Me) gave excellent yields (89%).

  15. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

  16. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.

    PubMed

    Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos

    2013-05-01

    The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    PubMed

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  18. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  19. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleksiak, Matthew D.; Ghorbanpour, Arian; Conato, Marlon T.

    Designing nanoporous zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications spanning diverse areas such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires the use of an organic structure-directing agent to facilitate the formation of crystals with specific pore size and topology. Attempts to remove organics from syntheses to achieve commercially-viable methods of preparing zeolites often lead to the formation of unwanted crystal polymorphs (i.e., impurities). Here, we present an organic-free synthesis of the small-pore zeolite P (GIS framework topology) that can be selectively tailored to produce two pure polymorphs: P1 and P2.more » To this end, we developed kinetic phase diagrams that identify synthesis compositions leading to the formation of GIS (P1 and P2), as well as their structural analogues MER and PHI. Using a combination of adsorption measurements and density functional theory (DFT) calculations, we also show that both GIS polymorphs are highly selective adsorbents for H2O relative to other light gases (e.g,, H2, N2, CO2). These studies highlight the potential application of GIS materials for dehydration processes, while our findings also refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. Moreover, there is an impetus for discovering novel small-pore zeolites that are shape-selective catalysts for the production of value-added chemicals (e.g., light olefins); thus, our discovery of more thermally-stable P2 opens new avenues for exploring the potential role of this material as a high-performance catalyst.« less

  20. Influence of flavor solvent on flavor release and perception in sugar-free chewing gum.

    PubMed

    Potineni, Rajesh V; Peterson, Devin G

    2008-05-14

    The influence of flavor solvent [triacetin (TA), propylene glycol (PG), medium chained triglycerides (MCT), or no flavor solvent (NFS)] on the flavor release profile, the textural properties, and the sensory perception of a sugar-free chewing gum was investigated. Time course analysis of the exhaled breath and saliva during chewing gum mastication indicated that flavor solvent addition or type did not influence the aroma release profile; however, the sorbitol release rate was statistically lower for the TA formulated sample in comparison to those with PG, MCT, or NFS. Sensory time-intensity analysis also indicated that the TA formulated sample was statistically lower in perceived sweetness intensity, in comparison with the other chewing gum samples, and also had lower cinnamon-like aroma intensity, presumably due to an interaction between sweetness intensity on aroma perception. Measurement of the chewing gum macroscopic texture by compression analysis during consumption was not correlated to the unique flavor release properties of the TA-chewing gum. However, a relationship between gum base plasticity and retention of sugar alcohol during mastication was proposed to explain the different flavor properties of the TA sample.

  1. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac

    PubMed Central

    2013-01-01

    Background Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics. Findings Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes. Conclusions Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4–5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste. PMID:23458122

  2. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac].

    PubMed

    Suresh; Sandhu, Jagir Singh

    2013-03-03

    Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics. Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes. Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4-5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.

  3. Natural zwitterionic l-Carnitine as efficient cryoprotectant for solvent-free cell cryopreservation.

    PubMed

    Zhai, Hongwen; Yang, Jing; Zhang, Jiamin; Pan, Chao; Cai, Nana; Zhu, Yingnan; Zhang, Lei

    2017-07-15

    Organic solvents, such as dimethyl sulfoxide (DMSO) and glycerol, have been commonly used as cryoprotectants (CPAs) in cell cryopreservation. However, their cytotoxicity and need of complex freezing protocols have impeded their applications especially in clinical cell therapy and regenerative medicine. Trehalose has been explored as a natural CPA to cryopreserve cells, but its poor cell permeability frequently results in low cryopreservation efficacy. In this work, we presented that a natural zwitterionic molecule-l-carnitine-could serve as a promising CPA for solvent-free cryopreservation. We demonstrated that l-carnitine possessed strong ability to depress water freezing point, and with ultrarapid freezing protocol, we studied the post-thaw survival efficiency of four cell lines (GLC-82 cells, MCF-7 cells, NIH-3T3 cells and Sheep Red Blood Cells) using l-carnitine without addition of any organic solvents. At the optimum l-carnitine concentration, all four cell lines could achieve above 80% survival efficiency, compared with the significantly lower efficiency using organic CPAs and trehalose. After cryopreservation, the recovered cell behaviors including cell attachment and proliferation were found to be similar to the normal cells, indicating that the cell functionalities were not affected. Moreover, l-carnitine showed no observable cytotoxicity, which was superior to the organic CPAs. This work offered an attractive alternative to traditional CPAs and held great promise to revolutionize current cryopreservation technologies, to benefit the patients in various cell-based clinical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  5. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.

    PubMed

    Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling

    2017-11-23

    Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.

  6. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve.

    PubMed

    Nott, Katherine; Brognaux, Alison; Richard, Gaëtan; Laurent, Pascal; Favrelle, Audrey; Jérôme, Christine; Blecker, Christophe; Wathelet, Jean-Paul; Paquot, Michel; Deleu, Magali

    2012-01-01

    Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v₀) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v₀ and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v₀ and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v₀ and 48-hr yield is observed when transesterification is carried out with or without sieve.

  7. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-04-24

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  8. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.

    PubMed

    Wang, Linlin; Zhu, Hongli; Shi, Ying; Ge, You; Feng, Xiaomiao; Liu, Ruiqing; Li, Yi; Ma, Yanwen; Wang, Lianhui

    2018-06-07

    Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 μg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.

  9. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  10. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  11. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    USDA-ARS?s Scientific Manuscript database

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  13. Roles of molecular hydrogen and a hydrogen donor solvent in the cracking of moal model compounds with dispersed catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshimitsu; Ikenaga, Na-oki; Sakota, Takahiro

    1994-12-31

    It is of great importance to evaluate quantitative hydrogen transfer process by using coal model compounds with a hydrogen-donor solvent. Cronauer el al. showed that in the cracking of benzyl phenyl ether the hydrogen required to stabilize free radicals comes from a donor solvent or intramolecular rearrangement and not from gaseous hydrogen in the absence of a catalyst. Korobkov et al. and Schlosberg et al. showed that the thermolysis of benzyl phenyl ether and dibenzyl ether were accomplished by intramolecular rearrangements. Yokokawa et al. reported that tetralin retarded the catalyzed hydrocracking of coal model compounds containing C-C and C-O bonds.more » However, few studies dealt with quantitative discussion in the hydrogen transfer process from a hydrogen-donor solvent or molecular hydrogen to free radicals derived from a model compound except a series of studies by Nicole and co-workers. On the other hand, it is well known that the amount of naphthalene produced from tetralin decreases after the liquefaction of coal in tetralin with catalyst as compared to the liquefaction in the absence of catalysts. To account for this, two mechanisms are proposed. One is that the catalyst hydrogenates naphthalene produced from tetralin, and the other is that the catalyst promotes the direct hydrogen transfer from molecular hydrogen to free radicals. The purpose of this work is to elucidate the role of catalyst and tetralin by means of the quantitative treatment of the hydrogen transfer reaction stabilizing thermally decomposed free radicals. Cracking of benzyl phenyl ether (BPE), dibenzyl ether (DBE), 1,2-diphenylethane, and 1,3-diphenylpropane was studied in tetralin in the presence of highly disposed catalyst.« less

  14. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  15. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  16. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  17. Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Hulce, Martin; Marks, David W.

    2001-01-01

    Organic-solvent-free oxidations of alcohols using aqueous hydrogen peroxide in the presence of sodium tungstate and phase-transfer catalysts provide a general, safe, simple, and cost-effective means to prepare ketones. Six representative alcohols, 1-phenylethanol, 1-phenylpropanol, benzhydrol, 4-methylbenzhydrol, cis,trans-4-tert-butylcyclohexanol, and benzyl alcohol are oxidized to the corresponding aldehyde or ketone over 1-3 hours in 81-99% yields. Purities are very high, with only small to trace amounts of starting alcohol remaining. Experiments can be readily designed for one or two 3-hour laboratory periods, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.

  18. Enantioselective and Regioselective Indium(III)-Catalyzed Addition of Pyrroles to Isatins

    PubMed Central

    Gutierrez, Elisa G.; Wong, Casey J.; Sahin, Aziza H.

    2011-01-01

    The indium(III)-catalyzed enantioselective and regioselective addition of pyrroles to isatins is described. The effects of metal and solvent on the reactivity and selectivity are compared and discussed, demonstrating that the indium(III)-indapybox complex provides the most effective catalyst. A case of divergent reactivity between pyrroles and indoles is presented. PMID:21992567

  19. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  20. Solvent-Free Off-On Detection of the Improvised Explosive Triacetone Triperoxide (TATP) with Fluorogenic Materials.

    PubMed

    Calvo-Gredilla, Patricia; García-Calvo, José; Cuevas, José V; Torroba, Tomás; Pablos, Jesús-Luis; García, Félix C; García, José-Miguel; Zink-Lorre, Nathalie; Font-Sanchis, Enrique; Sastre-Santos, Ángela; Fernández-Lázaro, Fernando

    2017-10-09

    A fluorogenic perylenediimide-functionalized polyacrylate capable of generating color and fluorescence changes in the presence of triacetone triperoxide TATP), an improvised explosive used in terrorist attacks, under solvent-free, solid-state conditions has been developed. The material works by accumulating volatile TATP until it reaches a threshold; therefore, triggering colorimetric and fluorescent responses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  2. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  3. Characterisation of organometallic and coordination compounds by solvent-free matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2008-01-01

    Insoluble or low solubility organometallic and coordination compounds have been characterised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, with solvent-free sample preparation being the key step toward successful analysis.

  4. Solvent-free direct reductive amination by catalytic use of an organotin reagent incorporated on an ionic liquid.

    PubMed

    Pham, Phuoc Dien; Bertus, Philippe; Legoupy, Stéphanie

    2009-11-07

    An organotin reagent supported on an ionic liquid was used as a highly effective catalyst (down to 0.1 mol%) for the direct reductive amination of aldehydes and ketones using PhSiH3; this solvent-free method facilitates purification of the products, thus minimizing the contamination by tin.

  5. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    PubMed

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  6. Spectroscopic evidence of 3-hydroxyflavone sorption within MFI type zeolites: ESIPT and metal complexation.

    PubMed

    Moissette, A; Hureau, M; Kokaislova, A; Le Person, A; Cornard, J P; De Waele, I; Batonneau-Gener, I

    2015-10-21

    Due to its chemical and photochemical properties and potential applications in numerous domains as a molecular probe, 3-hydroxyflavone (3HF) is a molecule of high interest. In particular, the processes of intramolecular proton transfer in the excited state and metallic complexation are known to be dependent on the chemical environment. In this context, the particular properties of zeolites make these microporous materials an environment adapted to study the reactivity of isolated molecules adsorbed in their porous void space. Thus, this report investigates the incorporation without any solvent of 3HF into the internal volume of various channel-type MFI zeolites. Using complementary techniques (diffuse reflectance UV-vis absorption, Raman scattering, FTIR, fluorescence emission and molecular modelling), very different spectral behaviours are observed in totally dealuminated silicalite-1 and in Al rich MZSM-5 (M = H(+), Na(+), Zn(2+)). In silicalite-1, the non-polar and non-protic internal micro-environment does not induce any valuable interaction between 3HF and the channel walls. Therefore, the molecule shows easy tautomer formation upon excitation. Within HZSM-5, 3HF is adsorbed in close proximity of the acid proton of the zeolite which inhibits the intramolecular proton transfer and then, only the normal form is observed at the excited state. For NaZSM-5, the spectral data show an intermediary behaviour due to the aprotic but polar environment, in agreement with 3HF sorption in close proximity of the Na(+) extra framework cation. After mixing 3HF and ZnZSM-5, the spectral features clearly indicate metallic complexation of the guest molecule. The zeolite dependent reactivity reported here demonstrates the adsorption of the guest within the internal volume because the charge balancing cations which clearly control the reaction are principally located in the zeolite channels. The 3HF incorporation into the internal volume is proved by the decrease of the microporous

  7. Solvent-free MALDI-MS for the analysis of a membrane protein via the mini ball mill approach: case study of bacteriorhodopsin.

    PubMed

    Trimpin, Sarah; Deinzer, Max L

    2007-01-01

    A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.

  8. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines).

    PubMed

    Lee, In-Hwan; Kim, Hyunseok; Choi, Tae-Lim

    2013-03-13

    We report a versatile Cu-catalyzed multicomponent polymerization (MCP) technique that enables the synthesis of high-molecular-weight, defect-free poly(N-sulfonylamidines) from monomers of diynes, sulfonyl azides, and diamines. Through a series of optimizations, we discovered that the addition of excess triethylamine and the use of N,N'-dimethylformamide as a solvent are key factors to ensure efficient MCP. Formation of cyclic polyamidines was a side reaction during polymerization, but it was readily controlled by using diynes or diamines with long or rigid moieties. In addition, this polymerization is highly selective for three-component reactions over click reactions. The combination of the above factors enables the synthesis of high-molecular-weight polymers, which was challenging in previous MCPs. All three kinds of monomers (diynes, sulfonyl azides, and diamines) are readily accessible and stable under the reaction conditions, with various monomers undergoing successful polymerization regardless of their steric and electronic properties. Thus, we synthesized various high-molecular-weight, defect-free polyamidines from a broad range of monomers while overcoming the limitations of previous MCPs, such as low conversion and defects in the polymer structures.

  9. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  10. Chemoselective chromium(II)-catalyzed cross-coupling reactions of dichlorinated heteroaromatics with functionalized aryl grignard reagents.

    PubMed

    Steib, Andreas K; Kuzmina, Olesya M; Fernandez, Sarah; Malhotra, Sushant; Knochel, Paul

    2015-01-26

    Chromium(II) chloride catalyzes the chemoselective cross-coupling reaction of dichloropyridines with a range of functionalized (hetero)aromatic Grignard reagents at room temperature. Functional groups, such as esters and acetals, are well tolerated in this transformation. Previously challenging substrates, quinolines and isoquinolines, participate in the selective Cr-catalyzed cross-coupling in cyclopentyl methyl ether (CPME) as the solvent. The effective purging of Cr salts is demonstrated by using various solid supports. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  12. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  13. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  14. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).

    PubMed

    Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio

    2016-07-05

    The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed.

  15. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  16. FreeSASA: An open source C library for solvent accessible surface area calculations.

    PubMed

    Mitternacht, Simon

    2016-01-01

    Calculating solvent accessible surface areas (SASA) is a run-of-the-mill calculation in structural biology. Although there are many programs available for this calculation, there are no free-standing, open-source tools designed for easy tool-chain integration. FreeSASA is an open source C library for SASA calculations that provides both command-line and Python interfaces in addition to its C API. The library implements both Lee and Richards' and Shrake and Rupley's approximations, and is highly configurable to allow the user to control molecular parameters, accuracy and output granularity. It only depends on standard C libraries and should therefore be easy to compile and install on any platform. The library is well-documented, stable and efficient. The command-line interface can easily replace closed source legacy programs, with comparable or better accuracy and speed, and with some added functionality.

  17. Zeolites: Can they be synthesized by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.E.

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high levelmore » of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''« less

  18. Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Flubacher, Dietmar; Knochel, Paul

    2012-09-21

    A simple, practical iron salt catalyzed procedure allows fast cross-couplings of N-heterocyclic chlorides and bromides with various electron-rich and -poor arylmagnesium reagents. A solvent mixture of THF and tBuOMe is found to be essential for achieving high yields mainly by avoiding homocoupling side reactions.

  19. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    PubMed

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  20. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

    DOE PAGES

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; ...

    2015-10-16

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  1. Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter.

    PubMed

    Nuernberg, Giselle B; Moreira, Marcelo A; Ernani, Paulo R; Almeida, Jaime A; Maciel, Tais M

    2016-12-01

    Confined poultry production is an important livestock activity, which generates large amounts of waste associated with the potential for environmental pollution and ammonia (NH 3 ) emissions. The release of ammonia negatively affects poultry production and decreases the N content of wastes that could be used as soil fertilizers. The objective of this study was to evaluate a low-cost, simple and rapid method to simulate ammonia emissions from poultry litter as well as to quantify the reduction in the ammonia emissions to the environment employing two adsorbent zeolites, a commercial Cuban zeolite (CZ) and a ground basalt Brazilian rock containing zeolite (BZ). The experiments were conducted in a laboratory, in 2012-2013. The zeolites were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), physical adsorption of N 2 (BET) and scanning electron microscopy (SEM). Ammonia released from poultry litter and its simulation from NH 4 OH solution presented similar capture rates of 7.99 × 10 -5 and 7.35 × 10 -5  mg/h, respectively. Both zeolites contain SiO 2 and Al 2 O 3 as major constituents, with contents of 84% and 12% in the CZ, and 51% and 12% in the BZ, respectively, besides heulandite groups. Their BET surface areas were 89.4 and 11.3 m 2  g -1 , respectively, and the two zeolites had similar surface morphologies. The zeolites successfully adsorbed the ammonia released, but CZ was more efficient than BZ, since to capture all of the ammonia 5 g of CZ and 20 g of BZ were required. This difference is due to higher values for the superficial area, porosity, CEC and acid site strength of CZ relatively to BZ. The proposed methodology was shown to be an efficient method to simulate and quantify the ammonia released from poultry litter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fabrication of Lead-Free (CH3 NH3 )3 Bi2 I9 Perovskite Photovoltaics in Ethanol Solvent.

    PubMed

    Li, Haijin; Wu, Congcong; Yan, Yongke; Chi, Bo; Pu, Jian; Li, Jian; Priya, Shashank

    2017-10-23

    The toxicity of lead present in organohalide perovskites and the hazardous solvent systems used for their synthesis hinder the deployment of perovskite solar cells (PSCs). Herein, an environmentally friendly route toward bismuth-based, lead-free (CH 3 NH 3 ) 3 Bi 2 I 9 perovskites that utilize ethanol as the solvent is described. Using this method, dense and homogeneous microstructures were obtained, compared to the porous, rough microstructures obtained using dimethylformamide. Photovoltaic performances were enhanced, with an open-circuit voltage of 0.84 V measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Building zeolites from pre-crystallized units: nanoscale architecture.

    PubMed

    Corma, Avelino; Li, Chengeng; Moliner, Manuel

    2018-01-24

    Since the earlier descriptions by Barrer in the 40's on converting natural minerals into synthetic zeolites, the use of pre-crystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physico-chemical properties, has become a very intense and relevant research field, allowing the design, particularly in the last years, of new industrial catalysts. In the present review, we will highlight how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites presenting similar SBUs or layers, but also permits mostly controlling important parameters affecting to their catalytic activity (i.e. chemical composition, crystal size, or porosity, among others). In this sense, the recent advances on the preparation of 3-D and 2-D related zeolites through seeding and zeolite-to-zeolite transformation processes will be extensively revised, including their preparation in presence or absence of organic structure directing agents (OSDAs), with the aim of introducing general guidelines for designing more efficient future synthesis approaches for target zeolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  5. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Fundamental Reaction Pathway and Free Energy Profile for Butyrylcholinesterase-Catalyzed Hydrolysis of Heroin

    PubMed Central

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2013-01-01

    The pharmacological function of heroin requires an activation process which transforms heroin into 6-monoacetylmorphine (6-MAM) which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in the present study by performing molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of 3-acetyl group of heroin by the hydroxyl oxygen of Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of the rate-determining transition state TS2. The free energy barrier (15.9±0.2 or 16.1±0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally-derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from the present computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:23992153

  7. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  9. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  10. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  11. Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents.

    PubMed

    Alhassan, Yahaya; Kumar, Naveen; Bugaje, Idris M

    2016-01-01

    Biomass liquefaction using ionic liquids (ILs) as catalysts has received appreciable attention, in renewable fuels and chemicals production, recently. However, issues associated with the production cost, long reaction time and use of volatile solvents are undeniably challenging. Thus, Deep Eutectic Solvents (DESs) emerged as promising and potential ILs substitutes. The hydrothermal liquefaction of de-oiled Jatropha curcas cake was catalyzed by four synthesized DESs as catalysts and co-solvents for selective extraction. Proximate and ultimate analyses including ash, moisture and carbon contents of bio-crude produced varied slightly. The higher heating values found ranges from 21.15 ± 0.82 MJ/kg to 24.30 ± 0.98 MJ/kg. The bio-crude yields obtained using ChCl-KOH DES was 43.53 wt% and ChCl-p-TsOH DES was 38.31 wt%. Bio-crude yield using ChCl-FeCl3 DES was 30.80 wt%. It is suggested that, the selectivity of bio-crude could be improved, by using DESs as catalyst and co-solvent in HTL of biomass such as de-oiled J. curcas cake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides.

    PubMed

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-12-19

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu⁺ and Cu 2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β -hydroxysulfides compounds.

  13. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides

    PubMed Central

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-01-01

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu+ and Cu2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β-hydroxysulfides compounds. PMID:29257075

  14. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent.

    PubMed

    Rodriguez, Alex; Mokoema, Pol; Corcho, Francesc; Bisetty, Khrisna; Perez, Juan J

    2011-02-17

    The prediction capabilities of atomistic simulations of peptides are hampered by different difficulties, including the reliability of force fields, the treatment of the solvent or the adequate sampling of the conformational space. In this work, we have studied the conformational profile of the 10 residue miniprotein CLN025 known to exhibit a β-hairpin in its native state to understand the limitations of implicit methods to describe solvent effects and how these may be compensated by using different force fields. For this purpose, we carried out a thorough sampling of the conformational space of CLN025 in explicit solvent using the replica exchange molecular dynamics method as a sampling technique and compared the results with simulations of the system modeled using the analytical linearized Poisson-Boltzmann (ALPB) method with three different AMBER force fields: parm94, parm96, and parm99SB. The results show the peptide to exhibit a funnel-like free energy landscape with two minima in explicit solvent. In contrast, the higher minimum nearly disappears from the energy surface when the system is studied with an implicit representation of the solvent. Moreover, the different force fields used in combination with the ALPB method do not describe the system in the same manner. The results of this work suggest that the balance between intra- and intermolecular interactions is the cause of the differences between implicit and explicit solvent simulations in this system, stressing the role of the environment to define properly the conformational profile of a peptide in solution.

  15. Solvent-Free Conversion of Alpha-Naphthaldehyde to 1-Naphthoic Acid and 1-Naphthalenemethanol: Application of the Cannizzaro Reaction

    ERIC Educational Resources Information Center

    Esteb, John J.; Gligorich, Keith M.; O'Reilly, Stacy A.; Richter, Jeremy M.

    2004-01-01

    A mixture of potassium hydroxide and alpha-naphthaldehyde (1) are heated under solvent-free conditions to produce 1-naphthoic acid (2) and 1-naphthalenemethanol (3). The experiment offers several advantages over many existing exercises including the ease of reaction workup, shorter reaction time, relative environmental friendliness of the…

  16. Thiolsubtilisin acts as an acetyltransferase in organic solvents.

    PubMed

    Tai, Dar Fu; Liaw, Wen Chen

    2002-04-24

    The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.

  17. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    NASA Astrophysics Data System (ADS)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  18. Progress on Zeolite-membrane-aided Organic Acid Esterification

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  19. Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides

    PubMed Central

    Nadres, Enrico T.; Lazareva, Anna; Daugulis, Olafs

    2011-01-01

    The palladium-catalyzed direct arylation of indoles, pyrroles, and furans by aryl chlorides has been demonstrated. The method employs a palladium acetate catalyst, 2-(dicyclohexylphosphino)-biphenyl ligand, and an inorganic base. Electron-rich and electron-poor aryl chlorides as well as chloropyridine coupling partners can be used and arylated heterocycles are obtained in moderate to good yields. Optimization of base, ligand, and solvent is required for achieving best results. PMID:21192652

  20. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  2. Zeolite food supplementation reduces abundance of enterobacteria.

    PubMed

    Prasai, Tanka P; Walsh, Kerry B; Bhattarai, Surya P; Midmore, David J; Van, Thi T H; Moore, Robert J; Stanley, Dragana

    2017-01-01

    According to the World Health Organisation, antibiotics are rapidly losing potency in every country of the world. Poultry are currently perceived as a major source of pathogens and antimicrobial resistance. There is an urgent need for new and natural ways to control pathogens in poultry and humans alike. Porous, cation rich, aluminosilicate minerals, zeolites can be used as a feed additive in poultry rations, demonstrating multiple productivity benefits. Next generation sequencing of the 16S rRNA marker gene was used to phylogenetically characterize the fecal microbiota and thus investigate the ability and dose dependency of zeolite in terms of anti-pathogenic effects. A natural zeolite was used as a feed additive in laying hens at 1, 2, and 4% w/w for a 23 week period. At the end of this period cloacal swabs were collected to sample faecal microbial communities. A significant reduction in carriage of bacteria within the phylum Proteobacteria, especially in members of the pathogen-rich family Enterobacteriaceae, was noted across all three concentrations of zeolite. Zeolite supplementation of feed resulted in a reduction in the carriage of a number of poultry pathogens without disturbing beneficial bacteria. This effect was, in some phylotypes, correlated with the zeolite concentration. This result is relevant to zeolite feeding in other animal production systems, and for human pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  4. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.

    PubMed

    Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja

    2016-08-23

    Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.

  5. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Effect of SrO content on Zeolite Structure

    NASA Astrophysics Data System (ADS)

    Widiarti, N.; Sari, U. S.; Mahatmanti, F. W.; Harjito; Kurniawan, C.; Prasetyoko, D.; Suprapto

    2018-04-01

    The aims of current studies is to investigate the effect of strontium oxide content (SrO) on synthesized zeolite. Zeolite was synthesized from Tetraethyl orthosilicate (TEOS) as precursors of SiO2 and aluminum isopropoxide (AIP) precursors. The mixture was aged for 3 days and hydrothermally treated for 6 days. The SrO content was added by impregnation method. The products were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Surface Area Analyzer (SAA). The diffractogram confirmed the formation of Faujasite-like zeolite. However, after the addition of SrO, the crystallinity of zeolite was deformed. The diffractograms shows the amorphous phase of zeolite were decrease as the SrO content is increase. The structural changes was also observed from FTIR spectra which shows the shifting and peak formation. The surface area analysis showed that the increasing loading of SrO/Zeolites reduced the catalyst surface area.

  7. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  8. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  9. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

    PubMed

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  10. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moliner, Manuel; Roman-Leshkov, Yuriy; Davis, Mark E.

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1:50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannosemore » after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].« less

  11. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  12. Lipase-catalyzed synthesis of fattythioic acids from palm oil.

    PubMed

    Al-Mulla, Emad A Jaffar

    2011-01-01

    The present work focuses on the synthesis of fattythioic acids (FTAs) by a one-step lipase catalyzed reaction of palm oil with carbonothioic S,S-acid using Lipozyme. The product was characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The effects of various reaction parameters such as reaction time, temperature, amount of enzyme, molar ratio of substrates, and various organic solvents of the reaction system were investigated. The optimum conditions to produce FTAs were respectively, incubation time, 20 h, temperature, 40°C, amount of enzyme, 0.05 g and molar ratio of carbonothioic S,S-acid to palm oil, 5.0:1.0. Hexane was the best solvent for this reaction. The conversion of the products at optimum conditions was around 91%.

  13. Ballistic Motion of Enzymes that Catalyze Highly Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Pressé, Steve

    Recently we proposed that the experimentally observed enhanced diffusion of enzymes catalyzing highly exothermic reactions is a consequence of their mechanism for dissipating reaction energy. More specifically, we proposed that reaction energy spreads out from the reaction site in the form of an acoustic wave which causes the enzyme to asymmetrically deform into the solvent. The solvent reaction propels the enzyme. However, it has been noted that in water, high viscosity should reduce enzyme momentum to zero within a few ps, so any diffusion increase should not be observable. Here we provide a model explaining how small volumetric expansions of biomolecules inside water may cause fluid compression that in turn creates regions of low fluid density around the biomolecule. We then investigate the dynamics of the biomolecule in the presence of these perturbations.

  14. Molecular Simulation of Adsorption in Zeolites

    NASA Astrophysics Data System (ADS)

    Bai, Peng

    Zeolites are a class of crystalline nanoporous materials that are widely used as catalysts, sorbents, and ion-exchangers. Zeolites have revolutionized the petroleum industry and have fueled the 20th-century automobile culture, by enabling numerous highly-efficient transformations and separations in oil refineries. They are also posed to play an important role in many processes of biomass conversion. One of the fundamental principles in the field of zeolites involves the understanding and tuning of the selectivity for different guest molecules that results from the wide variety of pore architectures. The primary goal of my dissertation research is to gain such understanding via computer simulations and eventually to reach the level of predictive modeling. The dissertation starts with a brief introduction of the applications of zeolites and computer modeling techniques useful for the study of zeolitic systems. Chapter 2 then describes an effort to improve simulation efficiency, which is essential for many challenging adsorption systems. Chapter 3 studies a model system to demonstrate the applicability and capability of the method used for the majority of this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble (CBMC-GE). After these methodological developments, Chapter 4 and 5 report a systematic parametrization of a new transferable force field for all-silica zeolites, TraPPE-zeo, and a subsequent, relatively ad-hoc extension to cation-exchanged aluminosilicates. The CBMC-GE method and the TraPPE-zeo force field are then combined to investigate some complex adsorption systems, such as linear and branched C6-C 9 alkanes in a hierarchical microporous/mesoporous material (Chapter 6), the multi-component adsorption of aqueous alcohol solutions (Chapter 7) and glucose solutions (Chapter 8). Finally, Chapter 9 describes an endeavor to screen a large number of zeolites with the purpose of finding better materials for two energy-related applications

  15. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    EPA Science Inventory

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  16. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass.

    PubMed

    Kim, Keon Hee; Lee, Ok Kyung; Kim, Chul Ho; Seo, Jeong-Woo; Oh, Baek-Rock; Lee, Eun Yeol

    2016-07-01

    Heterotrophic microalgae, Aurantiochytrium sp. KRS101 had a large amount of lipid (56.8% total lipids). The cells in the culture medium were easily ruptured due to thin cell wall of Aurantiochytrium sp., which facilitated in-situ fatty acid methyl esters (FAMEs) production directly from biomass. The harvested biomass had a high content of free fatty acids (FFAs), which was advantageous for glycerol-free FAMEs production. FAMEs were directly produced from Aurantiochytrium sp. KRS101 biomass (48.4% saponifiable lipids) using Novozyme 435-catalyzed in-situ esterification in dimethyl carbonate (DMC). DMC was used as a lipid extraction reagent, acyl acceptor and reaction medium. A 433.09mg FAMEs/g biomass was obtained with 89.5% conversion under the optimal condition: DMC to biomass ratio of 5:1 (v/w) and enzyme to biomass ratio of 30% (w/w) at 50°C for 12h. Glycerol could not be detected in the produced FAMEs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Practical Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Aryl or Heteroaryl Magnesium Reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Fernandez, Sarah; Boudot, Willy; Markiewicz, John T; Knochel, Paul

    2015-05-26

    The reaction scope of iron- and cobalt-catalyzed cross-coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2-halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe-catalyzed cross-coupling reactions between 6-chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10% N,N-dimethylquinoline-8-amine increases the yields of some Co-catalyzed cross-coupling reactions with chloropyridines bearing electron-withdrawing substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: Equilibrium fluctuation of cytochrome c

    NASA Astrophysics Data System (ADS)

    Karino, Yasuhito; Matubayasi, Nobuyuki

    2011-01-01

    The relationship between the protein conformation and the hydration effect is investigated for the equilibrium fluctuation of cytochrome c. To elucidate the hydration effect with explicit solvent, the solvation free energy of the protein immersed in water was calculated using the molecular dynamics simulation coupled with the method of energy representation. The variations of the protein intramolecular energy and the solvation free energy are found to compensate each other in the course of equilibrium structural fluctuation. The roles of the attractive and repulsive components in the protein-water interaction are further examined for the solvation free energy. The attractive component represented as the average sum of protein-water interaction energy is dominated by the electrostatic effect and is correlated to the solvation free energy through the linear-response-type relationship. No correlation with the (total) solvation free energy is seen, on the other hand, for the repulsive component expressed as the excluded-volume effect.

  19. Scaling Relations for Acidity and Reactivity of Zeolites

    PubMed Central

    2017-01-01

    Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616

  20. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  1. Template-free synthesis and structural evolution of discrete hydroxycancrinite zeolite nanorods from high-concentration hydrogels.

    PubMed

    Chen, Shaojiang; Sorge, Lukas P; Seo, Dong-Kyun

    2017-12-07

    We report the synthesis and characterization of hydroxycancrinite zeolite nanorods by a simple hydrothermal treatment of aluminosilicate hydrogels at high concentrations of precursors without the use of structure-directing agents. Transmission electron microscopy (TEM) analysis reveals that cancrinite nanorods, with lengths of 200-800 nm and diameters of 30-50 nm, exhibit a hexagonal morphology and are elongated along the crystallographic c direction. The powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) and TEM studies revealed sequential events of hydrogel formation, the formation of aggregated sodalite nuclei, the conversion of sodalite to cancrinite and finally the growth of cancrinite nanorods into discrete particles. The aqueous dispersion of the discrete nanorods displays a good stability between pH 6-12 with the zeta potential no greater than -30 mV. The synthesis is unique in that the initial aggregated nanocrystals do not grow into microsized particles (aggregative growth) but into discrete nanorods. Our findings demonstrate an unconventional possibility that discrete zeolite nanocrystals could be produced from a concentrated hydrogel.

  2. Positron spectroscopy studies of zeolites

    NASA Astrophysics Data System (ADS)

    Hung, Ku-Jung

    The lineshapes of two-dimensional angular correlation of electron-positron annihilation radiation (2D-ACAR) in alumina and several zeolites were measured as a function of internal surface areas. In all cases, the lineshape parameter S from 2D-ACAR spectra were found to vary proportionally with internal surface area. In order to investigate the Bronsted acidity in NaHY zeolite, the lineshape parameter evaluation from 2D-ACAR measurements for varied acidity in NaHY zeolites by ion-exchange and thermal desorption were presented. The result from this investigation has demonstrated that the Bronsted acidity in NaHY zeolite was found to vary linearly with the lineshape parameter of the angular correlation spectrum of the sample. The lineshapes of 2D-ACAR spectra were determined for different base adsorbed HY-zeolite samples under a temperature controlled heating system in order to investigate, in-situ, the acid strength and number of Bronsted acid sites in the sample. Results have shown that the lineshape parameter of the angular correlation spectrum of the sample increases with the strength of adsorbed base and decreases with the number of Bronsted acid sites in the sample. This indicated that the lineshape parameter is sensitive to all of the strengths and concentrations of Bronsted acid sites in the HY-zeolite samples. The result from this study has also demonstrated that the large size base, pyridine, would reduce the possibility of positronium formation in the sample by filling the cage to eliminate the internal surface areas where the positroniums are likely to form. However, the small size base, ammonia, did not show any effect on the internal surface areas. Owing to the fact that this technique monitors only the Bronsted acid sites that situate on the surface which relates to the catalytic activity, there is little ambiguity about the location of the source of information obtained. The findings presented in this dissertation point out the fact that such lineshape

  3. Chemical probes and engineered constructs reveal a detailed unfolding mechanism for a solvent-free multi-domain protein

    PubMed Central

    Eschweiler, Joseph D.; Martini, Rachel M.; Ruotolo, Brandon T.

    2017-01-01

    Despite the growing application of gas-phase measurements in structural biology and drug discovery, the factors that govern protein stabilities and structures in a solvent-free environment are still poorly understood. Here, we examine the solvent-free unfolding pathway for a group of homologous serum albumins. Utilizing a combination of chemical probes and non-covalent reconstructions, we draw new specific conclusions regarding the unfolding of albumins in the gas-phase, as well as more-general inferences regarding the sensitivity of collision induced unfolding to changes in protein primary and tertiary structure. Our findings suggest that the general unfolding pathway of low charge state albumin ions is largely unaffected by changes in primary structure; however, the stabilities of intermediates along these pathways vary widely as sequences diverge. Additionally, we find that human albumin follows a domain associated unfolding pathway, and are able to assign each unfolded form observed in our gas-phase dataset to the disruption of specific domains within the protein. The totality of our data informs the first detailed mechanism for multi-domain protein unfolding in the gas phase, and highlights key similarities and differences from the known the solution-phase pathway. PMID:27959526

  4. Synthesis and characterization of zeolite from coal fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  5. Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease.

    PubMed

    Li, Aitao; Ngo, Thao P N; Yan, Jinyong; Tian, Kaiyuan; Li, Zhi

    2012-06-01

    A whole-cell based solvent-free system was developed for efficient conversion of waste grease to biodiesel via one-pot esterification and transesterification. By isolation and screening of lipase-producing strains from soil, Serratia marcescens YXJ-1002 was discovered for the biotransformation of grease to biodiesel. The lipase (SML) from this strain was cloned and expressed in Escherichia coli as an intracellular enzyme, showing 6 times higher whole-cell based hydrolysis activity than that of wild type strain. The recombinant cells were used for biodiesel production from waste grease in one-pot reactions containing no solvent with the addition of methanol in several small portions, and 97% yield of biodiesel (FAME) was achieved under optimized conditions. In addition, the whole-cell biocatalysts showed excellent reusability, retaining 74% productivity after 4 cycles. The developed system, biocatalyst, and process enable the efficient, low-cost, and green production of biodiesel from waste grease, providing with a potential industrial application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  7. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  8. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  9. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    PubMed

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  10. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  11. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    PubMed

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    PubMed

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  13. Ligand- and base-free copper(II)-catalyzed C-N bond formation: cross-coupling reactions of organoboron compounds with aliphatic amines and anilines.

    PubMed

    Quach, Tan D; Batey, Robert A

    2003-11-13

    [reaction: see text] A ligandless and base-free Cu-catalyzed protocol for the cross-coupling of arylboronic acids and potassium aryltrifluoroborate salts with primary and secondary aliphatic amines and anilines is described. The process utilizes catalytic copper(II) acetate monohydrate and 4 A molecular sieves in dichloromethane at slightly elevated temperatures under an atmosphere of oxygen. A broad range of functional groups are tolerated on both of the cross-coupling partners.

  14. A General Synthetic Route to Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed Annulation Reaction.

    PubMed

    Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank

    2018-03-20

    Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.

  15. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  16. Zeolites in the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Raymond, William H.; Bush, Alfred L.; Gude, Arthur J.

    1982-01-01

    Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

  17. Binding Energy and Catalysis by D-Xylose Isomerase: Kinetic, Product and X-Ray Crystallographic Analysis of Enzyme-Catalyzed Isomerization of (R)-Glyceraldehyde‡, ¶

    PubMed Central

    Toteva, Maria M.; Silvaggi, Nicholas R.; Allen, Karen N.; Richard, John P.

    2011-01-01

    D-Xylose isomerase (XI) and triosephosphate isomerase (TIM) catalyze the aldose-ketose isomerization reactions of D-xylose and D-glyceraldehyde 3-phosphate (DGAP), respectively. D-Glyceraldehyde (DGA) is the triose fragment common to the substrates for XI and TIM. The XI-catalyzed isomerization of DGA to give dihydroxyacetone (DHA) in D2O was monitored by 1H NMR spectroscopy and kcat/Km = 0.034 M−1 s−1 was determined for this isomerization at pD 7.0. This is similar to kcat/Km = 0.017 M−1 s−1 for the TIM-catalyzed carbon deprotonation reaction of DGA in D2O at pD 7.0 [Amyes, T. L.; O’Donoghue, A. C. and Richard J. P. (2001) J. Am. Chem. Soc. 123, 11325–11326]. The much larger activation barrier for XI-catalyzed isomerization of D-xylose (kcat/Km = 490 M−1 s−1) than for the TIM-catalyzed isomerization of DGAP (kcat/Km = 9.6 x 106 M−1 s−1) is due to: (i) The larger barrier to conversion of cyclic D-xylose to the reactive linear sugar (5.4 kcal/mol) than for conversion of DGAP hydrate to the free aldehyde (1.7 kcal/mol). (ii) The smaller intrinsic binding energy [Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219–410] of the terminal ethylene glycol fragment of D-xylose (9.3 kcal/mol) than of the phosphodianion group of DGAP (ca. 12 kcal/mol). The XI-catalyzed isomerization of DGA in D2O at pD 7.0 gives a 90% yield of [1-1H]-DHA and a 10% yield of [1-2H]-DHA, the product of isomerization with deuterium incorporation from solvent D2O. By comparison, the transfer of 3H from labeled hexose substrate to solvent is observed only once in every 109 turnovers for the XI-catalyzed isomerization of [2-3H]-glucose in H2O [Allen, K. N., Lavie, A., Farber, G. K., Glasfeld, A., Petsko, G. A., and Ringe, D. (1994), Biochemistry 33, 1481–1487]. We propose that truncation of the terminal ethylene glycol fragment of D-xylose to give DGA results in a large decrease in the rate of XI-catalyzed isomerization with hydride transfer compared with that

  18. Adsorption of polypropylene from dilute solutions on a zeolite column packing.

    PubMed

    Macko, Tibor; Pasch, Harald; Denayer, Joeri F

    2005-01-01

    Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.

  19. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    DTIC Science & Technology

    1984-09-28

    exotic schemes were developed. It was previously demonstrated that MoCI5 may be reacted with a HYu (here Yu denotes a steam-stabilized or...34ultrastable" zeolite) to form a MoYu zeolite and HC1 which is removed from the system.1 In this study, MoYu zeolites have been prepared by reacting HYu with Mo

  20. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  1. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  2. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  3. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations

    PubMed Central

    Traboni, Serena; Bedini, Emiliano

    2016-01-01

    tert-Butyldimethylsilyl (TBDMS) and tert-butyldiphenylsilyl (TBDPS) are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2–3 equivalents). Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB). The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences allowing the regioselective silylation/alkylation (or the reverse sequence) of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis. PMID:28144345

  4. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  5. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Mi Young; Kim, Donghun; Kumar, Prashant

    A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown andmore » nonlayered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI9,15, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. Finally, these coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).« less

  6. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

    DOE PAGES

    Jeon, Mi Young; Kim, Donghun; Kumar, Prashant; ...

    2017-03-15

    A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown andmore » nonlayered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI9,15, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. Finally, these coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).« less

  7. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    NASA Astrophysics Data System (ADS)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  8. Applications of zeolites in biotechnology and medicine - a review.

    PubMed

    Bacakova, Lucie; Vandrovcova, Marta; Kopova, Ivana; Jirka, Ivan

    2018-05-01

    Zeolites are microporous tectosilicates of natural or synthetic origin, which have been extensively used in various technological applications, e.g. as catalysts and as molecular sieves, for separating and sorting various molecules, for water and air purification, including removal of radioactive contaminants, for harvesting waste heat and solar heat energy, for adsorption refrigeration, as detergents, etc. These applications of zeolites were typically related with their porous character, their high adsorption capacity, and their ion exchange properties. This review is focused on potential or already practically implemented applications of zeolites in biotechnology and medicine. Zeolites are promising for environment protection, detoxication of animal and human organisms, improvement of the nutrition status and immunity of farm animals, separation of various biomolecules and cells, construction of biosensors and detection of biomarkers of various diseases, controlled drug and gene delivery, radical scavenging, and particularly tissue engineering and biomaterial coating. As components of scaffolds for bone tissue engineering, zeolites can deliver oxygen to cells, can stimulate osteogenic cell differentiation, and can inhibit bone resorption. Zeolites can also act as oxygen reservoirs, and can improve cell performance in vascular and skin tissue engineering and wound healing. When deposited on metallic materials for bone implantation, zeolite films showed anticorrosion effects, and improved the osseointegration of these implants. In our studies, silicalite-1 films deposited on silicon or stainless steel substrates improved the adhesion, growth, viability and osteogenic differentiation of human osteoblast-like Saos-2 cells. Zeolites have been clinically used as components of haemostatics, e.g. in the Advanced Clotting Sponge, as gastroprotective drugs, e.g. Absorbatox® 2.4D, or as antioxidative agents (Klinobind®). Some zeolites are highly cytotoxic and carcinogenic

  9. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    PubMed Central

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2016-01-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  10. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO₂/Zeolite Sensor.

    PubMed

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan; Wang, Xiaofeng

    2018-01-29

    In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO₂/Al₂O₃ ratio, different particle size of MFI type zeolites (ZSM-5) were coated on the SnO₂ to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO₂/Al₂O₃ = 70, grain size 300 nm) coated SnO₂ gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO₂ gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO₂/Al₂O₃ 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO₂ sensors did not show much difference with SnO₂ sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  11. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.

    PubMed

    You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi

    2017-02-03

    A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.

  12. Novozyme 435-catalyzed efficient acylation of 3-n-butylphthalide in organic medium.

    PubMed

    He, Laping; Sun, Jiong; Xu, Yan; Sun, Zhihao; Zheng, Changge

    2008-01-01

    Novozyme 435 could catalyze efficient acylation of 3-n-butylphthalide in organic medium. The conversion of 3-n-butylphthalide increased with the increase of hydrophobicity of solvent below that of hexane. The more available solvent was hexane. Salt hydride could control fixed water activity. The optimum water activity was 0.62. And the optimum of reaction time, velocity of agitation, dosage of Novozyme 435 and acetic anhydride to 3-n-butylphtrhalide molar ratio were 48 hours, 150 rpm, 8 mg/mL and 8:1, respectively. The conversion of 48.9% could be obtained at a water activity of 0.62 in hexane. Furthermore, Novozyme 435 had an enantioselective acylation of racemic 3-n-butylphthalide by original analysis.

  13. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  14. Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions.

    PubMed

    Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N; Huang, Chaobo; Pan, Hui

    2017-05-12

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13 C NMR spectroscopy (CP/MAS 13 C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu 2+ and Cd 2+ , and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu 2+ and Cd 2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.

  15. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  16. Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents.

    PubMed

    Okuno, Y

    1997-02-01

    The Baeyer-Villiger reaction of p-anisaldehyde with peroxyacetic acid in nonpolar solvents to give p-anisylformate was examined on the basis of ab initio molecular orbital calculations. To explain the experimental observations, the free-energy change was evaluated for each case in the absence and in the presence of an acid catalyst. It was found that, without catalysts, the rate-determining step corresponds to the carbonyl addition of peroxyacetic acid to p-anisaldehyde and the reaction hardly occurs. Acetic acid was found to catalyze the carbonyl addition and change the rate-determining step from the carbonyl addition to the migration of the carbonyl-adduct intermediate. Trifluoroacetic acid was observed to catalyze both the carbonyl addition and migration, and the carbonyl addition was demonstrated to be a rate-determining step. The results provided a convincing explanation of the complex kinetics seen experimentally. Further calculations were performed for the reaction of benzaldehyde with peroxyacetic acid to give phenylformate. Migratory aptitude was found to depend on the catalyst. Isotope effects were also investigated, and the exceptional isotope effect observed experimentally was shown to be due to the rate-determining carbonyl addition caused by autocatalysis. It is concluded that the mechanism of the reaction varies with catalysis or substituent effects. Copyright © 1997 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  18. Thermodynamics and sorption characteristics of Zn(II) onto natural and chemically modified zeolites for agricultural and environmental using

    NASA Astrophysics Data System (ADS)

    Saltali, K.; Tazebay, N.; Kaya, M.

    2017-10-01

    Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities ( q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (Δ H°) and entropy (Δ S°) values were positive. The change values of Gibbs free energy (Δ G°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.

  19. Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries.

    PubMed

    Liu, Zhiliang; Chang, Xinghua; Sun, Bingxue; Yang, Sungjin; Zheng, Jie; Li, Xingguo

    2017-06-06

    SiCl 4 can be directly reduced to nano-Si with commercial Na metal under solvent-free conditions by mechanical milling. Crystalline nano-Si with an average size of 25 nm and quite uniform size distribution can be obtained, which shows excellent lithium storage performance, for a high reversible capacity of 1600 mA h g -1 after 500 cycles at 2.1 A g -1 .

  20. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  1. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  2. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    NASA Astrophysics Data System (ADS)

    Gerengi, Husnu; Kurtay, Mine; Durgun, Hatice

    The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference), 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS) measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  3. Use of an iodide-specific electrode to study lactoperoxidase-catalyzed iodination of l-tyrosine.

    PubMed

    Threatte, R M; Fregly, M J; Field, F P; Jones, P K

    1979-12-01

    An in vitro method employing an iodide-specific electrode for monitoring lactoperoxidase-catalyzed iodination is described. The method utilized lactoperoxidase, potassium iodide, and a glucose--glucose oxidase system for the generation of hydrogen peroxide and l-tyrosine. As iodination of l-tyrosine proceeded, the free iodide concentration in solution decreased and was monitored by an iodide-specific electrode. The iodide electrode was reliable when compared to a 131I-method for measuring free iodide changes in solution. Increasing concentrations of resorcinol, a well-known inhibitor of thyroid peroxidase-catalyzed iodination, in the reaction mixture resulted in graded inhibition of the initial rate of lactoperoxidase-catalyzed l-tyrosine iodination. This in vitro system can be used to assess inhibitory activity of various antithyroid substances.

  4. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  5. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  6. Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions

    NASA Astrophysics Data System (ADS)

    Viennet, Jean-Christophe; Bultel, Benjamin; Riu, Lucie; Werner, Stephanie C.

    2017-11-01

    Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.

  7. Synthesis and Characterization of Zeolite Na-Y and Its Conversion to the Solid Acid Zeolite H-Y

    ERIC Educational Resources Information Center

    Warner, Terence E.; Klokker, Mads Galsgaard; Nielsen, Ulla Gro

    2017-01-01

    Zeolite Y has an iconic crystal structure, but more importantly, the hydrogen modification zeolite H-Y is the classic example of a solid acid which is used extensively as a catalyst in the oil industry. This metastable compound cannot be synthesized directly, which creates an opportunity to discuss various preparative strategies with the students,…

  8. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation.

    PubMed

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M Ricardo; Santamaría, Jesús

    2006-08-28

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g(-1) and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  9. Sustained release of doxorubicin from zeolite magnetite nanocomposites prepared by mechanical activation

    NASA Astrophysics Data System (ADS)

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M. Ricardo; Santamaría, Jesús

    2006-08-01

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g-1 and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  10. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  11. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.; Wiench, Jerzy W.; Pruski, Marek

    2004-05-04

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--CR.sup.4 R.sup.5 R.sup.6 ]X, comprising ball-milling a phosphine of the formula R.sup.1 R.sup.2 R.sup.3 P with a compound of the formula XCR.sup.4 R.sup.5 R.sup.6 ; a method of preparing a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--HCR.sup.4 R.sup.5 ]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4 R.sup.5 C.dbd.CR.sup.7 H or R.sup.4 R.sup.5 C.dbd.CR.sup.7 R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5 with a compound of the formula R.sup.7 C(O)H or R.sup.7 C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  12. Multi-component lanthanide hybrids based on zeolite A/L and zeolite A/L-polymers for tunable luminescence.

    PubMed

    Chen, Lei; Yan, Bing

    2015-02-01

    Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.

  13. A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.

    PubMed

    Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai

    2018-01-15

    A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Organic-Free, ZnO-Assisted Synthesis of Zeolite FAU with Tunable SiO2 /Al2 O3 Molar Ratio.

    PubMed

    Guo, Ya; Sun, Tianjun; Gu, Yiming; Liu, Xiaowei; Ke, Quanli; Wang, Shudong

    2018-05-04

    Zeolite FAU with tunable SiO 2 /Al 2 O 3 molar ratio has been successfully synthesized in the absence of organic structure-directing agents (OSDA). Specifically, the addition of zinc species contributes to the feasible and effective adjustment of the framework SiO 2 /Al 2 O 3 molar ratio between about 4 and 6 depending on the amount of zinc species added in the batch composition. In contrast, a typical OSDA such as tetramethylammonium hydroxide (TMAOH) has a limited effect on the SiO 2 /Al 2 O 3 molar ratio of the zeolite. The role of zinc species is essential for the crystallization of zeolite FAU with a higher SiO 2 /Al 2 O 3 molar ratio under the particular synthesis conditions. It is speculated that zinc species may suppress the incorporation of aluminum into the aluminosilicate framework, which is due to the Coulombic repulsive interaction. A higher SiO 2 /Al 2 O 3 molar ratio is also found to be accompanied by a lower CO 2 adsorption heat for CO 2 /CH 4 separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors.

    PubMed

    Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Dieu, Bjorn; Roeffaers, Maarten B J; Hofkens, Johan

    2016-11-15

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film.

  16. Applications of natural zeolites on agriculture and food production.

    PubMed

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos G

    2017-08-01

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties, which include losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. The commercial production of natural zeolites has accelerated during the last 50 years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites, which currently include more than 40 naturally occurring zeolites. Recent findings have supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application, including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. The latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the present review, we summarize most of the main uses of zeolites in food and agruculture, along with the with specific paradigms that illustrate their important role. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    PubMed Central

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  18. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  19. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions.

    PubMed

    Ates, Ayten

    2018-08-01

    A series of natural zeolites with different compositions were modified by post-synthesis modification with sodium hydroxide (NaOH) solution. Natural and modified zeolites were characterized by XRD, SEM, nitrogen adsorption, FTIR, zeta potential and temperature programmed desorption of ammonia (NH 3 -TPD). The adsorption capacities of these samples were evaluated by the adsorption of manganese from aqueous solution. The treatment with NaOH led to a decrease in the surface area and microporosity of all natural zeolites as well as partly damage of the zeolite structure depending on zeolite composition. In addition, the amount of weak, medium and strong acid sites in the zeolites was changed significantly by NaOH treatment depending on zeolite composition. The NaOH treatment resulted in a four-fold improvement in adsorption capacity of natural zeolite originated from Bigadic and a twofold decrease in that of the natural zeolite originated from Manisa-Gordes. Although the improved adsorption capacity might be mainly due to modification of porosity in the zeolites and formation of hydroxysodalite, the reduced adsorption capacity of the zeolite might be mainly due to a significant deformation of the zeolite structure. The pseudo-second-order kinetic model for the adsorption of manganese on all natural and modified zeolites fits well. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    PubMed

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  2. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

    PubMed

    Kumar, A; Gross, R A

    2000-01-01

    Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

  3. A database of new zeolite-like materials.

    PubMed

    Pophale, Ramdas; Cheeseman, Phillip A; Deem, Michael W

    2011-07-21

    We here describe a database of computationally predicted zeolite-like materials. These crystals were discovered by a Monte Carlo search for zeolite-like materials. Positions of Si atoms as well as unit cell, space group, density, and number of crystallographically unique atoms were explored in the construction of this database. The database contains over 2.6 M unique structures. Roughly 15% of these are within +30 kJ mol(-1) Si of α-quartz, the band in which most of the known zeolites lie. These structures have topological, geometrical, and diffraction characteristics that are similar to those of known zeolites. The database is the result of refinement by two interatomic potentials that both satisfy the Pauli exclusion principle. The database has been deposited in the publicly available PCOD database and in www.hypotheticalzeolites.net/database/deem/. This journal is © the Owner Societies 2011

  4. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  5. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  6. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  7. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  9. Study on the strategies of waste solvent minimization in automobile production industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.T.; Lin, K.L.; Wu, Y.P.

    1998-12-31

    There are six automobile manufacturers who produce several kinds of vehicles in Taiwan. To meet the consumer`s needs, the automobile coating processes are necessary for the basic functions of anti-rust protection, weatherproofing and appearance. Some kinds of solvents are added as thinners and additives to avoid excessive viscosity of the coating materials and to increase facility productivity. The total consumption of volatile organic solvents is about 407,000 ton/year of which about 100,700 ton/year is used in surface coating. It is worthy of attention that solvents used in automobile industries account for 7,200 ton/year in major coating processes, including electrodeposition coating,more » primer coating, top coating, and bar coating, according to statistics of VOCs emission rate calculated from the data of consumption provided by each automobile plant. The amount of solvents used for washing spray gun and base coating are about 3,350 ton/year; and about 1,700 ton/year for primer coat and clear coat. The species of organic solvents include toluene, xylene, ethylacetate, n-butyl acetate, ketone, etc. VOCs emission factor from each plant lies between 500 to 650 g-VOCs/L coating. To reduce the amount of coating and waste liquor, the suggested methods include increasing gun spray efficiency, lengthening same colors painting period, reducing the solvent content in paint, and adding treatment equipment. The high solid content painting, waterborne coat, and powder coat should be used for traditional painting. Additionally, a carbon adsorption bed and zeolite rotator recovery system can replace scrubbers since they can be used as solvent recovery equipment.« less

  10. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  11. Catalyzed formation of α,β-unsaturated ketones or aldehydes from propargylic acetates by a recoverable and recyclable nanocluster catalyst

    NASA Astrophysics Data System (ADS)

    Li, Man-Bo; Tian, Shi-Kai; Wu, Zhikun

    2014-05-01

    An active, recoverable, and recyclable nanocluster catalyst, Au25(SR)18-, has been developed to catalyze the formation of α,β-unsaturated ketones or aldehydes from propargylic acetates. The catalytic process has been proposed to be initialized by an SN2' addition of OH-. Moreover, a dramatic solvent effect was observed, for which a rational explanation was provided.An active, recoverable, and recyclable nanocluster catalyst, Au25(SR)18-, has been developed to catalyze the formation of α,β-unsaturated ketones or aldehydes from propargylic acetates. The catalytic process has been proposed to be initialized by an SN2' addition of OH-. Moreover, a dramatic solvent effect was observed, for which a rational explanation was provided. Electronic supplementary information (ESI) available: Experimental procedures, UV-Vis spectra and fluorescence spectra of catalysts, characterization data, and copies of MS spectra. See DOI: 10.1039/c4nr00658e

  12. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    PubMed

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-07

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  13. Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy.

    PubMed

    Rodríguez-Velázquez, Eustolia; Taboada, Pablo; Alatorre-Meda, Manuel

    2017-08-31

    Macroscopic hollow polymeric particles are attractive materials for various applications such as surgery, food industry, agriculture, etc. However, protocols reporting their synthesis have hitherto made use of organic solvents and/or sacrificial templates, compromising the encapsulation of different bioactive compounds and the process yield. Here, millimeter-size, hollow polymeric particles were synthesized, for the first time, in a solvent- and template free manner onto superhydrophobic surfaces (SHS). The particles were produced upon assembly and double superficial crosslinking of liquid droplets of DNA and methacrylamide chitosan aqueous solutions (CH:MA), leading to liquid-core particles with a hardened hydrogel shell. The particles displayed appealing physical and biological properties. The millimeter-size hydrogel shell, resulting from the double ionic/covalent crosslinking of CH:MA, endowed the hollow particles with softness to the touch and an outstanding structural stability against manipulation by hand and with forceps. Meanwhile, the liquid DNA core guaranteed a biocompatible cell encapsulation followed by a superior release and proliferation of viable cells, as compared to solid CH:MA particles prepared as a blank. Particles with these characteristics show promise for surgical protocols practiced in Tissue Engineering and Regenerative Medicine, where manipulable and biocompatible synthetic implants are often needed to supply living cells and other sensitive bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy.

    PubMed

    Rodríguez-Velázquez, Eustolia; Taboada, Pablo; Alatorre-Meda, Manuel

    2017-12-01

    Macroscopic hollow polymeric particles are attractive materials for various applications such as surgery, food industry, agriculture, etc. However, protocols reporting their synthesis have hitherto made use of organic solvents and/or sacrificial templates, compromising the encapsulation of different bioactive compounds and the process yield. Here, millimeter-size, hollow polymeric particles were synthesized, for the first time, in a solvent- and template free manner onto superhydrophobic surfaces (SHS). The particles were produced upon assembly and double superficial crosslinking of liquid droplets of DNA and methacrylamide chitosan aqueous solutions (CH:MA), leading to liquid-core particles with a hardened hydrogel shell. The particles displayed appealing physical and biological properties. The millimeter-size hydrogel shell, resulting from the double ionic/covalent crosslinking of CH:MA, endowed the hollow particles with softness to the touch and an outstanding structural stability against manipulation by hand and with forceps. Meanwhile, the liquid DNA core guaranteed a biocompatible cell encapsulation followed by a superior release and proliferation of viable cells, as compared to solid CH:MA particles prepared as a blank. Particles with these characteristics show promise for surgical protocols practiced in Tissue Engineering and Regenerative Medicine, where manipulable and biocompatible synthetic implants are often needed to supply living cells and other sensitive bioactive compounds. Copyright © 2017. Published by Elsevier B.V.

  15. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  16. Comparison of Free Energy Surfaces Calculations from Ab Initio Molecular Dynamic Simulations at the Example of Two Transition Metal Catalyzed Reactions

    PubMed Central

    Brüssel, Marc; di Dio, Philipp J.; Muñiz, Kilian; Kirchner, Barbara

    2011-01-01

    We carried out ab initio molecular dynamic simulations in order to determine the free energy surfaces of two selected reactions including solvents, namely a rearrangement of a ruthenium oxoester in water and a carbon dioxide addition to a palladium complex in carbon dioxide. For the latter reaction we also investigated the gas phase reaction in order to take solvent effects into account. We used two techniques to reconstruct the free energy surfaces: thermodynamic integration and metadynamics. Furthermore, we gave a reasonable error estimation of the computed free energy surface. We calculated a reaction barrier of ΔF = 59.5 ± 8.5 kJ mol−1 for the rearrangement of a ruthenium oxoester in water from thermodynamic integration. For the carbon dioxide addition to the palladium complex in carbon dioxide we found a ΔF = 44.9 ± 3.3 kJ mol−1 from metadynamics simulations with one collective variable. The investigation of the same reactions in the gas phase resulted in ΔF = 24.9 ± 6.7 kJ mol−1 from thermodynamic integration, in ΔF = 26.7 ± 2.3 kJ mol−1 from metadynamics simulations with one collective variable, and in ΔF = 27.1 ± 5.9 kJ mol−1 from metadynamics simulations with two collective variables. PMID:21541065

  17. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  18. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysismore » using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.« less

  19. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  20. Effect of Reaction Temperature on Biodiesel Production from Chlorella vulgaris using CuO/Zeolite as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Dianursanti; Delaamira, M.; Bismo, S.; Muharam, Y.

    2017-02-01

    Human needs for fossil energy increase every year. Biodiesel is the main way to resolve this world problem. Biodiesel produces from vegetable oil. But then, the alternative way came from the uses of microalgae in Chlorella vulgaris type causes by its simplicity of growing. In the other hand, this microalgae known for its high lipid content by considering several parameter such as light intensity, medium nutrition, pH and also salinity. Lipid content will be extracted by using Bligh-Dryer method which will be reacted with methanol along transesterification. Beside, there come another matter which is the utilization of homogeny catalyst. The difficulty of separation is the main matter so then biodiesel need to be washed in case normalizing the pH and this process will decrease the quality of biodiesel. To resolve this problem, we’ll be using a heterogeneous catalyst, zeolite, with ability to catalyst the process. Zeolite is easier to separate from the biodiesel so there will not be needed washing process. Heterogeneous catalyst work as well as homogeneous. Variation implemented on transesterification included reaction temperature of 40°C, 60°C, and 80°C. Reaction time, catalyst percentage and the solvent amount remain steady on 4 hours, 3% and 1:400. Complete best result obtained at 60°C with the yield of 36,78%. Through this, heterogeneous catalyst CuO/Zeolite proved to have a capability for replacing homogeneous catalyst and simplify the production of biodiesel particularly in separation step.

  1. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integritymore » of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.« less

  2. Engineering of Transition Metal Catalysts Confined in Zeolites

    PubMed Central

    2018-01-01

    Transition metal–zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal–zeolite catalysts. PMID:29861546

  3. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  5. Activity of titania and zeolite samples dosed with triethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Caitlin; Gole, James L.; Brauer, Jonathan

    2016-01-01

    Certain properties of titania and the ammonium- and proton-form of Y zeolites (silica/alumina ratio of 5.2) were explored before and after treatment by triethylamine (TEA). The effect of the triethylamine upon the physical and chemical properties of both titania and the zeolite were characterized by physical and chemical adsorption methods. BET surface area data showed enhanced surface area of the TEA-treated nanotitania over the untreated nanotitania whereas the TEA-treated zeolite showed a considerable decrease in surface area compared to the untreated zeolite. TPD of the TEA-treated Y zeolite showed that weakly adsorbed TEA left the surface between 150 and 300more » oC; strongly adsorbed TEA decomposed to ethylene and ammonia at higher temperatures. XPS, IR, and Raman spectroscopies, powder XRD, and 27Al MAS-NMR spectroscopy were used to further characterize the changes introduced by in-situ nitridation. Pre-adsorbed triethylamine decorated acid sites so as to neutralize these sites for the reaction of methanol to dimethylether. Carbon monoxide and ormaldehyde, products of the methanol probe reaction, were observed-- suggesting that basic sites are present in this treated zeolite and titania.« less

  6. Comparison between the Midi Parasep and Midi Parasep Solvent Free (SF) faecal parasite concentrators.

    PubMed

    Saez, Agatha C; Manser, Monika M; Andrews, Nick; Chiodini, Peter L

    2011-10-01

    To compare the recovery of parasites in faecal samples using the Midi Parasep with ethyl acetate and Midi Parasep Solvent Free (SF) faecal parasite concentrators. 23 preserved and 11 fresh faecal samples were microscopically examined for the presence of parasites using the Midi Parasep concentrator with ethyl acetate centrifuged for 1 and 3 min and the Midi Parasep SF concentrator. The Midi Parasep SF faecal parasite system recovered significantly fewer ova and cysts and resulted in a notably larger deposit than the Midi Parasep concentrator with ethyl acetate. Parasites present in small numbers that would be detected using the Midi Parasep concentrator with ethyl acetate could be missed using the SF faecal parasite system.

  7. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  8. Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste.

    PubMed

    Zarrabi, Mansur; Mohammadi, Ali Akbar; Al-Musawi, Tariq J; Najafi Saleh, Hossein

    2018-06-02

    The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.

  9. Mineral resource of the month: natural and synthetic zeolites

    USGS Publications Warehouse

    Virta, Robert L.

    2008-01-01

    Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

  10. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    NASA Astrophysics Data System (ADS)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  11. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    PubMed

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites.

    PubMed

    Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio

    2018-03-04

    Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.

  13. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  14. Extraction of orange peel's essential oil by solvent-free microwave extraction

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud

    2017-05-01

    Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.

  15. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    PubMed

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    NASA Astrophysics Data System (ADS)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  17. Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions

    PubMed Central

    Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N.; Huang, Chaobo; Pan, Hui

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively. PMID:28772885

  18. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Comparison of RESP and IPolQ-Mod Partial Charges for Solvation Free Energy Calculations of Various Solute/Solvent Pairs.

    PubMed

    Mecklenfeld, Andreas; Raabe, Gabriele

    2017-12-12

    The calculation of solvation free energies ΔG solv by molecular simulations is of great interest as they are linked to other physical properties such as relative solubility, partition coefficient, and activity coefficient. However, shortcomings in molecular models can lead to ΔG solv deviations from experimental data. Various studies have demonstrated the impact of partial charges on free energy results. Consequently, calculation methods for partial charges aimed at more accurate ΔG solv predictions are the subject of various studies in the literature. Here we compare two methods to derive partial charges for the general AMBER force field (GAFF), i.e. the default RESP as well as the physically motivated IPolQ-Mod method that implicitly accounts for polarization costs. We study 29 solutes which include characteristic functional groups of drug-like molecules, and 12 diverse solvents were examined. In total, we consider 107 solute/solvent pairs including two water models TIP3P and TIP4P/2005. Comparison with experimental results yields better agreement for TIP3P, regardless of the partial charge scheme. The overall performance of GAFF/RESP and GAFF/IPolQ-Mod is similar, though specific shortcomings in the description of ΔG solv for both RESP and IPolQ-Mod can be identified. However, the high correlation between free energies obtained with GAFF/RESP and GAFF/IPolQ-Mod demonstrates the compatibility between the modified charges and remaining GAFF parameters.

  1. Performance of zeolite ceramic membrane synthesized by wet mixing method as methylene blue dye wastewater filter

    NASA Astrophysics Data System (ADS)

    Masturi; Widodo, R. D.; Edie, S. S.; Amri, U.; Sidiq, A. L.; Alighiri, D.; Wulandari, N. A.; Susilawati; Amanah, S. N.

    2018-03-01

    Problem of pollution in water continues in Indonesia, with its manufacturing sector as biggest contributor to economic growth. One out of many technological solutions is post-treating industrial wastewater by membrane filtering technology. We presented a result of our fabrication of ceramic membrane made from zeolite with simple mixing and he. At 5% of (poring agent):(total weight), its permeability stays around 2.8 mD (10‑14m2) with slight variance around it, attributed to the mixture being in far below percolating threshold. All our membranes achieve remarkable above 90% rejection rate of methylene blue as solute waste in water solvent.

  2. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  3. Effects of zeolites on cultures of marine micro-algae: A brief review.

    PubMed

    Fachini, Adriano; Vasconcelos, Maria Teresa S D

    2006-10-01

    The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published papers. The purpose of this review is to present the state-of-the-art on applications of using zeolites for amending the trace elemental contents of salt water as well as the implications of this property for promoting marine micro-algal growth. This paper deals with the following features: Sorption capacity of zeolites including 1. application of zeolites in saltwater, 2. the role of silicon and zeolites on cultures of micro-algae, and 3. the role of organically chelated trace metals. The following competing factors have been identified as effects of zeolites on algal growth in salt water: (i) ammonia decrease: growth inhibition reduced; (ii) macro-nutrients increase, mainly silicon: stimulation of silicon-dependent algae; (iii) trace metals increase (desorption from zeolites) or decrease (adsorption): inhibition or stimulation, depending on the nature of the element and its concentration; and, (iv) changes in the chelating organics exudation: inhibition or stimulation of growth, depending on the (a) nature of the complexed element; (b) bioavailability of the complex; and (c) concentration of the elements simultaneously present in inorganic forms. Zeolites have been capable of stimulating the growth of the silicon-demanding marine micro-algae, like diatoms, mainly because they can act as a silicon buffer in seawater. Zeolites can also influence the yield of non-silicon-demanding algae, because the changes they can cause (liberation and adsorption of trace elements) in the composition of the medium. Zeolites have been capable of stimulating the growth of the marine micro-algae. However

  4. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    PubMed

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  5. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  6. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and

  7. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass.

    PubMed

    Espejel-Ayala, F; Corella, R Chora; Pérez, A Morales; Pérez-Hernández, R; Ramírez-Zamora, R M

    2014-12-01

    The present work introduces the study of the CO2 capture process by zeolites synthesized from paper sludge and scrap glass. Zeolites ZSM-5, analcime and wairakite were produced by means of two types of Structure Directing Agents (SDA): tetrapropilamonium (TPA) and ethanol. On the one hand, zeolite ZSM-5 was synthesized using TPA; on the other hand, analcime and wairakite were produced with ethanol. The temperature programmed desorption (TPD) technique was performed for determining the CO2 sorption capacity of these zeolites at two sorption temperatures: 50 and 100 °C. CO2 sorption capacity of zeolite ZSM-5 synthesized at 50 °C was 0.683 mmol/g representing 38.2% of the value measured for a zeolite ZSM-5 commercial. Zeolite analcime showed a higher CO2 sorption capacity (1.698 mmol/g) at 50 °C and its regeneration temperature was relatively low. Zeolites synthesized in this study can be used in the purification of biogas and this will produce energy without increasing the atmospheric CO2 concentrations. © The Author(s) 2014.

  8. Nanosized zeolites as a perspective material for conductometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  9. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.

  10. Xylenes transformation over zeolites ZSM-5 ruled by acidic properties

    NASA Astrophysics Data System (ADS)

    Gołąbek, Kinga; Tarach, Karolina A.; Góra-Marek, Kinga

    2018-03-01

    The studies presented in this work offer an insight into xylene isomerization process, followed by 2D COS analysis, in the terms of different acidity of microporous zeolites ZSM-5. The isomerisation reaction proceeded effectively over zeolites ZSM-5 of Si/Al equal of 12 and 32. Among them, the Al-poorer zeolite (Si/Al = 32) was found to offer the highest conversion and selectivity to p-xylene with the lowest number of disproportionation products, both in ortho- and meta-xylene transformation. Further reduction of Brønsted acidity facilitated the disproportionation path (zeolites of Si/Al = 48 and 750). The formation of intermediate species induced by the diffusion constraints for m-xylene in 10-ring channels was rationalized in the terms of the methylbenzenium ions formation inside the rigid micropore environment. Finally, both microporous character of zeolite and the optimised acidity were found to be crucial for high selectivity to the most desired product i.e. p-xylene. The analysis of asynchronous maps allowed for concluding on the order of the appearance of the respective products on the zeolite surface.

  11. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  12. Selective synthesis of FAU-type zeolites

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo; Cabrera, Saúl; Hedlund, Jonas; Mouzon, Johanne

    2018-05-01

    In the present work, parameters influencing the selectivity of the synthesis of FAU-zeolites from diatomite were studied. The final products after varying synthesis time were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and gas adsorption. It was found that high concentrations of NaCl could completely inhibit the formation of zeolite P, which otherwise usually forms as soon as maximum FAU crystallinity is reached. In the presence of NaCl, the FAU crystals were stable for extended time after completed crystallization of FAU before formation of sodalite. It was also found that addition of NaCl barely changed the crystallization kinetics of FAU zeolite and only reduced the final FAU particle size and SiO2/Al2O3 ratio slightly. Other salts containing either Na or Cl were also investigated. Our results suggest that there is a synergistic effect between Na+ and Cl-. This is attributed to the formation of (Na4Cl)3+ clusters that stabilize the sodalite cages. This new finding may be used to increase the selectivity of syntheses leading to FAU-zeolites and avoid the formation of undesirable by-products, especially if impure natural sources of aluminosilica are used.

  13. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  14. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    PubMed

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    PubMed Central

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  16. Deposition of zeolite nanoparticles onto porous silica monolith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof

    2016-06-01

    A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystalsmore » onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.« less

  17. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  18. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.

    PubMed

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing

    2009-05-13

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.

  19. Cationic pentaheteroaryls as selective G-quadruplex ligands by solvent-free microwave-assisted synthesis.

    PubMed

    Petenzi, Michele; Verga, Daniela; Largy, Eric; Hamon, Florian; Doria, Filippo; Teulade-Fichou, Marie-Paule; Guédin, Aurore; Mergny, Jean-Louis; Mella, Mariella; Freccero, Mauro

    2012-11-05

    We report herein a solvent-free and microwaved-assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4-oxadiazole moieties (1-7). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4-FID) and CD spectroscopy. Among the G-quadruplexes considered, attention was focused on telomeric repeats together with the proto-oncogenic c-kit sequences and the c-myc oncogene promoter. Compound 1, and to a lesser extent 2 and 5, preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole (TOxaPy), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Large zeolites - Why and how to grow in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.

    1991-01-01

    The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.