Sample records for zeolite internal structures

  1. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct oxygen sites (rather than one), and formation of a new supercell. New calorimetric measurements of enthalpy are used to examine the energetics of the hydrosodalite family of zeolites---specifically, formation enthalpies and hydration energies. Finally, force-field computational methods begin the examination of water in terms of energetics, structure, and radionuclide containment and diffusion.

  2. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  3. Applications of natural zeolites on agriculture and food production.

    PubMed

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos G

    2017-08-01

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties, which include losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. The commercial production of natural zeolites has accelerated during the last 50 years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites, which currently include more than 40 naturally occurring zeolites. Recent findings have supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application, including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. The latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the present review, we summarize most of the main uses of zeolites in food and agruculture, along with the with specific paradigms that illustrate their important role. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  5. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1997-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, dvetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  6. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    PubMed

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  8. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  9. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  10. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  11. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  12. European Microgravity Facilities for ZEOLITE Experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

    2002-01-01

    Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

  13. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

    NASA Astrophysics Data System (ADS)

    Salehi, Tahereh Mombeini; Peyravi, Majid; Jahanshahi, Mohsen; Lau, Woei-Jye; Rad, Ali Shokuhi

    2018-04-01

    In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0-0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter ( S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

  14. Possible Responsibility of Silicone Materials for Degradation of the CO2 Removal System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Baeza, Mario; Sharma, Hemant; Borrok, David; Ren, Mingua; Pannell, Keith

    2011-01-01

    From data concerning the degradation of the CO2 removal system in the International Space Station (ISS) two important features were apparent: (1) The atmosphere within the International Space Station (ISS) contained many organic compounds including alcohols, halocarbons, aldehydes, esters, and ketones, inter alia. Various cyclosiloxanes Dn, hexamethylcyclotrisiloxane (D3) and its higher homologs (D4) and (D5) are also present presumably due to offgassing. (2) Screens within the zeolite-containing canisters, used for the removal of CO2, exhibited partial clogging due to zeolitic fragments (dust) along with "sticky" residues, that in toto significantly reduced the efficiency of the CO2 removal process. Samples of the ISS fresh zeolite, used zeolite, filter clogging zeolite particles and residual polymeric materials were examined using, inter alia, NMR, EM and HRSEM. These data were compared to equivalent samples obtained prior and subsequent to Dn polymerization experiments performed in our laboratories using the clean ISS zeolite samples as catalyst. Polysiloxane materials produced were essentially equivalent in the two cases and the EM images demonstrate a remarkable similarity between the ISS filter zeolite samples and the post-polymerization zeolite material from our experiments. In this regard even the changes in the Al/Si ratio from the virgin zeolite material to the filter samples and the post-polymerization laboratory samples samples is noteworthy. This research was supported by a contract from the Boeing Company

  15. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollowmore » zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.« less

  16. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  17. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  18. A family of zeolites with controlled pore size prepared using a top-down method

    NASA Astrophysics Data System (ADS)

    Roth, Wieslaw J.; Nachtigall, Petr; Morris, Russell E.; Wheatley, Paul S.; Seymour, Valerie R.; Ashbrook, Sharon E.; Chlubná, Pavla; Grajciar, Lukáš; Položij, Miroslav; Zukal, Arnošt; Shvets, Oleksiy; Čejka, Jiří

    2013-07-01

    The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basaldella, E.I.; Bonetto, R.; Tara, J.C.

    The synthesis of NaY zeolite was carried out on fired kaolinite microspheres. Changes in porosity, chemical composition, and crystallinity of the solid show zeolite growth on both internal and external microsphere surfaces. It was also observed that, as a consequence of the alkaline treatment, the SiO[sub 2]/Al[sub 2]O[sub 3] ratio in the solid diminishes prior to the appearance of the zeolite, but increases when the zeolite begins to crystallize.

  20. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  1. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions.

    PubMed

    Ates, Ayten

    2018-08-01

    A series of natural zeolites with different compositions were modified by post-synthesis modification with sodium hydroxide (NaOH) solution. Natural and modified zeolites were characterized by XRD, SEM, nitrogen adsorption, FTIR, zeta potential and temperature programmed desorption of ammonia (NH 3 -TPD). The adsorption capacities of these samples were evaluated by the adsorption of manganese from aqueous solution. The treatment with NaOH led to a decrease in the surface area and microporosity of all natural zeolites as well as partly damage of the zeolite structure depending on zeolite composition. In addition, the amount of weak, medium and strong acid sites in the zeolites was changed significantly by NaOH treatment depending on zeolite composition. The NaOH treatment resulted in a four-fold improvement in adsorption capacity of natural zeolite originated from Bigadic and a twofold decrease in that of the natural zeolite originated from Manisa-Gordes. Although the improved adsorption capacity might be mainly due to modification of porosity in the zeolites and formation of hydroxysodalite, the reduced adsorption capacity of the zeolite might be mainly due to a significant deformation of the zeolite structure. The pseudo-second-order kinetic model for the adsorption of manganese on all natural and modified zeolites fits well. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  3. Positron spectroscopy studies of zeolites

    NASA Astrophysics Data System (ADS)

    Hung, Ku-Jung

    The lineshapes of two-dimensional angular correlation of electron-positron annihilation radiation (2D-ACAR) in alumina and several zeolites were measured as a function of internal surface areas. In all cases, the lineshape parameter S from 2D-ACAR spectra were found to vary proportionally with internal surface area. In order to investigate the Bronsted acidity in NaHY zeolite, the lineshape parameter evaluation from 2D-ACAR measurements for varied acidity in NaHY zeolites by ion-exchange and thermal desorption were presented. The result from this investigation has demonstrated that the Bronsted acidity in NaHY zeolite was found to vary linearly with the lineshape parameter of the angular correlation spectrum of the sample. The lineshapes of 2D-ACAR spectra were determined for different base adsorbed HY-zeolite samples under a temperature controlled heating system in order to investigate, in-situ, the acid strength and number of Bronsted acid sites in the sample. Results have shown that the lineshape parameter of the angular correlation spectrum of the sample increases with the strength of adsorbed base and decreases with the number of Bronsted acid sites in the sample. This indicated that the lineshape parameter is sensitive to all of the strengths and concentrations of Bronsted acid sites in the HY-zeolite samples. The result from this study has also demonstrated that the large size base, pyridine, would reduce the possibility of positronium formation in the sample by filling the cage to eliminate the internal surface areas where the positroniums are likely to form. However, the small size base, ammonia, did not show any effect on the internal surface areas. Owing to the fact that this technique monitors only the Bronsted acid sites that situate on the surface which relates to the catalytic activity, there is little ambiguity about the location of the source of information obtained. The findings presented in this dissertation point out the fact that such lineshape measurement of 2D-ACAR can well be an effective in-situ microprobe that could have important practical applications in internal surface characterization of zeolite catalysts in general.

  4. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.

    PubMed

    Yusof, Alias Mohd; Malek, Nik Ahmad Nizam Nik; Kamaruzaman, Nurul Asyikin; Adil, Muhammad

    2010-01-01

    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).

  5. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integritymore » of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.« less

  6. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  7. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  8. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  9. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  10. Zeolite A imidazolate frameworks

    NASA Astrophysics Data System (ADS)

    Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M.

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  11. Zeolite A imidazolate frameworks.

    PubMed

    Hayashi, Hideki; Côté, Adrien P; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and beta-cages for FAU, alpha- and beta-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  12. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalystmore » for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.« less

  13. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  14. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  15. One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features

    DOEpatents

    Tsapstsis, Michael; Zhang, Xueyi

    2015-11-17

    A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.

  16. Zeolites: Can they be synthesized by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.E.

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high levelmore » of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''« less

  17. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE PAGES

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.; ...

    2017-12-11

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  18. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  19. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    NASA Astrophysics Data System (ADS)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  20. Application of Natural Mineral Additives in Construction

    NASA Astrophysics Data System (ADS)

    Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech

    2017-12-01

    The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.

  1. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  2. Effect of SrO content on Zeolite Structure

    NASA Astrophysics Data System (ADS)

    Widiarti, N.; Sari, U. S.; Mahatmanti, F. W.; Harjito; Kurniawan, C.; Prasetyoko, D.; Suprapto

    2018-04-01

    The aims of current studies is to investigate the effect of strontium oxide content (SrO) on synthesized zeolite. Zeolite was synthesized from Tetraethyl orthosilicate (TEOS) as precursors of SiO2 and aluminum isopropoxide (AIP) precursors. The mixture was aged for 3 days and hydrothermally treated for 6 days. The SrO content was added by impregnation method. The products were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Surface Area Analyzer (SAA). The diffractogram confirmed the formation of Faujasite-like zeolite. However, after the addition of SrO, the crystallinity of zeolite was deformed. The diffractograms shows the amorphous phase of zeolite were decrease as the SrO content is increase. The structural changes was also observed from FTIR spectra which shows the shifting and peak formation. The surface area analysis showed that the increasing loading of SrO/Zeolites reduced the catalyst surface area.

  3. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  4. An Extra-Large-Pore Zeolite with 24×8×8-Ring Channels Using a Structure-Directing Agent Derived from Traditional Chinese Medicine.

    PubMed

    Zhang, Chuanqi; Kapaca, Elina; Li, Jiyang; Liu, Yunling; Yi, Xianfeng; Zheng, Anmin; Zou, Xiaodong; Jiang, Jiuxing; Yu, Jihong

    2018-03-12

    Extra-large-pore zeolites have attracted much interest because of their important applications because for processing larger molecules. Although great progress has been made in academic science and industry, it is challenging to synthesize these materials. A new extra-large-pore zeolite SYSU-3 (Sun Yat-sen University no. 3) has been synthesized by using a novel sophoridine derivative as an organic structure-directing agent (OSDA). The framework structure was solved and refined using continuous rotation electron diffraction (cRED) data from nanosized crystals. SYSU-3 exhibits a new zeolite framework topology, which has the first 24×8×8-ring extra-large-pore system and a framework density (FD) as low as 11.4 T/1000 Å 3 . The unique skeleton of the OSDA plays an essential role in the formation of the distinctive zeolite structure. This work provides a new perspective for developing new zeolitic materials by using alkaloids as cost-effective OSDAs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents.

    PubMed

    Vinaches, Paloma; Bernardo-Gusmão, Katia; Pergher, Sibele B C

    2017-08-06

    Zeolite synthesis is a wide area of study with increasing popularity. Several general reviews have already been published, but they did not summarize the study of imidazolium species in zeolite synthesis. Imidazolium derivatives are promising compounds in the search for new zeolites and can be used to help understand the structure-directing role. Nearly 50 different imidazolium cations have already been used, resulting in a variety of zeolitic types, but there are still many derivatives to be studied. In this context, the purpose of this short review is to help researchers starting in this area by summarizing the most important concepts related to imidazolium-based zeolite studies and by presenting a table of recent imidazolium derivatives that have been recently studied to facilitate filling in the knowledge gaps.

  6. Molecular Nanoparks for CWAs, TICs, and TIMs

    DTIC Science & Technology

    2012-12-11

    Symposium on Macrocyclic and Supramolecular Chemistry, June 2010, Nara, Japan (Plenary talk). O. M. Yaghi, Zeolitic imidazolate frameworks, 5th...International Zeolite Membrane Meeting, May 2010, Loutraki, Greece (Plenary talk). O. M. Yaghi, Reticular chemistry and its applications to clean energy...highest uptake capacity (15 mol/kg, 298 K, 1 bar) of any porous material, including zeolite , cation exchange resin, and mesoporous silica. 4. The gas

  7. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites.

    PubMed

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-15

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Communication: Hypothetical ultralow-density ice polymorphs

    NASA Astrophysics Data System (ADS)

    Matsui, Takahiro; Hirata, Masanori; Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2017-09-01

    More than 300 kinds of porous ice structures derived from zeolite frameworks and space fullerenes are examined using classical molecular dynamics simulations. It is found that a hypothetical zeolitic ice phase is less dense and more stable than the sparse ice structures reported by Huang et al. [Chem. Phys. Lett. 671, 186 (2017)]. In association with the zeolitic ice structure, even less dense structures, "aeroices," are proposed. It is found that aeroices are the most stable solid phases of water near the absolute zero temperature under negative pressure.

  9. Mapping uncharted territory in ice from zeolite networks to ice structures.

    PubMed

    Engel, Edgar A; Anelli, Andrea; Ceriotti, Michele; Pickard, Chris J; Needs, Richard J

    2018-06-05

    Ice is one of the most extensively studied condensed matter systems. Yet, both experimentally and theoretically several new phases have been discovered over the last years. Here we report a large-scale density-functional-theory study of the configuration space of water ice. We geometry optimise 74,963 ice structures, which are selected and constructed from over five million tetrahedral networks listed in the databases of Treacy, Deem, and the International Zeolite Association. All prior knowledge of ice is set aside and we introduce "generalised convex hulls" to identify configurations stabilised by appropriate thermodynamic constraints. We thereby rediscover all known phases (I-XVII, i, 0 and the quartz phase) except the metastable ice IV. Crucially, we also find promising candidates for ices XVIII through LI. Using the "sketch-map" dimensionality-reduction algorithm we construct an a priori, navigable map of configuration space, which reproduces similarity relations between structures and highlights the novel candidates. By relating the known phases to the tractably small, yet structurally diverse set of synthesisable candidate structures, we provide an excellent starting point for identifying formation pathways.

  10. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    PubMed

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  11. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  12. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the chemical activation process was most suitable to produce the immobilization media from Lampung natural zeolite for POME waste treatment

  13. Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian

    2018-06-01

    A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.

  14. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  15. Expedition Six Commander Bowersox working with Zeolite Crystal Growth in U.S. Lab

    NASA Image and Video Library

    2002-12-05

    ISS006-E-07127 (5 December 2002) --- Astronaut Kenneth D. Bowersox, Expedition Six mission commander, works with the Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS).

  16. Spectroscopic evidence of 3-hydroxyflavone sorption within MFI type zeolites: ESIPT and metal complexation.

    PubMed

    Moissette, A; Hureau, M; Kokaislova, A; Le Person, A; Cornard, J P; De Waele, I; Batonneau-Gener, I

    2015-10-21

    Due to its chemical and photochemical properties and potential applications in numerous domains as a molecular probe, 3-hydroxyflavone (3HF) is a molecule of high interest. In particular, the processes of intramolecular proton transfer in the excited state and metallic complexation are known to be dependent on the chemical environment. In this context, the particular properties of zeolites make these microporous materials an environment adapted to study the reactivity of isolated molecules adsorbed in their porous void space. Thus, this report investigates the incorporation without any solvent of 3HF into the internal volume of various channel-type MFI zeolites. Using complementary techniques (diffuse reflectance UV-vis absorption, Raman scattering, FTIR, fluorescence emission and molecular modelling), very different spectral behaviours are observed in totally dealuminated silicalite-1 and in Al rich MZSM-5 (M = H(+), Na(+), Zn(2+)). In silicalite-1, the non-polar and non-protic internal micro-environment does not induce any valuable interaction between 3HF and the channel walls. Therefore, the molecule shows easy tautomer formation upon excitation. Within HZSM-5, 3HF is adsorbed in close proximity of the acid proton of the zeolite which inhibits the intramolecular proton transfer and then, only the normal form is observed at the excited state. For NaZSM-5, the spectral data show an intermediary behaviour due to the aprotic but polar environment, in agreement with 3HF sorption in close proximity of the Na(+) extra framework cation. After mixing 3HF and ZnZSM-5, the spectral features clearly indicate metallic complexation of the guest molecule. The zeolite dependent reactivity reported here demonstrates the adsorption of the guest within the internal volume because the charge balancing cations which clearly control the reaction are principally located in the zeolite channels. The 3HF incorporation into the internal volume is proved by the decrease of the microporous volume observed by nitrogen adsorption-desorption isotherm measurements. The experimental data are confirmed by Monte Carlo molecular modelling which also predicts 3HF sorption in the zeolite channels in the proximity of charge compensating cations. Consequently, as the molecule dimensions are assumed to be slightly larger than the channel size, the flexibility of the molecule and the lattice deformation have to be considered to allow 3HF penetration into the zeolite void space.

  17. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.

  18. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure ofmore » zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.« less

  19. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    NASA Astrophysics Data System (ADS)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  20. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  1. Internal load management in eutrophic, anoxic environments. The role of natural zeolite.

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    During the last decades, the increase of the nutrient and organic load inflows in the coastal zone increased the number of the anoxic environments. Inputs' control constitutes one of the basic practices for the eutrophic/anoxic aquatic ecosystems management. However, the induced changes at the ecosystem characteristics resulting from the trophic state alteration, and anoxic conditions prevalence, render the ecosystem's restoration difficult if not impossible. Bottom water anoxia accelerates PO43-, NH4+ and S2- recycling and accumulation from organic matter decomposition. This, toxic layer is a permanent menace for the balance of the entire ecosystem, as it can supply PO43-, NH4+ and S2- to the surface layers altering their qualitative character and threatening the welfare of fishes and other aquatic organisms. Having as objective the water basins' internal load control and based on practices are used in eutrophic environments' restoration, this study is referred to the role of the natural zeolite in eutrophic/anoxic ecosystems management. For the first time are presented, results from S2- removal experiments using the zeolitic mineral mordenite, [(Na2, Ca, K2)4 (H2O)28] [Al8Si40O96]. Four different sets of experiments were conducted, in order to examine zeolite's removal capacity of S2- in aquatic solutions, under a wide range of physicochemical parameters. More specific: a) the effect of initial pH on the removal process, b) the removal process kinetics, c) the removal process isotherms and d) the effect of salinity on the removal process were studied. Natural zeolite has the ability to neutralize the pH of aqueous solutions, thus all the experiments were practically performed at pH 7. Initially sulfides concentration range from 1 to 10mg/l. Zeolite's removal capability appeared to be directly depended on the S2- initial concentration. For initial concentration of 1mg/l, the removal rate reached up to 90% after 24h. The maximum zeolite removal capacity was calculated equal to 123.1 10-3 mg/g S2-. Zeolite removal capacity varied by about 10% as the solution's salinity varied from 0 to 35‰. This study emphasizes in the zeolite ability to remove dissolved sulfides from aqueous solutions. According to literature, natural zeolite is particularly effective in removing ammonium from aquatic solutions, while due to its negative charge zeolite doesn't adsorb phosphate ions. However, in the presence of cations (Ca+2, Na+, K+) in the aquatic solution it turns to the appropriate substrate for the formed phosphate salts. In conclusion, zeolite is a natural inert material, capable to remove from aqueous solutions forms of nitrogen, phosphorus and sulfur. Due to this ability zeolite could play a key role, in eutrophic/anoxic environments restoration efforts, since PO43-, NH4+ and H2S constitute the three aspects of the problem called anoxic basins' internal load.

  2. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  3. Evaluation of Warm-Mix Asphalt Technologies for Use on Airfield Pavements

    DTIC Science & Technology

    2013-12-01

    three different ways: mechanical injection of water at the plant, adding a material containing internal water, such as zeolites , and using a two...the nozzles, causing the asphalt binder to expand (Prowell and Hurley 2007). Zeolites are crystalline-hydrated aluminum silicates that are typically...sold in granular form with approximately a No. 50 mesh size and contain approximately 20% water by weight. The water is released from the zeolite

  4. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  5. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  6. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  7. Microgravity

    NASA Image and Video Library

    1992-06-25

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  8. Discovery of optimal zeolites for challenging separations and chemical conversions through predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Siepmann, J. Ilja; Bai, Peng; Tsapatsis, Michael; Knight, Chris; Deem, Michael W.

    2015-03-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure and the type or location of active sites. To date, 213 framework types have been synthesized and >330000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol beyond the ethanol/water azeotropic concentration in a single separation step from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modeling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds. Financial support from the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 is gratefully acknowledged.

  9. 3D Study of the Morphology and Dynamics of Zeolite Nucleation.

    PubMed

    Melinte, Georgian; Georgieva, Veselina; Springuel-Huet, Marie-Anne; Nossov, Andreï; Ersen, Ovidiu; Guenneau, Flavien; Gedeon, Antoine; Palčić, Ana; Bozhilov, Krassimir N; Pham-Huu, Cuong; Qiu, Shilun; Mintova, Svetlana; Valtchev, Valentin

    2015-12-07

    The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core-shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.

    PubMed

    Zhou, Xiaoxia; Chen, Hangrong; Zhu, Yan; Song, Yudian; Chen, Yu; Wang, Yongxia; Gong, Yun; Zhang, Guobin; Shu, Zhu; Cui, Xiangzhi; Zhao, Jinjin; Shi, Jianlin

    2013-07-22

    Dual-mesoporous ZSM-5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co-templates. The product contains two types of mesopores--smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30-50 nm in diameter along the b axis--and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual-mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Annealing Temperature on Broad Luminescence of Silver-Exchanged Zeolites Y and A

    NASA Astrophysics Data System (ADS)

    Gui, Sa Chu Rong; Lin, H.; Bao, W.; Wang, W.

    2018-05-01

    The annealing temperature dependence of luminescence properties of silver (Ag)-exchanged zeolites Y and A was studied. It was found that the absorbance and excitation/emission bands are strongly affected by the thermal treatments. With increase in annealing temperature, the absorbance of Ag in zeolite Y increases at first and then decreases. However, the position of the excitation/emission band in zeolite Y was found to be insensitive to the annealing temperature. In contrast, the excitation/emission bands in zeolite A are particularly sensitive to the annealing temperature. The difference of such temperature dependence in zeolites Y and A may be due to the different microporous structure of the two minerals. Moreover, the fact that this dependence is not observed in Ag-exchanged zeolite Y is likely to be due to the difficulty in dehydration of zeolite Y in air or due to the weak Ag+-Ag+ interaction in zeolite Y.

  12. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Sfg

    NASA Astrophysics Data System (ADS)

    Fischer, R. X.; Baur, W. H.

    This document is part of Subvolume E `Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI' of Volume 14 `Microporous and other Framework Materials with Zeolite-Type Structures' of Landolt-Börnstein Group IV `Physical Chemistry'.

  14. Vet

    NASA Astrophysics Data System (ADS)

    Fischer, R. X.; Baur, W. H.

    This document is part of Subvolume F 'Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes STO to ZON' of Volume 14 'Microporous and other Framework Materials with Zeolite-Type Structures' of Landolt-Börnstein Group IV 'Physical Chemistry'.

  15. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    NASA Astrophysics Data System (ADS)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  16. Reactivity of propene, n-butene, and isobutene in the hydrogen transfer steps of n-hexane cracking over zeolites of different structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukyanov, D.B.

    The reaction of n-hexane cracking over HZSM-5, HY zeolite and mordenite (HM) was studied in accordance with the procedure of the [beta]-test recently proposed for quantitative characterization of zeolite hydrogen transfer activity. It is shown that this procedure allows one to obtain quantitative data on propene, n-butene, and isobutene reactivities in the hydrogen transfer steps of the reaction. The results demonstrate that in the absence of steric constraints (large pore HY and HM zeolites) isobutene is approximately 5 times more reactive in hydrogen transfer than n-butene. The latter, in turn, is about 1.3 times more reactive than propene. With mediummore » pore HZSM-5, steric inhibition of the hydrogen transfer between n-hexane and isobutene is observed. This results in a sharp decrease in the isobutene reactivity: over HZSM-5 zeolites isobutene is only 1.2 times more reactive in hydrogen transfer than n-butene. On the basis of these data it is concluded that the [beta]-test measures the [open quotes]real[close quotes] hydrogen transfer activity of zeolites, i.e., the activity that summarizes the effects of the acidic and structural properties of zeolites. An attempt is made to estimate the [open quotes]ideal[close quotes] zeolite hydrogen transfer activity, i.e., the activity determined by the zeolite acidic properties only. The estimations obtained show that this activity is approximately 1.8 and 1.6 times higher for HM zeolite in comparison with HZSM-5 and HY zeolites, respectively. 16 refs., 4 figs., 2 tabs.« less

  17. Synthesis and Characterization of Zeolite Na-Y and Its Conversion to the Solid Acid Zeolite H-Y

    ERIC Educational Resources Information Center

    Warner, Terence E.; Klokker, Mads Galsgaard; Nielsen, Ulla Gro

    2017-01-01

    Zeolite Y has an iconic crystal structure, but more importantly, the hydrogen modification zeolite H-Y is the classic example of a solid acid which is used extensively as a catalyst in the oil industry. This metastable compound cannot be synthesized directly, which creates an opportunity to discuss various preparative strategies with the students,…

  18. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO]2+- and [MnO]+-Exchanged Zeolites Activated by N2O.

    PubMed

    Mahyuddin, M Haris; Shiota, Yoshihito; Staykov, Aleksandar; Yoshizawa, Kazunari

    2017-09-05

    While the most likely structure of the active site in iron-containing zeolites has been recently identified as [FeO] 2+ (Snyder et al. Nature 2016, 536, 317-321), the mechanism for the direct conversion of methane to methanol over this active species is still debatable between the direct-radical-rebound or nonradical (concerted) mechanism. Using density functional theory on periodic systems, we calculated the two reaction mechanisms over two d 4 isoelectronic systems, [FeO] 2+ and [MnO] + zeolites. We found that [FeO] 2+ zeolites favor the direct-radical-rebound mechanism with low CH 4 activation energies, while [MnO] + zeolites prefer the nonradical mechanism with higher CH 4 activation energies. These contrasts, despite their isoelectronic structures, are mainly due to the differences in the metal coordination number and O α (oxo) spin density. Moreover, molecular orbital analyses suggest that the zeolite steric hindrance further degrades the reactivity of [MnO] + zeolites toward methane. Two types of zeolite frameworks, i.e., medium-pore ZSM-5 (MFI framework) and small-pore SSZ-39 (AEI framework) zeolites, were evaluated, but no significant differences in the reactivity were found. The rate-determining reaction step is found to be methanol desorption instead of methane activation. Careful examination of the most stable sites hosting the active species and calculation for N 2 O decomposition over [Fe] 2+ -MFI and -AEI zeolites were also performed.

  19. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.

    PubMed

    Masoumifard, Nima; Guillet-Nicolas, Rémy; Kleitz, Freddy

    2018-04-01

    The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings

    PubMed Central

    Díaz-Cabañas, M. J.; Jiang, J.; Afeworki, M.; Dorset, D. L.; Soled, S. L.; Strohmaier, K. G.

    2010-01-01

    The first zeolite structure (ITQ-40) that contains double four (D4) and double three (D3) member ring secondary building units has been synthesized by introducing Ge and NH4F and working in concentrated synthesis gels. It is the first time that D3-Rs have been observed in a zeolite structure. As was previously analyzed [Brunner GO, Meier, WM (1989) Nature 337:146–147], such a structure has a very low framework density (10.1 T/1,000 Å3). Indeed, ITQ-40 has the lowest framework density ever achieved in oxygen-containing zeolites. Furthermore, it contains large pore openings, i.e., 15-member rings parallel to the [001] hexagonal axis and 16-member ring channels perpendicular to this axis. The results presented here push ahead the possibilities of zeolites for uses in electronics, control delivery of drugs and chemicals, as well as for catalysis. PMID:20660773

  1. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2017-03-03

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6

    NASA Astrophysics Data System (ADS)

    Morris, Samuel A.; Bignami, Giulia P. M.; Tian, Yuyang; Navarro, Marta; Firth, Daniel S.; Čejka, Jiří; Wheatley, Paul S.; Dawson, Daniel M.; Slawinski, Wojciech A.; Wragg, David S.; Morris, Russell E.; Ashbrook, Sharon E.

    2017-10-01

    The assembly-disassembly-organization-reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.

  3. Multilevel organization in hybrid thin films for optoelectronic applications.

    PubMed

    Vohra, Varun; Bolognesi, Alberto; Calzaferri, Gion; Botta, Chiara

    2009-10-20

    In this work we report two simple approaches to prepare hybrid thin films displaying a high concentration of zeolite crystals that could be used as active layers in optoelectronic devices. In the first approach, in order to organize nanodimensional zeolite crystals of 40 nm diameter in an electroactive environment, we chemically modify their external surface and play on the hydrophilic/hydrophobic forces. We obtain inorganic nanocrystals that self-organize in honeycomb electroluminescent polymer structures obtained by breath figure formation. The different functionalizations of the zeolite surface result in different organizations inside the cavities of the polymeric structure. The second approach involving soft-litography techniques allows one to arrange single dye-loaded zeolite L crystals of 800 nm of length by mechanical loading into the nanocavities of a conjugated polymer. Both techniques result in the formation of thin hybrid films displaying three levels of organization: organization of the dye molecules inside the zeolite nanochannels, organization of the zeolite crystals inside the polymer cavities, and micro- or nanostructuration of the polymer.

  4. Studying Two-Dimensional Zeolites with the Tools of Surface Science: MFI Nanosheets on Au(111)

    DOE PAGES

    J. D. Kestell; Zhong, J. Q.; Shete, M.; ...

    2016-07-26

    While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based x-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study themore » adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves.« less

  5. Studying Two-Dimensional Zeolites with the Tools of Surface Science: MFI Nanosheets on Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Kestell; Zhong, J. Q.; Shete, M.

    While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based x-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study themore » adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves.« less

  6. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    NASA Astrophysics Data System (ADS)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  7. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    PubMed Central

    Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein

    2014-01-01

    Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062

  8. Hydrothermal fabrication of ZSM-5 zeolites: biocompatibility, drug delivery property, and bactericidal property.

    PubMed

    Guo, Ya-Ping; Long, Teng; Song, Zhen-Fu; Zhu, Zhen-An

    2014-04-01

    The bone graft-associated infection is widely considered in orthopedic surgery, which may lead to implant failure, extensive bone debridement, and increased patient morbidity. In this study, we fabricated ZSM-5 zeolites for drug delivery systems by hydrothermal method. The structure, morphology, biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites were investigated. The ZSM-5 zeolites have mordenite framework inverted-type structure and exhibit the disk-like shape with the diameter of ∼350 nm and thickness of ∼165 nm. The biocompatibility tests indicate that human bone marrow stromal cells spread out well on the surfaces of the ZSM-5 zeolites and proliferate significantly with increasing culture time. As compared with the conventional hydroxyapatite particles, the ZSM-5 zeolites possess greater drug loading efficiency and drug sustained release property because of the ordered micropores, large Brunauer-Emmett-Teller (BET) surface areas, and functional groups. For the gentamicin-loaded ZSM-5 zeolites, the sustained release of gentamicin minimizes significantly bacterial adhesion and prevents biofilm formation against Staphylococcus epidermidis. The excellent biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites suggest that they have great application potentials for treating implant-associated infections. Copyright © 2013 Wiley Periodicals, Inc.

  9. Modification of Natural Zeolite with Fe(III) and Its Application as Adsorbent Chloride and Carbonate ions

    NASA Astrophysics Data System (ADS)

    Suhartana; Sukmasari, Emmanuella; Azmiyawati, Choiril

    2018-04-01

    The aim of the research is to natural zeolite with Fe(III) using anion exchange process to improve the anion exchange capacity. Natural zeolite was activated using HNO3 1 N and then mixed with FeCl3 solution and refluxed followed by oven and calcination at a temperature of 550°C. The influence of Fe(III) to zeolite was characterized by FTIR while presence of Fe in zeolite characterized by AAS. Zeolite and Zeolite-Fe adsorption capacity of chloride and carbonate anions were determined through adsorption test by variation of pH and contact time. In advanced, and then to determining the Fe adsorbed concentration at Zeolite using UV-Vis spectrophotometer. FTIR analysis result showed that the addition of Fe does not affect the zeolite’s structure but change the intensity of the zeolite spectra. The Fe concentration in Zeolite-Fe of 714 mg L-1, indicate that Fe was present in the zeolite. Both Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Chloride anion is 2, with adsorption capacity 2,33 x 10-3 gg-1 and optimum contact time is 8 minutes. While Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Carbonate anion is 5, with adsorption capacity 5,31 x 10-3 gg-1 and optimum contact time is 8 minutes.

  10. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  11. A database of new zeolite-like materials.

    PubMed

    Pophale, Ramdas; Cheeseman, Phillip A; Deem, Michael W

    2011-07-21

    We here describe a database of computationally predicted zeolite-like materials. These crystals were discovered by a Monte Carlo search for zeolite-like materials. Positions of Si atoms as well as unit cell, space group, density, and number of crystallographically unique atoms were explored in the construction of this database. The database contains over 2.6 M unique structures. Roughly 15% of these are within +30 kJ mol(-1) Si of α-quartz, the band in which most of the known zeolites lie. These structures have topological, geometrical, and diffraction characteristics that are similar to those of known zeolites. The database is the result of refinement by two interatomic potentials that both satisfy the Pauli exclusion principle. The database has been deposited in the publicly available PCOD database and in www.hypotheticalzeolites.net/database/deem/. This journal is © the Owner Societies 2011

  12. Impact of zeolite-Y framework on the geometry and reactivity of Ru (III) benzimidazole complexes - A DFT study

    NASA Astrophysics Data System (ADS)

    Selvaraj, Tamilmani; Rajalingam, Renganathan; Balasubramanian, Viswanathan

    2018-03-01

    A detailed comparative Density Functional Theory (DFT) study is made to understand the structural changes of the guest complex due to steric and electronic interactions with the host framework. In this study, Ru(III) benzimidazole and 2- ethyl Ru(III) benzimidazole complexes encapsulated in a supercage of zeolite Y. The zeolitic framework integrity is not disturbed by the intrusion of the large guest complex. A blue shift in the d-d transition observed in the UV-Visible spectroscopic studies of the zeolite encapsulated complexes and they shows a higher catalytic efficiency. Encapsulation of zeolite matrix makes the metal center more viable to nucleophilic attack and favors the phenol oxidation reaction. Based on the theoretical calculations, transition states and structures of reaction intermediates involved in the catalytic cycles are derived.

  13. Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites

    NASA Astrophysics Data System (ADS)

    Bosnar, Sanja; Vrankić, Martina; Bosnar, Damir; Ren, Nan; Šarić, Ankica

    2017-11-01

    The synthesis of high silica zeolites in many cases implies the usage of organic structural direction agents (SDA). However, to manifest their functionalities, the SDA occluded inside the channels of the as-synthesized structure should be removed, usually by a high temperature treatment (calcination). In this paper, the positron annihilation lifetime spectroscopy (PALS) was used to monitor the development of accessible spaces, their sizes and distributions in MFI zeolites, ZSM-5 and silicalite-1 in order to give an additional insight in the process of the SDA removal. For that purpose, a conventional PALS setup with 22Na positron source was applied. It was established that there is a pronounced difference between positron annihilation data for these two zeolites of the same structural type. The samples were additionally analysed by X-ray powder diffraction at room temperature with a crystal structure refinement and thermogravimetry.

  14. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  15. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    zeolite method”, Motoichiro Murakami, Yasushi Fujimoto, Shinji Motokoshi, Tatsuhiro Sato, Hiroyuki Shiraga, Optics Communications 328 (2014) pp.121...Center, Shanghai, China. 13) “Rare Earth Doped Fiber Lasers Based on Zeolite Method - (invited)”, Y. Fujimoto, The 4th International Workshop on

  16. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  17. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  18. Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method.

    PubMed

    Jusoh, Norwahyu; Yeong, Yin Fong; Mohamad, Maisarah; Lau, Kok Keong; M Shariff, Azmi

    2017-01-01

    Sonochemical-assisted method has been identified as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to hydrothermal growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the hydrothermal growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via hydrothermal growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    PubMed

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  20. Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites.

    PubMed

    Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio

    2018-03-04

    Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.

  1. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  3. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  4. Synthesis and Structural Characterization of the Aluminosilicate LZ-135, a Zeolite Related to ZSM-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCusker, Lynne B.; Baerlocher, Christian; Wilson, Stephen T.

    2009-09-02

    The aluminosilicate LZ-135 was one of the first zeolites to be prepared in the presence of two or more organic structure-directing agents (in this case, Me{sub 4}N{sup +} (TMA) and Et{sub 4}N{sup +} (TEA)) and was patented 20 years ago. However, the material was polycrystalline, and at the time, its aluminosilicate framework structure could not be determined. In view of the fact that methods of structure determination from powder diffraction data have developed considerably in the meantime, a fresh analysis of the problem was undertaken. High-resolution synchrotron powder diffraction data were collected on a calcined sample of LZ-135 (as synthesizedmore » composition ca. |Na{sub 26}TMA{sub 6}|[Si{sub 76}Al{sub 32}O{sub 216}]), and the new powder charge-flipping structure-solution algorithm was applied. The framework structure (P6{sub 3}/mmc; a = 31.3830(2) {angstrom}, c = 7.6513(1) {angstrom}) was revealed immediately, and then the positions of the Na{sup +} ions and a few water molecules were located in a series of difference electron density maps. The [001] projection of the framework structure is identical to that of ZSM-10 (P6{sub 3}/mmm), but the (up-down) orientations of the (Si,Al) tetrahedra, and therefore their connectivities, are different, and this leads to a distinctly different topology with two 1-dimensional, 12-ring channel systems with effective pore widths of 7.2 and 6.5 {angstrom}. The new framework has been assigned the framework type code LTF by the International Zeolite Association. The framework structures of LZ-135 and ZSM-10 are related to one another in the same way as are those of mazzite and zeolite L. Approximately 27.5 Na{sup +} ions were located in six different sites, and all are coordinated to oxygen atoms of the framework. Twelve H{sub 2}O molecules per unit cell are associated with one of the Na{sup +} ion positions, where they serve to complete an octahedral coordination geometry around the ion, and 5.2 are located in the larger of the two 12-ring channels, where they make hydrogen-bonding contacts to framework oxygen atoms and are probably associated with protons.« less

  5. ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels

    DOE PAGES

    Jiang, Jiuxing; Yun, Yifeng; Zou, Xiaodong; ...

    2015-01-01

    A multi-dimensional extra-large pore silicogermanate zeolite, named ITQ-54, has been synthesised by in situ decomposition of the N,N-dicyclohexylisoindolinium cation into the N-cyclohexylisoindolinium cation. Its structure was solved by 3D rotation electron diffraction (RED) from crystals of ca. 1 μm in size. The structure of ITQ-54 contains straight intersecting 20 × 14 × 12-ring channels along the three crystallographic axes and it is one of the few zeolites with extra-large channels in more than one direction. ITQ-54 has a framework density of 11.1 T atoms per 1000 Å 3, which is one of the lowest among the known zeolites. ITQ-54 wasmore » obtained together with GeO 2 as an impurity. A heavy liquid separation method was developed and successfully applied to remove this impurity from the zeolite. ITQ-54 is stable up to 600 °C and exhibits permanent porosity. The structure was further refined using powder X-ray diffraction (PXRD) data for both as-made and calcined samples.« less

  6. On the reactive occlusion of the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt in zeolite 4A

    NASA Astrophysics Data System (ADS)

    Lexa, Dusan; Leibowitz, Leonard; Kropf, Jeremy

    2000-03-01

    The interaction between the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt and zeolite 4A has been studied by temperature-resolved synchrotron powder X-ray diffraction, evolved gas analysis and differential scanning calorimetry, between 300 and 900 K. The onset of salt occlusion by the zeolite has been detected at 450 K. Evidence of a reaction between zeolitic water and uranium trichloride, leading to the formation of uranium dioxide, has appeared at 600 K. The uranium dioxide particle size increases from 2 nm at 600 K to 25 nm at 900 K - an indication of their extra-zeolitic location. No appreciable degradation of the zeolite structure has been observed.

  7. Selective Capture of CWAs and Containment of Their Neutralization Byproducts by Porous Frameworks Presenting Self-Amplifying and Self-Regulating Reactivities

    DTIC Science & Technology

    2013-02-04

    Intl. Symposium on Macrocyclic and Supramolecular Chemistry, June 2010, Nara, Japan (Plenary talk). O. M. Yaghi, Zeolitic imidazolate frameworks, 5th...International Zeolite Membrane Meeting, May 2010, Loutraki, Greece (Plenary talk). O. M. Yaghi, Reticular chemistry and its applications to clean energy

  8. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons up to C9, a performance attesting the hierarchal pore structure. The preliminary techno-economic feasibility assessment demonstrates a net energy saving of 75% and cost saving of 63% compared to the commercial zeolite manufacturing process.

  9. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  10. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE PAGES

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.; ...

    2018-04-02

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  11. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  12. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  13. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass.

    PubMed

    Espejel-Ayala, F; Corella, R Chora; Pérez, A Morales; Pérez-Hernández, R; Ramírez-Zamora, R M

    2014-12-01

    The present work introduces the study of the CO2 capture process by zeolites synthesized from paper sludge and scrap glass. Zeolites ZSM-5, analcime and wairakite were produced by means of two types of Structure Directing Agents (SDA): tetrapropilamonium (TPA) and ethanol. On the one hand, zeolite ZSM-5 was synthesized using TPA; on the other hand, analcime and wairakite were produced with ethanol. The temperature programmed desorption (TPD) technique was performed for determining the CO2 sorption capacity of these zeolites at two sorption temperatures: 50 and 100 °C. CO2 sorption capacity of zeolite ZSM-5 synthesized at 50 °C was 0.683 mmol/g representing 38.2% of the value measured for a zeolite ZSM-5 commercial. Zeolite analcime showed a higher CO2 sorption capacity (1.698 mmol/g) at 50 °C and its regeneration temperature was relatively low. Zeolites synthesized in this study can be used in the purification of biogas and this will produce energy without increasing the atmospheric CO2 concentrations. © The Author(s) 2014.

  14. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  16. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol

    PubMed Central

    2017-01-01

    Fe/ZSM-5 nanosheet zeolites of varying thickness were synthesized with di- and tetraquaternary ammonium structure directing agents and extensively characterized for their textural, structural, and catalytic properties. Introduction of Fe3+ ions in the framework of nanosheet zeolites was slightly less effective than in bulk ZSM-5 zeolite. Steaming was necessary to activate all catalysts for N2O decomposition and benzene oxidation. The higher the Fe content, the higher the degree of Fe aggregation was after catalyst activation. The degree of Fe aggregation was lower when the crystal domain size of the zeolite or the Fe content was decreased. These two parameters had a substantial influence on the catalytic performance. Decreasing the number of Fe sites along the b-direction strongly suppressed secondary reactions of phenol and, accordingly, catalyst deactivation. This together with the absence of diffusional limitations in nanosheet zeolites explains the much higher phenol productivity obtainable with nanostructured Fe/ZSM-5. Steamed Fe/ZSM-5 zeolite nanosheet synthesized using C22-6-3·Br2 (domain size in b-direction ∼3 nm) and containing 0.24 wt % Fe exhibited the highest catalytic performance. During the first 24 h on stream, this catalyst produced 185 mmolphenol g–1. Calcination to remove the coke deposits completely restored the initial activity. PMID:28413693

  17. IR and NMR studies of hierarchical material obtained by the treatment of zeolite Y by ammonia solution

    NASA Astrophysics Data System (ADS)

    Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy

    2018-03-01

    Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.

  18. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.

  19. Development of electroactive polymer nanocomposites with porous structured materials

    NASA Astrophysics Data System (ADS)

    Lopes, Ana Catarina Teixeira Castro

    Electroactive polymer composites are interesting materials for advance technological applications due to the possibility to combine the electroactive properties of the polymer matrix with a large variety of fillers that allow tailored responses for specific applications. The best all-around electroactive polymers are poly(vinylidene fluoride) (PVDF) and its copolymers which allied with the properties of porous zeolite materials, with tailored shape, size and Si/Al ratio, among others, leads to the possibility of development of promising PVDF/zeolite composites. In this way, a study of the structural, thermal and electrical properties of PVDF composites prepared with different framework zeolite types (LTL, LTA, FAU and MFI), different polymer solvents (DMF, DMSO, TEP) and different zeolite (NaY) concentrations (4, 16, 24 and 32 wt %) was performed. Further, the dielectric response, electrical conductivity and electric modulus of the composites were investigated as a function of NaYzeolite content. The zeolite influence on the electroactive gamma-phase crystallization of PVDF was explored, as well as the effect of clay layered structure (Montmorillonite, Kaolinite and Laponite) on the electroactive gamma-phase nucleation and on the optical transparency of the composite. It was found that the obtained composites showed an electrical response dependence on the pore structure and chemical content of the inorganic host. The dielectric response of the composites is directly related to the Si/Al ratio, leading zeolites with lower Si/Al ratios to larger dielectric responses and encapsulation efficiencies in the composites. It was also found that the zeolite content strongly influences the macroscopic response of dielectric response, which increases for increasing filler content. The dielectric constant at room temperature reaches values larger than 1000 for the 32 wt.% composite at 1 kHz what is mainly attributed to restricted ion mobility and interfacial polarization effects due to the zeolite inclusion, leading also to high dielectric losses. For the higher zeolite concentrations the composite d.c. electrical conductivity is characterized by two conducting regimes separated by a concentration independent breaking voltage of 4 V, which is associated to an intrazeolite charge transport. Dielectric relaxation studies show that the main relaxation process (?-relaxation) of the amorphous phase of the polymer matrix is not affected by the presence of the zeolite and, in a similar way, the zeolite low temperature relaxation is not significantly affected by the polymer phase. On the other hand, the electric modulus formalism reveals significant contributions of the fillers to the electrical permittivity and conductivity of the composites. The presence of the zeolite particles increases a.c. conductivity and the Maxwell-Wagner-Sillars contribution that is predominant at low frequencies with respect to the ohmic contribution to permittivity. The ability of zeolites to induce the eletroactive gamma-phase nucleation of PVDF is directly dependent on the Si/Al ratio and zeolite content; however it only occurs when the composite is melted at temperatures below 200 ºC. The complete ?-phase crystallization of the polymer crystalline phase occurs for a filler content of 16 wt% of LTA or FAU zeolite structure. The even higher surface interaction of clays when exfoliated leads to the same phenomenon with an amount of 0.50 % of Montmorillonite clay content. The electroactivity of the material has been proven by measuring the piezoelectric d33 response of the material, which presents a value of -7 pC/N, lower than for beta-PVDF obtained by mechanical stretching but still among the largest coefficients obtained for polymers. Further, the optical transmittance in the visible range is strongly enhanced with respect to the transmittance of the pure polymer. The development, characterization and physical-chemical understanding of these PVDF/zeolite and PVDF/clay composites resulted in suitable materials for applications in diverse areas including battery separator membranes and biomedical applications.

  20. Supercritical Catalytic Cracking of Hydrocarbon Feeds Insight

    DTIC Science & Technology

    2016-04-21

    University teamed with Spectral Energies, LLC to develop appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial...We demonstrated the ability to follow in a spatiotemporal fashion, the decomposition of the structure-directing agent used to template the zeolite ...appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial and parasitic catalytic cracking pathways. Beneficial

  1. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected active sites. We have demonstrated the selectivity of the encapsulation processes by combining transmission electron microscopy and chemisorptive titrations with rigorous catalytic assessments of the ability of these materials to catalyze reactions of small molecules, which can access the intracrystalline voids, but not of larger molecules that cannot access the metal clusters within such voids. The selective confinement of clusters also prevented their contact with sulfur compounds (e.g., thiophene and H2S), thus allowing reactions to occur at conditions that otherwise render unconfined clusters unreactive. We have also developed synthetic protocols and guiding principles, inspired by mechanistic considerations, for the synthesis of zeolites via interzeolite transformations without the use of organic structure-directing agents (OSDA). More specifically, we have synthesized high-silica MFI (ZSM-5), CHA (chabazite), STF (SSZ-35) and MTW (ZSM-12) zeolites from FAU (faujasite) or BEA (beta) parent materials. Structures with lower framework densities (FAU or BEA) were successfully transformed into thermodynamically-favored, more stable structures with higher framework densities (MFI, CHA, STF, and MTW); to date, target materials with higher Si/Al ratios (Si/Al >10) have not been synthesized via interzeolite transformations without the aid of the OSDA species used to discover these zeolite structures and deemed essential up until now for their successful synthesis. Overcoming kinetic hurdles in such transformations required either the presence of common composite building units (CBU) between parent and target structures or, in their absence, the introduction of small amount of seeds of the daughter structures. The NaOH/SiO2 ratio, H2O/SiO2 ratio and Al content in reagents are used to enforce synchronization between the swelling and local restructuring within parent zeolite domains with the spalling of fragments or building units from seeds of the target structure. The pseudomorphic nature of these seed-mediated transformations, which conserve the volume occupied by the parent crystals and lead to similar size and crystal shape in products, reflect incipient nucleation of target structures occurring at the outer regions of the parent domains and lead to the formation of mesoporosity as a natural consequence of the space-conserving nature of these structural changes and of the higher density of the daughter frameworks. The synthesis mechanism and the guidelines developed enable us to enforce conditions required for the formation of zeolites that previously required OSDA species for their synthesis, thus expanding to a significant extent the diversity of zeolite frameworks that are accessible via these synthesis protocols and providing potential savings in the time and cost involved in the synthesis of some of these zeolite structures.

  2. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH 3) 4](NO 3) 2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  3. Persnickety editor, Founding Father, Mentor and Friend: The Legacy of Fred Mumpton

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2006-01-01

    This paper is a tribute to Dr Fred Munpton, the founder of the International Committee on Natural Zeolites (ICNZ), by one of his students, who later succeed him as president of the ICNZ. The tribute reflects on Dr. Mumpton's skills as an editor and his zeal for the study of natural zeolites.

  4. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  5. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    PubMed

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Removal of copper (II) ion from aqueous solution using zeolite Y synthesized from rice husk ash: Equilibrium and kinetic study

    NASA Astrophysics Data System (ADS)

    Tuyen, Nguyen Thi Kim; Nhan, Do Nguyen Thanh; Nhat, Trieu Thi; An, Ngo Thanh; Long, Nguyen Quang

    2017-09-01

    Zeolite Y was synthesized from silica of rice-husk ash using hydrothermal process. The crystalline structure FAU of zeolite Y was characterized by X-ray diffraction (XRD). Surface's area of the catalyst was determined by physic-adsorption method using BET model. The zeolite was examined for possibility of Cu2+ adsorbent by an ion-exchange mechanism. Various adsorption isotherm models, such as Langmuir, Freundlich and Dubinin-Radushkevich were tested for equilibrium study. The integration method was applied to find out the possible kinetic equation of the Cu2+ adsorption on the zeolite Y which obtained from cheap and locally available rice husk ash.

  7. History and utility of zeolite framework-type discovery from a data-science perspective

    DOE PAGES

    Zimmermann, Nils E. R.; Haranczyk, Maciej

    2016-05-02

    Mature applications such as fluid catalytic cracking and hydrocracking rely critically on early zeolite structures. With a data-driven approach, we find that the discovery of exceptional zeolite framework types around the new millennium was spurred by exciting new utilization routes. The promising processes have yet not been successfully implemented (“valley of death” effect), mainly because of the lack of thermal stability of the crystals. As a result, this foreshadows limited deployability of recent zeolite discoveries that were achieved by novel crystal synthesis routes.

  8. Building zeolites from pre-crystallized units: nanoscale architecture.

    PubMed

    Corma, Avelino; Li, Chengeng; Moliner, Manuel

    2018-01-24

    Since the earlier descriptions by Barrer in the 40's on converting natural minerals into synthetic zeolites, the use of pre-crystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physico-chemical properties, has become a very intense and relevant research field, allowing the design, particularly in the last years, of new industrial catalysts. In the present review, we will highlight how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites presenting similar SBUs or layers, but also permits mostly controlling important parameters affecting to their catalytic activity (i.e. chemical composition, crystal size, or porosity, among others). In this sense, the recent advances on the preparation of 3-D and 2-D related zeolites through seeding and zeolite-to-zeolite transformation processes will be extensively revised, including their preparation in presence or absence of organic structure directing agents (OSDAs), with the aim of introducing general guidelines for designing more efficient future synthesis approaches for target zeolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Adsorption and separation of n/iso-pentane on zeolites: A GCMC study.

    PubMed

    Fu, Hui; Qin, Hansong; Wang, Yajun; Liu, Yibin; Yang, Chaohe; Shan, Honghong

    2018-03-01

    Separation of branched chain hydrocarbons and straight chain hydrocarbons is very important in the isomerization process. Grand canonical ensemble Monte Carlo simulations were used to investigate the adsorption and separation of iso-pentane and n-pentane in four types of zeolites: MWW, BOG, MFI, and LTA. The computation of the pure components indicates that the adsorption capacity is affected by physical properties of zeolite, like pore size and structures, and isosteric heat. In BOG, MFI and LTA, the amount of adsorption of n-pentane is higher than iso-pentane, while the phenomenon is contrary in MWW. For a given zeolite, a stronger adsorption heat corresponds to a higher loading. In the binary mixture simulations, the separation capacity of n-and iso-pentane increases with the elevated pressure and the increasing iso-pentane composition. The adsorption mechanism and competition process have been examined. Preferential adsorption contributions prevail at low pressure, however, the size effect becomes important with the increasing pressure, and the relatively smaller n-pentane gradually competes successfully in binary adsorption. Among these zeolites, MFI has the best separation performance due to its high shape selectivity. This work helps to better understand the adsorption and separation performance of n- and iso-pentane in different zeolites and explain the relationship between zeolite structures and adsorption performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Nano-sized zeolites as modulators of thiacloprid toxicity on Chironomus riparius

    PubMed Central

    Wicht, Anna-Jorina; Guluzada, Leyla; Crone, Barbara; Karst, Uwe; Lee, Hwa Jun; Triebskorn, Rita; Haderlein, Stefan B.; Huhn, Carolin; Köhler, Heinz-R.

    2017-01-01

    This study investigated whether zeolites of different size (Y30 (nano-sized) and H-Beta(OH)-III (forming large aggregates/agglomerates composed of 50 nm small primary particles)) exerted acute toxicity on larvae of the non-biting midge, Chironomus riparius, and whether such zeolites are able to modulate the toxicity of a common insecticide, thiacloprid, by means of adsorption of a dissolved toxicant. We conducted acute toxicity tests with fourth instar larvae of C. riparius. In these tests, larvae were exposed to zeolites or thiacloprid solely, or to mixtures of both compounds. The mixtures comprised 1.0 µg/L thiacloprid in addition to low (5.2 mg/L), medium (18.2 mg/L), and high (391.7 mg/L) zeolite concentrations, resulting in different adsorption rates of thiacloprid. As biological endpoints, changes in mortality rates and in behavior were monitored every 24 h over a total investigation period of 96 h. Furthermore, we conducted chemical analyses of thiacloprid in the medium and the larvae and located the zeolite particles within the larvae by LA-ICP-MS imaging techniques. Our results demonstrate that both types of zeolites did not exert acute toxicity when applied as single-substances, but led to reduced acute toxicity of thiacloprid when applied together with thiacloprid. These results are in line with the sorption properties of zeolites indicating reduced bioavailability of thiacloprid, although our data indicate that thiacloprid can desorb from zeolites to some extent. While freely dissolved (i.e., non-sorbed) fraction of thiacloprid was a good parameter to roughly estimate toxic effects, it did not correlate with measured internal thiacloprid concentrations. Moreover, it was shown that both zeolite types were ingested by the larvae, but no indication for cellular uptake of them was found. PMID:28729952

  11. Diagnosing the Internal Architecture of Zeolite Ferrierite

    PubMed Central

    Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong

    2017-01-01

    Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081

  12. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system.

    PubMed

    Wang, Xiaoling; Li, Jiansheng; Li, Songmin; Zheng, Xiaotong

    2017-12-01

    Ecological ditches and zeolite have been widely applied in the removal of farmland nonpoint source pollution separately; little research has been done on the effects of combining the two methods. Specifically, few studies have focused on the in situ regeneration of zeolite. A 2-year field experiment using an ecological ditch-zeolite barrier system was conducted in a paddy field of summer rice-winter wheat rotation in the Taihu Lake area. The system consisted of two zeolite barriers positioned at one third and two thirds of the length of the ditch. This study focused on the effect of the system on in situ nitrogen removal during the rice-growing season. Simultaneous laboratory kinetics experiments with natural zeolite and a series of adsorbed zeolites taken from the ditch at different time were also conducted. The concentration removal efficiencies of total nitrogen are averaged 24.66% in 2014 and 30.39% in 2015. Meanwhile, the cumulative adsorption quantity of ammonia nitrogen by the two barriers accounted for 49.27% of the ammonia nitrogen removed in 2014 and 54.35% of that in 2015. The amount of nitrogen adsorbed by plants was larger than that adsorbed by zeolite. The breakthrough curves of the zeolite and the characteristics of the zeolite surface structures from different periods all demonstrated that the zeolite can be regenerated in situ in the case of unsaturated zeolite within the ecological ditch. It can be concluded that an ecological ditch-zeolite barrier system is a realistic option for removing nitrogen from agricultural rainfall runoff in the Taihu Lake area.

  14. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  15. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics.

    PubMed

    Braschi, I; Blasioli, S; Buscaroli, E; Montecchio, D; Martucci, A

    2016-05-01

    High silica zeolite Y has been positively evaluated to clean-up water polluted with sulfonamides, an antibiotic family which is known to be involved in the antibiotic resistance evolution. To define possible strategies for the exhausted zeolite regeneration, the efficacy of some chemico-physical treatments on the zeolite loaded with four different sulfonamides was evaluated. The evolution of photolysis, Fenton-like reaction, thermal treatments, and solvent extractions and the occurrence in the zeolite pores of organic residues eventually entrapped was elucidated by a combined thermogravimetric (TGA-DTA), diffractometric (XRPD), and spectroscopic (FT-IR) approach. The chemical processes were not able to remove the organic guest from zeolite pores and a limited transformation on embedded molecules was observed. On the contrary, both thermal treatment and solvent extraction succeeded in the regeneration of the zeolite loaded from deionized and natural fresh water. The recyclability of regenerated zeolite was evaluated over several adsorption/regeneration cycles, due to the treatment efficacy and its stability as well as the ability to regain the structural features of the unloaded material. Copyright © 2015. Published by Elsevier B.V.

  16. A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.

    PubMed

    Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai

    2018-01-15

    A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative study of As (III) and Zn (II) removal from aqueous solutions using Philippine natural zeolite and alumina

    NASA Astrophysics Data System (ADS)

    Olegario-Sanchez, Eleanor; Pelicano, Christian Mark

    2017-12-01

    Herein, the heavy metal removal efficiency of Philippine natural zeolite is investigated through a comparative study with commercial alumina (Al2O3). XRD results revealed a high purity crystalline γ-Al2O3 and a natural zeolite having clinoptilolite (Na,K,Ca)2-3Al3(Al,Si)2Si13O36.12H2O and mordenite (Ca, Na2, K2)Al2Si10O24.7H2O as primary component minerals. Micro-pores and plate-like structures were observed on the surface of the natural zeolite. The natural zeolite has shown three times higher removal efficiency for Zn2+ ion than alumina. On the other hand, alumina exhibited comparable but smaller removal efficiency for As3+ as with that of natural zeolite. Alumina showed a higher capability of increasing the pH of both solutions compared with the natural zeolite. Based on removal efficiency and adsorbent costs, Philippine natural zeolite could be used as a low-cost alternative for wastewater treatment.

  18. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    ERIC Educational Resources Information Center

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  19. A low temperature furnace for solution crystal growth on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baç, Nurcan; Harpster, Joseph; Maston, Robert A.; Sacco, Albert

    2000-01-01

    The Zeolite Crystal Growth Furnace Unit (ZCG-FU) is the first module in an integrated payload designed for low temperature crystal growth in solutions on the International Space Station (ISS). This payload is scheduled to fly on the ISS flight 7A.1 in an EXPRESS rack. Its name originated from early shuttle flight experiments limited to the growth of zeolite crystals but has since grown to include other materials of significant commercial interest using the solution method of crystal growth. Zeolites, ferroelectrics, piezeoelectrics and silver halides are some of the materials considered. The ZCG-FU experiment consists of a furnace unit and its electronic control system, and mechanically complex, crystal growth autoclaves suitable for use with a particular furnace and solution. The ZCG facility is being designed to grow into four independent furnaces controlled by IZECS (Improved Zeolite Electronic Control System). IZECS provides monitoring of critical parameters, data logging, safety monitoring, air-to-ground control and operator interfacing. It is suitable for controlling the four furnaces either individually or all at one time. It also contains the power management solid-state drivers and switches for the ZCG-FU furnace. The furnace contains 19 tubes operating at three different temperature zones. .

  20. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    PubMed Central

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  1. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    PubMed

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  4. High Water Tolerance of a Core-Shell-Structured Zeolite for CO2 Adsorptive Separation under Wet Conditions.

    PubMed

    Miyamoto, Manabu; Ono, Shumpei; Kusukami, Kodai; Oumi, Yasunori; Uemiya, Shigeyuki

    2018-06-11

    Dehumidification in CO 2 adsorptive separation processes is an important issue, owing to its high energy consumption. However, available adsorbents such as low-silica zeolites show a significant decrease in CO 2 adsorption capacity when water vapor is present. A core-shell-structured MFI-type zeolite with a hydrophilic ZSM-5 coated with a hydrophobic silicalite-1 shell layer was applied in CO 2 adsorptive separation under wet conditions. This hybrid material demonstrated remarkably high water tolerance with stable CO 2 adsorption performance without additional thermal treatment for regeneration, whereas a significant decrease in the CO 2 adsorption amount because of water vapor was observed on the parent ZSM-5. The core-shell structure of zeolites with high pore volumes, such as LTA or CHA, could also be suitable candidates for high CO 2 adsorption capacity and high water tolerance for practical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  6. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  7. Breaking Structural Energy Constraints: Hydrothermal Crystallization of High-Silica Germanosilicates via Building Units Self-Growing Approach.

    PubMed

    Peng, Mingming; Jiang, Jingang; Liu, Xue; Ma, Yue; Jiao, Meichen; Xu, Hao; Wu, Haihong; He, Mingyuan; Wu, Peng

    2018-06-11

    Zeolites, a class of crystalline microporous materials, have a wide range of practical applications, in particular serving as key catalysts in petrochemical and finechemical processes. Millions of zeolite topologies are theoretically possible. However, to date, only 235 frameworks with various tetrahedral element compositions have been discovered in nature or artificially synthesized, among which approximately 50 topologies are available in pure silica forms. Germanosilicates are becoming an important zeolite family, with a rapidly increasing number of topological structures with unusual double four-membered-ring (D4R) building units and large-pore or extra large-pore systems. The synthesis of their high-silica analogues with higher (hydro)thermal stability remains a great challenge because the formation of siliceous D4R units is kinetically and thermodynamically unfavorable in hydrothermal systems. Herein, we demonstrate that such D4R-containing high-silica zeolites with unexpected crystalline topologies (ECNU-24-RC and IM-20-RC) are readily constructed through a versatile route. This strategy provides new opportunities for the synthesis of high-silica zeolite catalysts that are hardly obtained by conventional hydrothermal synthesis and it would also facilitate a break-through in increasing the number and types of zeolite materials with practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Zwitterionic versus canonical amino acids over the various defects in zeolites: A two-layer ONIOM calculation

    PubMed Central

    Yang, Gang; Zhou, Lijun

    2014-01-01

    Defects are often considered as the active sites for chemical reactions. Here a variety of defects in zeolites are used to stabilize zwitterionic glycine that is not self-stable in gas phase; in addition, effects of acidic strengths and zeolite channels on zwitterionic stabilization are demonstrated. Glycine zwitterions can be stabilized by all these defects and energetically prefer to canonical structures over Al and Ga Lewis acidic sites rather than Ti Lewis acidic site, silanol and titanol hydroxyls. For titanol (Ti-OH), glycine interacts with framework Ti and hydroxyl sites competitively, and the former with Lewis acidity predominates. The transformations from canonical to zwitterionic glycine are obviously more facile over Al and Ga Lewis acidic sites than over Ti Lewis acidic site, titanol and silanol hydroxyls. Charge transfers that generally increase with adsorption energies are found to largely decide the zwitterionic stabilization effects. Zeolite channels play a significant role during the stabilization process. In absence of zeolite channels, canonical structures predominate for all defects; glycine zwitterions remain stable over Al and Ga Lewis acidic sites and only with synergy of H-bonding interactions can exist over Ti Lewis acidic site, while automatically transform to canonical structures over silanol and titanol hydroxyls. PMID:25307449

  9. Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Miller, J.T.; Gates, B.C.

    Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less

  10. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  11. Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P.

    PubMed

    Morris, Samuel A; Wheatley, Paul S; Položij, Miroslav; Nachtigall, Petr; Eliášová, Pavla; Čejka, Jiří; Lucas, Tim C; Hriljac, Joseph A; Pinar, Ana B; Morris, Russell E

    2016-09-28

    The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination.

  12. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  13. Fabrication of MTN-type zeolite by self-assembling of supramolecular compound

    NASA Astrophysics Data System (ADS)

    Huang, Aisheng; Caro, Jürgen

    2009-10-01

    MTN-type (Zeolite Socony Mobil Thirty-Nine) zeolite was prepared at 473 K by a novel method through self-assembling of a supramolecular compound called 2,4,6-tris (4-pyridyl) triazine (TPT) in DMF (N,N-dimethylformamide). The effects of fluoride, DMF and germanium on the synthesis of MTN-type zeolite were investigated. The crystallization was facilitated by adding fluoride to the synthesis solution, resulting in the formation of highly crystalline MTN samples, while some amorphous phase was observed in fluoride-free batches. DMF was required to obtain a highly crystalline MTN sample, since TPT dissolves easier in DMF than in water, thus facilitating the self-assembling of TPT into a 3D network to structure the MTN framework. The MTN structure could be synthesized at low germanium content (Ge/Si≤0.18), while AST (AlPO 4-sixteen) as a foreign phase is formed at high germanium substitution (Ge/Si≥0.5).

  14. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    PubMed Central

    Kim, Byoung Chul; Yamamoto, Takuji; Kim, Young Han

    2015-01-01

    A quartz crystal microbalance (QCM) was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate) (PMMA) binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread. PMID:26516859

  15. Size and Composition Optimized Nanocatalysts for Propulsion Applications

    DTIC Science & Technology

    2013-10-01

    accepted for publication in Science. A promising route for endothermic reforming applications involves the use of acidic zeolites . In our first...and 633 K. The rates showed the effects of saturated adsorption for n-hexane in the zeolite , with the reaction being first- order at low pressures and...remarkably stable with time. Preliminary measurements on other zeolite structures, H-Y, H-MOR, and H-BETA, suggest that the conclusions from H-ZSM

  16. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations.

    PubMed

    Oleksiak, Matthew D; Ghorbanpour, Arian; Conato, Marlon T; McGrail, B Peter; Grabow, Lars C; Motkuri, Radha Kishan; Rimer, Jeffrey D

    2016-11-02

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H 2 O relative to other light gases (e.g., H 2 , N 2 , CO 2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO 2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thiophenic compounds adsorption on Na(I)Y and rare earth exchanged Y zeolites: a density functional theory study.

    PubMed

    Gao, Xionghou; Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Yao, Xiaojun

    2013-11-01

    We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.

  18. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Fazhou; Hakki, Amer; Macphee, Donald E.; Liu, Peng; Hu, Shuguang

    2017-01-01

    A low cost zeolite fly ash bead/TiO2 (ZFABT) composite materials with various surface structure features were prepared for describing those structures importance on TiO2 coating, adsorbability and photocatalytic performances. The results indicated that fly ash bead (FAB) surface was significantly altered by the precipitation/growth of secondary zeolite phases after alkali activation, which generates abundant open pores and stacked petal-liked spherical beads (∼2 μm, Sodalite zeolites). More importantly, this porosity increases as activation time was increased from 2 h to 12 h, through the precipitation of sodalite and then Na-P1 (lamellar crystals) and Na-X (octahedral crystals) zeolite structures. Compared to those of unsupported TiO2 or inactivated support/TiO2 samples, all of ZFABT samples exhibited a higher adsorption capacity and photocatalytic efficiency for RhB removal. However, adsorption is not only one factor to influence TiO2 surface reaction, the intraparticle diffusion rate of rhodamine B (RhB) molecules, and light penetration are also important parameters. Alkali activated 4 h ZFABT sample exhibited the highest photocatalytic activity, indicating its pore structure provided a better balance for those parameters to achieve a synergistic adsorption/photocatalytic process. The kinetics model suggested its high intraparticle diffusion rate allowed for more RhB molecules to easily reach the reaction surface, which is more important for high efficiency photocatalysis.

  19. Ultra-small Ag clusters in zeolite A4: Antibacterial and thermochromic applications

    NASA Astrophysics Data System (ADS)

    Horta-Fraijo, P.; Cortez-Valadez, M.; Flores-Lopez, N. S.; Britto Hurtado, R.; Vargas-Ortiz, R. A.; Perez-Rodriguez, A.; Flores-Acosta, M.

    2018-03-01

    The physical and chemical properties of metal clusters depend on their atomic structure, therefore, it is important to determine the lowest-energy structures of the clusters in order to understand and utilize their properties. In this work, we use the Density Functional Theory (DFT) at the generalized gradient approximation level Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence) to determine some of the structural, electronic and vibrational properties of the planar silver clusters (Agn clusters n = 2-24). Additionally, the study reports the experimental synthesis of small silver clusters in synthetic zeolite A4. The synthesis was possible using the ion exchange method with some precursors like silver nitrate (AgNO3) and synthetic zeolite A4. The silver clusters in zeolite powder underwent thermal treatment at 450 °C to release the remaining water or humidity on it. The morphology of the particles was determined by Transmission Electron microscopy. The nanomaterials obtained show thermochromic properties. The structural parameters were correlated theoretically and experimentally.

  20. Supported rhenium complexes: almost uniform rhenium tricarbonyls synthesized from CH3Re(CO)5 and HY zeolite.

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-11-02

    Supported rhenium complexes were prepared from CH(3)Re(CO)(5) and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH(3)Re(CO)(5) with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bonded near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the ν(CO) region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH(3)Re(CO)(5) on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the ν(CO) bands in the IR spectra. The results show the importance of zeolite H(+) sites for the formation of uniform supported rhenium carbonyls from CH(3)Re(CO)(5); the formation of such uniform complexes did not occur on the NaY zeolite.

  1. Crewmember in the mid deck with the Zeolite Crystal Growth experiment.

    NASA Image and Video Library

    1992-07-09

    STS50-262-004 (25 June-9 July 1992) --- Astronaut Kenneth D. Bowersox, STS-50 pilot, holds an autoclave used in the growing of zeolite crystals on the middeck of the Earth-orbiting Space Shuttle Columbia. He is standing near the Zeolite Crystal Growth (ZCG) furnace, which is housed in the space of two stowage lockers. On the 14-day U.S. Microgravity Laboratory mission, zeolite crystals were grown in 38 individual autoclaves, which were joined in pairs to be inserted into the 19 furnace orifices. While the autoclaves appear the same externally, there are several types of internal arrangements that were tested to determine which one provides the best mixing of the component solutions. The portrait of alternate payload specialist Albert Sacco, Jr. is mounted nearby. Sacco, serving as a ground controller at Marshall Space Flight Center in Alabama, worked in conjunction with the red shift crew in the science module.

  2. Adsorption interaction in the molecular hydrogen-aluminophosphate AlPO-5 zeolite system

    NASA Astrophysics Data System (ADS)

    Grenev, I. V.; Gavrilov, V. Yu.

    2015-03-01

    The adsorption interaction between molecular hydrogen and atoms forming the lattice of AlPO-5 zeolite is studied. The potential of intramolecular interaction is calculated by summing the potentials of individual pairwise H2-O(Al, P) interactions in a fragment of the zeolite structure with a volume of ˜32 nm3. Isopotential surfaces are constructed that allow determination of the shape of zeolite microchannels and the places of the preferential localization of sorbate molecules in the porous space. The calculated and experimental values of the Henry constant of H2 adsorption on AlPO-5 at 77 K are compared.

  3. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    PubMed

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  4. IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorgouilloux, Yannick; Dodin, Mathias; Paillaud, Jean-Louis

    2009-03-15

    The synthesis and the structure of IM-16 a new germanosilicate with a novel zeolitic topology prepared hydrothermally with the ionic liquid 3-ethyl-1-methyl-3H-imidazol-1-ium as the organic structure-directing agent are reported. The structure of calcined and partially rehydrated IM-16 of chemical formula |(H{sub 2}O){sub 0.16}|[Si{sub 3.47}Ge{sub 2.53}O{sub 12}] was solved from powder XRD data in space group Cmcm with a=15.0861(2) A, b=17.7719(3) A, c=19.9764(3) A, V=5355.84(12) A{sup 3} (Z=16). This new zeolite framework type contains 10-MRs channels and may be described from the d4r and mtw composite building units. - Graphical abstract: The synthesis and the structure of IM-16 a new germanosilicatemore » with a novel zeolitic topology prepared hydrothermally with the ionic liquid 3-ethyl-1-methyl-3H-imidazol-1-ium as the organic structure-directing agent are reported. This new zeolite framework type contains 10-MRs channels and may be described from the d4r and mtw composite building units.« less

  5. Solvent-Free Synthesis of Zeolites: Mechanism and Utility.

    PubMed

    Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou

    2018-05-08

    Zeolites have been extensively studied for years in different areas of chemical industry, such as shape selective catalysis, ion-exchange, and gas adsorption and separation. Generally, zeolites are prepared from solvothermal synthesis in the presence of a large amounts of solvents such as water and alcohols in sealed autoclaves under autogenous pressure. Water has been regarded as essential to synthesize zeolites for fast mass transfer of reactants, but it occupies a large space in autoclaves, which greatly reduces the yield of zeolite products. Furthermore, polluted wastes and relatively high pressure due to the presence of water solvent in the synthesis also leads to environmental and safety issues. Recently, inspired by great benefits of solvent-free synthesis, including the environmental concerns, energy consumption, safety, and economic cost, researchers continually challenge the rationale of the solvent and reconsider the age-old question "Do we actually need solvents at all in zeolite synthesis?" In this Account, we briefly summarize our efforts to rationally synthesize zeolites via a solvent-free route. Our research demonstrates that a series of silica, aluminosilicate, and aluminophosphate-based zeolites can be successfully prepared by mixing, grinding, and heating starting solid materials under solvent-free conditions. Combining an organotemplate-free synthesis with a solvent-free approach maximizes the advantages resulting in a more sustainable synthetic route, which avoids using toxic and costly organic templates and the formation of harmful gases by calcination of organic templates at high temperature. Furthermore, new insights into the solvent-free crystallization process of zeolites have been provided by modern techniques such as NMR and UV-Raman spectroscopy, which should be helpful in designing new zeolite structures and developing novel routes for synthesis of zeolites. The role of water and the vital intermediates during the crystallization of zeolites have been proposed and verified. In addition to a significant reduction in liquid wastes and a remarkable increase in zeolite yields, the solvent-free synthesis of zeolites exhibits more unprecedented benefits, including (i) the formation of hierarchical micro-, meso-, and macrostructures, which benefit the mass transfer in the reactions, (ii) rapid synthesis at higher temperatures, which greatly improve the space-time yields of zeolites, and (iii) construction of a novel catalytic system for encapsulation of metal nanoparticles and metal oxide particles within zeolite crystals synergistically combining the advantages of catalytic metal nanoparticles and metal oxide particles (high activity) and zeolites (shape selectivity). We believe that the concept of "solvent-free synthesis of zeolites" would open a door for deep understanding of zeolite crystallization and the design of efficient zeolitic catalysts.

  6. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    PubMed

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

  8. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    PubMed

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Solid-support substrates for plant growth at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Galindo, C.; Henninger, D. L.

    1990-01-01

    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  10. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  11. Polymethylated [4.1.1] Octanes Leading to Zeolite SSZ-50

    NASA Astrophysics Data System (ADS)

    Lee, Greg S.; Zones, Stacey I.

    2002-09-01

    In this communication, we report on the discovery of novel zeolite compositions, SSZ-50. The zeolite has the RTH topology but can be made over a large silica-to-alumina range including no aluminum at all. The surprising capability to produce a broad compositional range comes from the use of a single organo-cation guest molecule in the zeolite synthesis. The molecule is a specific derivative from within a family of 2-aza [4.1.1] bicyclo octanes that were prepared employing a sequence of organic synthesis steps from a starting ketone. Other cage-based zeolites like SSZ-35,-36,-39 and MTN arose from the use of the other derivatives in this series. We also comment on the tendency of a variety of polymethylated organo-cations to produce RTH, the closely related ITE, or the intergrowth structure, SSZ-36.

  12. Speciation of chromium compounds from humic acid-zeolite Y to an ionic liquid during extraction.

    PubMed

    Huang, Hsin-Liang; Wei, Yu Jhe

    2018-03-01

    By synchrotron X-ray absorption spectroscopy, chemical structures of hexavalent chromium (Cr(VI))/trivalent chromium (Cr(III)) adsorbed on humic acid (HA)-zeolite Y and extracted in an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate ([C 4 mim][BF 4 ])) have been studied. By combining the competitive adsorption results and reduction of Cr(VI)-HA with the carboxyl groups of HA, Cr(III)-HA (58%) was shown to be the major compound in HA-zeolite Y using synchrotron X-ray absorption near-edge structure (XANES) spectroscopy. In an ionic liquid phase, the reduction of Cr(VI)-HA to Cr(III)-HA and the desorption of Cr(III) from HA were caused by [C 4 mim][BF 4 ]. The 9 F nuclear magnetic resonance (NMR) spectra show that the perturbation of the [C 4 mim][BF 4 ] anion was affected by the extractable chromium species. The formation of a Cr(III) ion affected the increase in the bond distance for the 1st shell CrO of the chromium species in [C 4 mim][BF 4 ] using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in the non-extractable chromium species remaining in HA-zeolite Y were also caused by [C 4 mim][BF 4 ] during extraction. The desorption of the absorbed Cr(III) on HA and zeolite Y was observed to form Cr(III) ions. As the percentage of Cr(III) ions remaining in HA-zeolite Y increased, a slightly greater bond distance for CrO was found at 2.01 Å. The enhanced reduction of Cr(VI)-HA and desorption of Cr(III) adsorbed on the HA and zeolite Y to form Cr(III) ions were affected by [C 4 mim][BF 4 ]. Increased mobility of Cr(III) in the simulated soil can promote the migration of Cr(III) ions into the H 2 O during soil washing for remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Iridium clusters in KLTL zeolite: Synthesis, structural characterization, and catalysis of toluene hydrogenation and n-hexane dehydrocyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, A.; Jentoft, R.E.; Gates, B.C.

    Iridium clusters incorporating about six atoms each, on average, were prepared in KLTL zeolite by decarbonylation (in H{sub 2} at 400{degrees}C) of iridium carbonyl clusters formed by treatment of adsorbed [Ir(CO){sub 2}(acac)] in CO at 1 atm and 175{degrees}C. The supported species were characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies. The iridium carbonyls formed from [Ir(CO){sub 2}(acac)] were predominantly [HIr{sub 4}(CO){sub 11}]{sup -} with a small amount of [Ir(CO){sub 4}]{sup -}. The synthesis chemistry of iridium carbonyls in the basic KLTL zeolite parallels that in basic solutions. Shifts of the {nu}{sub CO} bands of the iridiummore » carbonyl clusters relative to those of the same clusters in solution indicate strong interactions between the clusters and zeolite cations. The decarbonylated sample, approximated as Ir{sub 6}/KLTL zeolite, is catalytically active for toluene hydrogenation at 60-100{degrees}C, with the activity being approximately the same as those of Ir{sub 4} and Ir{sub 6} clusters supported on metal oxides, but an order of magnitude less than that of a conventional supported iridium catalyst consisting of aggregates of about 50 atoms each, on average. The catalyst is also active for conversion of n-hexane + H{sub 2} at 340-420{degrees}C, but the selectivity for aromatization is low and that for hydrogenolysis is high, consistent with earlier results for conventionally prepared (salt-derived) iridium clusters of about the same size supported in KLTL zeolite. The zeolite-supported iridium clusters are the first prepared from both salt and organometallic precursors; the results indicate that the organometallic and conventional preparation routes lead to supported iridium clusters having similar structures and catalytic properties. 59 refs., 6 figs., 7 tabs.« less

  14. Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.

    PubMed

    Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D

    2018-06-19

    The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water.

    PubMed

    Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad

    2018-07-15

    The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Supported Rhenium Complexes: Almost Uniform Rhenium Tricarbonyls Synthesized from CH[subscript 3]Re(CO)[subscript 5] and HY Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo-Lapidus, Rodrigo J.; Gates, Bruce C.

    2010-12-07

    Supported rhenium complexes were prepared from CH{sub 3}Re(CO){sub 5} and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH{sub 3}Re(CO){sub 5} with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bondedmore » near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the {nu}{sub CO} region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH{sub 3}Re(CO){sub 5} on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the {nu}{sub CO} bands in the IR spectra. The results show the importance of zeolite H{sup +} sites for the formation of uniform supported rhenium carbonyls from CH{sub 3}Re(CO){sub 5}; the formation of such uniform complexes did not occur on the NaY zeolite.« less

  17. Synthesis of a ferrolite: A zeolitic all-iron framework

    DOE PAGES

    Latshaw, Allison M.; Chance, W. Michael; Morrison, Gregory; ...

    2016-09-21

    Here, crystals of the first sodalite-type zeolite containing an all-iron framework, a ferrolite, Ba 8(Fe 12O 24)Na y(OH)6 • xH 2O, were synthesized using the hydroflux method in nearly quantitative yield. Ba 8(Fe 12O 24)Na y(OH) 6 • xH 2O crystallizes in the cubic space group Pm3¯m with α = 10.0476(1) Å. Slightly distorted FeO 4 tetrahedra are linked to form Fe 4O 4 and Fe 6O 6 rings, which in turn yield channels and internal cavities that are characteristic of the sodalite structure. Barium, sodium, and hydroxide ions and water molecules are found in the channels and provide chargemore » balance. Magnetic measurements indicate that the ferrolite exhibits magnetic order up to at least 700 K, with the field-cooled and zero-field-cooled curves diverging. Analysis of the 57Fe Mossbauer spectra revealed two spectral components that have equal spectral areas, indicating the presence of two subsets of iron centers in the structure. Dehydrated versions of the ferrolite were also prepared by heating the sample.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleksiak, Matthew D.; Ghorbanpour, Arian; Conato, Marlon T.

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to obtain crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially-viable methods of preparing zeolites often lead to the formation of impurities. Here, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2O relative to other light gasesmore » (e.g., H2, N2, CO2).« less

  19. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    PubMed

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    PubMed Central

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  1. Understanding of local structure-function relationships of zeolites used in industry through polarized raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, O.; Lascola, R.; Fessler, K.

    The overall objective of this project is to optics procurement and instrumental setup completed in Robert Lascola’s laboratory. An Ondax THz-Raman probe was installed in order to obtain Raman terahertz spectra of commercially available Zeolites.

  2. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier

    2014-05-01

    Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.

  3. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.

  4. [Preparation of honeycombed monolithic zeolite and hydrophobic modification with SiCl4].

    PubMed

    Wang, Xi-Qin; Li, Kai; Wei, Bing; Luan, Zhi-Qiang

    2011-12-01

    A kind of hydrophobic zeolitic monolith were prepared by mixing HY/ZSM-5, additives and water, followed by processes of extrusion and drying, and then hydrophobic modification with SiCl4. The structures and properties of the adsorbent were examined by nitrogen adsorption and desorption measurement, XRD, and benzene adsorption experiment. The results show that those adsorbents possess hierarchical pore structures and excellent hydrophobicity.

  5. NMR crystallography of zeolites: How far can we go without diffraction data?

    PubMed

    Brouwer, Darren H; Van Huizen, Jared

    2018-05-10

    Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Investigation on the porosity of zeolite NU-88 by means of positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Consolati, G.; Mariani, M.; Millini, R.; Quasso, F.

    2009-08-01

    Seven well characterized zeolites were investigated by positron annihilation lifetime spectroscopy. The lifetime spectra were analysed in four discrete components. The third one was associated with ortho-positronium annihilation in the channels, framed in terms of infinite cylinders. Differences between the radii determined from the positron annihilation technique and X-ray diffraction data were found and explained in terms of the physical structure of the channel. An analogous study on a high-silica NU-88 zeolite gave a value of 0.33 nm for the corresponding radius, in agreement with Ar and N 2 adsorption data as well as with the catalytic behaviour of this zeolite in several acid catalyzed reactions. The longest lifetime component in NU-88 reveals the existence of mesopores, with average radius of about 1.8 nm, which could explain the importance of hydrogen transfer reactions in this zeolite.

  7. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  8. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witman, Matthew; Ling, Sanliang; Boyd, Peter

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less

  9. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites.

    PubMed

    Witman, Matthew; Ling, Sanliang; Boyd, Peter; Barthel, Senja; Haranczyk, Maciej; Slater, Ben; Smit, Berend

    2018-02-28

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.

  10. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    PubMed Central

    2018-01-01

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal–organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc. PMID:29532024

  11. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleksiak, Matthew D.; Ghorbanpour, Arian; Conato, Marlon T.

    Designing nanoporous zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications spanning diverse areas such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires the use of an organic structure-directing agent to facilitate the formation of crystals with specific pore size and topology. Attempts to remove organics from syntheses to achieve commercially-viable methods of preparing zeolites often lead to the formation of unwanted crystal polymorphs (i.e., impurities). Here, we present an organic-free synthesis of the small-pore zeolite P (GIS framework topology) that can be selectively tailored to produce two pure polymorphs: P1 and P2.more » To this end, we developed kinetic phase diagrams that identify synthesis compositions leading to the formation of GIS (P1 and P2), as well as their structural analogues MER and PHI. Using a combination of adsorption measurements and density functional theory (DFT) calculations, we also show that both GIS polymorphs are highly selective adsorbents for H2O relative to other light gases (e.g,, H2, N2, CO2). These studies highlight the potential application of GIS materials for dehydration processes, while our findings also refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. Moreover, there is an impetus for discovering novel small-pore zeolites that are shape-selective catalysts for the production of value-added chemicals (e.g., light olefins); thus, our discovery of more thermally-stable P2 opens new avenues for exploring the potential role of this material as a high-performance catalyst.« less

  12. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    DOE PAGES

    Witman, Matthew; Ling, Sanliang; Boyd, Peter; ...

    2018-02-06

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less

  13. Experiments with Zeolites at the Secondary-School Level: Experience from The Netherlands.

    ERIC Educational Resources Information Center

    Coker, Eric N.; Davis, Pamela J.; Kerkstra, Aonne; van Bekkum, Herman

    1999-01-01

    Describes the physical and chemical structure of zeolites and presents a series of experiments demonstrating some of the properties of these chemicals, including investigations of the hardness of tap water and the water-softening capabilities of various laundry detergents. Contains 13 references. (WRM)

  14. Simple approach in understanding interzeolite transformations using ring building units

    NASA Astrophysics Data System (ADS)

    Suhendar, D.; Buchari; Mukti, R. R.; Ismunandar

    2018-04-01

    Recently, there are two general approaches used in understanding interzeolite transformations, thermodynamically represented by framework density (FD) and kinetically by structural building units. Two types of structural building units are composite building units (CBU’s) and secondary building units (SBU’s). This study aims to examine the approaches by using interzeolite transformation data available in literature and propose a possible alternative approach. From a number of cases of zeolite transformation, the FD and CBU approach are not suitable for use. The FD approach fails in cases involving zeolite parents that have moderate or high FD’s, while CBU approach fails because of CBU’s unavailability in parent zeolites compared with CBU’s in their transformation products. The SBU approach is most likely to fit because SBU’s are units that have basic form of ring structures and closer to the state and shape of oligomeric fragments present in zeolite synthesis or dissolution cases. Thus, a new approach can be considered in understanding the interzeolite transformation, namely the ring building unit (RBU) approach. The advantage of RBU approach is RBU’s can be easily derived from all framework types, but in SBU approach there are several types of frameworks that cannot be expressed in SBU forms.

  15. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  16. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    PubMed Central

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  17. CuY zeolite catalysts prepared by ultrasonication-assisted ion-exchange for oxidative carbonylation of methanol to dimethyl carbonate.

    PubMed

    Woo, Je-Min; Seo, Jung Yoon; Kim, Hyunuk; Lee, Dong-Ho; Park, Young Cheol; Yi, Chang-Keun; Park, Yeong Seong; Moon, Jong-Ho

    2018-06-01

    The influence of ultrasonication treatment on the catalytic performance of CuY zeolite catalysts was investigated for the liquid-phase oxidative carbonylation of methanol to dimethyl carbonate (DMC). The deammoniation method of NH 4 Y into HY zeolites was optimized and characterized by elemental analyzer, derivative thermogravimetry, Brunauer-Emmett-Teller (BET) analyzer, and powder X-ray diffractometry, revealing that the HY zeolite deammoniated at 400 °C presented the highest surface area, complete ammonium/proton ion exchange, and no structure collapse, rendering it the best support from all the prepared zeolites. CuY zeolites were prepared via aqueous phase ion exchange with the aid of ultrasonication. Upon ultrasonication, the Cu + active centers were uniformly dispersed in the Y zeolites, penetrating the core of the zeolite particles in a very short time. In addition to enhancing the Cu dispersity, the ultrasonication treatment influenced the BET surface area, acid amount, Cu + /Cu 2+ ratio, and also had a relatively small impact on the Cu loading. Consequently, adequate exposure to ultrasonication was able to increase the conversion rate of methanol into dimethyl carbonate up to 11.4% with a comparable DMC selectivity of 23.7%. This methanol conversion is 2.65 times higher than that obtained without the ultrasonication treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    NASA Astrophysics Data System (ADS)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  19. SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs

    NASA Astrophysics Data System (ADS)

    Wdowin, Magdalena; Panek, Rafal; Franus, Wojciech

    Carbon dioxide is the main greenhouse gas and its amount still increase in the atmosphere. Air pollution and greenhouse effect caused by CO2 emission have become a major threat to the environment on a global scale. Carbon dioxide sequestration (i.e. capture and consequently geological storage) is the key strategy within the portfolio of actions to reduce CO2 emission to the atmosphere. The most costly stage is capture of CO2, therefore there is a need to search new solutions of this technology. For this purpose it was examined Na-X synthetic zeolites, that were silver and PEI (polyethyleneimine) activated. SEM-EDS investigation enable to find a changes in structure of this materials after treatment. Where, as a result of silver activation from EDS analysis it is seen that Ag occur in Na-X structure, what indicate a substitution of Ag2+ for Na+ ions in crystal lattice. Analysing wt% the EDS analysis has shown that zeolite Na-X after silver impregnation becomes Ag-X zeolite. For Na-X-PEI activated it is observed a distinct organic compound in the form of coatings on Na-X crystals causing a sealing of pores in tested zeolite. Further examination of these materials concern determination of surface properties and experiments of CO2 sorption. But SEM-EDS analysis enable to determine the extent of activation, what is very important in determination of optimal conditions for such treatment in order to obtain better sorbent of CO2.

  20. Hydrothermal synthesis of zeolite T from kaolin using two different structure-directing agents

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Lutfor Rahman, M.; Sarkar, Shaheen M.; Yusslee, Eddy F.; Patuwan, Siti Z.

    2018-01-01

    Zeolite T was synthesized from the molar chemical composition of 1SiO2:0.04Al2O3:0.26Na2O:0.09K2O:14H2O in the form of a homogenous milky solution in the presence of the two different structure-directing agents TMAOH and TEAOH respectively. Modification of the composition of silica was undertaken using metakaolin from calcined kaolin at 750 °C for 4 h, while the molar composition of each different SDA was variated from 0.05, 0.10, 0.15, 0.20 and 0.25. The homogenous mixture was left at room temperature for 24 h before undergoing hydrothermal synthesis at 100 °C for 168 h. The synthesized samples were filtered and aged at 120 °C for 2 h and each sample was calcined at high temperatures (545 °C for TMAOH and 520 °C for TEAOH) for template removal before characterization using XRD and SEM. Crystallization of the zeolite T in its major form only took place at a molar ratio of 0.10 of TMAOH, while TEAOH showed the species evolution of zeolite T into zeolite L and W for other molar ratios.

  1. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.

    PubMed

    Cody, D; Naydenova, I

    2017-12-01

    The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.

  2. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Dongyang; Wang, Zhendong; Guo, Min

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceivedmore » and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.« less

  3. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    PubMed

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  4. From average to local structure: a Rietveld and an atomic pair distribution function (PDF) study of selenium clusters in zeolite-NdY.

    PubMed

    Abeykoon, A M Milinda; Donner, Wolfgang; Brunelli, Michela; Castro-Colin, Miguel; Jacobson, Allan J; Moss, Simon C

    2009-09-23

    The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.

  5. Stochastic Physicochemical Dynamics

    NASA Astrophysics Data System (ADS)

    Tsekov, R.

    2001-02-01

    Thermodynamic Relaxation in Quantum Systems: A new approach to quantum Markov processes is developed and the corresponding Fokker-Planck equation is derived. The latter is examined to reproduce known results from classical and quantum physics. It was also applied to the phase-space description of a mechanical system thus leading to a new treatment of this problem different from the Wigner presentation. The equilibrium probability density obtained in the mixed coordinate-momentum space is a reasonable extension of the Gibbs canonical distribution. The validity of the Einstein fluctuation-dissipation relation is discussed in respect to the type of relaxation in an isothermal system. The first model, presuming isothermic fluctuations, leads to the Einstein formula. The second model supposes adiabatic fluctuations and yields another relation between the diffusion coefficient and mobility of a Brownian particle. A new approach to relaxations in quantum systems is also proposed that demonstrates applicability only of the adiabatic model for description of the quantum Brownian dynamics. Stochastic Dynamics of Gas Molecules: A stochastic Langevin equation is derived, describing the thermal motion of a molecule immersed in a rested fluid of identical molecules. The fluctuation-dissipation theorem is proved and a number of correlation characteristics of the molecular Brownian motion are obtained. A short review of the classical theory of Brownian motion is presented. A new method is proposed for derivation of the Fokker-Planck equations, describing the probability density evolution, from stochastic differential equations. It is also proven via the central limit theorem that the white noise is only Gaussian. The applicability of stochastic differential equations to thermodynamics is considered and a new form, different from the classical Ito and Stratonovich forms, is introduced. It is shown that the new presentation is more appropriate for the description of thermodynamic fluctuations. The range of validity of the Boltzmann-Einstein principle is also discussed and a generalized alternative is proposed. Both expressions coincide in the small fluctuation limit, providing a normal distribution density. Fluctuation Stability of Thin Liquid Films: Memory effect of Brownian motion in an incompressible fluid is studied. The reasoning is based on the Mori-Zwanzig formalism and a new formulation of the Langevin force as a result of collisions between an effective and the Brownian particles. Thus, the stochastic force autocorrelation function with finite dispersion and the corresponding Brownian particle velocity autocorrelation function are obtained. It is demonstrated that the dynamic structure is very important for the rate of drainage of a thin liquid film and it can be effectively taken into account by a dynamic fractal dimension. It is shown that the latter is a powerful tool for description of the film drainage and classifies all the known results from the literature. The obtained general expression for the thinning rate is a heuristic one and predicts variety of drainage models, which are even difficult to simulate in practice. It is a typical example of a scaling law, which explains the origin of the complicate dependence of the thinning rate on the film radius. On the basis of the theory of stochastic processes the evolution of the spatial correlation function of the surface waves on a thin liquid film as well as the corresponding root mean square amplitude A(t) and number of uncorrelated subdomains N(t) are obtained. A formulation of the life time of unstable nonthinning films is proposed, based on the evolution of A and N. It is shown that the presence of uncorrelated subdomains shortens the life time of the film. Some numerical results for A(t) and N(t) at different film thicknesses h and areas S, are demonstrated, taking into account only van der Waals and capillary forces. Resonant Diffusion in Molecular Solid Structures: A new approach to Brownian motion of atomic clusters on solid surfaces is developed. The main topic discussed is the dependence of the diffusion coefficient on the fit between the surface static potential and the internal cluster configuration. It is shown this dependence is non-monotonous, which is the essence of the so-called resonant diffusion. Assuming quicker inner motion of the cluster than its translation, adiabatic separation of these variables is possible and a relatively simple expression for the diffusion coefficient is obtained. In this way, the role of cluster vibrations is accounted for, thus leading to a more complex resonance in the cluster surface mobility. Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times higher than the atomic structure energy barriers. The role of the alkane molecule vibrations is examined as well and a surprising effect of suppression of the diffusion in comparison with the case of a rigid molecule is observed. This effect is explained with the balance between the static and dynamic interaction of the molecule and zeolite. Catalytic Kinetics of Chemical Dissociation: A unified description of the catalytic effect of Cu-exchanged zeolites is proposed for the decomposition of NO. A general expression for the rate constant of NO decomposition is obtained by assuming that the rate-determining step consists of the transferring of a single atom associated with breaking of the N-O bond. The analysis is performed on the base of the generalized Langevin equation and takes into account both the potential interactions in the system and the memory effects due to the zeolite vibrations. Two different mechanisms corresponding to monomolecular and bimolecular NO decomposition are discussed. The catalytic effect in the monomolecular mechanism is related to both the Cu+ ions and zeolite O-vacancies, while in the case of the bimolecular mechanism the zeolite contributes through dissipation only. The comparison of the theoretically calculated rate constants with experimental results reveals additional information about the geometric and energetic characteristics of the active centers and confirms the logic of the proposed models.

  6. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste.

    PubMed

    Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr 2+ ions from an aqueous phase. The encapsulation of the Sr 2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Improving the Durability of Methanol Oxidation Reaction Electro-Catalysts Through the Modification of Carbon Architectures

    DTIC Science & Technology

    2014-01-01

    zeolite template was used in conjunction with liquid cyanamide to form a carbon nitride structure with a better 2D mesoporous hexagonal framework, resulting...the core. Both hybrid inorganic–organic polymer networks and 139 zeolitic inorganic–organic polymer electrolyte materials were used to impregnate an

  8. Thermal Properties of Zeolite-Containing Composites

    PubMed Central

    Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio

    2018-01-01

    A zeolite (mordenite)–pore–phenol resin composite and a zeolite–pore–shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity <20%, the thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70–2.07 W/mK at room temperature for the zeolite–pore–phenol resin composite and the zeolite–pore–shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C. PMID:29534034

  9. A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB

    PubMed Central

    Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng

    2018-01-01

    A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044

  10. Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR.

    PubMed

    Liu, Yong; Zhang, Weiping; Xie, Sujuan; Xu, Longya; Han, Xiuwen; Bao, Xinhe

    2008-01-31

    One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.

  11. One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite.

    PubMed

    Yao, Guangyuan; Lei, Jingjing; Zhang, Xiaoyu; Sun, Zhiming; Zheng, Shuilin

    2018-05-28

    Zeolite X powder was synthesized using natural low-grade diatomite as the main source of Si but only as a partial source of Al via a simple and green hydrothermal method. The microstructure and surface properties of the obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), wavelength dispersive X-ray fluorescence (XRF), calcium ion exchange capacity (CEC), thermogravimetric-differential thermal (TG-DTA) analysis, and N₂ adsorption-desorption technique. The influence of various synthesis factors, including aging time and temperature, crystallization time and temperature, Na₂O/SiO₂ and H₂O/Na₂O ratio on the CEC of zeolite, were systematically investigated. The as-synthesized zeolite X with binary meso-microporous structure possessed remarkable thermal stability, high calcium ion exchange capacity of 248 mg/g and large surface area of 453 m²/g. In addition, the calcium ion exchange capacity of zeolite X was found to be mainly determined by the crystallization degree. In conclusion, the synthesized zeolite X using diatomite as a cost-effective raw material in this study has great potential for industrial application such as catalyst support and adsorbent.

  12. Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography.

    PubMed

    Weckhuysen, Bert Marc; Schmidt, Joel; Peng, Linqing; Poplawsky, Jonathan

    2018-05-02

    Understanding structure-composition-property relationships in zeolite-based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for e.g. reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom Probe Tomography (APT) is the only technique so far capable of producing 3-D compositional reconstructions with sub-nm-scale resolution, and has only recently been applied to zeolite-based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism.

    PubMed

    Yamada, Yuki; Hiyama, Satoshi; Toyooka, Tsuguyoshi; Takeuchi, Shoji; Itabashi, Keiji; Okubo, Tatsuya; Tabata, Hitoshi

    2015-08-04

    Analysis of gases emitted from human skin and contained in human breath has received increasing attention in recent years for noninvasive clinical diagnoses and health checkups. Acetone emitted from human skin (skin acetone) should be a good indicator of fat metabolism, which is associated with diet and exercise. However, skin acetone is an analytically challenging target because it is emitted in very low concentrations. In the present study, zeolite was investigated for concentrating skin acetone for subsequent semiconductor-based analysis. The adsorption and desorption characteristics of five zeolites with different structures and those hydrophobicities were compared. A hydrophobic zeolite with relatively large pores (approximately 1.6 times larger than the acetone molecule diameter) was the best concentrator of skin acetone among the zeolites tested. The concentrator developed using zeolite was applied in a semiconductor-based gas sensor in a simulated mobile environment where the closed space was frequently collapsed to reflect the twisting and elastic movement of skin that would be encountered in a wearable device. These results could be used to develop a wearable analyzer for skin acetone, which would be a powerful tool for preventing and alleviating lifestyle-related diseases.

  14. Ir/KLTL zeolites: Structural characterization and catalysis on n-hexane reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Gates, B.C.

    Ir/KLTL zeolite catalysts were prepared by incipient wetness impregnation of LTL zeolites with [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2}. The catalysts were characterized by extended X-ray absorption fine structure (EX-AFS) spectroscopy, infrared spectroscopy, and H{sub 2} chemisorption. EXAFS data show that the average Ir cluster size (after treatment at 300{degrees}C in H{sub 2}) increased from about 7 to 20 {Angstrom} as the zeolite K:Al atomic ratio increased from 0.34 to 1.56. Infrared spectra of adsorbed CO show that the electron donation to the Ir increased as the K:Al ratio increased. In contrast to the performance reported for Pt/KLTL zeolites with metal clustersmore » as small as those observed in the present experiments, the Ir/KLTL catalyst has a low selectivity for dehydrocyclization of n-hexane at 440-480{degrees}C and 1 atm with a H{sub 2}: n-hexane feed molar ratio of 6. Instead, the catalysts are selective for hydrogenolysis. The selectivity is insensitive to the K:Al ratio, but the activity for dehydrocyclization is a maximum at a K:Al atomic ratio of about 1. The results show that even the smallest Ir clusters to which electron donation is significant still behave essentially like metallic Ir in the catalytic reactions. 49 refs., 4 figs., 7 tabs.« less

  15. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  16. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  17. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it; Martucci, Annalisa; Alberti, Alberto

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determinedmore » by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.« less

  18. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II).more » Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.« less

  19. Microstructure, Porosity and Mechanical Property Relationships of Calcium-Silicate-Hydrate

    DTIC Science & Technology

    1991-02-15

    feasibility of producing S ,,zeolite-cement composites . calcium silicate hydrate (C-S-H) structure, NAS NMR, C3S, pH, zeolites, aluminosilicate hydrate...3 S pH- Composition Plots......................................... 6 X-ray Diffraction...6 The System CaO-A1203-SiO 2 -H2 0................................. 8 pH- Composition Plots......................................... 8 MASNMR

  20. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite).

    PubMed

    Nakane, T; Gomyo, H; Sasaki, I; Kimoto, Y; Hanzawa, N; Teshima, Y; Namba, T

    2006-08-01

    The causative substances for axillary osmidrosis, which are often found in apocrine sweat, are the decomposed/denatured products of short-chain fatty acid and other biological metabolite compounds produced by axillary-resident bacteria. Conventional underarm deodorants suppress the process of odour production mostly by the following mechanism: (1) suppression of perspiration, (2) reduction in numbers of resident bacteria, (3) deodorization and (4) masking. The most important and effective method to reduce odour is to suppress the growth of resident bacteria with antimicrobials, which have several drawbacks, especially in their safety aspect. To solve these problems, we focused on Ag-zeolite (silver-exchanged zeolite) that hold stable Ag, an inorganic bactericidal agent, in its structure, and therefore, poses less risk in safety. Its bactericidal effect on skin-resident bacteria was found to be excellent and comparable with that of triclosan, a most frequently used organic antimicrobial in this product category. The dose-response study of Ag-zeolite powder spray (0-40 w/w%) using 39 volunteers revealed that 5-40 w/w% Ag-zeolite could show a sufficient antimicrobial effect against skin-resident bacteria. The comparison study using 0.2 w/w% triclosan as the control and 10 w/w% Ag-zeolite indicated that: (1) one application of the powder spray containing 10 w/w% Ag-zeolite could show a sufficient antimicrobial effect against the resident bacteria and its effect continued for 24 h, (2) a powder spray containing 0.2 w/w% triclosan was unable to show a sufficient antimicrobial effect, and (3) no adverse event was observed. These studies show that Ag-zeolite has a superior antimicrobial ability that is rarely found in conventional antimicrobials used in deodorant products and a strong antiaxillary odour deodorant ability because of its long-lasting effect. During clinical study, patch tests with humans and other clinical studies of this product showed no adverse events related to the treatment with the Ag-zeolite product.

  1. Adsorption and diffusion of fructose in zeolite HZSM-5: selection of models and methods for computational studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.; Curtiss, L. A.; Assary, R. S.

    The adsorption and protonation of fructose in HZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46Tmore » cluster model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less

  2. Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Curtiss, Larry A.; Assary, Rajeev S.

    The adsorption and protonation of fructose inHZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46T clustermore » model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less

  3. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  4. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.

  5. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.

    PubMed

    Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe

    2016-06-22

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group.

    PubMed

    Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Peng, Honggen; Xu, Dongdong; Wu, Peng; Han, Lu; Che, Shunai

    2018-06-18

    Mesoporous MFI zeolites (MMZs) have been constructed by using the surfactant-containing azobenzene segment in the hydrophobic tail. The cylindrical π-π stacking of azeobenzene groups is considered to be the key factor to form the ordered mesostructure through cooperative structural matching and the rearrangement of MFI frameworks. The mesostructure has been tuned from a disordered hierarchical arrangement into an ordered 2D square p4mm structure by changing the length of the alkyl chain between the diquaternary ammonium head group and azobenzene group. The geometric matching between the MFI zeolitic framework and the alkyl chain length plays an important role in the construction of the crystallographically correlated mesostructure with 2D square ordering. A combination of X-ray diffraction patterns and electron microscopy studies provides visible evidence for the mesostructural transformation from a short-range hexagonal or lamellar ordering to 2D square mesostructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08835 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  8. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08778 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  9. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08775 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  10. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08773 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  11. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08822 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  12. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08831 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  13. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08805 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  14. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08784 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  15. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08836 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  16. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08799 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  17. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  18. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    NASA Astrophysics Data System (ADS)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented approach can be easily used for investigating other such microporous coating pigments in formulating inkjet receptive coating. The research findings will benefit the coating formulators, engineers and material science students, in understanding the absorption characteristics of selected synthetic zeolite pigments thereby encouraging them in identifying other such alternative pigments in conventional inkjet receptive coatings.

  19. Ultrasonic assisted synthesis of Bikitaite zeolite: A potential material for hydrogen storage application.

    PubMed

    Roy, Priyanka; Das, Nandini

    2017-05-01

    Li containing Bikitaite zeolite has been synthesized by an ultrasound-assisted method and used as a potential material for hydrogen storage application. The Sonication energy was varied from 150W to 250W and irradiation time from 3h to 6h. The Bikitaite nanoparticles were characterized by X-ray diffraction (XRD), infrared (IR) spectral analysis, and field-emission scanning electron microscopy (FESEM) thermo-gravimetrical analysis and differential thermal analysis (TGA, DTA). XRD and IR results showed that phase pure, nano crystalline Bikitaite zeolites were started forming after 3h irradiation and 72h of aging with a sonication energy of 150W and nano crystalline Bikitaite zeolite with prominent peaks were obtained after 6h irradiation of 250W sonic energy. The Brunauer-Emmett-Teller (BET) surface area of the powder by N 2 adsorption-desorption measurements was found to be 209m 2 /g. The TEM micrograph and elemental analysis showed that desired atomic ratio of the zeolite was obtained after 6h irradiation. For comparison, sonochemical method, followed by the hydrothermal method, with same initial sol composition was studied. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, and sonication time phase formation was almost completed. The FESEM images revealed that 50nm zeolite crystals were formed at room temperature. However, agglomerated particles having woollen ball like structure was obtained by sonochemical method followed by hydrothermal treatment at 100°C for 24h. The hydrogen adsorption capacity of Bikitaite zeolite with different Li content, has been investigated. Experimental results indicated that the hydrogen adsorption capacities were dominantly related to their surface areas as well as total pore volume of the zeolite. The hydrogen adsorption capacity of 143.2c.c/g was obtained at 77K and ambient pressure of (0.11MPa) for the Bikitaite zeolite with 100% Li, which was higher than the reported values for other zeolites. To the best of our knowledge, there is no report on the synthesis of a Bikitaite zeolite by sonochemical method for H 2 storage. Copyright © 2016. Published by Elsevier B.V.

  20. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  1. Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution.

    PubMed

    Li, Jianwen; Ma, Hongfang; Chen, Yan; Xu, Zhiqiang; Li, Chunzhong; Ying, Weiyong

    2018-06-08

    Different silicon sources caused diverse Al spatial distribution in HZSM-5, and this affected the hierarchical structures and catalytic performance of desilicated zeolites. After being treated with 0.1 M NaOH, HZSM-5 zeolites synthesized with silica sol exhibited relatively widely distributed mesopores and channels, and possessed highly improved propylene selectivity and activity stability.

  2. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles

    DTIC Science & Technology

    2014-11-26

    zeolite and showed that a step in the Ar isotherm coincides with a change in the neutron diffraction pattern. Using grand canonical Monte Carlo...the stepped Ar isotherm at 77 K for a MFI zeolite . More recently, Mallon et al. surmised that the hysteresis of the Ar 87 K adsorption isotherm of

  3. Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083

    2011-01-15

    Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less

  4. Enhancing Zeolite Performance by Catalyst Shaping in a Mesoscale Continuous-Flow Diels-Alder Process.

    PubMed

    Seghers, Sofie; Lefevere, Jasper; Mullens, Steven; De Vylder, Anton; Thybaut, Joris W; Stevens, Christian V

    2018-03-26

    In contrast to most lab-scale batch procedures, a continuous-flow implementation requires a thorough consideration of the solid catalyst design. In a previous study, irregular zeolite pellets were applied in a miniaturized continuous-flow reactor for the Diels-Alder reaction in the construction of norbornene scaffolds. After having faced the challenges of continuous operation, the aim of this study is to exploit catalyst structuring. To this end, microspheres with high uniformity and various sphere diameters were synthesized according to the vibrational droplet coagulation method. The influence of the use of these novel zeolite shapes in a mesoscale continuous-flow Diels-Alder process of cyclopentadiene and methyl acrylate is discussed. An impressive enhancement of catalyst lifetime is demonstrated, as even after a doubled process time of 14 h, the microspheres still exceeded the conversion after 7 h when using zeolite pellets by 30 %. A dual reason is found for this beneficial impact of catalyst shaping. The significant improvement in catalyst longevity can be attributed to the interplay of the chemical composition and the porosity structure of the microspheres. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Construction of Zeolite-Like Cluster Organic Frameworks from 3 d-4 d/3 d-3 d Heterometallic Supertetrahedral Secondary Building Units: Syntheses, Structures, and Properties.

    PubMed

    Lin, Li-Dan; Deng, Chu-Chu; Zhao, D; Li, Xin-Xiong; Zheng, Shou-Tian

    2018-01-02

    Two zeolite-like cluster organic frameworks based on Cd-Cu/Mn-Cu heterometallic supertetrahedral secondary building units have been successfully constructed under solvothermal conditions, namely, Cu[Cd 4 Cu 6 (L) 4 (H 2 O) 18 ](Ac) 9 ⋅DMA⋅3 H 2 O (1), and Cu[Mn 4 Cu 6 (L) 4 (Ac) 3 (H 2 O) 12 ](Ac) 6 ⋅CH 3 CN⋅13 H 2 O (2), where H 3 L=2-(hydroxymethyl)-2-(pyridin-4-yl)-1,3-propanediol, Ac=CH 3 COO - , DMA=N,N'-dimethylacetamide. Single-crystal X-ray structural analysis reveals that both 1 and 2 exhibit 3-dimensional zeolite-like architectures with similar 4-connected components, but possess definitely different topologies of diamondoid (dia) and uncommon lonsdaleite (lon), respectively. 1 and 2 represent the first cases of zeolite-like cluster organic frameworks containing Cd-Cu/Mn-Cu heterometallic supertetrahedral secondary building units. Furthermore, the magnetic properties and porous nature of 1 and 2 were also studied. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    PubMed Central

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  7. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions

    PubMed Central

    Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej

    2018-01-01

    Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370

  8. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  9. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Radiation-modified natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity)

    PubMed Central

    Yeritsyan, Hrant; Sahakyan, Aram; Harutyunyan, Vachagan; Nikoghosyan, Sergey; Hakhverdyan, Eleonora; Grigoryan, Norair; Hovhannisyan, Aghasi; Atoyan, Vovik; Keheyan, Yeghis; Rhodes, Christopher

    2013-01-01

    There have been comparatively few investigations reported of radiation effects in zeolites, although it is known that these materials may be modified substantially by exposure to ionizing radiation. Thus, by exposure to γ-rays or high-energy particles, the charge states of atoms may be changed so to create, and accumulate, lattice point defects, and to form structurally disordered regions. Such a technique may permit the creation, in a controlled fashion, of additionally useful properties of the material while preserving its essential stoichiometry and structure. Accordingly, we present an application, in which the cation-exchange capacity of a natural zeolite (clinoptilolite) is substantially enhanced, for the treatment/decontamination of water contaminated with radionuclides e.g. 134Cs, 137Cs and 90Sr, by its exposure to high-energy (8 MeV) electrons, and to different total doses. PMID:24132177

  11. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  12. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  13. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor.

  14. Advances in nanosized zeolites

    NASA Astrophysics Data System (ADS)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  15. A novel process for comprehensive utilization of vanadium slag

    NASA Astrophysics Data System (ADS)

    Liu, Li-ying; Du, Tao; Tan, Wen-jun; Zhang, Xin-pu; Yang, Fan

    2016-02-01

    Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

  16. The role of external and internal mass transfer in the process of Cu2+ removal by natural mineral sorbents.

    PubMed

    Sljivić, M; Smiciklas, I; Plećas, I; Pejanović, S

    2011-07-01

    The kinetics of Cu2+ sorption on to zeolite, clay and diatomite was investigated as a function of initial metal concentrations. For consideration of the mass transfer phenomena, single resistance models based on both film and intraparticle diffusion were tested and compared. The obtained results suggested that the rate-limiting step in Cu2+ sorption strongly depended on the sorbent type, as well as on initial cation concentration. The decrease in external mass transfer coefficients with the increase in initial metal concentrations was in excellent agreement with expressions based on Sherwood and Schmidt dimensionless numbers. The internal diffusivities through zeolite particles were in the range 1.0 x 10(-11) to 1.0 x 10(-13) m2/min, depending on the Cu2+ concentration and the applied theoretical model.

  17. Interrogating ultrafast dynamics of a salicylideneaniline derivative within faujasite zeolites

    NASA Astrophysics Data System (ADS)

    Alarcos, Noemí; Sánchez, Félix; Douhal, Abderrazzak

    2017-09-01

    We report on femtosecond (fs) studies of (E)-2-(2-hydroxybenzyliden) amino-4-nitrophenol (HBA-4NP) in dichloromethane (DCM) and triacetin (TAC) solutions, and within NaX and NaY zeolites. In solution, an ultrafast (≤80 fs) excited-state intramolecular proton-transfer (ESIPT) reaction produces a keto (K) tautomer, which undergoes a rotational process in ∼4 (DCM) and ∼7 ps (TAC) toward the formation of non-emitting structures. Within NaX and NaY, where monomers and aggregates are formed, host-guest and guest-guest interactions play an important role in the ultrafast behaviour of these complexes. These results clearly reflect how nanoconfinement and zeolite composition affect the encapsulated dye photodynamics.

  18. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    NASA Astrophysics Data System (ADS)

    Gerengi, Husnu; Kurtay, Mine; Durgun, Hatice

    The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference), 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS) measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  19. Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects.

    PubMed

    Lamprecht, Manfred; Bogner, Simon; Steinbauer, Kurt; Schuetz, Burkhard; Greilberger, Joachim F; Leber, Bettina; Wagner, Bernhard; Zinser, Erwin; Petek, Thomas; Wallner-Liebmann, Sandra; Oberwinkler, Tanja; Bachl, Norbert; Schippinger, Gert

    2015-01-01

    Zeolites are crystalline compounds with microporous structures of Si-tetrahedrons. In the gut, these silicates could act as adsorbents, ion-exchangers, catalysts, detergents or anti-diarrheic agents. This study evaluated whether zeolite supplementation affects biomarkers of intestinal wall permeability and parameters of oxidation and inflammation in aerobically trained individuals, and whether it could improve their performance. In a randomized, double-blinded, placebo controlled trial, 52 endurance trained men and women, similar in body fat, non-smokers, 20-50 years, received 1.85 g of zeolite per day for 12 weeks. Stool samples for determination of intestinal wall integrity biomarkers were collected. From blood, markers of redox biology, inflammation, and DNA damage were determined at the beginning and the end of the study. In addition, VO2max and maximum performance were evaluated at baseline and after 12 weeks of treatment. For statistical analyses a 2-factor ANOVA was used. At baseline both groups showed slightly increased stool zonulin concentrations above normal. After 12 weeks with zeolite zonulin was significantly (p < 0.05) decreased in the supplemented group. IL-10 increased tendentially (p < 0.1) in the zeolite group. There were no significant changes observed in the other measured parameters. Twelve weeks of zeolite supplementation exerted beneficial effects on intestinal wall integrity as indicated via decreased concentrations of the tight junction modulator zonulin. This was accompanied by mild anti-inflammatory effects in this cohort of aerobically trained subjects. Further research is needed to explore mechanistic explanations for the observations in this study.

  20. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-12-01

    TiO2/MoS2@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl4 as Ti source, MoS2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM-EDS, TEM, XPS, UV-vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO2/MoS2@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir-Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (kapp) (2.304 h-1) is higher than that of Degussa P25 (0.768 h-1); (3) the heterostructure consisted of zeolite, MoS2 and TiO2 nanostructure could provide synergistic effect for degradation of MO due to the efficient electron transfer process and better absorption property of TiO2/MoS2@zeolite composite photocatalyst.

  1. Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template.

    PubMed

    Araki, Sadao; Kiyohara, Yasato; Tanaka, Shunsuke; Miyake, Yoshikazu

    2012-06-15

    There are many viewpoints on the formation mechanisms for zeolites, but the details are not clear. An understanding of the elementary steps for their formation is important for the development of large-scale membranes and efficient manufacturing processes. In this study, the effects of silicon, aluminum, and the incorporation of 18-crown-6 (18C6) ether, on the formation of zeolite rho, using 18C6 as the structure directing agent (SDA) have been investigated by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray fluorescence spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), thermo gravimetric analysis (TGA), and the pH measurement. These results suggested that a zeolite rho has four synthesis steps; (1) 0-3 h, the dehydration and condensation reaction between the silica and alumina to form amorphous aluminosilicates; (2) 3-20 h, the particle growth and aggregation process for the amorphous aluminosilicates; (3) 20-48 h, the crystallization and crystal growth of zeolite rho, with the incorporation of 18C6; and (4) 48-96 h, gentle growth with an increase in Na/Si ratio and a change in rate for the bounding state between the silica- and the alumina-based species. We consider the above to reflect the four steps for the formation of zeolite rho. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  3. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size

    DOE PAGES

    Coker, Eric N.; Steen, William A.; Miller, Jeffrey T.; ...

    2007-05-23

    Small platinum clusters have been prepared in zeolite hosts through ion exchange and controlled calcination/reduction processes. In order to enable electrochemical application, the pores of the Pt-zeolite were filled with electrically conductive carbon via infiltration with carbon precursors, polymerization, and pyrolysis. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. The electrocatalysts were characterized by TEM, XRD, EXAFS, nitrogen adsorption and electrochemical techniques. Depending on the synthesis conditions, average Pt cluster sizes in the Pt/C catalysts ranged from 1.3 to 2.0 nm. The presence of orderedmore » porosity/structure in the catalysts was evident in TEM images as lattice fringes, and in XRD as a low-angle diffraction peak with d-spacing similar to the parent zeolite. The catalysts possess micro- and meso-porosity, with pore size distributions that depend upon synthesis variables. Finally, electroactive surface areas as high as 112 m 2 g Pt -1 have been achieved in Pt/C electrocatalysts which show oxygen reduction performance comparable to standard industrial catalysts.« less

  4. Physical and mechanical properties of sand stabilized by cement and natural zeolite

    NASA Astrophysics Data System (ADS)

    Salamatpoor, Sina; Jafarian, Yaser; Hajiannia, Alborz

    2018-05-01

    Loose sands are prone to lose their shear strength when being subjected to static or cyclic loads. To this end, there exist several methods to improve the mechanical properties of sands, but the most crucial and viable approach is the one with the lowest harmful environmental impact both in production and recycling processes. In this regard, zeolite as a natural pozzolanic additive offers an eco-friendly improvement in strength parameters of cemented sandy soils. Thereby, in this study, a series of unconfined compressive strength (UCS) tests are conducted to evaluate the mechanical parameters of the zeolite-cemented sand. The results demonstrate a meaningful increase in the UCS of the treated sand samples for replacement of cement by zeolite at an optimum proportion of 40% in specimens with 14 and 28 days curing time. The effectiveness of the improvement process is demonstrated by the strength improvement ratio which was up to be 128% to 209% for the samples with 14 and 28 days curing time, respectively. With regard to the above results, zeolite can be introduced as a promising cement substitute in stabilization of sandy ground including backfills, roadbed, embankments, and other structural filling systems.

  5. Sustainable Separations of C4 -Hydrocarbons by Using Microporous Materials.

    PubMed

    Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi; Tanase, Stefania

    2017-10-23

    Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C 4 separations by using zeolites and metal-organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C 4 separation are outlined, with a focus on the separation mechanisms and structure-selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C 4 mixtures well. The pore sizes of eight-membered-ring zeolites, for example, are in the order of the kinetic diameters of C 4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate-adsorbent interactions. MOF-5 and ZIF-7 show promising results in separating all C 4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.

    PubMed

    Lupulescu, Alexandra I; Kumar, Manjesh; Rimer, Jeffrey D

    2013-05-01

    Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.

  7. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  8. Technical Note: A new zeolite PET phantom to test segmentation algorithms on heterogeneous activity distributions featured with ground-truth contours.

    PubMed

    Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia

    2017-01-01

    Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.

  9. Structure-Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydon, Megan E; Unocic, Kinga A; Jones, Christopher W

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO{sub x}H{sub y} nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO{sub 2}/CH{sub 4} separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics bymore » a combination of TEM, HRTEM, N{sub 2} physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO{sub 2}/CH{sub 4} selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg{sup 2+}, followed by base-induced precipitation and growth of MgOxHy nanostructures, deemed 'ion exchange functionalization' here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO{sub 2}/CH{sub 4} selectivity (40) than could be obtained with the other functionalization techniques (30), while maintaining a CO{sub 2} permeability of 10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case.« less

  10. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization

    NASA Astrophysics Data System (ADS)

    Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E. J. C.; Nikolski, A.; Mogiliansky, D.; Katz, A.

    2017-09-01

    Alkali-activated aluminisilicate materials, also known as geopolymers, have been considered as attractive candidates for nuclear waste immobilization, due to their ability to incorporate cations, combined with high chemical resistance and suitable mechanical and thermal properties. The goal of the present research was to study the incorporation and immobilization of Cs in low-Si geopolymers (SiO2:Al2O3 molar ratio ≤ 2) which are known to have a relatively high crystalline phase content. A series of low-Si geopolymers was prepared from metakaolin using activating solutions containing CsOH and NaOH at different proportions. The structural evolution of the resulting products was followed using X-ray diffraction, the incorporation of Cs in the geopolymer was followed by pore water analysis, and its immobilization efficiency was determined from leaching tests following the ANSI/ANS-16.1 standard procedure. Like low-Si NaOH-based geopolymers, the mixed CsOH-NaOH geopolymers contain a significant amount of crystalline material which is imbedded within an amorphous matrix. Formulations with 1%Cs yielded the crystalline phases zeolite A and zeolite X. At 50%Cs the Cs-bearing zeolite F was formed. All three phases were observed at an intermediate Cs content (7%Cs). Pore water analysis indicated a preference for Cs uptake from the activating solution, while leaching experiments indicated selectivity for Cs immobilization in the mixed CsOH-NaOH geopolymers. Correlation of the apparent diffusion constants for both Na and Cs, as obtained from the leaching experiments, with the structural data lead to the conclusion that Cs is more efficiently bound by zeolite F, whereas Na binding is preferred by zeolites A and X. Nevertheless, the leachability indices for both Cs and Na were well above 6, indicating that such matrices may be considered as waste forms for 137Cs.

  11. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael

    Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less

  12. CIT-9: A Fault-Free Gmelinite Zeolite.

    PubMed

    Dusselier, Michiel; Kang, Jong Hun; Xie, Dan; Davis, Mark E

    2017-10-16

    A synthetic, fault-free gmelinite (GME) zeolite is prepared using a specific organic structure-directing agent (OSDA), cis-3,5-dimethylpiperidinium. The cis-isomers align in the main 12-membered ring (MR) channel of GME. Trans-isomer OSDA leads to the small-pore zeolite SSZ-39 with the OSDA in its cages. Data from N 2 -physisorption and rotation electron diffraction provide evidence for the openness of the 12 MR channel in the GME 12×8×8 pore architecture and the absence of stacking faults, respectively. CIT-9 is hydrothermally stable when K + -exchanged, while in the absence of exchange, the material transforms into an aluminous AFI-zeolite. The process of this phase-change was followed by in situ variable temperature powder X-ray diffraction. CIT-9 has the highest Si/Al ratio reported for GME, and along with its good porosity, opens the possibility of using GME in a variety of applications including catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets

    DOE PAGES

    Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael; ...

    2015-05-11

    Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less

  14. The Effect of an Ultrasound Radiation on the Synthesis of 4A Zeolite from Fly Ash

    NASA Astrophysics Data System (ADS)

    Susanto, H.; Imani, N. A. C.; Aslamiyah, N. R.; Istirokhatun, T.; Robbani, M. H.

    2018-05-01

    The use of coal as a fuel source generates a lot of solid waste fly ash. Thus, efforts to reduce or utilize the amount of fly ash are urgently needed. This paper presents zeolite synthesis from fly ash. The fly ash was activated by using NaOH solution prior to fusing process with a weight ratio of 1:2 and mixing with distilled water at a weight ratio of 1:5. Thereafter, the addition of alumina with a concentration of 0.71 %, 1.42 %, 2.12 %, and 2.8 % w/v was performed. The effects of heating and ultrasound radiation on the characteristic of zeolite products were investigated. The results showed that the addition of alumina 2.8 % w/v resulted in the Si/Al ratio of zeolite 4A is ∼1. SEM images demonstrated that the presence of ultrasound wave resulted in crystals structure morphology as also supported by XRD characterization. The average crystal size for the ultrasonic treatment was 42.46 nm.

  15. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Kim, Su-Sung; Cho, Won-Seung; Ahn, Wha-Seung

    2015-03-01

    X-type zeolite with mesoporosity (Meso-13X) was prepared by using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride as a mesopore-generating agent, and then modified with polyethylenimine (PEI) through a physical impregnation method to form a hybrid material (Meso-13X-PEI). Meso-13X with and without PEI was characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption isotherm at 77 K, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Meso-13X-PEI exhibited higher CO2 capture capacity than PEI-modified zeolite 13X owing to its larger pore volume that accommodates more amine species inside the pore structure, and the mesoporosity also can facilitate dispersion of PEI molecules inside the pore channels. Compared to zeolite 13X, Meso-13X-PEI showed much higher CO2 capture selectivity (against N2) as well as higher CO2 capture capacity at relatively high temperature (e.g. 100 °C) and dilute CO2 concentration relevant to post-combustion conditions.

  16. Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wang, Yisong; Du, Tao; Song, Yanli; Che, Shuai; Fang, Xin; Zhou, Lifeng

    2017-11-01

    ZSM-5 type zeolite with mesoporous structure was prepared and then amine-functionalized with tetraethylenepentamine (TEPA) by wet impregnation method to form a series of CO2 adsorbents (ZTx). The structural properties of ZSM-5 and ZTx were characterized by XRD, FTIR, TGA/DTG, nitrogen adsorption/desorption, SEM and EDX techniques. The adsorption capacity of the adsorbents with different amine loading was measured at a temperature from 40 to 100 °C and the adsorption capacity of ZT7 was 1.80 mmol/g at 100 °C. The adsorption process and mechanism were studied by fitting the experimental data used the three adsorption kinetic models, and a complex physical and chemical mixing process was produced as the amine entered the surface and pore size of the zeolite. The high adsorption selectivity at 10% CO2 concentration and the stability of the five adsorption desorption cycles indicated that ZT7 is a suitable and promising CO2 adsorbent for the purification of industrial flue gas.

  17. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent

    DOE PAGES

    Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; ...

    2015-07-22

    A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m 2g -1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity andmore » acid strength with no detectable amorphous silica phases. In conclusion, compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol.« less

  18. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites.

    PubMed

    Smirnov, Konstantin S

    2017-08-30

    The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH 4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.

  19. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass

    NASA Astrophysics Data System (ADS)

    Palenta, Theresia; Fuhrmann, Sindy; Greaves, G. Neville; Schwieger, Wilhelm; Wondraczek, Lothar

    2015-02-01

    We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si4+, Al3+) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

  20. Synthesis of ZSM-5 zeolite from coal fly ash and rice husk: characterization and application for partial oxidation of methane to methanol

    NASA Astrophysics Data System (ADS)

    Krisnandi, Y. K.; Yanti, F. M.; Murti, S. D. S.

    2017-04-01

    Indonesian fly ash (SiO2/Al2O3 mole ratio = 3.59) was used together with rice husk (SiO2 92%) as raw material for mesoporous ZSM-5 zeolite synthesis. Prior being used, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO4 4-) and aluminate (AlO4 5-) and to remove the impurities. Then the ZSM-5 zeolite were synthesized through hydrothermal treatment using two types of templates (TPAOH and PDDA). The as-synthesized ZSM-5 was characterized using FTIR, XRD, SEM-EDX, and BET. The result of FTIR showed peaks at 1250-950 cm-1 (v asymetric T-O), 820-650 cm-1 (v symetric T-O), and at 650-500 cm-1 confirming the presence of the five number ring of the pentasil structure. The result of XRD showed the appearance of certain peaks in the position 2 theta between 7-9° and 22-25° indicative of ZSM-5 structure, but also showed the pattern of low intensity magnetite and hematite. The SEM image showed the rough surface of hexagonal crystals from ZSM-5 structure, indicative of mesoporosity in the structure. EDX result showed Si/Al ratio of 20, while surface area analysis gave SA of 43.16. The ZSM-5 zeolites then was modified with cobalt oxide through impregnation method. The catalytic activity as heterogeneous catalysts in partial oxidation of methane was tested. The result showed that hence the catalytic activity of ZSM-5 and Co/ZSM-5 from fly ash and rice husk were still inferior compared to the pro-analysis sourced-counterpart, they were potential to be used as catalyst in the partial oxidation of methane to methanol.

  1. The tert-butyl cation on zeolite Y: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Rosenbach, Nilton, Jr.; dos Santos, Alex P. A.; Franco, Marcelo; Mota, Claudio J. A.

    2010-01-01

    The structure and energy of the tert-butyl cation on zeolite Y were calculated at ONIOM(MP2(FULL)/6-31G( d, p):MNDO) level. The results indicated that the tert-butyl cation is a minimum and lies between 40 and 51 kJ mol -1 above in energy to the tert-butoxide, depending on the level of calculation. Both species are stabilized through hydrogen bonding interactions with the framework oxygen atoms. Experimental data of nucleophilic substitution of tert-butylchloride and bromide over NaY impregnated with NaCl or NaBr give additional support for the formation of the tert-butyl cation as a discrete intermediate on zeolite Y, in agreement with the calculations.

  2. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  3. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    PubMed

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  4. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2006-04-17

    Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms.

  5. Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol

    NASA Astrophysics Data System (ADS)

    Phillips, Cory Bernard

    1999-11-01

    This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.

  6. Removal of paraquat solution onto zeolite material

    NASA Astrophysics Data System (ADS)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  7. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  8. Applications for special-purpose minerals at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    1992-01-01

    Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as catalysts, as media for nuclear and hazardous waste disposal, as exchange media for waste-water treatment, and in other potential applications. Special-purpose minerals synthesized at a lunar base may also have important applications at a space station and for other planetary missions. New technologies will be required at a lunar base to develop life support systems that are self-sufficient, and the use of special-purpose minerals may help achieve this self-sufficiency.

  9. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  10. Rapid screening of the antimicrobial efficacy of Ag zeolites.

    PubMed

    Tosheva, L; Belkhair, S; Gackowski, M; Malic, S; Al-Shanti, N; Verran, J

    2017-09-01

    A semi-quantitative screening method was used to compare the killing efficacy of Ag zeolites against bacteria and yeast as a function of the zeolite type, crystal size and concentration. The method, which substantially reduced labor, consumables and waste and provided an excellent preliminary screen, was further validated by quantitative plate count experiments. Two pairs of zeolite X and zeolite beta with different sizes (ca. 200nm and 2μm for zeolite X and ca. 250 and 500nm for zeolite beta) were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) at concentrations in the range 0.05-0.5mgml -1 . Reduction of the zeolite crystal size resulted in a decrease in the killing efficacy against both microorganisms. The semi-quantitative tests allowed convenient optimization of the zeolite concentrations to achieve targeted killing times. Zeolite beta samples showed higher activity compared to zeolite X despite their lower Ag content, which was attributed to the higher concentration of silver released from zeolite beta samples. Cytotoxicity measurements using peripheral blood mononuclear cells (PBMCs) indicated that Ag zeolite X was more toxic than Ag zeolite beta. However, the trends for the dependence of cytotoxicity on zeolite crystal size at different zeolite concentrations were different for the two zeolites and no general conclusions about zeolite cytotoxicity could be drawn from these experiments. This result indicates a complex relationship, requiring the necessity for individual cytotoxicity measurements for all antimicrobial applications based on the use of zeolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes?

    PubMed

    Weiß, S; Lebuhn, M; Andrade, D; Zankel, A; Cardinale, M; Birner-Gruenberger, R; Somitsch, W; Ueberbacher, B J; Guebitz, G M

    2013-04-01

    Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.

  12. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  13. The influence of the long-range order on the vibrational spectra of structures based on sodalite cage.

    PubMed

    Mikuła, A; Król, M; Koleżyński, A

    2015-06-05

    Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [In vitro study of vitamins B1, B2 and B6 adsorption on zeolite].

    PubMed

    Basić, Zorica; Kilibarda, Vesna; Dobrić, Silva; Resanović, Radmila

    2011-01-01

    Zeolites are the hydratised alumosilicates of alcali and earthalcali cations, which have a long three-dimensional crystal structure. Preparations on the basis of zeolites are used for adsorption of organic and nonorganic toxic substances and they, also, find more and more use in veterinary and human medicine and pharmacy. The aim of this study was to evaluate the possibilities of zeolite to adsorb vitamins B1, B2 and B6 in acid and neutral solutions, as well as the characteristics of the process (saturability, reversibility and competitiveness). The specific and sensitive HPLC method with fluorescent detector was used for determination of vitamins B1, B2 and B6. Analyte separation and detection were carried out by applying the reverse-phase method on column C18. An in vitro experiment was done by testing the influence of pH value (2 and 7), concentration of vitamin solution (1, 2 and 5 mg/L), the length of contact with zeolite (10-180 min) and cation competitiveness on the exchange capacity, which is achieved by media and zeolite contact, as well as a possible vitamins desorption through changing pH value of the solution at 37 degrees C. Jon competitiveness was examined by adding commercial feed mixture (grower) with a defined content of the examined vitamins in zeolite solutions the pH = 2 and pH = 7. Vitamins B1, B2 and B6 were stable in both pH=2 and pH = 7 solutions at 37 degrees C, in the defined time intervals. In acid solution concentrations of vitamins significantly declined in the first 10 min, with no significant decline in further 30 min for all the three concentrations tests. In neutral solution, after the addition of 1% zeolite, decrease in vitamins concentrations was slightly lower than in acid solution, but also significant in the first 10 min of the contact with zeolite. It was found that zeolite, which adsorbed vitamins in acid solution, transferred in the neutral one released a significant quantity of adsorbed vitamins after 30 min of extraction on 37 degrees C. Vitamins B1, B2 and B6, from a commercial feed mixture in pH = 2 solution, at 37 degrees C, were significantly adsorbed on zeolite after 30 min of the contact (21.87%, 20.15% and 4.53%, respectively), while in neutral solution there was no statistically significant adsorption. Conclusion. Zeolite significantly adsorbs vitamins B1, B2 and B6 in acid and neutral solutions at 37 degrees C, already in the first 10 min of the contact. Adsorption was irreversible, but partly reversible after changing pH from acid to neutral. This is a significant ions competition for adsorption on zeolite in neutral solution, so no statistically significant vitamins B1, B2 and B6 adsorption occurs, while in acid solution competition is less, thus zeolite significantly adsorbs these vitamins, although in less degree than in conditions with no concurrent ions.

  15. On the Structure-Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO 2 Adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Trong D.; Hudson, Matthew R.; Brown, Craig M.

    2017-02-16

    The CO 2 adsorption properties of cation-exchanged Li-, Na-, K-, and Mg-ZK-5 zeolites were correlated to the molecular structures determined by Rietveld refinements of synchrotron powder X-ray diffraction patterns. Li-, K-, and Na-ZK-5 all exhibited high isosteric heats of adsorption (Qst) at low CO 2 coverage, with Na-ZK-5 having the highest Qst (ca. 49 kJ mol -1). Mg2+ was located at the center of the zeolite hexagonal prism with the cation inaccessible to CO 2, leading to a much lower Qst (ca. 30 kJ mol-1) and lower overall uptake capacity. Multiple CO 2 adsorption sites were identified at a givenmore » CO 2 loading amount for all four cation-exchanged ZK-5 adsorbents. Site A at the flat eight-membered ring windows and site B/B* in the γ-cages were the primary adsorption sites in Li - and Na-ZK-5 zeolites. Relatively strong dual-cation adsorption sites contributed significantly to an enhanced electrostatic interaction for CO 2 in all ZK-5 samples. This interaction gives rise to a migration of Li + and Mg 2+ cations from their original locations at the center of the hexagonal prisms toward the α-cages, in which they interact more strongly with the adsorbed CO 2.« less

  16. Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Vjunov, Aleksei

    2016-03-13

    This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopymore » (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL.« less

  17. Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite.

    PubMed

    Zorpas, Antonis A; Vassilis, Inglezakis; Loizidou, Maria; Grigoropoulou, Helen

    2002-06-01

    Land application of sewage sludge may be the least energy consuming and the most cost-effective means of sludge disposal or utilization. However, the major technical problem with land application of sludge concerns the high concentrations of heavy metals. These metals may be leached and enter the ecosystem, the food chain, and eventually the human population. This paper deals with the removal of heavy metals from sewage sludge compost using natural zeolite clinoptilolite, in respect to the particle size. The final results indicate that heavy metals can be sufficiently removed by using 25% w/w of zeolite with particle size of 3.3-4.0 mm. Pore clogging and structural damage in smaller particle sizes is probably the reason for lower uptake of metals by the latter.

  18. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    PubMed

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-03

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. Copyright © 2015, American Association for the Advancement of Science.

  19. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    PubMed

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  20. An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures.

    PubMed

    Marqueño, Tomas; Santamaria-Perez, David; Ruiz-Fuertes, Javier; Chuliá-Jordán, Raquel; Jordá, Jose L; Rey, Fernando; McGuire, Chris; Kavner, Abby; MacLeod, Simon; Daisenberger, Dominik; Popescu, Catalin; Rodriguez-Hernandez, Placida; Muñoz, Alfonso

    2018-06-04

    We report the formation of an ultrahigh CO 2 -loaded pure-SiO 2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO 2 medium. The CO 2 -filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO 2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO 2 -loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.

  1. Modeling cation/anion-water interactions in functional aluminosilicate structures.

    PubMed

    Richards, A J; Barnes, P; Collins, D R; Christodoulos, F; Clark, S M

    1995-02-01

    A need for the computer simulation of hydration/dehydration processes in functional aluminosilicate structures has been noted. Full and realistic simulations of these systems can be somewhat ambitious and require the aid of interactive computer graphics to identify key structural/chemical units, both in the devising of suitable water-ion simulation potentials and in the analysis of hydrogen-bonding schemes in the subsequent simulation studies. In this article, the former is demonstrated by the assembling of a range of essential water-ion potentials. These span the range of formal charges from +4e to -2e, and are evaluated in the context of three types of structure: a porous zeolite, calcium silicate cement, and layered clay. As an example of the latter, the computer graphics output from Monte Carlo computer simulation studies of hydration/dehydration in calcium-zeolite A is presented.

  2. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  3. Visualization of gas flow and diffusion in porous media

    PubMed Central

    Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander

    2000-01-01

    The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617

  4. Preparation and characterization of glass hollow fiber membrane for water purification applications.

    PubMed

    Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana

    2017-07-01

    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2  h -1  bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

  5. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    PubMed

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  6. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOEpatents

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia

    In this study, the adsorption of N 2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N 2 in H 2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N 2. Four supported species formed in various flowing gases: Ir(N 2), Ir(N 2)(N 2), Ir(C 2H 5)(N 2), and Ir(H)(N 2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N 2, Ir(N 2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N 2)more » formed transiently in flowing CO, and in the presence of H 2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  8. Template-free synthesis and structural evolution of discrete hydroxycancrinite zeolite nanorods from high-concentration hydrogels.

    PubMed

    Chen, Shaojiang; Sorge, Lukas P; Seo, Dong-Kyun

    2017-12-07

    We report the synthesis and characterization of hydroxycancrinite zeolite nanorods by a simple hydrothermal treatment of aluminosilicate hydrogels at high concentrations of precursors without the use of structure-directing agents. Transmission electron microscopy (TEM) analysis reveals that cancrinite nanorods, with lengths of 200-800 nm and diameters of 30-50 nm, exhibit a hexagonal morphology and are elongated along the crystallographic c direction. The powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) and TEM studies revealed sequential events of hydrogel formation, the formation of aggregated sodalite nuclei, the conversion of sodalite to cancrinite and finally the growth of cancrinite nanorods into discrete particles. The aqueous dispersion of the discrete nanorods displays a good stability between pH 6-12 with the zeta potential no greater than -30 mV. The synthesis is unique in that the initial aggregated nanocrystals do not grow into microsized particles (aggregative growth) but into discrete nanorods. Our findings demonstrate an unconventional possibility that discrete zeolite nanocrystals could be produced from a concentrated hydrogel.

  9. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K., E-mail: anup_t@sify.com

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IRmore » analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.« less

  10. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    NASA Astrophysics Data System (ADS)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  11. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).

    PubMed

    Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M

    2018-01-01

    This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.

  12. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    PubMed

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Characterization of zeolites synthesized from porous wastes using hydrothermal agitational leaching assisted by magnetic separation

    NASA Astrophysics Data System (ADS)

    Top, Soner; Vapur, Huseyin; Ekicibil, Ahmet

    2018-07-01

    In this study, zeolite Na-P1 synthesis from the fly ashes (FA) taken from dust catcher in Sugözü thermic power plant was researched. The structural and magnetic characteristics of the synthesized materials were studied by using the XRD, SEM, EDS, CEC, TGA, DTA, DSC and M-H techniques. High intensity wet magnetic separation was applied to the ashes at different magnetic field intensities. 61% of the iron oxide impurity (Fe2O3) was removed by single-stage high intensity wet magnetic separation at 1.5 T. Non-magnetic phase was accumulated in order to leach in alkali medium. 2 M NaOH was used as the synthesizing solution. Solid-liquid ratio was 0.3 kg:1 L. It was determined that the zeolitization degrees of the products depend on the reaction time. Zeolite Na-P1 (Na6Al6Si10O32·12H2O) which is the member of the group P zeolites was the dominant species after 10 h reaction time. Additionally, gismondine (Ca2Al4Si4O16·9H2O) presence was observed in the products. It was found out that the ferromagnetisms of the products were weakened by elapsed time. The CEC values of the synthesized products were the superior grades ranging from 269.63 meq/100 g to 388.85 meq/100 g.

  14. Advances in theory and their application within the field of zeolite chemistry.

    PubMed

    Van Speybroeck, Veronique; Hemelsoet, Karen; Joos, Lennart; Waroquier, Michel; Bell, Robert G; Catlow, C Richard A

    2015-10-21

    Zeolites are versatile and fascinating materials which are vital for a wide range of industries, due to their unique structural and chemical properties, which are the basis of applications in gas separation, ion exchange and catalysis. Given their economic impact, there is a powerful incentive for smart design of new materials with enhanced functionalities to obtain the best material for a given application. Over the last decades, theoretical modeling has matured to a level that model guided design has become within reach. Major hurdles have been overcome to reach this point and almost all contemporary methods in computational materials chemistry are actively used in the field of modeling zeolite chemistry and applications. Integration of complementary modeling approaches is necessary to obtain reliable predictions and rationalizations from theory. A close synergy between experimentalists and theoreticians has led to a deep understanding of the complexity of the system at hand, but also allowed the identification of shortcomings in current theoretical approaches. Inspired by the importance of zeolite characterization which can now be performed at the single atom and single molecule level from experiment, computational spectroscopy has grown in importance in the last decade. In this review most of the currently available modeling tools are introduced and illustrated on the most challenging problems in zeolite science. Directions for future model developments will be given.

  15. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  16. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    PubMed

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  17. Sustainable Separations of C4‐Hydrocarbons by Using Microporous Materials

    PubMed Central

    Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi

    2017-01-01

    Abstract Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C4 separations by using zeolites and metal–organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C4 separation are outlined, with a focus on the separation mechanisms and structure–selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C4 mixtures well. The pore sizes of eight‐membered‐ring zeolites, for example, are in the order of the kinetic diameters of C4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate–adsorbent interactions. MOF‐5 and ZIF‐7 show promising results in separating all C4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. PMID:28621064

  18. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  19. The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald

    1995-01-01

    A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.

  20. Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Mamontov, Eugene; Rother, Gernot

    2009-01-01

    The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surfacemore » interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).« less

  1. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    NASA Astrophysics Data System (ADS)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  2. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    PubMed

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.

    PubMed

    Vjunov, Aleksei; Derewinski, Miroslaw A; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A

    2015-08-19

    The location and stability of Brønsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cyclohexanol. The catalytically active hydronium ions originate from Brønsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Brønsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Brønsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.

  4. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2018-02-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2·21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings.

  5. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M

    2018-03-02

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process.

  6. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    PubMed Central

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process. PMID:29527401

  7. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  8. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment.

    PubMed

    Cardoso, Ariela M; Horn, Martha B; Ferret, Lizete S; Azevedo, Carla M N; Pires, Marçal

    2015-04-28

    Several researchers have reported zeolite synthesis using coal ash for a wide range of applications. However, little attention has been given to green processes, including moderate synthesis conditions, using waste as raw material and effluent reuse or reduction. In this study, Brazilian coal fly ashes were used for integrated synthesis of zeolites 4A and Na-P1 by two different routes and under moderate operating conditions (temperature and pressure). Both procedures produced zeolites with similar conversions (zeolite 4A at 82% purity and zeolite Na-P1 at 57-61%) and high CEC values (zeolites 4A: 4.5meqCa(2+)g(-1) and zeolites Na-P1: 2.6-2.8meqNH4(+)g(-1)). However, process 1 generated less effluent for the zeolite mass produced (7mLg(-1)), with low residual Si and Al levels and 74% of the Si available in the coal fly ash incorporated into the zeolite, while only 55% is used in process 2. For use as a builder in detergents, synthetic zeolite 4A exhibited conformity parameters equal to or greater than those of the commercial zeolite adopted as reference. Treatment of swine wastewater with zeolite Na-P1 resulted in a high removal capacity for total ammoniacal nitrogen (31mgg(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  10. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  11. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    DOE PAGES

    Chen, Mingyang; Serna, Pedro; Lu, Jing; ...

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C 2H 4) 2(acac) and Ir(C 2H 4) 2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental andmore » calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C 2H 5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C 2H 4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C 2H 4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here.« less

  12. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  13. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites.

    PubMed

    Figueiredo, Hugo; Quintelas, Cristina

    2014-06-15

    This review aims to present a global view of the efforts conducted to convert zeolites into efficient supports for the removal of heavy metal oxyanions. Despite lacking affinity for these species, due to inherent charge repulsion between zeolite framework and anionic species, zeolites have still received considerable attention from the scientific community, since their versatility allowed tailoring them to answer specific requirements. Different processes for the removal and recovery of toxic metals based on zeolites have been presented. These processes resort to modification of the zeolite surface to allow direct adsorption of oxyanions, or by combination with reducing agents for oxyanions that allow ion-exchange with the converted species by the zeolite itself. In order to testify zeolite versatility, as well as covering the wide array of physicochemical constraints that oxyanions offer, chromium and arsenic oxyanions were selected as model compounds for a review of treatment/remediation strategies, based on zeolite modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Defining the flexibility window in ordered aluminosilicate zeolites

    PubMed Central

    Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Tucker, Matt G.

    2017-01-01

    The flexibility window in zeolites was originally identified using geometric simulation as a hypothetical property of SiO2 systems. The existence of the flexibility window in hypothetical structures may help us to identify those we might be able to synthesize in the future. We have previously found that the flexibility window in silicates is connected to phase transitions under pressure, structure amorphization and other physical behaviours and phenomena. We here extend the concept to ordered aluminosilicate systems using softer ‘bar’ constraints that permit additional flexibility around aluminium centres. Our experimental investigation of pressure-induced amorphization in sodalites is consistent with the results of our modelling. The softer constraints allow us to identify a flexibility window in the anomalous case of goosecreekite. PMID:28989777

  15. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    PubMed

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  16. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  17. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    PubMed

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)

  19. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis.

    PubMed

    Pashkova, Veronika; Sklenak, Stepan; Klein, Petr; Urbanova, Martina; Dědeček, Jiří

    2016-03-14

    (27) Al 3Q MAS NMR and UV/Vis spectroscopy with bare Co(II) ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM-5. Furthermore, the effect of Na(+) ions together with tetrapropylammonium cation (TPA(+)) in the ZSM-5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA(+) as a structure-directing agent (i.e., in the absence of Na(+) ions) led to 55-90% of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al-O-(Si-O)2 -Al sequences in one ring] in the zeolite framework. The presence of Na(+) ions in the synthesis gel did not modify the Al location at the channel intersection (55-95% of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organic-Free, ZnO-Assisted Synthesis of Zeolite FAU with Tunable SiO2 /Al2 O3 Molar Ratio.

    PubMed

    Guo, Ya; Sun, Tianjun; Gu, Yiming; Liu, Xiaowei; Ke, Quanli; Wang, Shudong

    2018-05-04

    Zeolite FAU with tunable SiO 2 /Al 2 O 3 molar ratio has been successfully synthesized in the absence of organic structure-directing agents (OSDA). Specifically, the addition of zinc species contributes to the feasible and effective adjustment of the framework SiO 2 /Al 2 O 3 molar ratio between about 4 and 6 depending on the amount of zinc species added in the batch composition. In contrast, a typical OSDA such as tetramethylammonium hydroxide (TMAOH) has a limited effect on the SiO 2 /Al 2 O 3 molar ratio of the zeolite. The role of zinc species is essential for the crystallization of zeolite FAU with a higher SiO 2 /Al 2 O 3 molar ratio under the particular synthesis conditions. It is speculated that zinc species may suppress the incorporation of aluminum into the aluminosilicate framework, which is due to the Coulombic repulsive interaction. A higher SiO 2 /Al 2 O 3 molar ratio is also found to be accompanied by a lower CO 2 adsorption heat for CO 2 /CH 4 separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    PubMed

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  2. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B.

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel,more » zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.« less

  3. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  4. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  5. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  6. DDR-type zeolite membrane synthesis, modification and gas permeation studies

    DOE PAGES

    Yang, Shaowei; Cao, Zishu; Arvanitis, Antonios; ...

    2016-01-22

    DDR-type zeolite membrane was synthesized on porous α-alumina substrate by hydrothermal treatment of a ball-milled Sigmal-1 crystal seed layer in an aluminum-free precursor solution containing 1-Adamantylamine as the structure directing agent (SDA). The as-synthesized DDR zeolite membranes were defect-free but the supported zeolite layers were susceptible to crack development during the subsequent high-temperature SDA removal process. The cracks were effectively eliminated by the liquid phase chemical deposition method using tetramethoxysilane as the precursor for silica deposits. The modified membrane was extensively studied for H 2, He, O 2, N 2, CO 2, CH 4, and i-C 4H 10 pure gasmore » permeation and CO 2/CH 4 mixture separation. At 297 K and 2-bar feed gas pressure, the membrane achieved a CO 2/CH 4 separation factor of ~92 for a feed containing 90% CO 2, which decreased to 62 for a feed containing 10% CO 2 with the CO 2 permeance virtually unchanged at ~1.8×10 –7 mol/m• sup>2 s • Pa regardless of the feed composition. It also exhibited an O 2/N 2 permselectivity of 1.8 at 297 K. Furthermore, the gas permeation behaviors of the current aluminum-containing DDR type zeolite membrane are generally in good agreement with the findings in both experimental and theoretical studies on the pure-silica DDR membranes in recent literature.« less

  7. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  8. Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste.

    PubMed

    Zarrabi, Mansur; Mohammadi, Ali Akbar; Al-Musawi, Tariq J; Najafi Saleh, Hossein

    2018-06-02

    The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.

  9. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors.

    PubMed

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N A; Viade, Ruth A; Krampa, Francis D; Kanyong, Prosper; Awandare, Gordon A; Tiburu, Elvis K

    2017-08-08

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N₂ adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm³/g to 0.061 cm³/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m²/g, 67 m²/g and 113 m²/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m²/g, 0.762 cm³/g and 4.92 nm, 389 m²/g, 0.837 cm³/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites' molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications.

  10. Low-Temperature Pd/Zeolite Passive NO x Adsorbers: Structure, Performance, and Adsorption Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yang; Kovarik, Libor; Engelhard, Mark H.

    Pd/zeolite passive NOx adsorber (PNA) materials were prepared with solution ion-exchange between NH4/zeolites (Beta, ZSM-5 and SSZ-13) and PdCl2 solutions. The nature of Pd (dispersion, distribution and oxidation states) in these materials was characterized with Na+ ion-exchange, TEM imaging, CO titration with FTIR and in situ XPS. The NOx trapping and release properties were tested using feeds with different compositions. It is concluded that multiple Pd species coexist in these materials: atomically dispersed Pd in the cationic sites of zeolites, and PdO2 and PdO particles on the external surfaces. While Pd is largely atomically dispersed in ZSM-5, the small poremore » opening for SSZ-13 inhibits Pd diffusion such that the majority of Pd stays as external surface PdO2 clusters. NOx trapping and release are not simple chemisorption and desorption events, but involve rather complex chemical reactions. In the absence of CO in the feed, cationic Pd(II) sites with oxygen ligands and PdO2 clusters are reduced by NO to Pd(I) and PdO clusters. These reduced sites are the primary NO adsorption sites. In the presence of H2O, the as-formed NO2 desorb immediately. In the presence of CO in the feed, metallic Pd, “naked” Pd2+, and Pd+ sites are responsible for NO adsorption. For Pd adsorption sites with the same oxidation states but in different zeolite frameworks, NO binding energies are not expected to vary greatly. However, NO release temperatures do vary substantially with different zeolite structures. This indicates that NO transport within these materials play an important role in determining release temperatures. Finally, some rational design principles on efficient PNA materials are suggested. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Discussions with Drs. A. Yezerets, J.Y. Luo, K. Kamasamudram and N. Currier Cummins, Inc., and H.Y. Chen from Johnson-Matthey are greatly appreciated.« less

  11. Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances.

    PubMed

    Ozeki, K; Aoki, H

    2016-08-12

    Removal of radioactive substances, such as cesium (Cs) and strontium (Sr), has become an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster. To assess the possibility that hydroxyapatite (HA) and zeolites can be used for removal of radioactive substances, the adsorption capacities of Cs and Sr on the HA and a zeolite were investigated. The influence of Fe ions on Cs and Sr adsorption on the HA and the zeolite was also evaluated, because Fe ions are the most effective inhibitor of Cs adsorption on the zeolite.In the Cs adsorption process on the HA and the zeolite, the zeolite showed a higher adsorption ratio than the HA, and the maximum sorption capacity of the zeolite was calculated as 196 mg/g, whereas the HA showed a higher Sr adsorption ratio than the zeolite. The maximum sorption capacity of Sr on the HA was 123 mg/g. Under coexistence with Fe, Cs adsorption on the zeolite decreased with increasing Fe concentration, reaching 2.0 ± 0.8% at 0.1 M Fe concentration. In contrast, Cs adsorption on the zeolite was improved by adding the HA. In the case of coexistence of the HA, the Cs adsorption on the mixture of the HA and the zeolite was 52.4% ± 3.6 % at 0.1 M Fe concentration, although Cs adsorption on the HA alone was quite low. In the Fe adsorption processes of the HA and the zeolite, the HA exhibited a maximum sorption capacity of 256 mg/g, which was much higher than that of the zeolite (111 mg/g). The high affinity of Fe on the HA contributes to the improvement of the deteriorated Cs adsorption on the zeolite due to Fe ions.

  12. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  13. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE PAGES

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.; ...

    2017-09-28

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  14. Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA

    DOE PAGES

    Boal, Ben W.; Schmidt, Joel E.; Deimund, Mark A.; ...

    2015-11-05

    Zeolite A (LTA) has many large-scale uses in separations and ion exchange applications. Because of the high aluminum content and lack of high-temperature stability, applications in catalysis, while highly desired, have been extremely limited. Herein, we report a robust method to prepare pure-silica, aluminosilicate (product Si/Al = 12–42), and titanosilicate LTA in fluoride media using a simple, imidazolium- based organic structure-directing agent. The aluminosilicate material is an active catalyst for the methanol-to-olefins reaction with higher product selectivities to butenes as well as C 5 and C 6 products than the commercialized silicoalumniophosphate or zeolite analogue that both have the chabazitemore » framework (SAPO- 34 and SSZ-13, respectively). Furthermore, the crystal structures of the as-made and calcined pure-silica materials were solved using singlecrystal X-ray diffraction, providing information about the occluded organics and fluoride as well as structural information.« less

  15. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  16. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  17. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  18. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  19. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  20. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  1. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  2. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  3. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    NASA Astrophysics Data System (ADS)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  4. Hydrothermal synthesis of free-template zeolite T from kaolin

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.

    2017-12-01

    Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.

  5. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors

    PubMed Central

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N. A.; Viade, Ruth A.; Awandare, Gordon A.; Tiburu, Elvis K.

    2017-01-01

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N2 adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm3/g to 0.061 cm3/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m2/g, 67 m2/g and 113 m2/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m2/g, 0.762 cm3/g and 4.92 nm, 389 m2/g, 0.837 cm3/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites’ molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications. PMID:28786961

  6. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  7. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  8. Research on Molecular Sieve Technology.

    ERIC Educational Resources Information Center

    Shah, Dhananjai B.; Hayhurst, David T.

    1985-01-01

    The zeolite synthesis and modification research program at Cleveland State University (Ohio) is described, including program philosophy and objectives, and research facilities. Also considers zeolite synthesis, adsorption on zeolites, kinetics of adsorption, and zeolite catalysis research. (JN)

  9. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  10. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  11. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-09

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.

  12. Effects of zeolites on cultures of marine micro-algae: A brief review.

    PubMed

    Fachini, Adriano; Vasconcelos, Maria Teresa S D

    2006-10-01

    The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published papers. The purpose of this review is to present the state-of-the-art on applications of using zeolites for amending the trace elemental contents of salt water as well as the implications of this property for promoting marine micro-algal growth. This paper deals with the following features: Sorption capacity of zeolites including 1. application of zeolites in saltwater, 2. the role of silicon and zeolites on cultures of micro-algae, and 3. the role of organically chelated trace metals. The following competing factors have been identified as effects of zeolites on algal growth in salt water: (i) ammonia decrease: growth inhibition reduced; (ii) macro-nutrients increase, mainly silicon: stimulation of silicon-dependent algae; (iii) trace metals increase (desorption from zeolites) or decrease (adsorption): inhibition or stimulation, depending on the nature of the element and its concentration; and, (iv) changes in the chelating organics exudation: inhibition or stimulation of growth, depending on the (a) nature of the complexed element; (b) bioavailability of the complex; and (c) concentration of the elements simultaneously present in inorganic forms. Zeolites have been capable of stimulating the growth of the silicon-demanding marine micro-algae, like diatoms, mainly because they can act as a silicon buffer in seawater. Zeolites can also influence the yield of non-silicon-demanding algae, because the changes they can cause (liberation and adsorption of trace elements) in the composition of the medium. Zeolites have been capable of stimulating the growth of the marine micro-algae. However, the extent of ion exchange between zeolite and seawater, which conditions the effects, will depend on several factors: (1) initial metal concentration in seawater; (2) levels of trace metals in the zeolites (contaminants); (3) characteristics of the zeolites in terms of both ion-exchange capacity and specific affinities for the different cations; (4) quantity of zeolite per litre of solution; (5) pH and (6) response of the organism in terms of liberation of organic ligands. Therefore, a previous investigation in each particular case is recommended, in order to select the zeolitic characteristics and concentrations that will maximize the algal yield. Stimulation of phytoplankton growth can be economically relevant since phytoplankton constitutes the basis of the marine food webs and is required in fish farming nurseries in the marine aquaculture industry. Zeolites are cheap, only small amounts (few milligrams per liter of culture) are required and the addition of some micro-nutrients may be omitted. Therefore, the inclusion of zeolites in algal cultures in aquaculture may have economic advantages.

  13. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less

  14. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  15. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  16. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  17. Preparation and characterization of polysulfone/zeolite mixed matrix membranes for removal of low-concentration ammonia from aquaculture wastewater.

    PubMed

    Moradihamedani, Pourya; Abdullah, Abdul Halim

    2018-01-01

    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.

  18. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  19. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoh, K.; Kimura, K.; Nakamura, Y.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less

  1. Experimental Determination of the Molar Absorption Coefficient of n-Hexane Adsorbed on High-Silica Zeolites.

    PubMed

    Gatti, Giorgio; Olivas Olivera, Diana F; Sacchetto, Vittoria; Cossi, Maurizio; Braschi, Ilaria; Marchese, Leonardo; Bisio, Chiara

    2017-09-06

    Determination of the molar absorption coefficients of the CH 3 bending mode at ν˜ =1380 cm -1 (ϵ 1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO 2 /Al 2 O 3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ 1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ 1380 values: (0.278±0.018) cm μmol -1 for HSZ-Y and (0.491±0.032) cm μmol -1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of thermal treatment on the nano-structure and phase transformation of metakaolin-based geopolymers.

    PubMed

    Kim, Yongsung; Kang, Seunggu

    2014-11-01

    Enhancement of the mechanical strength of metakaolin-based geopolymers activated with NaOH was attempted by calcining metakaolin at a higher temperature than that commonly reported. Increasing the calcination temperature from 750 degrees C to 1150 degrees C promoted the recrystallization of mullite. Two type of zeolite of sodium aluminum silicate hydrates were found in the geopolymers made of metakaolin calcined at 750 degrees C-1050 degrees C. The h-zeolite [Na6(AlSiO4)6 x H2O] was not found in the geopolymer made of metakaolin calcined above 900 degrees C, while Z-zeolite [Na2O x Al2O3 x SiO2 x H2O] remained in specimens calcined at up to 1050 degrees C, All zeolite disappeared above 1150 degrees C. The pozzolanic reaction generates very small particles of 10-30 nm on the surface of metakaolin grains of 0.2-0.6 μm, rendering the matrix denser by binding the grains. The maximum compressive strength was revealed with the geopolymer made of metakaolin calcined at 1050 degrees C. The reason for the increased strength of the geopolymer obtained using higher calcination temperature is thought to be the combined effects of matrix hardening by geopolymeric reaction and reinforcement by mullite crystal phases.

  3. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-08-15

    The current study reported the co-remediation effect on the lead-polluted garden soil by zeolite and humic acids (HA), which was from comparing with the remediation of single zeolite in term of the lead fraction of sequential extraction in the soil and the distribution of lead in different parts of rape. Mixed treatment (zeolite and HA) and single treatment (zeolite) were, respectively, applied to the artificially polluted garden soil to examine the difference of their remediation effects in pot experiment. Results indicated that the co-remediation led to significantly greater (p<0.01) reduction in the lead concentration in plants than by singly adding to zeolite. The co-application of zeolite and HA reduced the available fraction of lead compounds, but slightly increased (p<0.01) the water-soluble fraction of lead compounds in the garden soil, compared with the application of single zeolite, especially in the severe lead-polluted soil (> or =1000 mg kg(-1)). This method might be an efficient way to remediate the lead-polluted soils on a large scale, although zeolite is a kind of hazardous material.

  5. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  6. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  7. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.

    PubMed

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.

  8. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Keil, K.; Mansker, W.L.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less

  9. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    PubMed

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  10. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  11. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  12. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Tabacchi, G.; Fois, E.; Lee, Y.

    2016-03-01

    The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch-Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

  13. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I

    2017-03-23

    Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50  < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50  < 0.7) and high recalcitrant nature of silica composited biochars (R 50  > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

  14. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  15. Synthesis and characterization of zeolite from coal fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  16. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  17. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  18. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.

  19. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA)

    PubMed Central

    Gualtieri, Alessandro F.; Gandolfi, Nicola Bursi; Pollastri, Simone; Pollok, Kilian; Langenhorst, Falko

    2016-01-01

    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don’t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups. PMID:27892512

  20. Steam-assisted crystallization of TPA{sup +}-exchanged MCM-41 type mesoporous materials with thick pore walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong Li; Zhang, Kun; Wang, Yi Meng, E-mail: ymwang@chem.ecnu.edu.cn

    2012-07-15

    Highlights: ► Mesoporous Ti-containing silica with thicker pore walls was synthesized. ► Ion-exchange and steam-assisted crystallization led to MCM-41/MFI composite. ► The introduction of Ti inhibited the formation of separated MFI particles. ► Lower temperature favored retaining mesoporous characteristics and morphology. -- Abstract: Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, {sup 1}H–{sup 13}C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show thatmore » the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.« less

  1. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.

  2. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  3. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  4. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  5. Innovative In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion. Part 2

    DTIC Science & Technology

    2011-10-01

    00516 20 Table 10. Partitioning coefficients used in transport modeling. Metal Clinoptilolite Zeolite (ml/g) Phillipsite Zeolite (ml/g) As...3 and 5. Laboratory protocols used for these tests were the same as those used for the previously described zeolite bioassays. The significance...amendments. Two cases were simulated using the 1-dimensional model for clinoptilolite zeolite (ZC) and phillipsite zeolite (ZP). The results of the

  6. [What a physician should know about zeolites].

    PubMed

    Boranić, M

    2000-01-01

    Zeolites are natural and synthetic hydrated crystalline aluminosilicates endowed with absorptive and ion exchange properties. They have found numerous and multifarous applications--in industry as catalysts and absorbents, in water sanitation for the removal of ammonia and heavy metals, in agriculture as fertilizers, and in animal husbandry as the absorbents of excreted material and as food additives. Medical applications have included the use in filtration systems for anesthesia or dialysis and as the contrast materials in NMR imaging. Recently, zeolite powders for external use have found application as deodorants, antimycotic agents and wound dressings. Peroral use of encapsulated zeolite powders enriched with vitamins, oligoelements or other ingredients has been claimed to exert beneficial medical effects. Ingestion of zeolites may be considered analogous to the clay eating (geophagia), considered in traditional medicine as a remedy for various illnesses. Being amphoteric, zeolites are partly soluble in acid or alkaline media, but within the physiological pH range the solubility is generally low. Minimal amounts of free aluminium or silicium from the ingested zeolites are resorbed from the gut. The bulk of ingested zeolite probably remains undissolved in the gut. In view of the ion exchange properties, zeolites may be expected to change the ionic content, pH and buffering capacity of the gastrointestinal secretions and to affect the transport through the intestinal epithelium. In addition, zeolites could affect the bacterial flora and the resorption of bacterial products, vitamins and oligoelements. The contact of zeolite particles with gastrointestinal mucosa may elicit the secretion of cytokines with local and systemic actions. Reactive silicium ions might react with biomolecules of the intestinal epithelium, and if resorbed, do so in other cells. Mutagenic and carcinogenic effects of zeolite particles have been described, resembling such effects of asbestos fibers. Thus, local and systemic effects of zeolites may be complex and interrelated, and an objective assessment requires appropriate experimental models.

  7. 'water splitting' by titanium exchanged zeolite A. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznicki, S.M.; Eyring, E.M.

    1978-09-01

    Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less

  8. ZEOLITE: "THE MAGIC STONE"; MAIN NUTRITIONAL, ENVIRONMENTAL, EXPERIMENTAL AND CLINICAL FIELDS OF APPLICATION.

    PubMed

    Laurino, Carmen; Palmieri, Beniamino

    2015-08-01

    zeolites (clinoptilolites) are a family of alluminosilicates and cations clustered to form macro aggregates by small individual cavities. In the medical area they are involved in detoxification mechanisms capturing ions and molecules into their holes. Actually, we classify about 140 types of natural and 150 synthetic zeolites, for specific and selective use. Clinoptilolite is a natural zeolite and it is the most widespread compound in the medical market. this review analyzes the main fields of zeolite utilization. we searched Pubmed/Medline using the terms "zeolite" and "clinoptilolite". in zoothechnology and veterinary medicine zeolite improves the pets' fitness, removes radioactive elements, aflatoxines and poisons. Zeolite displays also antioxidant, whitening, hemostatic and anti-diarrhoic properties, projected in human care. However very scanty clinical studies have been run up to now in immunodeficiency, oncology after chemotherapy and radiotherapy as adjuvants. further clinical investigations are urgently required after this review article publication which updates the state of the art. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  10. Nanocomposites of zeolite-titanium(IV) oxides: Preparation, characterization, adsorption, photocatalytic and bactericidal properties

    NASA Astrophysics Data System (ADS)

    Domoroshchina, Elena; Kravchenko, Galina; Kuz'micheva, Galina

    2017-06-01

    NT/zeolite nanocomposites (NT - nanosized titanium(IV) oxides: η-phase and Hombifine N with anatase; zeolite: Beta(25), ZSM-5 with different modules Si/Al, MOR, or Y) have been obtained by two methods: modified cold-impregnation method (method 1) and in situ method of introduction of zeolites into the reaction mixture during the synthesis of NT by hydrolysis of TiOSO4×xH2SO4×yH2O or TiOSO4×2H2O aqueous solutions (method 2), performed for the first time. According to the X-ray data, the following differences in the NT:zeolite systems under investigation have been revealed: the mixture of zeolites and NT in nanocrystalline (Hombifine N/zeolite) or amorphous states (η-phase/zeolite, except for η-phase/MOR, where NT peaks are absent) (method 1), and the mixture of Y-zeolite and amorphous NT or only Y-zeolite without NT (method 2), which indicates the different levels of interaction between NT and zeolites in the systems studied. The best characteristics of properties (photocatalytic, adsorption, and antibacterial) have been revealed in the nanocomposites synthesized by the method 2. The correlation between the photoreaction rate constant (the k value) under UV irradiation in the presence of nanocomposites (kmax for NT/ZSM-5(12)) and the type of precursor, its pH, synthesis duration, NT:zeolite ratio, organic dye composition (methyl orange or Rhodamine G) has been established. The highest degree of extraction of P(V) ions from model aqueous systems has been observed in the presence of nanocomposites with the largest total surface area of all particles (Rmax = 99.48% for NT/MOR). The correlation between the sorption degree of P(V) ions and the modulus of zeolite is possible. Antibacterial activity in the dark towards Escherichia coli has been found for Y and Beta(25) zeolites and nanocomposites on their basis (methods 1 and 2) with the maximum diameter of bacterial growth inhibition (18 mm) obtained for NT/Beta(25) (method 2) synthesized only from TiOSO4×xH2SO4×yH2O precursor.

  11. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  12. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.

  13. In silico screening of carbon-capture materials

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.; Kim, Jihan; Swisher, Joseph A.; Jariwala, Kuldeep; Rycroft, Chris H.; Bhown, Abhoyjit S.; Deem, Michael W.; Haranczyk, Maciej; Smit, Berend

    2012-07-01

    One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.

  14. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.

    PubMed

    Wang, Jia-Jie; Jing, You-Hai; Ouyang, Tong; Chang, Chang-Tang

    2015-08-01

    TiO2 photocatalytic reactions not only remove a variety of organic pollutants via complete mineralization, but also destroy the bacterial cell wall and cell membrane, thus playing an important bactericidal role. However, the post-filtration procedures to separate nanometer-levels of TiO2 and the gradual inactivity of photocatalyst during continuous use are defects that limit its application. In this case, we propose loading TiO2 on zeolite for easy separation and 13X is considered as a promising one. In our study, 13X-zeolite was prepared by a hydrothermal method and the source of Si was extracted from waste quartz sand. For comparison, commercial zeolite with different microporous and mesoporous diameters (ZSM-5 and Y-zeolites) were also used as TiO2 supports. The pore size of the three kinds of zeolites are as follows: Y-zeolite > 13X > ZSM-5. Different TiO2 loading content over ZSM-5, 13X and Y-zeolite were prepared by the sol-gel method. XRD, FTIR, BET, UV-vis, TGA and SEM were used for investigation of material characteristics. In addition, the efficiencies of mineralization and photodegradation were studied in this paper. The effects of the loading ratio of TiO2 over zeolites, initial pH, and concentration on photocatalytic performance are investigated. The relationship between best loading content of TiO2 and pore size of the zeolite was studied. The possible roles of the ZSM-5, 13X-zeolites and Y-zeolites support on the reactions and the possible mechanisms of effects were also explored. The best loading content of TiO2 over ZSM-5, 13X and Y-zeolite was found to be 50 wt%, 12.5 wt% and 7 wt%, respectively. The optimum pH condition is 3 with TiO2 over ZSM-5, 13X-zeolites and Y-zeolites. The results showed that the degradation and mineralization efficiency of 12.5 wt%GT13X (TiO2 over 13X) after 90 min irradiation reached 57.9% and 22.0%, which was better than that of 7 wt%GTYZ (TiO2 over Y-zeolites) while much lower than that of 50 wt%GTZ (TiO2 over ZSM-5). The materials were recycled four times while the degradation was remained at a higher level.

  15. Progress on Zeolite-membrane-aided Organic Acid Esterification

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  16. Synthesis and characterization of Sn/zeolite and catalytic activity test in the esterification reaction of sludge oil

    NASA Astrophysics Data System (ADS)

    Alimuddin, Andi Hairil; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Prawatya, Yopa Eka; Astar, Ismail; Yustira, Yudi

    2017-03-01

    Synthesis of Sn-Zeolite has been made to use for esterification reaction of free fatty acids in sludge oil. Catalyst characterization was accomplished using X-Ray Diffraction (XRD), X-Ray Flourecence (XRF), and Fourier Transform Infra Red (FTIR). Catalyst Sn/zeolite was synthesized by impregnated Sn of SnCl2 into the zeolite. The amount of Sn impregnated base on the value of cation exchange capacity (CEC) of zeolites. Esterification reaction of fatty acids from sludge oil using Sn/Zeolite catalyst was did by variated the reaction time. XRD analysis results showed that the catalyst Sn/zeolite was dominated by modernit and quartz. XRF analysis results was increasing amount of Sn metal and the Si/Al ratio on Sn/zeolite catalyst along with addition of Sn metal. FTIR analysis results showed that the catalyst synthesized had Bronsted acid side (the spectrum 1639.4; 1656.7; 1654.8 cm-1) and the Lewis acid (spectrum 1400.2 and 1402.2 cm-1). The results showed that the optimum conditions of esterification reaction in 4 hours reaction time, 5% concentration of the catalyst, and molar ratio was about 1:10 with a conversion percentage of products reached 96.00%, which can be achieved with a ratio was about 4:1 between Sn and zeolite on Sn/zeolite catalyst.

  17. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  19. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    NASA Astrophysics Data System (ADS)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  20. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  1. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Scales, Peter; Sommer, Sven G; Chen, Deli

    2018-03-21

    The objective of this study was to investigate the feasibility of using natural and NaCl-treated Australian zeolites to simultaneously remove excess nutrients from anaerobically digested swine manure. Ion adsorption and desorption properties of Australian zeolite during the anaerobic digestion of swine manure were investigated. Two experiments were conducted: the first was an adsorption experiment with multi-component solutions that corresponded with the ionic composition of swine manure digestates. The second experiment determined the effects of zeolite dose rates during anaerobic digestion of swine manure on the removal of N, P and K from solution. Adsorption isotherms confirmed selectivity for K + over NH 4 + by Australian natural and sodium zeolites. Therefore, NH 4 + removal was considerably reduced when there was simultaneous K + uptake. Natural zeolite desorbed more Ca 2+ during K + and NH 4 + adsorption than sodium zeolite. The ion exchange reaction was independent of the presence of P. P removal was very dependent on the pH of the medium. Natural Australian zeolite was shown to be a potential sorbent for the removal of NH 4 + , K + and P during the anaerobic digestion of swine manure. However, the application of high concentrations of zeolite at higher pH values (> 7.5) might not be appropriate for anaerobic digestion, because zeolite desorbed more Ca 2+ ions into the solution at the higher doses of zeolite and then availability of P for microbial growth might be reduced as a result of PO 4 3- precipitation with Ca 2+ at the higher pH.

  3. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  4. Transition Metal Ions in Zeolites: Coordination and activation of O2

    PubMed Central

    Smeets, Pieter J.; Woertink, Julia S.; Sels, Bert F.; Solomon, Edward I.; Schoonheydt, Robert A.

    2010-01-01

    Zeolites containing transition metal ions (TMI) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMI Cu, Co and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMI preferably occupy exchange sites in six-membered oxygen rings (6MR) where the TMI preferentially coordinate with the oxygen atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extra-lattice oxygens during high temperature pretreatments can result in auto-reduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called α-oxygen, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive α-oxygen can only be formed with N2O, not with O2. O2 activated Co intermediates in Faujasite (FAU) zeolites can selectively oxidize α-pinene and epoxidize styrene. In Co-FAU, CoIII superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5 various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu]2+ core (Proc. Natl. Acad. Sci. USA 2009, 106, 18908-18913). Overall, O2 activation depends on the interplay of structural factors such as type of zeolite, size of the channels and cages and chemical factors such as Si/Al ratio and the nature, charge and distribution of the charge balancing cations. The presence of several different TMI sites hinders the direct study of the spectroscopic features of the active site. Spectroscopic techniques capable of selectively probing these sites, even if they only constitute a minor fraction of the total amount of TMI sites, are thus required. Fundamental knowledge of the geometric and electronic structure of the reactive active site can help in the design of novel selective oxidation catalysts. PMID:20380459

  5. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  6. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Mi Young; Kim, Donghun; Kumar, Prashant

    A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown andmore » nonlayered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI9,15, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. Finally, these coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).« less

  7. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

    DOE PAGES

    Jeon, Mi Young; Kim, Donghun; Kumar, Prashant; ...

    2017-03-15

    A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown andmore » nonlayered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI9,15, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. Finally, these coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).« less

  8. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  9. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  10. Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane

    NASA Astrophysics Data System (ADS)

    Kaengsilalai, Athiya; Luengnaruemitchai, Apanee; Jitkarnka, Sirirat; Wongkasemjit, Sujitra

    The catalytic activity of Ni on a series of catalysts supported on the synthesized KH zeolite for the CO 2 reforming of methane has been investigated. The KH zeolite supports were previously synthesized via silatrane and alumatrane precursors using the sol-gel process and hydrothermal microwave treatment. Eight percent Ni was impregnated onto the synthesized KH zeolites, which have different morphologies: called dog-bone, flower, and disordered shapes. The prepared Ni/KH zeolites were tested for their catalytic activity at 700 °C, at atmospheric pressure, and at a CH 4/CO 2 ratio of 1. The results showed that Ni supported on dog-bone and flower-shaped KH zeolites provided better activity than that of disordered KH zeolite due to higher CH 4 and CO 2 conversions, a higher H 2 production, and a smaller amount of coke formation on the catalyst surface. Furthermore, the stability of the Ni/KH zeolite was greatly superior to that of Ni supported on alumina and clinoptiolite catalysts after 65 h on stream.

  11. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand

    PubMed Central

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-01-01

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737

  12. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  13. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.

    PubMed

    Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V

    2013-09-15

    Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    NASA Astrophysics Data System (ADS)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  15. Activated and Micronized Zeolite in the Modulation of Cellular Oxidative Stress in Mexican Smokers: A Randomized Clinical Trial.

    PubMed

    Atitlán-Gil, Alfonso; Bretón-de la Loza, Martín M; Jiménez-Ortega, José C; Belefant-Miller, Helen; Betanzos-Cabrera, Gabriel

    2017-01-01

    Activated and micronized zeolites are used as detoxifying agents in humans. Detoxification is attributed to their ability to reduce lipid peroxidation by scavenging free radicals. To evaluate activated and micronized zeolites as modulators of cellular oxidative stress in Mexican smokers without lung diseases. Randomized clinical trial. Subjects were randomly divided into three groups: activated and micronized zeolites, n = 29; vitamin E, an accepted antioxidant, n = 29; and maltodextrin as control, n = 27. Each group received the corresponding supplementation, dissolved in water, once a day for 30 days as follows: activated and micronized zeolites, 5.4 g activated and micronized zeolite; vitamin E, 400 mg D-alpha tocopheryl acetate; and maltodextrin, 250 mg of maltodextrin. The thiobarbituric acid reactive substances assay was used to screen for lipid peroxidation. Catalase activity, plasma antioxidant capacity, and hydrogen peroxide levels were also measured. Results were analyzed by a one-way ANOVA and post hoc test of Bonferroni. Subjects administered activated and micronized zeolites had equivalent antioxidant activities as subjects administered vitamin E. Activated and micronized zeolites may be useful as a modulator of oxidative stress in smokers. However, inclusion of a comparison group of non-smokers would be useful in future studies to assess the degree to which zeolites reverse the oxidant stress.

  16. Zeolites in the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Raymond, William H.; Bush, Alfred L.; Gude, Arthur J.

    1982-01-01

    Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

  17. In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support

    NASA Astrophysics Data System (ADS)

    Baig, Mirza A.; Patel, Faheemuddin; Alhooshani, Khalid; Muraza, Oki; Wang, Evelyn N.; Laoui, Tahar

    2015-12-01

    LTA zeolite layer was successfully grown on a superhydrophilic mesoporous titania layer coated onto porous α-alumina substrate. Mesoporous titania layer was formed as an intermediate bridge in the pore size variation between the macroporous α-alumina support and micro-porous LTA zeolite layer. In-situ aging microwave heating synthesis method was utilized to deposit the LTA zeolite layer. Mesoporous titania layer was pre-treated with UV photons and this was observed to have played a major role in improving the surface hydrophilicity of the substrate leading to formation of increased number of Ti-OH groups on the surface. This increase in Ti-OH groups enhanced the interaction between the synthesis gel and the substrate leading to strong attachment of the amorphous gel on the substrate, thus enhancing coverage of the LTA zeolite layer to almost the entire surface of the 1-inch (25.4 mm) diameter membrane. LTA zeolite layer was developed via in-situ aged under microwave irradiation to study the effect of synthesis parameters such as in-situ aging time and synthesis time on the formation of the LTA zeolite layer. Optimized process parameters resulted in the formation of crack-free porous zeolite layer yielding a zeolite-titania-alumina multi-layer membrane with a gradient in porosity.

  18. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    PubMed

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-05

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  19. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    PubMed Central

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145

  20. RuO2 supported NaY zeolite catalysts: Effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Jung, Dasom; Lee, Sunwoo; Na, Kyungsu

    2017-10-01

    The effects of preparation method for RuO2 supported zeolite catalysts on the catalytic consequences during the aerobic oxidation of benzyl alcohol to benzaldehyde were investigated. Three preparation methods, i.e., (i) simultaneous crystallization of the zeolite framework in the presence of RuCl3 (Ru(SC)/NaY), (ii) post ion-exchange with RuCl3 on the zeolite framework (Ru(IE)/NaY), and (iii) post support of preformed Ru metal nanoparticles on the zeolite surface (Ru(PS)/NaY), were used to construct three different RuO2 supported NaY zeolite catalysts. The catalyst performance was investigated as functions of the reaction time and temperature, in correlation with the structural changes of the catalysts, as analyzed by X-ray diffraction (XRD). The results revealed that the catalytic consequences were dramatically affected by the preparation methods. Although similar conversion was achieved with all three catalysts, the turnover frequency (TOF) differed. The Ru(PS)/NaY catalyst exhibited the highest TOF (33-48 h-1), whereas the other catalysts produced much lower TOFs (9-12 h-1). The Ru(PS)/NaY catalyst also had the highest activation energy (Ea) of 48.39 kJ mol-1, whereas the Ru(SC)/NaY and Ru(IE)/NaY catalysts had Ea values of 18.58 and 24.11 kJ mol-1, respectively. Notably, the Ru(PS)/NaY catalyst yielded a significantly higher pre-exponential factor of 5.22 × 105 h-1, which is about 5 orders of magnitude larger than that of the Ru(SC)/NaY catalyst (7.15 × 100 h-1). This suggests that collision between benzyl alcohol and molecular oxygen was very intensive on the Ru(PS)/NaY catalyst, which explains the higher TOF of the Ru(PS)/NaY catalyst relative to the others in spite of the higher Ea value of the former. In terms of recyclability, the pristine crystallinity of the zeolite framework was maintained in the Ru(SC)/NaY catalyst and the RuO2 phase exhibited an insignificant loss of the initial activity up to three catalytic cycles, whereas Ru(PS)/NaY showed slight loss of activity and Ru(IE)/NaY showed a significant loss of activity due to the disappearance of the RuO2 phase.

  1. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    PubMed

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.

  2. Effects of lignin structure on hydrodeoxygenation reactivity of pine wood lignin to valuable chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Ben, Haoxi; Southeast Univ., Nanjing

    Hydrodeoxygenation (HDO) of two dilute acid flow through pretreated softwood lignin samples, including residual lignin in pretreated solid residues (ReL) and recovered insoluble lignin in pretreated liquid (RISL), with apparent different physical and chemical structures, was comprehensively studied. A combination of catalysts (HY zeolite and Ru/Al 2O 3) was employed to investigate the effects of lignin structures, especially condensed structures, on the HDO upgrading process. Results indicated that the condensed structure and short side chains in lignin hindered its HDO conversion under different reaction conditions, including catalyst loading and composition, hydrogen pressure, and reaction time. In addition to lignin structure,more » HY zeolite was found crucial for lignin depolymerization, while Ru/Al 2O 3 and relatively high hydrogen pressure (4 MPa) were necessary for upgrading unstable oxy-compounds to cyclohexanes at high selectivity (>95 wt %). Since the lignin structure essentially affects its reactivity during HDO conversion, the yield and selectivity of HDO products can be predicted by detailed characterization of the lignin structure. Furthermore, the insights gained from this study in the fundamental reaction mechanisms based on the lignin structure will facilitate upgrading of lignin to high-value products for applications in the production of both fuels and chemicals.« less

  3. Effects of lignin structure on hydrodeoxygenation reactivity of pine wood lignin to valuable chemicals

    DOE PAGES

    Wang, Hongliang; Ben, Haoxi; Southeast Univ., Nanjing; ...

    2017-01-05

    Hydrodeoxygenation (HDO) of two dilute acid flow through pretreated softwood lignin samples, including residual lignin in pretreated solid residues (ReL) and recovered insoluble lignin in pretreated liquid (RISL), with apparent different physical and chemical structures, was comprehensively studied. A combination of catalysts (HY zeolite and Ru/Al 2O 3) was employed to investigate the effects of lignin structures, especially condensed structures, on the HDO upgrading process. Results indicated that the condensed structure and short side chains in lignin hindered its HDO conversion under different reaction conditions, including catalyst loading and composition, hydrogen pressure, and reaction time. In addition to lignin structure,more » HY zeolite was found crucial for lignin depolymerization, while Ru/Al 2O 3 and relatively high hydrogen pressure (4 MPa) were necessary for upgrading unstable oxy-compounds to cyclohexanes at high selectivity (>95 wt %). Since the lignin structure essentially affects its reactivity during HDO conversion, the yield and selectivity of HDO products can be predicted by detailed characterization of the lignin structure. Furthermore, the insights gained from this study in the fundamental reaction mechanisms based on the lignin structure will facilitate upgrading of lignin to high-value products for applications in the production of both fuels and chemicals.« less

  4. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    NASA Astrophysics Data System (ADS)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  5. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Chipera, Steve J.; Goff, Fraser; Goff, Cathy J.; Fittipaldo, Melissa

    2008-12-01

    Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and 40Ar/ 39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (≤ 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.

  6. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Applications of zeolites in biotechnology and medicine - a review.

    PubMed

    Bacakova, Lucie; Vandrovcova, Marta; Kopova, Ivana; Jirka, Ivan

    2018-05-01

    Zeolites are microporous tectosilicates of natural or synthetic origin, which have been extensively used in various technological applications, e.g. as catalysts and as molecular sieves, for separating and sorting various molecules, for water and air purification, including removal of radioactive contaminants, for harvesting waste heat and solar heat energy, for adsorption refrigeration, as detergents, etc. These applications of zeolites were typically related with their porous character, their high adsorption capacity, and their ion exchange properties. This review is focused on potential or already practically implemented applications of zeolites in biotechnology and medicine. Zeolites are promising for environment protection, detoxication of animal and human organisms, improvement of the nutrition status and immunity of farm animals, separation of various biomolecules and cells, construction of biosensors and detection of biomarkers of various diseases, controlled drug and gene delivery, radical scavenging, and particularly tissue engineering and biomaterial coating. As components of scaffolds for bone tissue engineering, zeolites can deliver oxygen to cells, can stimulate osteogenic cell differentiation, and can inhibit bone resorption. Zeolites can also act as oxygen reservoirs, and can improve cell performance in vascular and skin tissue engineering and wound healing. When deposited on metallic materials for bone implantation, zeolite films showed anticorrosion effects, and improved the osseointegration of these implants. In our studies, silicalite-1 films deposited on silicon or stainless steel substrates improved the adhesion, growth, viability and osteogenic differentiation of human osteoblast-like Saos-2 cells. Zeolites have been clinically used as components of haemostatics, e.g. in the Advanced Clotting Sponge, as gastroprotective drugs, e.g. Absorbatox® 2.4D, or as antioxidative agents (Klinobind®). Some zeolites are highly cytotoxic and carcinogenic, e.g. erionite. However, in other zeolites, the antiproliferative and pro-apoptotic effects can be used for tumor therapy.

  8. [Effect of Nano Zeolite on Chemical Fractions of Cd in Soil and Its Uptake by Cabbage].

    PubMed

    Xiong, Shi-juan; Xu, Wei-hong; Xie, Wen-wen; Chen, Rong; Chen, Yong-qin; Chi, Sun-lin; Chen, Xu- gen; Zhang, Jin-zhong; Xiong, Zhi-ting; Wang, Zheng-yin; Xie, De-ti

    2015-12-01

    Incubation experiments were carried out to investigate the influence of different nano zeolite (NZ) and ordinary zeolite (OZ) levels(0, 5, 10 and 20 g · kg⁻¹) on the change trends in fraction distribution coefficient (FDC) of Cd when exposed to different Cadmium (Cd) levels (1, 5, 10 and 15 mg · kg⁻¹), and pot experiments were carried out to investigate their influence on soil Cd fraction and Cd uptake by cabbage. The results in incubation experiments showed that the application of nano zeolite as well as ordinary zeolite effectively decreased the FDC of exchangeable Cd and increased the FDC of Fe-Mn oxide fraction. The FDC of soil Cd from 0 d to 28 d was deceased at first, then increased and tended to be stable, and finally increased. At the end of incubation, the FDC of soil exchangeable Cd decreased from 72.0%-88.0% to 30.0%-66.4%. Exchangeable fraction Cd was the most dominant Cd fraction in soil during the whole incubation. The results in pot experiment indicated that the application of nano zeolite and ordinary zeolite decreased the concentration and FDC of soil exchangeable Cd, and concurrently the concentration and FDC of Cd in carbonate, Fe-Mn oxide, organic matter and residual fraction were increased. The lowest EX-Cd was observed in the treatment with high dose of nano zeolite (20 g · kg⁻¹). The FDC of exchangeable Cd showed significant negative relationship with the soil pH (P < 0.05), and was concurrently extremely positively correlated with Cd concentration in shoot and root of cabbage (P < 0.01). Soil pH increased by 1.8%-45.5% and 6.1%-54.3% in the presence of zeolite when exposed to 5 mg · kg⁻¹ 1 and Cd, respectively; FDC of exchangeable Cd decreased by 16.3%-47.7% and 16.2%-46.7%; Cd concentration in each tissues of cabbage decreased by 1.0%-75.0% and 3.8%-53.2%, respectively. Moreover, the reduction effect of nano zeolite on soil and plant Cd was better than that of ordinary zeolite. The growth of cabbage was stimulated by low and medium zeolite doses (≤ 10 g · kg⁻¹), while inhibited by high zeolite doses (20 g · kg⁻¹). Compared to ordinary zeolite, the biomass of Chinese cabbage was significantly increased by Nano zeolite, while the exchangeable Cd in soil as well as Cd concentration and Cd accumulation of cabbage were significantly reduced.

  9. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution

    PubMed Central

    Liu, Minmin; Hou, Li-an; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption. PMID:24976787

  10. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  11. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution.

    PubMed

    Liu, Minmin; Hou, Li-An; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29 Si and 27 Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption.

  12. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY.

    PubMed

    Ganapathy, S; Gore, K U; Kumar, Rajiv; Amoureux, Jean-Paul

    2003-01-01

    Multinuclear solid-state NMR spectroscopy, employing 29Si MAS,27Al MAS/3Q-MAS and (47,49)Ti wide-line experiments, has been used for the structural characterization of titanium substituted ultra-stable zeolite Y (Ti-USY). 27Al MAS experiments show the presence of aluminum in four (Al(IV)), five (Al(V)), and six (Al(VI)) coordination, whereas the multiplicity within Al(IV) and Al(VI) is revealed by 27Al 3Q-MAS experiments. Two different tetrahedral and octahedral Al environments are resolved and their isotropic chemical shifts (delta(CS)) and second-order quadrupole interaction parameters (P(Q)) have been determined by a graphical analysis of the 3Q-MAS spectra. The emergence of signal with higher intensity at -101 ppm in the 29Si MAS spectrum of Ti-USY samples indicates the possible occurrence of Q4(3Si,1Ti) type silicon environments due to titanium substitution in the faujasite framework. High-field (11.74T) operation, using a probehead specially designed to handle a large sample volume, has enabled the acquisition of 47,49Ti static spectra and identification of the titanium environment in the zeolite. The chemical shielding and electric field gradient tensors for the titanium environment in the zeolite have been determined by a computer simulation of the quadrupolar broadened static 47,49Ti NMR spectra.

  13. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    DTIC Science & Technology

    1984-09-28

    exotic schemes were developed. It was previously demonstrated that MoCI5 may be reacted with a HYu (here Yu denotes a steam-stabilized or...34ultrastable" zeolite) to form a MoYu zeolite and HC1 which is removed from the system.1 In this study, MoYu zeolites have been prepared by reacting HYu with Mo

  14. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    NASA Astrophysics Data System (ADS)

    Toommee, S.; Pratumpong, P.

    2018-06-01

    Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.

  15. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  16. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  17. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    NASA Astrophysics Data System (ADS)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  18. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    NASA Astrophysics Data System (ADS)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  19. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  20. X-ray imaging of aggregation in silica and zeolitic precursors

    NASA Astrophysics Data System (ADS)

    Morrison, Graeme R.; Browne, Michael T.; Beelen, Theo P. M.; van Garderen, Harold F.

    1993-01-01

    The resolution available in the King's College London scanning transmission x-ray microscope (STXM) can be exploited to study aggregate structures over a length scale from 100 nm to 10 micrometers that overlaps with and complements that available from small-angle x-ray scattering (SAXS) data. It is then possible to use these combined sets of data to test between different growth models for the aggregates, using the fractal dimension of the structures as a way of distinguishing the different models. In this paper we show some of the first transmission x-ray images taken of silica gels and zeolite precursors, materials that are of great practical and economic importance for certain selective catalytic processes in the chemical industry, and yet for which there is still only limited understanding of the complicated processes involved in their preparation. These images reveal clearly the fractal aggregates that are formed by the specimens.

  1. Investigation of the percentage and the compacting pressure effect on the structural, optical and thermal properties of alumina-zeolite mixture

    NASA Astrophysics Data System (ADS)

    Messaadi, C.; Ghrib, T.; Ghrib, M.; Al-Otaibi, A. L.; Glid, M.; Ezzaouia, H.

    2018-03-01

    This paper presents a detailed investigation of the correlation between micro-structural, optical and thermal properties of a mixture constituted of NaA zeolite and Al2O3 alumina with different portions at various compacting pressures. A comprehensive study was made by using SEM, EDX, XRD, PL and PTD analysis. Through this full characterization, it was demonstrated that a mixture of grain size ranging from 50 nm to 85 nm can be used as a red emitter of mean wave length λ = 650 μm in optical devices. This mixture also proved to be used as a thermoinsultor or a thermocondensor material; with a thermal conductivity of about 0.22-1.33 W·m-1·K-1 and a thermal diffusivity of about 0.070-0.174 cm2·s-1.

  2. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.

    PubMed

    Ivarsson, M; Lindblom, S; Broman, C; Holm, N G

    2008-03-01

    In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.

  3. Wire-Mesh-Based Sorber for Removing Contaminants from Air

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Roychoudhury, Subir; Walsh, Dennis

    2006-01-01

    A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

  4. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  5. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars.

    PubMed

    Smith, J V

    1998-03-31

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.

  6. Effect of Fe3O4 addition on removal of ammonium by zeolite NaA.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-01-15

    Magnetic zeolite NaA with different Fe(3)O(4) loadings was prepared by hydrothermal synthesis based on metakaolin and Fe(3)O(4). The effect of added Fe(3)O(4) on the removal of ammonium by zeolite NaA was investigated by varying the Fe(3)O(4) loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe(3)O(4) apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudo-second-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe(3)O(4). According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Scaling Relations for Acidity and Reactivity of Zeolites

    PubMed Central

    2017-01-01

    Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616

  8. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  9. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon

    USGS Publications Warehouse

    Keith, Terry E.C.; Staplese, Lloyd W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chahazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-sfilbite, stilbite-heulandite-chabazite, stilbite-apophyllie-chabazite, and natrolite-mesolite-laumontite.Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60 ~ 70°C submarine hydrothermal event, or by reactions of cold (~ 10°C meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in dosed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

  10. Immobilizing of catalyst using Bayah's natural zeolite to reduce the chemical oxygen demand (COD) and total organic carbon (TOC)

    NASA Astrophysics Data System (ADS)

    Jayanudin, Kustiningsih, Indar; Sari, Denni Kartika

    2017-05-01

    Indonesia is rich of natural minerals, many of which had not been widely used. One potential natural mineral is zeolite from Bayah Banten that can be used to support catalyst in the process of waste degradation. The purpose of this research is to characterize the Bayah's zeolite and to figure out the effectiveness of the zeolite as supporting agent to the Fe catalyst in the process of phenol degradation, with the main purposes are to reduce the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). This research consists of three steps, activation of natural zeolite using 1M, 2M, and 3M NaOH solution, impregnation process with 0.025M, 0.05 M and 0.075M Fe(NO3)3.9H2O solution, and calcination at 500°C. Bayah's natural zeolite was characterize using Brauner-Emmet-Teller (BET) for its pore area, X-ray Fluorescence (XRF) for analyzing zeolite's component before and after activation process and after impregnation process, and Scanning Electron Microscope (SEM) for analyzing zeolite's morphology. The result showed that the highest pore area was 9Å, Fe metal from Fe(NO3)3.9H2O 0,075 M solution remained in zeolite pore was 7,73%, the reduction of COD and TOC was yielded at H2O2: phenol ratio of 1 : 6.

  11. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste.

    PubMed

    Milán, Z; Sánchez, E; Weiland, P; Borja, R; Martín, A; Ilangovan, K

    2001-10-01

    The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l.

  12. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.

  13. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  14. A Fiber Optic Interferometric Sensor Platform for Determining Gas Diffusivity in Zeolite Films.

    PubMed

    Yang, Ruidong; Xu, Zhi; Zeng, Shixuan; Jing, Wenheng; Trontz, Adam; Dong, Junhang

    2018-04-04

    Fiber optic interferometer (FOI) sensors have been fabricated by directly growing pure-silica MFI-type zeolite (i.e., silicalite) films on straight-cut endfaces of single-mode communication optical fibers. The FOI sensor has been demonstrated for determining molecular diffusivity in the zeolite by monitoring the temporal response of light interference from the zeolite film during the dynamic process of gas adsorption. The optical thickness of the zeolite film depends on the amount of gas adsorption that causes the light interference to shift upon loading molecules into the zeolitic channels. Thus, the time-dependence of the optical signal reflected from the coated zeolite film can represent the adsorption uptake curve, which allows computation of the diffusivity using models derived from the Fick’s Law equations. In this study, the diffusivity of isobutane in silicalite has been determined by the new FOI sensing method, and the results are in good agreement with literature values obtained by various conventional macroscopic techniques. The FOI sensor platform, because of its robustness and small size, could be useful for studying molecular diffusion in zeolitic materials under conditions that are inaccessible to the existing techniques.

  15. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    PubMed

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  16. Elimination of Escherichia coli and Salmonella in Clam by Using Zeolite in a Station of Depuration.

    PubMed

    Gdoura, Morsi; Sellami, Hanen; Khannous, Lamia; Ketata, Najib; Neila, Idriss Ben; Traore, Al Ibrahim; Chekir, Zouhair; Gdoura, Radhouane

    2017-09-01

      The application of natural zeolite for water and wastewater treatment has been carried out and is still a promising technique in environmental cleaning processes. Natural zeolite can be used to improve the purification process of clams (Ruditapes decussatus). Thus, our study aimed at improving the clam purification system in order to reduce Escherichia coli and eliminate Salmonella in samples artificially contaminated with this bacterium using a natural zeolite to replace the biological filter. The results showed that zeolite used in a depuration system improved the clam purification process. Moreover, natural zeolite exhibited high performance in the adsorption of bacteria and allowed to reduce the Escherichia coli abundance in 24 h, thus ensuring purified clams conformity with the ISO 16649-3 standard. These results indicate the beneficial effects of using zeolite in the adsorption of bacteria and the reduction in the abundance of Escherichia coli and set the Salmonella from marine organisms.

  17. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-07

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  18. Theoretical studies of the nitrogen containing compounds adsorption behavior on Na(I)Y and rare earth exchanged RE(III)Y zeolites.

    PubMed

    Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Zan, Wenyan; Gao, Xionghou; Yao, Xiaojun

    2015-01-01

    In this work, the adsorption behavior of nitrogen containing compounds including NH3, pyridine, quinoline, and carbazole on Na(I)Y and rare earth exchanged La(III)Y, Pr(III)Y, Nd(III)Y zeolites was investigated by density functional theory (DFT) calculations. The calculation results demonstrate that rare earth exchanged zeolites have stronger adsorption ability for nitrogen containing compounds than Na(I)Y. Rare earth exchanged zeolites exhibit strongest interaction with quinoline while weakest with carbazole. Nd(III)Y zeolites are found to have strongest adsorption to all the studied nitrogen containing compounds. The analysis of the electronic total charge density and electron orbital overlaps show that nitrogen containing compounds interact with zeolites by π-electrons of the compounds and the exchanged metal atom. Mulliken charge population analysis also proves that adsorption energies are strongly dependent on the charge transfer between the nitrogen containing molecules and exchanged metal atom in the zeolites.

  19. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.

    PubMed

    Villaseñor, J; Rodríguez, L; Fernández, F J

    2011-01-01

    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.

    PubMed

    Kim, Nahyeon; Park, Hyejeong; Yoon, Naeun; Lee, Jung Kyoo

    2018-04-24

    For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm 3 /g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g -1 and 640-1000 mAh cm -3 at 100 mA g -1 ), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.

  1. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.

    PubMed

    Petitto, Carolina; Delahay, Gérard

    2018-03-01

    Nitrogen oxides (NO x : NO, NO 2 ) are a concern due to their adverse health effects. Diesel engine transport sector is the major emitter of NO x . The regulations have been strengthened and to comply with them, one of the two methods commonly used is the selective catalytic reduction of NO x by NH 3 (NH 3 -SCR), NH 3 being supplied by the in-situ hydrolysis of urea. Efficiency and durability of the catalyst for this process are highly required. Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C. In this study, very active catalysts for the NH 3 -SCR of NO x were prepared by using a silicoaluminophosphate commercial zeolite as copper host structure. Characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature programmed desorption of ammonia (NH 3 -TPD) showed that this commercial zeolite was hydrothermally stable up to 850°C and, was able to retain some structural properties up to 950°C. After hydrothermal treatment at 850°C, the NO x reduction efficiency into NH 3 -SCR depends on the copper content. The catalyst with a copper content of 1.25wt.% was the most active. The difference in activity was much more important when using NO than the fast NO/NO 2 reaction mixture. Copyright © 2017. Published by Elsevier B.V.

  2. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.

    PubMed

    Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja

    2016-08-23

    Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.

  3. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.

    PubMed

    Vogt, E T C; Weckhuysen, B M

    2015-10-21

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.

  4. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis

    PubMed Central

    2015-01-01

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875

  5. A Sensor Based on LiCl/NaA Zeolite Composites for Effective Humidity Sensing.

    PubMed

    Zhang, Ying; Xiang, Hongyu; Sun, Liang; Xie, Qiuhong; Liu, Man; Chen, Yu; Ruan, Shengping

    2018-03-01

    LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

  6. Modification of ferrierite through post-synthesis treatments. Acidic and catalytic properties

    NASA Astrophysics Data System (ADS)

    Brylewska, Kamila; Tarach, Karolina A.; Mozgawa, Włodzimierz; Olejniczak, Zbigniew; Filek, Urszula; Góra-Marek, Kinga

    2016-12-01

    The main emphasis of this work was placed on a detailed characterization of structural, textural and acidic properties of FER zeolites with different Si/Al ratios in terms of their activity in ethanol dehydration reaction. Subsequent dealumination and desilication procedures were found to be an efficient methods of a secondary system of mesopore generation in the ferrierite crystals with preservation of their microporous characteristics. Through ethanol dehydration both the acidic and the textural features have a significant influence on catalytic performance of hierarchical ferrierites. It was shown that higher catalytic activity and selectivity to ethylene is ensured by zeolites with highly preserved microporous characteristic, i.e. well-developed micropore area and intrinsic acidity.

  7. Influence of sodalite zeolite infiltration on the coefficient of thermal expansion and bond strength of all-ceramic dental prostheses.

    PubMed

    Naji, Ghassan Abdul-Hamid; Omar, Ros Anita; Yahya, Rosiyah

    2017-03-01

    In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties.

    PubMed

    Coutiño-Gonzalez, Eduardo; Baekelant, Wouter; Steele, Julian A; Kim, Cheol Woong; Roeffaers, Maarten B J; Hofkens, Johan

    2017-09-19

    Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Ag n , n < 10) were recently shown to also exhibit exceptional optical properties. The optical properties and performance of Ag-CLs offer strong potential for their integration into appealing micro(nano)-optoelectronic devices. To date, however, the rational design and directed synthesis of Ag-CLs with specific functionalities has remained elusive. The inability for rational design stems mainly from a lack of understanding of their novel atomic-scale phenomena. This is because accurately studying silver cluster systems at such a scale is hindered by the perturbations introduced during exposure to various experimental probes. For instance, silver possesses a strong tendency to cluster and form ever-larger Ag aggregates while probed with high-energy electron beams and X-ray irradiation. As well, there exists a need to provide a stabilizing environment for which Ag n δ+ clusters can persist, setting up a complex interacting guest-host system, as isolated silver clusters are confined within a suitable hosting medium. Fundamental research into Ag n δ+ formation mechanisms and their important optical properties is paramount to establishing truly informed synthesis protocols. Over recent years, we have developed several protocols for the ship-in-a-bottle synthesis of highly luminescent Ag-CLs within the microporous interiors of zeolite frameworks. This approach has yielded materials displaying a wide variety of optical properties, offering a spectrum of possible applications, from nano(micro)photonic devices to smart luminescent labels and sensors. The versatility of the Ag-zeolite multicomponent system is directly related to the intrinsic and complex tunability of the system as a whole. There are several key zeolite parameters that confer properties to the clusters, namely, the framework Si/Al ratio, choice of counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

  9. Sequestration and disposal of dissolved Cs+ using zeolite 13X

    NASA Astrophysics Data System (ADS)

    Park, M.; Park, J.; Jeong, H. Y.

    2017-12-01

    Low-to-intermediate level liquid radioactive wastes (LILLW) typically contain high levels of radioactive 137Cs. Due to the great radiational and thermal stability as well as the high selectivity, zeolite has been commonly utilized to sequester radioactive isotopes from nuclear wastewater effluents. In this study, an Al-rich synthetic zeolite 13X was evaluated for the sorption capacity of Cs+ as a function of pH (4.0-10.5), ionic strength (0.05 and 0.2 M), and initial Cs+ concentration (1×10-6-5×10-3 M). For safe disposal, Cs+-exchanged 13X was both thermally and hydrothermally treated under different temperature and pressure. Subsequently, the resultant materials were examined for the phase transition by X-ray diffraction (XRD) and the local coordination chemistry by X-ray absorption spectroscopy (XAS). Our experimental results will detail the Cs+ sorption behavior by 13X under varying solution compositions. Also, the structural changes of Cs+-exchanged 13X upon thermal and hydrothermal treatment will be delineated to assess the stability of Cs+ in the treated materials.

  10. Photo-catalysis water splitting by platinum-loaded zeolite A

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Gao, Changda; Jing, Ming; Lu, Jian; Lin, Hui; Han, Zhaoxia; Ni, Zhengji; Zhang, Dawei

    2018-05-01

    Under the λ≥420 nm visible light illumination, the Pt4+ ions exchanged LTA zeolite powders without further heat-treatment presented H2 evolution at a rate of 5 μl/(15 mg·h) via photocatalysis water splitting. It was shown that the efficiency of H2 generation by the Pt4+ exchanged LTA zeolite powders without further heat-treatment was higher than the counterpart of the samples with heat treatment. In addition, the samples with lower Pt loading concentration showed higher H2 evolution rate than those of higher Pt loading did. The higher H2 evolution efficiency can be attributed to the effective isolation of water molecules and Pt at the atomic or the few atom ‘cluster’ scale by LTA zeolite’s periodical porous structure, which ensures a more efficient electron transfer efficiency for H2 evolution. However, after extra heat treatment, the Pt atoms reduced from Pt4+ in LTA zeolite’s cavities may tend to migrate to the surface and then form nano-particles, which led to the lower H2 evolution efficiency.

  11. Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Vasquez, Magdaleno R.

    2018-02-01

    Silver-exchanged zeolite-chitosan (AgZ-Ch) composites with varying AgZ content were prepared by solvent casting and modified under argon (Ar) plasma excited by a 13.56 MHz radio frequency (RF) power source. Silver (Ag) was successfully incorporated in a natural zeolite host without losing its antibacterial activity against Escherichia coli and Staphylococcus aureus. The AgZ particles were incorporated into a chitosan matrix without making significant changes in the matrix structure. The composites also exhibited antibacterial sensitivity due to the inclusion of AgZ. Plasma treatment enhanced the surface wettability of polar and nonpolar test liquids of the composites. The average increase in total surface free energy after treatment was around 49% with the polar component having a significant change. Cytocompatibility tests showed at least 87% cell viability for pristine and plasma-treated composites comparable with supplemented RPMI as positive control. Hemocompatibility tests revealed that pristine composites does not promote hemolysis and the blood clotting ability is less than 10 min. Coupled with antibacterial property, the fabricated composites have promising biomedical applications.

  12. Catalytic upgrading of bio-products derived from pyrolysis of red macroalgae Gracilaria gracilis with a promising novel micro/mesoporous catalyst.

    PubMed

    Norouzi, Omid; Tavasoli, Ahmad; Jafarian, Sajedeh; Esmailpour, Sasan

    2017-11-01

    Conversion of Gracilaria gracilis (G. gracilis) into bio-products was carried out via pyrolysis at different temperatures to determine its potential for phenol-rich bio-oil. Co-Mo supported on zeolites (HZSM-5), mesoporous (HMS) catalysts and their composites (ZH) were investigated and compared to each other on catalytic pyrolysis processes. In non-catalytic tests, the maximum weight percentage of bio-oil was 42wt% at 500°C and had the maximum amount of phenol (6.28wt%). in the catalytic tests by ZH composites; the addition of zeolite content in the structure of composites significantly decreased total concentrations of acetic acid and formic acid from 9.56 to 8.12wt% and slightly decreased phenol and furfural concentrations from 6.65 and 6.98 to 5.88 and 5.49wt%, respectively. Furthermore, the best selectivity for hydrogen yield (6.08mmol/g macroalgae) and lowest amount of acetic acid (5.4wt%) was observed for CoMo/ZH-20 catalyst, that is synthesized by 20wt% of zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characterization of Water and CO2 Adsorption by Stores 3A Desiccant Samples Using Thermal Gravimetric Analysis and Fourier Transform Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIVERA, DION A.; ALAM, M. KATHLEEN; MARTIN, LAURA

    2003-02-01

    Two lots of manufactured Type 3a zeolite samples were compared by TGA/IR analysis. The first lot, obtained from Davidson Chemical, a commercial vendor, was characterized during the previous study cycle for its water and water-plus-CO{sub 2} uptake in order to determine whether CO{sub 2} uptake prevented water adsorption by the zeolite. It was determined that CO{sub 2} did not hamper water adsorption using the Davidson zeolite. CO{sub 2} was found on the zeolite surface at dewpoints below -40 C, however it was found to be reversibly adsorbed. During the course of the previous studies, chemical analyses revealed that the Davidsonmore » 3a zeolite contained calcium in significant quantities, along with the traditional counterions potassium and sodium. Chemical analysis of a Type 3a zeolite sample retrieved from Kansas City (heretofore referred to as the ''Stores 3a'' sample) indicated that the Stores sample was a more traditional Type 3a zeolite, containing no calcium. TGA/IR studies this year focused on obtaining CO{sub 2} and water absorbance data from the Stores 3a zeolite. Within the Stores 3a sample, CO{sub 2} was found to be reversibly absorbed within the sample, but only at and below -60 C with 5% CO{sub 2} loading. The amount of CO{sub 2} observed eluting from the Stores zeolite at this condition was similar to what was observed from the Davidson zeolite sample but with a greater uncertainty in the measured value. The results of the Stores 3a studies are summarized within this report.« less

  14. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  15. Molecular simulation of water removal from simple gases with zeolite NaA.

    PubMed

    Csányi, Eva; Ható, Zoltán; Kristóf, Tamás

    2012-06-01

    Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

  16. Changing of Sumatra backswamp peat properties by seawater and zeolite application

    NASA Astrophysics Data System (ADS)

    Sarifuddin; Nasution, Z.; Rauf, A.; Mulyanto, B.

    2018-02-01

    This research attempts to improve the properties of backswamp peatsoil originated from Asahan District, North Sumatra Indonesia by adding sea water and zeolite using factorial randomized block design with volume of sea water as first factor, consisting of without seawater, 500 ml, 1000 ml and 1500 ml and second factor are dosages of zeolite consisting of without zeolite, 100 g, 200 g each 10 kgs of wet peat soil. at green house in faculty of agriculture University of Sumatra Utara (USU) Medan, Indonesia. The result showed that the application of seawater decreased pH, C/N and Cation Exchange Capacity and increased of base saturation of peat soil. Adding of zeolite minerals can buffered the increasing of acidity and Electric Conductivity caused by sea water application. Interaction seawater + zeolite decreased of C/N and increased of percent of base saturation.

  17. Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta.

    PubMed

    Kang, Jin; Liu, Huijuan; Zheng, Yu-Ming; Qu, Jiuhui; Chen, J Paul

    2011-02-01

    Extensive usage of tetracycline has resulted in its contamination in surface water and groundwater. The adsorption of tetracycline on zeolite beta was systematically investigated for the decontamination of the antibiotic polluted water in this study. Ninety percent of uptake by the zeolite beta occured in 0.25h, and the adsorption equilibrium was obtained within 3h, which was well described by an intraparticle diffusion model. The adsorption generally increased when pH was increased from 4.0 to 5.0, and then decreased significantly as the pH was further increased, which was caused by the pH-dependent speciation of tetracycline and surface charge of zeolite beta. Both Freundlich and Langmuir equations well described the adsorption isotherm. A thermodynamic analysis showed that the sorption process was spontaneous and endothermic. Aluminum atoms in the zeolite played a crucial role in the uptake; the adsorption increased with the increasing aluminum content in zeolite. The UV-Visible spectroscopy study showed that the spectra of tetracycline changed upon the interaction with zeolite beta, which could be ascribed to the formation of complexes of tetracycline and aluminum atoms in the zeolite surface. Nuclear magnetic resonance spectroscopy study further confirmed the participation of Al in the tetracycline adsorption. Fourier transform infrared spectroscopy studies showed that the amino functional groups in tetracycline were involved in the complexation with the zeolite surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    PubMed Central

    Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji

    2013-01-01

    Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241

  19. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  20. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals

    NASA Astrophysics Data System (ADS)

    Che, Congcong; Glotch, Timothy D.; Bish, David L.; Michalski, Joseph R.; Xu, Wenqian

    2011-05-01

    Phyllosilicates on Mars mapped by infrared spectroscopic techniques could have been affected by dehydration and/or dehydroxylation associated with chemical weathering in hyperarid conditions, volcanism or shock heating associated with meteor impact. The effects of heat-induced dehydration and/or dehydroxylation on the infrared spectra of 14 phyllosilicates from four structural groups (kaolinite, smectite, sepiolite-palygorskite, and chlorite) and two natural zeolites are reported here. Pressed powders of size-separated phyllosilicate and natural zeolite samples were heated incrementally from 100°C to 900°C, cooled to room temperature, and measured using multiple spectroscopic techniques: midinfrared (400-4000 cm-1) attenuated total reflectance, midinfrared reflectance (400-1400 cm-1), and far-infrared reflectance (50-600 cm-1) spectroscopies. Correlated thermogravimetric analysis and X-ray diffraction data were also acquired in order to clarify the thermal transformation of each sample. For phyllosilicate samples, the OH stretching (˜3600 cm-1), OH bending (˜590-950 cm-1), and/or H2O bending (˜1630 cm-1) bands all become very weak or completely disappear upon heating to temperatures > 500°C. The spectral changes associated with SiO4 vibrations (˜1000 cm-1 and ˜500 cm-1) show large variations depending on the compositions and structures of phyllosilicates. The thermal behavior of phyllosilicate IR spectra is also affected by the type of octahedral cations. For example, spectral features of Al3+-rich smectites are more stable than those of Fe3+-rich smectites. The high-temperature (>800°C) spectral changes of trioctahedral Mg2+-rich phyllosilicates such as hectorite, saponite, and sepiolite result primarily from crystallization of enstatite. Phyllosilicates with moderate Mg2+ concentration (e.g., palygorskite, clinochlore) and dioctahedral montmorillonites (e.g., SAz-1 and SCa-3) with partial Mg2+-for-Al3+ substitution all have new spectral feature developed at ˜900 cm-1 upon heating to 800°C. Compared with phyllosilicates, spectral features of two natural zeolites, clinoptilolite and mordenite, are less affected by thermal treatments. Even after heating to 900°C, the IR spectral features attributed to Si (Al)-O stretching and bending vibration modes do not show significant differences from those of unheated zeolites.

Top