Science.gov

Sample records for zero energy balance

  1. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  2. Zero Energy Use School.

    ERIC Educational Resources Information Center

    Nelson, Brian, Ed.; And Others

    The economic and physical realities of an energy shortage have caused many educators to consider alternative sources of energy when constructing their schools. This book contains studies and designs by fifth-year architecture students concerning the proposed construction of a zero energy-use elementary school in Albany, Oregon. "Zero energy…

  3. Zero Energy Districts

    SciTech Connect

    Polly, Benjamin J

    This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.

  4. The paradoxical zero reflection at zero energy

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Sharma, Vibhu; Sharma, Mayank; Singhal, Ankush; Kaiwart, Rahul; Priyadarshini, Pallavi

    2017-03-01

    Usually, the reflection probability R(E) of a particle of zero energy incident on a potential which converges to zero asymptotically is found to be 1: R(0)=1. But earlier, a paradoxical phenomenon of zero reflection at zero energy (R(0)=0) has been revealed as a threshold anomaly. Extending the concept of half-bound state (HBS) of 3D, here we show that in 1D when a symmetric (asymmetric) attractive potential well possesses a zero-energy HBS, R(0)=0 (R(0)\\ll 1). This can happen only at some critical values q c of an effective parameter q of the potential well in the limit E\\to {0}+. We demonstrate this critical phenomenon in two simple analytically solvable models: square and exponential wells. However, in numerical calculations, even for these two models R(0)=0 is observed only as extrapolation to zero energy from low energies, close to a precise critical value q c. By numerical investigation of a variety of potential wells, we conclude that for a given potential well (symmetric or asymmetric), we can adjust the effective parameter q to have a low reflection at a low energy.

  5. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect

    Pless, S.; Scheib, J.; Torcellini, P.

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less

  6. From Zero Energy Buildings to Zero Energy Districts

    SciTech Connect

    Polly, Ben; Kutscher, Chuck; Macumber, Dan

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assistmore » them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.« less

  7. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  8. Zero Energy Schools: The Challenges

    SciTech Connect

    Torcellini, Paul A

    School buildings have a lot of potential to achieve zero energy (ZE) in new construction as well as in retrofits. There are many examples of schools operating at ZE, and many technical resources available to guide school districts and their design and construction teams through the process. When school districts embark on the path to ZE, however, they often confront challenges related to processes and a perception that ZE buildings require 'new,' unconventional, and expensive technologies, materials, or equipment. Here are some of the challenges school districts and their design and construction teams commonly encounter, and the solutions they usemore » to overcome them.« less

  9. Torsion balances with fibres of zero length

    NASA Astrophysics Data System (ADS)

    Speake, Clive C.; Collins, Christopher J.

    2018-04-01

    Torsion balances have good immunity to tilt and low rotational stiffness. However precise control of the position of the suspended torsion 'bob' is difficult in the presence of ground vibrations and tilt and this is a limiting factor in applications where Casimir forces or putative non-Newtonian short-range forces are being measured. We describe how the desirable characteristics of torsion balances can be reproduced in a rigid body that is suspended using applied forces rather than a torsion fibre. The suspension system can then provide a more precise control of the degrees of freedom of the suspended body. We apply these ideas to a superconducting levitated torsion balance, developed by the authors, and a generic electrostatic suspension. We present results of preliminary experiments that provide support for our analyses.

  10. U. S. goal: zero energy growth

    SciTech Connect

    McCulla, J.

    Commentary:as envisioned by the ford foundation's energy policy project, zero energy growth would not mean austerity, but a better living standard for everyone. With sufficient incentive, industry could cut energy demand by 10-15% by 1980. Upgraded federal housing admin. standards for new dwellings could require more insulation. Electric heat, an energy waster of growing prominence, should be curbed. The logic in federal support of zero economic growth is defined.

  11. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  12. Zero Energy Schools: Architects Take the Lead

    SciTech Connect

    Torcellini, Paul A

    Zero energy schools are possible and practical, and architects are leading the way. Imagine a school so inviting that students want to come to school. Now imagine this school housed in a beautiful, light-filled building that produces more energy on an annual basis than it uses. Finally, imagine that the district built this school on the same budget as a conventional school, using typical materials, equipment, and tradespeople. Sound too good to be true Discovery Elementary School in Arlington, Virginia, is living proof that zero energy (ZE) schools are feasible, affordable, and sensible.

  13. Zero Energy Schools--Beyond Platinum

    ERIC Educational Resources Information Center

    Hutton, Paul C.

    2011-01-01

    One of the fastest growing trends in school design is Net Zero Energy Schools. There are now at least a dozen or more schools completed or in construction that have achieved, or have committed to, this incredible level of energy efficiency. In this article, the author examines this trend and take a brief look at some of the exemplary projects that…

  14. Appetite and energy balancing.

    PubMed

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  16. Zero Energy Schools: Designing for the Future: Zero Energy Ready K-12 Schools

    SciTech Connect

    Torcellini, Paul A

    Designing, building, and operating zero energy ready K-12 schools provides benefits for districts, students, and teachers. Optimizing energy efficiency is important in any building, but it's particularly important in K-12 schools. Many U.S. school districts struggle for funding, and improving a school building's energy efficiency can free up operational funds that may then be available for educational and other purposes.

  17. A Conversation on Zero Net Energy Buildings

    SciTech Connect

    Eley, Charles; Gupta, Smita; Torcellini, Paul

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute;more » Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.« less

  18. Army Net Zero Prove Out. Net Zero Energy Best Practices

    DTIC Science & Technology

    2014-11-18

    energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy

  19. Zero point energy of polyhedral water clusters.

    PubMed

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  20. Targeting Net Zero Energy for Military Installations (Presentation)

    SciTech Connect

    Burman, K.

    2012-05-01

    Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  1. Astrophysical factors: Zero energy vs most effective energy

    NASA Astrophysics Data System (ADS)

    Liolios, Theodore E.

    2001-07-01

    Effective astrophysical factors for nonresonant astrophysical nuclear reaction are usually calculated with respect to a zero-energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective-energy limit. The latter is used in order to modify the thermonuclear reaction rate formula in stellar evolution codes so that it takes into account both plasma and laboratory screening effects.

  2. Balancing the Energy Pendulum.

    ERIC Educational Resources Information Center

    MacKinnon, Sharon

    1987-01-01

    The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)

  3. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  4. Technical Feasibility Study for Zero Energy K-12 Schools

    SciTech Connect

    Bonnema, Eric; Goldwasser, David; Torcellini, Paul

    This technical feasibility study provides documentation and research results supporting a possible set of strategies to achieve source zero energy K-12 school buildings as defined by the U.S. Department of Energy (DOE) zero energy building (ZEB) definition (DOE 2015a). Under this definition, a ZEB is an energy-efficient building in which, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

  5. Energy performance of net-zero and near net-zero energy homes in New England

    NASA Astrophysics Data System (ADS)

    Thomas, Walter D.

    Net-Zero Energy Homes (NZEHs) are homes that consume no more energy than they produce on site during the course of a year. They are well insulated and sealed, use energy efficient appliances, lighting, and mechanical equipment, are designed to maximize the benefits from day lighting, and most often use a combination of solar hot water, passive solar and photovoltaic (PV) panels to produce their on-site energy. To date, NZEHs make up a miniscule percentage of homes in the United States, and of those, few have had their actual performance measured and analyzed once built and occupied. This research focused on 19 NZEHs and near net-zero energy homes (NNZEHs) built in New England. This set of homes had varying designs, numbers of occupants, and installed technologies for energy production, space heating and cooling, and domestic hot water systems. The author worked with participating homeowners to collect construction and systems specifications, occupancy information, and twelve months of energy consumption, production and cost measurements, in order to determine whether the homes reached their respective energy performance design goals. The author found that six out of ten NZEHs achieved net-zero energy or better, while all nine of the NNZEHs achieved an energy density (kWh/ft 2/person) at least half as low as the control house, also built in New England. The median construction cost for the 19 homes was 155/ft 2 vs. 110/ft2 for the US average, their average monthly energy cost was 84% below the average for homes in New England, and their estimated CO2 emissions averaged 90% below estimated CO2 emissions from the control house. Measured energy consumption averaged 14% below predictions for the NZEHs and 38% above predictions for the NNZEHs, while generated energy was within +/- 10% of predicted for 17 out of 18 on-site PV systems. Based on these results, the author concludes that these types of homes can meet or exceed their designed energy performance (depending on

  6. Alternative Fuels Data Center: Lifecycle Energy Balance

    Science.gov Websites

    Energy Balance to someone by E-mail Share Alternative Fuels Data Center: Lifecycle Energy Balance on Facebook Tweet about Alternative Fuels Data Center: Lifecycle Energy Balance on Twitter Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Google Bookmark Alternative Fuels Data Center

  7. Technical Feasibility Study for Zero Energy K-12 Schools

    SciTech Connect

    Pless, Shanti D.; Torcellini, Paul A.; Bonnema, Eric

    A simulation-based technical feasibility study was completed to show the types of technologies required to achieve ZEB status with this building type. These technologies are prioritized across the building's subsystem such that design teams can readily integrate the ideas. Energy use intensity (EUI) targets were established for U.S. climate zones such that K-12 schools can be zero-ready or can procure solar panels or other renewable energy production sources to meet the zero energy building definition. Results showed that it is possible for K-12 schools to achieve zero energy when the EUI is between 20 and 26 kBtu/ft2/yr. Temperate climates requiredmore » a smaller percentage of solar panel coverage than very hot or very cold climates. The paper provides a foundation for technically achieving zero energy schools with a vision of transforming the school construction market to mainstream zero energy buildings within typical construction budgets.« less

  8. Zero kinetic energy photoelectron spectroscopy of triphenylene.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  9. Skylight energy balance analysis procedure

    SciTech Connect

    Dietz, P.S.; Murdoch, J.B.; Pokoski, J.L.

    1981-10-01

    This paper provides a systematic method for calculating the total, net differential energy balance observed when sections of the roof of a building are replaced with skylights. Among the topics discussed are the effect of solar gains, dome and curb conduction heat transfers, equivalent roof area heat transfers, infiltration heat transfers, artificial lighting energy requirements, and illumination savings from skylights. The paper also provides much of the supplementary information needed to complete these energy calculations. This information appears in the form of appendices, tables, and graphs. 9 refs.

  10. Energy landscape of social balance.

    PubMed

    Marvel, Seth A; Strogatz, Steven H; Kleinberg, Jon M

    2009-11-06

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  11. Federal Campuses Handbook for Net Zero Energy, Water, and Waste

    SciTech Connect

    None

    In 2015, the U.S. Department of Energy’s Office Energy Efficiency and Renewable Energy (EERE) defined a zero energy campus as "an energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy campuses to federal sector campuses. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  12. Design and optimization of zero-energy-consumption based solar energy residential building systems

    NASA Astrophysics Data System (ADS)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  13. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    SciTech Connect

    Booth, S.; Barnett, J.; Burman, K.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less

  14. Observable consequences of zero-point energy

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.

    2017-12-01

    Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.

  15. The bricycle: a bicycle in zero gravity can be balanced or steered but not both

    NASA Astrophysics Data System (ADS)

    Dong, O.; Graham, C.; Grewal, A.; Parrucci, C.; Ruina, A.

    2014-12-01

    A bicycle or inverted pendulum can be balanced, that is kept nearly upright, by accelerating the base. This balance is achieved by steering on a bicycle. Simultaneously one can also control the lateral position of the base: changing of the track line of a bike or the position of hand under a balanced stick. We show here with theory and experiment that if the balance problem is removed, by making the system neutrally stable for balance, one cannot simultaneously maintain balance and control the position of the base. We made a bricycle, essentially a bicycle with springy training wheels. The stiffness of the training wheel suspension can be varied from near infinite, making the bricycle into a tricycle, to zero, making it effectively a bicycle. The springy training wheels effectively reduce or even negate gravity, at least for balance purposes. One might expect a smooth transition from tricycle to bicycle as the stiffness is varied, in terms of handling, balance and feel. Not so. At an intermediate stiffness, when gravity is effectively zeroed, riders can balance easily but no longer turn. Small turns cause an intolerable leaning. Thus there is a qualitative difference between bicycles and tricycles, a difference that cannot be met halfway.

  16. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov Websites

    -by-step information for decision making around net-zero energy building technologies. The past three improved insulation, windows, and heating and cooling systems. Despite these strides, energy use by energy building methodologies and technologies during a tour of the RSF's rooftop PV system. Photo by

  17. Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.

  18. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  19. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  20. Energy balance and the composition of weight loss during prolonged space flight

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    Integrated metabolic balance analysis, Skylab integrated metabolic balance analysis and computer simulation of fluid-electrolyte responses to zero-g, overall mission weight and tissue losses, energy balance, diet and exercise, continuous changes, electrolyte losses, caloric and exercise requirements, and body composition are discussed.

  1. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  2. Energy balance and stability. [in stellar coronae

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1982-01-01

    The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained.

  3. Uncertainty relations, zero point energy and the linear canonical group

    NASA Technical Reports Server (NTRS)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  4. NREL and Army Validate Energy Savings for Net Zero Energy Installations |

    Science.gov Websites

    News | NREL and Army Validate Energy Savings for Net Zero Energy Installations News Release : NREL and Army Validate Energy Savings for Net Zero Energy Installations October 27, 2014 The U.S. Army (Army) has partnered with the Energy Department's National Renewable Energy Laboratory (NREL) to

  5. Zero Energy Building Pays for Itself: Odyssey Elementary

    SciTech Connect

    Torcellini, Paul A

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less

  6. Community-Wide Zero Energy Ready Home Standard

    SciTech Connect

    Herk, A.; Beggs, T.

    This report outlines the steps a developer can use when looking to create and implement higher performance standards such as the U.S. Department of Energy (DOE) Zero Energy Ready Home (ZERH) standards in a community. The report also describes the specific examples of how this process was followed by a developer, Forest City, in the Stapleton community in Denver, Colorado. IBACOS described the steps used to begin to bring the DOE ZERH standard to the Forest City Stapleton community based on 15 years of community-scale development work done by IBACOS. As a result of this prior IBACOS work, the teammore » gained an understanding of the various components that a master developer needs to consider and created strategies for incorporating those components in the initial phases of development to achieve higher performance buildings in the community. An automated scoring system can be used to perform an internal audit that provides a detailed and consistent evaluation of how several homes under construction or builders' floor plans compare with the requirements of the DOE Zero Energy Ready Home program. This audit can be performed multiple times at specific milestones during construction to allow the builder to make changes as needed throughout construction for the project to meet Zero Energy Ready Home standards. This scoring system also can be used to analyze a builder's current construction practices and design.« less

  7. Water Electrolyzers and the Zero-Point Energy

    NASA Astrophysics Data System (ADS)

    King, M. B.

    The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.

  8. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  9. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    SciTech Connect

    Anderson, R.; Roberts, D.

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  10. Vibrational zero point energy for H-doped silicon

    NASA Astrophysics Data System (ADS)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  11. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  12. Water and energy balances in the soil-plant atmosphere continuum

    USDA-ARS?s Scientific Manuscript database

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  13. D-tagatose is a bulk sweetener with zero energy determined in rats.

    PubMed

    Livesey, G; Brown, J C

    1996-06-01

    The ketohexose D-tagatose is readily oxidized but contributes poorly to lipid deposition. We therefore examined whether this sugar contributes to energy requirements by determining its net metabolizable energy value in rats. All substrate-induced energy losses from D-tagatose, with sucrose as reference standard, were determined as a single value accounting for the sum of the energy losses to feces, urine, gaseous hydrogen and methane and substrate-induced thermogenesis. A randomized parallel design involving two treatment periods (adaptation to D-tagatose and subsequent energy balance) and two control groups (to control for treatment effects in each period) was used. Rats consumed 1.8 g test carbohydrate daily as a supplement to a basal diet for a 40- or 41-d balance period after prior adaptation for 21 d. Growth, protein and lipid deposition were unaffected by supplementary gross energy intake from D-tagatose compared with an unsupplemented control, but sucrose significantly (P < 0.05) increased all three. Based on the changes induced in protein and fat gain during the balance period it was calculated that D-tagatose contributed -3 +/- 14% of its heat of combustion to net metabolizable energy, and therefore this ketohexose effectively has a zero energy value. D-Tagatose would potentially be helpful in body weight control, especially in diabetic subjects because of its antidiabetogenic effects.

  14. Army Reserve Expands Net Zero Energy, Water, Waste

    SciTech Connect

    Solana, Amy E.

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  15. Balancing specificity, sensitivity, and speed of ligand discrimination by zero-order ultraspecificity

    NASA Astrophysics Data System (ADS)

    Kajita, Masashi K.; Aihara, Kazuyuki; Kobayashi, Tetsuya J.

    2017-07-01

    Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.

  16. Net Zero Energy Manufactured Homes May Be on their Way

    SciTech Connect

    Gilbride, Theresa L.; Dentz, Jordan

    This article, published in Home Energy Magazine, describes a research project sponsored by the U.S. Department of Energy's Building America program, to construct and test the first manufactured home in the United States built to the performance criteria of DOE's Zero Energy Ready Home program. A 15-month study was conducted to compare the real-world performance of the DOE Zero Energy Ready home and two other manufactured homes - one built to just above industry standard construction and one built to the ENERGY STAR Certified Home criteria. The homes were built by Clayton Homes' Southern Energy Division and testing was sponsoredmore » by DOE's Building America program and conducted by the Levy Partnership. The DOE ZERH had increased initial construction costs of $6,607 compared to the standard home versus $4,340 for the ENERGY STAR home but reduced energy bills by $50 per month compared to a $33/month savings for the ENERGY STAR home, and monthly savings will continue for the life of the home. Savings were especially noticeable in the summer in this cooling-dominated test location. The DOE ZERH cut cooling costs in half compared to the ENERGY STAR home which performed only slightly better than the standard home in summer, while winter savings between the two advanced homes were more similar. Two technology advances were tested in the DOE ZERH home. Instead of the typical ducted heating and cooling system, the DOE ZERH home was equipped with a ductless heat pump; to condition the bedroom, holes were cut into bedroom walls and small fans were installed to pull air into those rooms, while door undercuts and transfer grilles provide return paths. A novel dense-pack attic insulation was also implemented.« less

  17. Energy Landscape of Social Balance

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  18. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  19. Energy balance in lactating undernourished Indian women.

    PubMed

    Madhavapeddi, R; Rao, B S

    1992-05-01

    An energy balance study was conducted in eight lactating poor-income Indian women from delivery to 6 months. Energy intake and expenditure were assessed for 7 days every month (30-37 days). Every month, basal metabolic rate (BMR) and milk ingested by infants was measured. An energy balance was computed. As a group these women were in energy balance, indicated by small body weight changes with respect to time. However, only two of these women were in a positive energy balance. Women with higher body weight lost more weight. Estimated mean energy intake was higher than energy expenditure. BMR showed a slight but not significant fall during the second month of lactation and was not different from the BMR seen in 13 non-pregnant, non-lactating women matched for body weight from the staff of the Institute. The energy cost of lactation was 2.3 MJ (549 kcal), a figure that justifies the Recommended Dietary Allowance for energy recommended by FAO/WHO/UNU (1985) and ICMR (1989).

  20. Zero-Energy Optical Logic: Can It Be Practical?

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    The thermodynamic “permission” to build a device that can evaluate a sequence of logic operations that operate at zero energy has existed for about 40 years. That is, physics allows it in principle. Conceptual solutions have been explored ever since then. A great number of important concepts were developed in so doing. Over the last four years, my colleagues and I have explored the possibility of a constructive proof. And we finally succeeded. Somewhat unexpectedly, we found such a proof and found that lossless logic systems could actually be built. And, as we had anticipated, it can only be implemented by optics. That raises a new question: Might an optical zero-energy logic system actually be good enough to displace electronic versions in some cases? In this paper, I do not even try to answer that question, but I do lay out some problems now blocking practical applications and show some promising approaches to solving them. The problems addressed are speed, size, and error rate. The anticipated speed problem simply vanishes, as it was an inference from the implicit assumption that the logic would be electronic. But the other two problems are real and must be addressed if energy-free logic is to have any significant applications. Initial steps in solving the size and error rate are addressed in more detail.

  1. Intelligent Controls for Net-Zero Energy Buildings

    SciTech Connect

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  2. Energy Balance of Rural Ecosystems In India

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Madhava Rao, V.; Hermon, R. R.; Garg, A.; Nag, T.; Bhaskara Rao, N.; Sharma, A.; Parihar, J. S.

    2014-11-01

    India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013-14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from -18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy

  3. Zero Energy Is an A+ for Education: Discovery Elementary

    SciTech Connect

    Torcellini, Paul A

    Currently experiencing a population boom, Arlington County is facing massive growth in the next decade and is seeking to add half a million square feet in educational facilities. During competitive design procurement, one of the teams suggested a zero energy goal could be accomplished within the given budget. Proponents at the district level who had been championing energy efficiency were receptive because sustainability was a core value of the project from the start, but they were skeptical that it could be done within the budget aimed at LEED Silver. Not only did the project end up coming under budget, includingmore » the solar array, but the building is more efficient than the originally predicted. Now Discovery saves $100,000 per year in utility costs, enough to cover the salaries of two teachers.« less

  4. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the

  5. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  6. Using Zero Balance Ultrafiltration with Dialysate as a Replacement Fluid for Hyperkalemia during Cardiopulmonary Bypass

    PubMed Central

    Heath, Michele; Raghunathan, Karthik; Welsby, Ian; Maxwell, Cory

    2014-01-01

    Abstract: Avoiding or managing hyperkalemia during cardiac surgery, especially in a patient with chronic renal insufficiency, can be challenging. Hyperkalemic cardioplegia solution is usually administered to achieve and maintain an electrical arrest of the heart. This solution eventually mixes in with the systemic circulation, contributing to elevated systemic potassium levels. Administration of packed red blood cells, hemolysis, tissue damage, and acidosis are also common causes of hyperkalemia. Current strategies to avoid or manage hyperkalemia include minimizing the volume of cardioplegia administered, shifting potassium from the extracellular into the intracellular space (by the administration of sodium bicarbonate when the pH is low and/or dextrose–insulin when effects relatively independent of serum pH are desired), using zero-balanced ultrafiltration (Z-BUF) with normal saline as the replacement fluid (to remove potassium from the body rather than simply shift the electrolyte across cellular membranes), and, occasionally, hemodialysis (1). We report the application of Z-BUF using an electrolyte-balanced, low potassium dialysate solution rather than isotonic saline to avoid a high chloride load and the potential for hyperchloremic acidosis to successfully treat hyperkalemia while on cardiopulmonary bypass. PMID:26357794

  7. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  8. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  9. Kisspeptin and energy balance in reproduction.

    PubMed

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  10. Nexus of Poverty, Energy Balance and Health

    PubMed Central

    Mishra, C. P.

    2012-01-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  11. Motorizing fibres with geometric zero-energy modes

    NASA Astrophysics Data System (ADS)

    Baumann, Arthur; Sánchez-Ferrer, Antoni; Jacomine, Leandro; Martinoty, Philippe; Le Houerou, Vincent; Ziebert, Falko; Kulić, Igor M.

    2018-06-01

    Responsive materials1-3 have been used to generate structures with built-in complex geometries4-6, linear actuators7-9 and microswimmers10-12. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible13. Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.

  12. Zero-point energy effects in anion solvation shells.

    PubMed

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  13. Towards a Net Zero Building Cluster Energy Systems Analysis for US Army Installations

    DTIC Science & Technology

    2011-05-01

    depending on the alternative chosen. Since the proposed energy efficiency work includes the implementation of DOAS and high efficiency dehumidification ...cluster Net Zero fossil fuel energy. The recommended, integrated energy solution demonstrates that vastly improved energy efficiency and greenhouse gas

  14. U.S. Department of Energy Zero Energy Ready Home Implementation

    SciTech Connect

    VonThoma, E.; Mosiman, G.

    This report documents the process and outcomes involved in achieving the U.S. Department of Energy Zero Energy Ready Home (ZERH) program certification standards while helping homebuilders in Climate Zones 5 and 6 in the Upper Midwest achieve ZERH certification.

  15. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  16. Evaluation of Two Energy Balance Closure Parametrizations

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  17. Student-on-Student Harassment and Zero Tolerance: Achieving a Delicate Balance

    ERIC Educational Resources Information Center

    Essex, Nathan L.

    2009-01-01

    Zero tolerance policy. Most school districts have a zero tolerance policy in place for drug use, weapons on campus, sexual harassment, or all of the above. At their very core, zero tolerance policies make schools safer. However, a one-size-fits-all approach does not work well in all situations involving student misconduct. This article outlines…

  18. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infraredmore » radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.« less

  19. Energy-balanced algorithm for RFID estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan

    2016-10-01

    RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.

  20. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    SciTech Connect

    Not Available

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for themore » homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.« less

  1. Traction Drives for Zero Stick-Slip Robots, and Reaction Free, Momentum Balanced Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William; Newman, Wyatt

    1995-01-01

    Balanced (Grounded Ring) Drive performed as expected kinematically. Reduction r-atios to the two counterrotating outputs (design nominal=24:1) were measured to be 23.98:1 and 24.12:1 at zero load.. At 25ONm (2200 in-lbf) output torque the ratio changed 2% due to roller creep. This drive was the smoothest of all three as determined from linearity and cogging tests, and maximum measured efficiency (ratio of power out to power in) was 95%. The disadvantages of full preloading as comvared to variable preload were apparent in this drive as in the Differential Roller Drive. Efficiencies at part load were low, but improved dramatically with increases in torque. These were consistent with friction measurements which indicated losses primarily from Coulomb friction. The initial preload level setting was low so roller slip was encountered at higher torques during testing.

  2. Energy balance comparison of sorghum and sunflower

    NASA Astrophysics Data System (ADS)

    Rachidi, F.; Kirkham, M. B.; Kanemasu, E. T.; Stone, L. R.

    1993-03-01

    An understanding of the energy exchange processes at the surface of the earth is necessary for studies of global climate change. If the climate becomes drier, as is predicted for northern mid-latitudes, it is important to know how major agricultural crops will play a role in the budget of heat and moisture. Thus, the energy balance components of sorghum [ Sorghum bicolor (L.) Moench.] and sunflower ( Helianthus annuus L.), two drought-resistant crops grown in the areas where summertime drying is forecasted, were compared. Soil water content and evapotranspiration ( ET) rates also were determined. Net radiation was measured with net radiometers. Soil heat flux was analyzed with heat flux plates and thermocouples. The Bowen ratio method was used to determine sensible and latent heat fluxes. Sunflower had a higher evapotranspiration rate and depleted more water from the soil than sorghum. Soil heat flux into the soil during the daytime was greater for sorghum than sunflower, which was probably the result of the more erect leaves of sorghum. Nocturnal net radiation loss from the sorghum crop was greater than that from the sunflower crop, perhaps because more heat was stored in the soil under the sorghum crop. But daytime net radiation values were similar for the two crops. The data indicated that models of climate change must differentiate nighttime net radiation of agricultural crops. Sensible heat flux was not always less (or greater) for sorghum compared to sunflower. Sunflower had greater daytime values for latent heat flux, reflecting its greater depletion of water from the soil. Evapotranspiration rates determined by the energy balance method agreed relatively well with those found by the water balance method. For example, on 8 July (43 days after planting), the ET rates found by the energy-balance and water-balance methods were 4.6 vs. 5.5 mm/day for sunflower, respectively; for sorghum, these values were 4.0 vs. 3.5 mm/day, respectively. If the climate does

  3. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    ERIC Educational Resources Information Center

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  4. Energy Balance Bowen Ratio (EBBR) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less

  5. Energy Balance Bowen Ratio Station (EBBR) Handbook

    SciTech Connect

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less

  6. DOE Zero Energy Ready Home Case Study: Palo Duro Homes — Palo Duro Homes, Albuquerque, NM

    SciTech Connect

    none,

    2014-09-01

    This builder was honored for Most DOE Zero Energy Ready Homes Built in the 2014 Housing Innovation Awards. By July 2014, Palo Duro had completed 152 homes since the program began in 2013 (under the original program title DOE Challenge Home), all of them certified to the stringent efficiency requirements of DOE’s Zero Energy Ready Home program.

  7. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    PubMed

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  8. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  9. Exercise, Energy Balance and the Shift Worker

    PubMed Central

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don; Waterhouse, Jim

    2009-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst ‘white collar’ occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep-deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality have not been confirmed in shift workers. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. ‘Normal’ eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomised controlled studies on the efficacy of

  10. Sleep patterns, diet quality and energy balance.

    PubMed

    Chaput, Jean-Philippe

    2014-07-01

    There is increasing evidence showing that sleep has an influence on eating behaviors. Short sleep duration, poor sleep quality, and later bedtimes are all associated with increased food intake, poor diet quality, and excess body weight. Insufficient sleep seems to facilitate the ingestion of calories when exposed to the modern obesogenic environment of readily accessible food. Lack of sleep has been shown to increase snacking, the number of meals consumed per day, and the preference for energy-rich foods. Proposed mechanisms by which insufficient sleep may increase caloric consumption include: (1) more time and opportunities for eating, (2) psychological distress, (3) greater sensitivity to food reward, (4) disinhibited eating, (5) more energy needed to sustain extended wakefulness, and (6) changes in appetite hormones. Globally, excess energy intake associated with not getting adequate sleep seems to be preferentially driven by hedonic rather than homeostatic factors. Moreover, the consumption of certain types of foods which impact the availability of tryptophan as well as the synthesis of serotonin and melatonin may aid in promoting sleep. In summary, multiple connections exist between sleep patterns, eating behavior and energy balance. Sleep should not be overlooked in obesity research and should be included as part of the lifestyle package that traditionally has focused on diet and physical activity. © 2013.

  11. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    SciTech Connect

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  12. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    SciTech Connect

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  13. Technology Solutions Case Study: Southern Energy Homes, First DOE Zero Energy Ready Manufactured Home

    SciTech Connect

    None

    The country’s first Zero Energy Ready manufactured home that is certified by the U.S. Department of Energy (DOE) is up and running in Russellville, Alabama. The manufactured home was built by a partnership between Southern Energy Homes and the Advanced Residential Integrated Energy Solutions Collaborative (ARIES), which is a DOE Building America team. The effort was part of a three-home study including a standard-code manufactured home and an ENERGY STAR® manufactured home. Cooling-season results showed that the building used half the space-conditioning energy of a manufactured home built to the U.S. Department of Housing and Urban Development’s (HUD’s) Manufactured Homemore » Construction and Safety Standards. These standards are known collectively as the HUD Code, which is the building standard for all U.S. manufactured housing.« less

  14. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  15. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect

    Burman, K.; Kandt, A.; Lisell, L.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaiimore » Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.« less

  16. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, William Newell; Thomas, Robert James

    1999-01-01

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast.

  17. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    PubMed

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  18. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    NASA Astrophysics Data System (ADS)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  19. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    SciTech Connect

    Pacific Northwest National Laboratory

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  20. Energy Use Consequences of Ventilating a Net-Zero Energy House

    PubMed Central

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  1. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    PubMed

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  2. Energy balance, physical activity, and cancer risk.

    PubMed

    Fair, Alecia Malin; Montgomery, Kara

    2009-01-01

    This chapter posits that cancer is a complex and multifactorial process as demonstrated by the expression and production of key endocrine and steroid hormones that intermesh with lifestyle factors (physical activity, body size, and diet) in combination to heighten cancer risk. Excess weight has been associated with increased mortality from all cancers combined and for cancers of several specific sites. The prevalence of obesity has reached epidemic levels in many parts of the world; more than 1 billion adults are overweight with a body mass index (BMI) exceeding 25. Overweight and obesity are clinically defined indicators of a disease process characterized by the accumulation of body fat due to an excess of energy intake (nutritional intake) relative to energy expenditure (physical activity). When energy intake exceeds energy expenditure over a prolonged period of time, the result is a positive energy balance (PEB), which leads to the development of obesity. This physical state is ideal for intervention and can be modulated by changes in energy intake, expenditure, or both. Nutritional intake is a modifiable factor in the energy balance-cancer linkage primarily tested by caloric restriction studies in animals and the effect of energy availability. Restriction of calories by 10 to 40% has been shown to decrease cell proliferation, increasing apoptosis through anti-angiogenic processes. The potent anticancer effect of caloric restriction is clear, but caloric restriction alone is not generally considered to be a feasible strategy for cancer prevention in humans. Identification and development of preventive strategies that "mimic" the anticancer effects of low energy intake are desirable. The independent effect of energy intake on cancer risk has been difficult to estimate because body size and physical activity are strong determinants of total energy expenditure. The mechanisms that account for the inhibitory effects of physical activity on the carcinogenic process

  3. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the

  4. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  5. Photon energy conversion by near-zero permittivity nonlinear materials

    SciTech Connect

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  6. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, W.N.; Thomas, R.J.

    1999-08-31

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast. 4 figs.

  7. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    SciTech Connect

    Williamson, J.; Puttagunta, S.

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  8. Weekly patterns, diet quality and energy balance.

    PubMed

    McCarthy, Sinéad

    2014-07-01

    Human behaviour is made up of many repeated patterns and habitual behaviours. Our day to day lives are punctuated by work, education, domestic chores, sleep and food. Changes in daily patterns such as not working in paid employment or attending school on the weekend contribute significantly to changes in dietary patterns of food consumption, patterns of physical activity and ultimately energy balance. The aim of this paper is to adopt a life-course perspective and explore the changes in dietary quality and physical activity patterns across the week from young children to elderly adults with a focus on Western cultures. Research literature indicates that the dietary quality is somewhat poorer on the weekends, characterised by higher fat intakes, higher alcohol intakes and consequently higher energy intakes. This increase in energy intake is not necessarily offset by an increase in activity, rather an increase in sedentary behaviours. Some research has observed an increase of more than 100 cal per day over the weekend in American adults. Over the course of one year, this can result in a significant increase in body mass. Some of the interventions in tackling obesity and diet related behaviours must focus on the changes in the weekend behaviour of consumers in terms of both food and activity. These efforts should also focus on increasing consumer awareness of the long term consequences of the short lived weekend excess as well as putting in place practical measures and interventions that are evidence based and targeted to consumer needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An energy balance of front crawl.

    PubMed

    Zamparo, P; Pendergast, D R; Mollendorf, J; Termin, A; Minetti, A E

    2005-05-01

    With the aim of computing a complete energy balance of front crawl, the energy cost per unit distance (C = Ev(-1), where E is the metabolic power and v is the speed) and the overall efficiency (eta(o) = W(tot)/C, where W(tot) is the mechanical work per unit distance) were calculated for subjects swimming with and without fins. In aquatic locomotion W(tot) is given by the sum of: (1) W(int), the internal work, which was calculated from video analysis, (2) W(d), the work to overcome hydrodynamic resistance, which was calculated from measures of active drag, and (3) W(k), calculated from measures of Froude efficiency (eta(F)). In turn, eta(F) = W(d)/(W(d) + W(k)) and was calculated by modelling the arm movement as that of a paddle wheel. When swimming at speeds from 1.0 to 1.4 m s(-1), eta(F) is about 0.5, power to overcome water resistance (active body drag x v) and power to give water kinetic energy increase from 50 to 100 W, and internal mechanical power from 10 to 30 W. In the same range of speeds E increases from 600 to 1,200 W and C from 600 to 800 J m(-1). The use of fins decreases total mechanical power and C by the same amount (10-15%) so that eta(o) (overall efficiency) is the same when swimming with or without fins [0.20 (0.03)]. The values of eta(o) are higher than previously reported for the front crawl, essentially because of the larger values of W(tot) calculated in this study. This is so because the contribution of W(int) to W(tot )was taken into account, and because eta(F) was computed by also taking into account the contribution of the legs to forward propulsion.

  10. Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    SciTech Connect

    Miyamoto, Manabu

    2006-08-15

    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less

  11. Stability of flat zero-energy states at the dirty surface of a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Asano, Yasuhiro

    2017-06-01

    We discuss the stability of highly degenerate zero-energy states that appear at the surface of a nodal superconductor preserving time-reversal symmetry. The existence of such surface states is a direct consequence of the nontrivial topological numbers defined in the restricted Brillouin zones in the clean limit. In experiments, however, potential disorder is inevitable near the surface of a real superconductor, which may lift the high degeneracy at zero energy. We show that an index defined in terms of the chiral eigenvalues of the zero-energy states can be used to measure the degree of degeneracy at zero energy in the presence of potential disorder. We also discuss the relationship between the index and the topological numbers.

  12. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Inc., Hickory Ridge

    SciTech Connect

    Pacific Northwest National Laboratory

    Greenhill Contracting built this 3,912-ft2 house in Gardiner, New York, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A highly efficient air-source heat pump heats and cools the home’s interior, while the roof-mounted photovoltaic system offsets electricity usage to cut energy bills to nearly zero. Many months the home owners see a credit on their utility bill.

  13. The energy balance study: the design and baseline results for a longitudinal study of energy balance.

    PubMed

    Hand, Gregory A; Shook, Robin P; Paluch, Amanda E; Baruth, Meghan; Crowley, E Patrick; Jaggers, Jason R; Prasad, Vivek K; Hurley, Thomas G; Hebert, James R; O'Connor, Daniel P; Archer, Edward; Burgess, Stephanie; Blair, Steven N

    2013-09-01

    The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. EBS recruited men and women aged 21 to 35 years with a body mass index between 20 and 35 kg/m2. Measurements of energy intake and multiple objective measures of energy expenditure, as well as other physiological, anthropomorphic and psychosocial measurements, were made quarterly. Resting metabolic rate and blood chemistry were measured at baseline, 6 and 12 months. Four hundred and thirty (218 women and 212 men) completed all baseline measurements. There were statistically significant differences by sex uncovered for most anthropomorphic, physiological and behavioral variables. Only percent of kcals from fat and alcohol intake, as well as energy expenditure in light activity and very vigorous activity were not different. Self-reported weight change (mean +/- SD) over the previous year were 0.92 +/- 5.24 kg for women and--1.32 +/- 6.1 kg for men. Resting metabolic rate averages by sex were 2.88 +/- 0.35 ml/kg/min for women and 3.05 +/- 0.33 ml/kg/min for men. Results from EBS will inform our understanding of the impact of energy balance components as they relate to changes in body weight and composition. Initial findings suggest a satisfactory distribution of weight change to allow for robust statistical analyses. Resting metabolic rates well below the standard estimate suggest that the evaluation of the components of total energy expenditure will be impactful for our understanding of the roles of energy intake and expenditure on changes in energy utilization and storage.

  14. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    PubMed Central

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  15. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  16. Appetite and energy balance signals from adipocytes

    PubMed Central

    Trayhurn, Paul; Bing, Chen

    2006-01-01

    Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis. PMID:16815801

  17. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes — First DOE Zero Energy Ready Home Retrofit, Garland, TX

    SciTech Connect

    none,

    This builder was honored with an Affordable Builder award in the 2014 Housing Innovation Awards, for the first retrofit home certified to the DOE Zero Energy Ready home requirements.The 60-year-old, three-bedroom ranch home is expected to save its homeowner more than $1,000 a year in utility bills compared to a home built to the current 2009 International Energy Conservation Code.

  18. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    SciTech Connect

    Not Available

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could makemore » in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.« less

  19. SOLAR THERMAL HEATING SYSTEM FOR A ZERO ENERGY HOUSE

    EPA Science Inventory

    Technical Challenge to Sustainability: The inter-disciplinary team, Pittsburgh Synergy, plans to design and build an 800sf home powered by site-based solar energy systems for the 2005 Solar Decathlon. The house employs a home-based business and related transportation needs,...

  20. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  1. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  2. DOE Zero Energy Ready Home Case Study: Cobblestone Homes — 2014 Model Home, Midland, MI

    SciTech Connect

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  3. Zero-point energy constraint in quasi-classical trajectory calculations.

    PubMed

    Xie, Zhen; Bowman, Joel M

    2006-04-27

    A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.

  4. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    NASA Astrophysics Data System (ADS)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  5. Working Towards Net Zero Energy at Fort Irwin, CA

    DTIC Science & Technology

    2010-09-01

    capacity factor for the solar photovoltaic analysis was based on simu- lations conducted by National Renewable Energy Laboratory (NREL) for Las Vegas, NV...kWhAC/kWhDC) x 8760 hrs = 5240 kWhAC/yr Savings for annual electricity savings are: 5240 kWh x 8.3 cents/kWh = $435/yr The capacity factor for the...43,668 kWh/yr Annual electricity savings are: 43,668 kWh x 8.3 cents/kWh = $3624/yr The capacity factor for the solar photovoltaic analysis was

  6. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  7. New Whole-House Solutions Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida

    SciTech Connect

    none,

    2011-11-01

    Tommy Williams Homes worked with PNNL, Florida HERO, Energy Smart Home Plans, and Florida Solar Energy Center to design and test two zero energy homes. Energy use was 30% lower in one home and 60% lower in the other.

  8. The energy cost for balance control during upright standing.

    PubMed

    Houdijk, Han; Fickert, Richard; van Velzen, Judith; van Bennekom, Coen

    2009-08-01

    The aim of this study was to investigate whether balance control during a static upright standing task with and without balance perturbations elicits a significant and meaningful metabolic energy demand and to test whether this energy demand correlates with conventional posturography measures for balance control. Ten healthy subjects were assessed in four 4-min upright standing conditions on a force platform while energy consumption was measured using open circuit respirometry. In the reference condition subjects stood upright in parallel stance without balance perturbation (PS). In the other conditions balance was perturbed by placing the subjects in tandem stance (TS), in tandem stance blind folded (TSBF) and in tandem stance on a balance board (TSBB). Gross and net energy consumption was assessed and various conventional posturography measures were derived from the excursion of the center of pressure (CoP) of the ground reaction force. Energy consumption was substantially affected by all balance perturbations, compared to the reference condition. The highest increase in energy consumption was found for the TSBF condition (increase of 0.86 J kg(-1)s(-1) or 60% of PS). Significant correlations were found between energy consumption and posturography measures. The strongest correlation was found between gross energy consumption and the CoP path and normalized CoP path along the anterior-posterior axis (resp. r=0.57 and r=0.66, p<0.001). It was concluded that the effort for balance control can elicit a meaningful metabolic energy demand. Conventional posturography provided significant, though moderate, predictors of this metabolic effort for balance control.

  9. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  10. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    DTIC Science & Technology

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  11. Technology Solutions Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand

    SciTech Connect

    None

    Production builders in the Stapleton community of Denver, Colorado, now build 2,300-ft2 or larger homes that earn the U.S. Environmental Protection Agency (EPA) ENERGY STAR® through the Certified Homes Program, Version 3. These builders are repositioning to build comparably sized homes to the standards of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Most ZERH criteria align closely with ENERGY STAR and are familiar to these builders.

  12. Successfully Implementing Net-Zero Energy Policy through the Air Force Military Construction Program

    DTIC Science & Technology

    2013-03-01

    Meets Does not meet Does not meet Meets Renewable Farms Meets Meets Meets Meets On-Site (Distributed Generation) Meets* Meets* Meets Meets...independence, nor does it allow for net-zero energy installations. Developing centralized renewable energy farms is another method for obtaining...combination of centralized renewable energy farms and distributed generation methods. The specific combination of methods an installation will utilize

  13. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  14. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  15. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    SciTech Connect

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  16. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    EPA Science Inventory

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  17. Top 10 Research Questions Related to Energy Balance

    ERIC Educational Resources Information Center

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  18. Assessing the engineering performance of affordable net-zero energy housing

    NASA Astrophysics Data System (ADS)

    Wallpe, Jordan P.

    The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.

  19. Energy balance in TM-1-MH Tokamak (ohmical heating)

    NASA Astrophysics Data System (ADS)

    Stoeckel, J.; Koerbel, S.; Kryska, L.; Kopecky, V.; Dadalec, V.; Datlov, J.; Jakubka, K.; Magula, P.; Zacek, F.; Pereverzev, G. V.

    1981-10-01

    Plasma in the TM-1-MH Tokamak was experimentally studied in the parameter range: tor. mg. field B = 1,3 T, plasma current I sub p = 14 kA, electron density N sub E 3.10 to the 19th power cubic meters. The two numerical codes are available for the comparison with experimental data. TOKATA-code solves simplified energy balance equations for electron and ion components. TOKSAS-code solves the detailed energy balance of the ion component.

  20. U.S. Department of Energy Zero Energy Ready Home Implementation

    SciTech Connect

    Rothgeb, Stacey K; Schirber, T.; Mosiman, G.

    The intention of this project is to assist home builders in the upper Midwest in achieving DOE Zero Energy Ready Home program certification, and to document the process and outcomes involved in meeting this rigorous standard. NorthernSTAR, in conjunction with our program partner Building Knowledge, Inc., provided technical support to the builders during the design and construction process. At the time of this publication, four qualifying homes have been completed and an additional three are currently under construction to be completed later this year. Three additional homes were excluded from certification due to the HVAC contractor not completing their requiredmore » credentialing until after completion of the homes, though the energy performance would have otherwise qualified the homes for program certification. Both Amaris Homes and Cobblestone Homes note that participation in the ZERH program provides them with competitive advantage in the market place at reasonable construction costs that also result in extremely satisfied clients who are willing to recommend the builders to friends and family.« less

  1. Energy balance for uranium recovery from seawater

    SciTech Connect

    Schneider, E.; Lindner, H.

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution andmore » purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)« less

  2. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    SciTech Connect

    None

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improvedmore » occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.« less

  3. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    SciTech Connect

    Pacific Northwest National Laboratory

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  4. Heat storage in forest biomass improves energy balance closure

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  5. Nitrogen balance in older individuals in energy balance depends on timing of protein intake.

    PubMed

    Jordan, Leora Y; Melanson, Edward L; Melby, Christopher L; Hickey, Matthew S; Miller, Benjamin F

    2010-10-01

    To explore whether nitrogen retention can differ on an isonitrogenous diet by changing when protein is consumed, we performed a short-term study in older individuals (64.5 ± 2.0 years) performing daily exercise while in energy balance. Participants consumed an isonitrogenous-isocaloric diet with the timing of a protein or carbohydrate beverage after exercise (protein after exercise [PRO], carbohydrate after exercise [CHO]) versus earlier in the day. Three-day mean energy balance (PRO: 202 ± 36 kcal and CHO: 191 ± 44 kcal; p = .68) did not differ between trials, but 3-day mean nitrogen balance was significantly more positive in the PRO (1.2 ± 0.32 g N) trial than the CHO trial (0.8 ± 0.45 g N; p < .05). Older individuals were better able to maintain nitrogen balance by simply changing when a portion of an identical amount of daily protein was consumed.

  6. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  7. Energy balance measurement: when something is not better than nothing.

    PubMed

    Dhurandhar, N V; Schoeller, D; Brown, A W; Heymsfield, S B; Thomas, D; Sørensen, T I A; Speakman, J R; Jeansonne, M; Allison, D B

    2015-07-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health-care policies, future research and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance.

  8. On the use of the energy probability distribution zeros in the study of phase transitions

    NASA Astrophysics Data System (ADS)

    Mól, L. A. S.; Rodrigues, R. G. M.; Stancioli, R. A.; Rocha, J. C. S.; Costa, B. V.

    2018-04-01

    This contribution is devoted to cover some technical aspects related to the use of the recently proposed energy probability distribution zeros in the study of phase transitions. This method is based on the partial knowledge of the partition function zeros and has been shown to be extremely efficient to precisely locate phase transition temperatures. It is based on an iterative method in such a way that the transition temperature can be approached at will. The iterative method will be detailed and some convergence issues that has been observed in its application to the 2D Ising model and to an artificial spin ice model will be shown, together with ways to circumvent them.

  9. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    SciTech Connect

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  10. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE PAGES

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    2017-05-17

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  11. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    PubMed

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  12. Balancing Green Power; How to deal with variable energy sources

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2016-04-01

    Renewable energy sources are large but some are variable and intermittent. The wide-scale use of renewable energy sources for energy supply will require the adoption of ways to compensate for their variability. This book reviews the technical options looking at their pros and cons and how they might work together to support a reliable and sustainable energy system. This is a rapidly advancing area of research and practice and Balancing Green Power offers an ideal introduction to the field.

  13. Quantum memories with zero-energy Majorana modes and experimental constraints

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  14. Teaching Mass and Energy Balances by Experiment

    ERIC Educational Resources Information Center

    Orbey, Nese; De Jesús Vega, Marisel; Zalluhoglu, Fulya Sudur

    2017-01-01

    A general tank-draining problem was used as an experimental project in two undergraduate-level chemical engineering courses. The project aimed to illustrate the critical nature of experimentation in addition to use of mass and energy conservation principles in developing mathematical models that correctly describes a system. The students designed…

  15. Traffic off-balancing algorithm for energy efficient networks

    NASA Astrophysics Data System (ADS)

    Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin

    2011-12-01

    Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.

  16. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    PubMed

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  17. Catchment Water-Energy Balance Model: Development and Applications

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.

    2017-12-01

    International Hydrological community has widely recognized that the catchment water-energy balance exists, which can be expressed as a general form of E/P = f(E0/P, c), where P is precipitation, E0 is potential evaporation, and c is a parameter. Many empirical/rational formulations of the catchment water-energy balance have been proposed. Several analytical solutions of the water-energy balance equation E/P = f(E0/P, c) have been derived by using dimensional analysis and mathematic reasoning and introducing additional boundary conditions. This paper will summarize the catchment water-energy balance equations and discuss their advantages and limitations. Catchment hydrology has been greatly influenced by the intensive variability in land use/cover, precipitation and air temperature due to climate change and local human activities. The water-energy balance equation, which are usually called the Budyko framework is widely used to analyze the impacts of climate and landscape changes on regional hydrology especially the annual runoff change. In order to quantify impacts of climate change and landscape change on the catchment runoff, the climate elasticity and landscape elasticity are estimated theoretically from the catchment water-energy balance equation. The elasticity of runoff has less of a dependency on the aridity index when the climate is drier (larger aridity index). The precipitation elasticity of runoff was close to 1.0 and that of potential evaporation close to 0.0 in the extreme humid climate with no relation to the landscape conditions, which implies that catchment water balance under extremely wet condition is controlled mainly by the climate condition. We establishes a relationship between the change in the landscape parameter in the catchment water-energy balance equation and vegetation change represented by fPAR, the fraction of Photosynthetically Active Radiation absorbed by vegetation. The fPAR elasticity of runoff is introduced and estimated over

  18. A revised energy-balance framework for the Earth

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.

    2017-12-01

    Some of the most important conclusions of climate science are based on energy balance calculations, in which solar energy absorbed by the Earth system is set equal to infrared energy radiated to space. Traditionally, energy radiated to space is assumed to be proportional to surface temperature. We show here problems with this framework, including potential biases in estimates of climate sensitivity based on the 20th-century historical record. This could potentially explain why estimates of equilibrium climate sensitivity (ECS) using observations over the 20th century yield values lower than other estimates. We then present a modified version of the energy balance framework in which energy radiated to space is assumed to be proportional to tropical atmospheric temperature. We use this new framework to estimate ECS and obtain an estimate of 3°C, with a likely range (66% confidence interval) of 2.2-4.1°C.

  19. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  20. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  1. Analysis on Zero Energy Consumption Strategy for Office Buildings Lighting in Lianyungang Area

    NASA Astrophysics Data System (ADS)

    Wu, Dongmei

    2018-01-01

    In recent years, the energy-saving environmental protection has aroused the people’s high concern, and set off a new application practice in China. By analyzing the advantages of the illumination condition in Lianyungang area and combining the content and form of office space, the author puts forward a series of ways and means of energy saving in office building lighting, in order to provide a way for reference to the goal of building Zero energy consumption in the office space environment under the background of green architecture.

  2. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  3. Disruptions in Energy Balance: Does Nature overcome Nurture?

    PubMed Central

    Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-01-01

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193

  4. Energy balance at a crossroads: translating the science into action.

    PubMed

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  5. Energy balance in man measured by direct and indirect calorimetry.

    PubMed

    Webb, P; Annis, J F; Troutman, S J

    1980-06-01

    In six 24-hr measurements of energy balance, direct and indirect calorimetry agreed within +/-3%, which is probably the range of experimental error. But in seven other 24-hr periods there was disagreement in the range of 8 to 23%, and these were usually days when the subjects ate much less than they spent metabolically. Our direct calorimeter is an insulated, water cooled suit. Continous measurements of O2 consumption and CO2 production provided data on metabolic expenditure (M) by indirect calorimetry. The 24-hr values for M matched the energy losses within +/-60 kcal (+/-3% of M) in four men who rested all day and lay down to sleep at night. Similar agreement was seen in one of the four who worked on a treadmill for 4 hr and stayed busy all day. but in another energy losses were 342 kcal greater than M (10% of M). When the experiments gave values for M minus the losses greater than +/-60 kcal, this is called "unmeasured energy". In further experiments, two subjects stayed awake for 24 hr, and their unmeasured energies were 279 and 393 kcal. The same two men, eating sparingly, also worked for 24 hr so as to double their resting metabolic expenditures; the unmeasured energies were even larger, 380 and 958 kcal. When they repeated the 24 hr of mild work, but ate nearly as much as they spent metabolically, one man was near energy balance, while the other showed an unmeasured energy of -363 kcal. Little heat storage was evident in these experiments; therefore, heat balance was present and energy balance should have been present. In the group of 13 experiments, it appeared that the greater the food deficit, the larger was the unmeasured energy (excess of metabolic expenditure over loss of energy).

  6. Possibility of exchange of a rectilinear three-body system with zero energy

    NASA Astrophysics Data System (ADS)

    Koda, Eiji

    The possibility of exchange for a rectilinear three-body system with zero energy is examined by introducing regularized coordinates which are closely related to McGehee's (1974) coordinates. It is shown that all of the HE(-)-HE(+) orbits are of exchange type in a critical system whose orbits of parabolic-parabolic escape type experience odd times of binary collision. No exchange occurs in critical systems whose orbits of parabolic-parabolic escape type experience even times of binary collision.

  7. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    NASA Astrophysics Data System (ADS)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  8. The energy balance of the solar transition region

    NASA Technical Reports Server (NTRS)

    Jordan, C.

    1980-01-01

    It is shown how the observed distribution of the emission measure with temperature can be used to limit the range of energy deposition functions suitable for heating the solar transition region and inner corona. The minimum energy loss solution is considered in view of the work by Hearn (1975) in order to establish further scaling laws between the transition region pressure, the maximum coronal temperature and the parameter giving the absolute value of the emission measure. Also discussed is the absence of a static energy balance at the base of the transition region in terms of measurable atmospheric parameters, and the condition for a static energy balance is given. In addition, the possible role of the emission from He II in stabilizing the atmosphere by providing enhanced radiation loss is considered.

  9. An investigation of energy balances in palladium cathode electrolysis experiments

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  10. High-energy zero-norm states and symmetries of string theory.

    PubMed

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi

    2006-05-05

    High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.

  11. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  12. Energy Balance Education in Schools: The Role of Student Knowledge

    ERIC Educational Resources Information Center

    Chen, Senlin; Nam, Yoon Ho

    2017-01-01

    Obesity prevention and control have been identified as top public health priorities in modern societies. Sport and exercise science researchers from multiple perspectives (e.g. behavioral, pedagogical, psychological, and physiological) have been active contributors addressing this topic. This paper examines the importance of energy balance (EB)…

  13. DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House

    SciTech Connect

    Pacific Northwest National Laboratory

    United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.

  14. Energy balance and obesity: what are the main drivers?

    PubMed

    Romieu, Isabelle; Dossus, Laure; Barquera, Simón; Blottière, Hervé M; Franks, Paul W; Gunter, Marc; Hwalla, Nahla; Hursting, Stephen D; Leitzmann, Michael; Margetts, Barrie; Nishida, Chizuru; Potischman, Nancy; Seidell, Jacob; Stepien, Magdalena; Wang, Youfa; Westerterp, Klaas; Winichagoon, Pattanee; Wiseman, Martin; Willett, Walter C

    2017-03-01

    The aim of this paper is to review the evidence of the association between energy balance and obesity. In December 2015, the International Agency for Research on Cancer (IARC), Lyon, France convened a Working Group of international experts to review the evidence regarding energy balance and obesity, with a focus on Low and Middle Income Countries (LMIC). The global epidemic of obesity and the double burden, in LMICs, of malnutrition (coexistence of undernutrition and overnutrition) are both related to poor quality diet and unbalanced energy intake. Dietary patterns consistent with a traditional Mediterranean diet and other measures of diet quality can contribute to long-term weight control. Limiting consumption of sugar-sweetened beverages has a particularly important role in weight control. Genetic factors alone cannot explain the global epidemic of obesity. However, genetic, epigenetic factors and the microbiota could influence individual responses to diet and physical activity. Energy intake that exceeds energy expenditure is the main driver of weight gain. The quality of the diet may exert its effect on energy balance through complex hormonal and neurological pathways that influence satiety and possibly through other mechanisms. The food environment, marketing of unhealthy foods and urbanization, and reduction in sedentary behaviors and physical activity play important roles. Most of the evidence comes from High Income Countries and more research is needed in LMICs.

  15. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  16. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  17. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance?

    PubMed

    Brandstrup, B; Svendsen, P E; Rasmussen, M; Belhage, B; Rodt, S Å; Hansen, B; Møller, D R; Lundbech, L B; Andersen, N; Berg, V; Thomassen, N; Andersen, S T; Simonsen, L

    2012-08-01

    We aimed to investigate whether fluid therapy with a goal of near-maximal stroke volume (SV) guided by oesophageal Doppler (ED) monitoring result in a better outcome than that with a goal of maintaining bodyweight (BW) and zero fluid balance in patients undergoing colorectal surgery. In a double-blinded clinical multicentre trial, 150 patients undergoing elective colorectal surgery were randomized to receive fluid therapy after either the goal of near-maximal SV guided by ED (Doppler, D group) or the goal of zero balance and normal BW (Zero balance, Z group). Stratification for laparoscopic and open surgery was performed. The postoperative fluid therapy was similar in the two groups. The primary endpoint was postoperative complications defined and divided into subgroups by protocol. Analysis was performed by intention-to-treat. The follow-up was 30 days. The trial had 85% power to show a difference between the groups. The number of patients undergoing laparoscopic or open surgery and the patient characteristics were similar between the groups. No significant differences between the groups were found for overall, major, minor, cardiopulmonary, or tissue-healing complications (P-values: 0.79; 0.62; 0.97; 0.48; and 0.48, respectively). One patient died in each group. No significant difference was found for the length of hospital stay [median (range) Z: 5.00 (1-61) vs D: 5.00 (2-41); P=0.206]. Goal-directed fluid therapy to near-maximal SV guided by ED adds no extra value to the fluid therapy using zero balance and normal BW in patients undergoing elective colorectal surgery.

  18. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  19. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  20. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  1. Zero-point energy conservation in classical trajectory simulations: Application to H2CO

    NASA Astrophysics Data System (ADS)

    Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.

    2018-05-01

    A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.

  2. Energy expenditure and balance during spaceflight on the space shuttle

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Hoyt, R. W.; Lane, H. W.; Gretebeck, R. E.; LeBlanc, A. D.

    1999-01-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  3. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  4. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson — Church Community and Housing Corporation, Charlestown, RI

    SciTech Connect

    none,

    2014-09-01

    This DOE Zero Energy Ready Home garnered an Affordable Builder award in the 2014 Housing Innovation Awards, for its highly insulated construction, minisplit heat pump and water heater, and triple pane windows.

  5. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes -- Appendix

    SciTech Connect

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    This document is a set of appendices presenting technical discussion and references as a companion to the 'Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes' publication.

  6. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  7. Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2017-04-01

    We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.

  8. Majorana Zero-Energy Mode and Fractal Structure in Fibonacci-Kitaev Chain

    NASA Astrophysics Data System (ADS)

    Ghadimi, Rasoul; Sugimoto, Takanori; Tohyama, Takami

    2017-11-01

    We theoretically study a Kitaev chain with a quasiperiodic potential, where the quasiperiodicity is introduced by a Fibonacci sequence. Based on an analysis of the Majorana zero-energy mode, we find the critical p-wave superconducting pairing potential separating a topological phase and a non-topological phase. The topological phase diagram with respect to Fibonacci potentials follow a self-similar fractal structure characterized by the box-counting dimension, which is an example of the interplay of fractal and topology like the Hofstadter's butterfly in quantum Hall insulators.

  9. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  10. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-06-01

    A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.

  11. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    SciTech Connect

    None

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; withmore » PV, the home achieves a HERS score of 5.« less

  12. DOE Zero Energy Ready Home Case Study: Thrive Home Builders, Lowry Plan

    SciTech Connect

    Pacific Northwest National Laboratory

    Thrive Home Builders built this 4,119-ft2 home at the Lowry development in Denver, Colorado, to the high-performance criteria of the U.S. Department of Energy’s Zero Energy Ready Home Program. Despite the dense positioning of the homes, mono-plane roof designs afforded plenty of space for the 8.68 kW of photovoltaic panels. With the PV, the home achieves a Home Energy Rating System (HERS) score of 4 and the home owners should enjoy energy bills of about $-11 a year. Without the PV, the home would score a HERS 38 (far lower than the HERS 80 to 100 of typical new homes).

  13. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    PubMed

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  14. Surface energy and radiation balance systems - General description and improvements

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  15. Resiliency and medicine: how to create a positive energy balance.

    PubMed

    Kelly, John D

    2011-01-01

    A career in orthopaedics is a race-a marathon. Many outside forces converge to increase stressors to high levels. Resiliency, or the ability to bounce back from difficulty, can be learned and nurtured. The management of energy, rather than time, holds the key to avoiding burnout. Orthopaedic surgeons must minimize "energy drain" by first recognizing their ability to become proactive and control their lives. Surgeons must learn how to say "no" and delegate work and responsibilities. A positive energy balance can be attained when relationships, not things, are given priority. A focus on passions and inspiration helps to maintain energy, while a connection to a "source" and living a morally just, service-oriented life will yield endless energy.

  16. Energy Balance, Climate, and Life \\-- Work of M. Budyko

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.

    2003-12-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.

  17. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  18. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  19. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    NASA Astrophysics Data System (ADS)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  20. The global mean energy balance under cloud-free conditions

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles

    2017-04-01

    är, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.

  1. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  2. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    PubMed

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  3. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  4. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  5. Novel signals for the integration of energy balance and reproduction.

    PubMed

    Fernandez-Fernandez, R; Martini, A C; Navarro, V M; Castellano, J M; Dieguez, C; Aguilar, E; Pinilla, L; Tena-Sempere, M

    2006-07-25

    Although the close link between body weight and fertility has been known for eons, only recently have the peripheral signals and neuroendocrine networks responsible for such a phenomenon begun to be identified. A key event in this field was the cloning of the adipocyte-derived hormone leptin, which has been demonstrated as a pivotal regulator for the integration of energy homeostasis and reproduction. In addition, other metabolic hormones, such as insulin, contribute to this physiological integration. Moreover, compelling experimental evidence implicates hormonal products of the gastrointestinal tract as adjuncts in the complex coordination and regulation of body weight and reproduction. Here, we review recent studies evaluating the reproductive effects and sites of action of ghrelin and PYY3-36, two hormonal signals of gastrointestinal origin involved in the control food intake and energy balance. In addition, we summarize the potential contribution of kisspeptin, the recently characterized gatekeeper of the GnRH system encoded by Kiss1 gene, to integrating reproductive function and energy status. Evidence suggests that besides having direct gonadal effects, ghrelin may participate in the regulation of gonadotropin secretion and it may influence the timing of puberty. Likewise, PYY3-36 modulates GnRH and gonadotropin release. In addition, the hypothalamic KiSS-1 system is sensitive to nutritional status, and its diminished expression during states of negative energy balance might contribute to the suppression of reproductive function in such conditions. We propose that the peripheral hormones, ghrelin and PYY3-36, and the central neuropeptide, kisspeptin, are 'novel' players in the neuroendocrine networks that integrate energy balance and reproduction.

  6. The role of ghrelin in energy balance regulation in fish.

    PubMed

    Jönsson, Elisabeth

    2013-06-15

    Knowledge about the endocrine regulation of energy balance in fish is of interest for basic as well as aquaculture research. Ghrelin is a peptide hormone that was first identified in fish 10 years ago and has important roles in the control of food intake and metabolism. Both ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), have been found in numerous fish species. Their tissue distributions support the idea that ghrelin has an integrative role in the regulation of energy balance at both the central nervous system level and systemic level. In tilapia and goldfish, ghrelin treatment appears to increase food intake and to stimulate lipogenesis and tissue fat deposition to promote a more positive energy status. In rainbow trout, on the other hand, ghrelin decreases food intake. Goldfish and rainbow trout are the fish species in which the mode of action of ghrelin on food intake has been most thoroughly investigated. The results from these studies indicate that ghrelin alters food intake by acting on well-known appetite signals, such as CRH, NPY and orexin, in the hypothalamus in a species-specific manner. In goldfish, sensory fibres of the vagus nerve convey the signal from gut-derived ghrelin to modulate appetite. The data also indicate that ghrelin may modulate foraging/swimming activity and the perception of food in fish. Results related to the effects of energy status, temperature, and stressors on plasma ghrelin/tissue ghrelin mRNA levels are occasionally inconsistent between short- and long-term studies, between the protein and mRNA, and between species. Recent data also imply a role of ghrelin in carbohydrate metabolism. More functional studies are required to understand the role of ghrelin and its mechanisms of action in the regulation of energy balance among fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Energy balance, insulin-resistance biomarkers and breast cancer risk

    PubMed Central

    Fair, Alecia Malin; Dai, Qi; Shu, Xiao-Ou; Matthews, Charles E.; Yu, Herbert; Jin, Fan; Gao, Yu-Tang; Zheng, Wei

    2007-01-01

    Background American women are five times more likely to be at risk for breast cancer than women from Asian countries. Epidemiologic studies have linked energy balance to an increased risk of breast cancer, yet few studies have investigated potential mediators of this association with Chinese women. We examined the above association by blood levels of insulin-like growth factors, binding proteins, and C-peptide in the Shanghai Breast Cancer Study (SBCS), a case-control study conducted among 1459 breast cancer cases and 1556 healthy Chinese women from 1996 and 1998. Methods In-person surveys were used to collect data on energy intake, anthropometric measures, exercise/sport activity, and occupational activity. The present analyses consisted of 397 cases and 397 controls whose blood samples were measured for levels of insulin-like growth factors ( IGFs), insulin growth-factor binding protein 3, (IGFBP-3) C-peptide and the relationship with physical activity status, total energy intake, and body fat distribution. Results Body mass index [BMI] and waist-to-hip ratio [WHR] were significantly positively correlated with IGFBP-3 and C-peptide. Adult exercise/sport activity was significantly negatively correlated with insulin-like growth factor 1(IGF-I). C-peptide levels increased with increasing quartiles of WHR (p for trend <0.01). Additional analyses were performed to evaluate whether the association of energy balance measures with breast cancer risk changed after adjustment for IGFs, IGFBP-3 and C-peptide biomarkers. The associations attenuated, but none of them changed substantially. Conclusions Insulin resistance biomarkers may partially explain the association between positive energy balance and breast cancer risk, but future studies are needed to identify the underlying complex biological mechanisms of action for breast cancer prevention. PMID:17646056

  8. Zero Energy With an Affordable Price Tag: Friends School of Portland

    SciTech Connect

    Torcellini, Paul A

    More than half of all operating school districts in the U.S. are in rural areas. These small schools operate at a different scale and have different needs than their city counterparts. In 2003-2004, 20% of public schools in the U.S. served fewer than 200 students(1). Although the Friends School of Portland - which was designed to achieve both zero energy performance and Passivhaus certification - is an independent school, it faced financial constraints similar to those faced by many other small schools throughout the country. The project was financed through a capital campaign and a mortgage that forced a hardmore » cost cap on the project, so the project team had to be diligent about every dollar that was spent. In its first year of operation, the school site energy use intensity was just 12 kbtu/ft2, a bit more than the 9 kbtu/ft2 predicted.« less

  9. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  10. Appetite control and energy balance: impact of exercise.

    PubMed

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  11. Influence of topiramate in the regulation of energy balance.

    PubMed

    Richard, D; Ferland, J; Lalonde, J; Samson, P; Deshaies, Y

    2000-10-01

    Topiramate (TPM) is a novel neurotherapeutic agent currently indicated for the treatment of epilepsy and undergoing development for other central nervous system indications including neuropathic pain, bipolar disorder, and migraine prophylaxis. TPM is synthesized from D-fructose and contains a sulfamate moiety that is essential for its pharmacologic activity. TPM has been observed to significantly reduce body weight in patients treated for seizure, which has prompted the realization of preclinical studies to characterize the effects of TPM in the regulation of energy balance. Studies carried out in various strains of rats have provided good evidence for the ability of TPM to blunt energy deposition. Body composition analyses from rat trials have demonstrated that TPM inhibits fat deposition while reducing the activity of lipoprotein lipase (LPL) in various white adipose tissue depots. High doses of TPM (likely above the therapeutic dose range) have also been observed to reduce protein gain without catabolic effects. Although TPM cannot be described as a potent anorectic agent, it seems to have the ability to reduce food intake; significant reductions in food intake have been observed in female obese (fa/fa) Zucker rats and in female Wistar rats. TPM can also reduce energy deposition in the absence of alterations in food intake. This effect has been clearly emphasized in female lean (Fa/?) Zucker rats. In female Sprague-Dawley rats, TPM also increased energy expenditure and it has been observed to increase LPL activity in brown adipose tissue, which could indicate that TPM has the ability to enhance regulatory thermogenesis. In addition, TPM stimulates LPL activity in skeletal muscles, further emphasizing its potential to promote substrate oxidation. The mechanisms whereby TPM affects the regulation of energy balance have yet to be understood. TPM represents an antiepileptic drug (AED) with complex biochemical/pharmacologic actions. Its negative effects on energy

  12. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  13. Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice

    PubMed Central

    Nagata, Naoto; Matsuo, Kosuke; Bettaieb, Ahmed; Bakke, Jesse; Matsuo, Izumi; Graham, James; Xi, Yannan; Liu, Siming; Tomilov, Alexey; Tomilova, Natalia; Gray, Susan; Jung, Dae Young; Ramsey, Jon J.; Kim, Jason K.; Cortopassi, Gino; Havel, Peter J.

    2012-01-01

    The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding. PMID:22619361

  14. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  15. Interannual variability of the global net radiation balance and its consequence on global energy transport

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, B. J.

    1990-01-01

    Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.

  16. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    PubMed

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  17. Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Kilian, R.; Casassa, G.

    The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby

  18. Energy balance and dietary habits of America's Cup sailors.

    PubMed

    Bernardi, Elisabetta; Delussu, Sofia A; Quattrini, Filippo M; Rodio, Angelo; Bernardi, Marco

    2007-08-01

    This research, which was conducted with crew members of an America's Cup team, had the following objectives: (a) to assess energy expenditure and intake during training; (b) to evaluate the sailors' diet, and (c) to identify any dietary flaws to determine the appropriate intake of nutrients, correct possible dietary mistakes, and improve their food habits. Energy expenditure was estimated on 15 sailors using direct measurements (oxygen consumption) and a 3-day activity questionnaire. Oxygen consumption was measured on sailors during both on-water America's Cup sailing training and dry-land fitness training. Composition of the diet was estimated using a 3-day food record. Average daily energy expenditure of the sailors ranged from 14.95 to 24.4 MJ, depending on body mass and boat role, with the highest values found in grinders and mastmen. Daily energy intake ranged from 15.7 to 23.3 MJ (from +6% to -18% of energy expenditure). The contributions of carbohydrate, protein, and fat to total energy intake were 43%, 18%, and 39% respectively, values that are not in accord with the recommended guidelines for athletes. Our results show the importance of assessing energy balance and food habits for America's Cup sailors performing different roles. The practical outcome of this study was that the sailors were given dietary advice and prescribed a Mediterranean diet, explained in specific nutrition lectures.

  19. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  20. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  1. Dietary carbohydrates, components of energy balance, and associated health outcomes.

    PubMed

    Smith, Harry A; Gonzalez, Javier T; Thompson, Dylan; Betts, James A

    2017-10-01

    The role of dietary carbohydrates in the development of obesity and associated metabolic dysfunction has recently been questioned. Within the last decade, the Scientific Advisory Committee on Nutrition carried out a comprehensive evaluation of the role of dietary carbohydrates in human health. The current review aims to complement and extend this report by providing specific consideration of the effects of the component parts of energy balance, their interactions, and their culmination on energy storage and health. PubMed was searched for all published trials that had a minimum follow-up period of 3 months and were designed to manipulate dietary carbohydrate intake, irrespective of resultant differences in absolute carbohydrate dose (grams per day). Dietary carbohydrate manipulation has little effect on the individual components of energy balance that have been assessed. However, the role of dietary carbohydrates in influencing physical activity has yet to be assessed using gold-standard measurement tools. Moreover, adherence to a diet of modified carbohydrate content has not been found to result in a consistent pattern of changes in weight or indirect measures of metabolic health. However, certain markers of cardiovascular disease risk (ie, blood triglycerides and high-density lipoprotein cholesterol) may respond positively to a reduction in dietary carbohydrates. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.

    PubMed

    Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc

    2016-12-13

    The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.

  3. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  4. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topicsmore » in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.« less

  5. Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data; Preprint

    SciTech Connect

    Sparn, Bethany; Earle, Lieko; Christensen, Craig

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight.more » Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.« less

  6. A Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data

    SciTech Connect

    Sparn, Bethany; Earle, Lieko; Christensen, Craig

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight.more » Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.« less

  7. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  8. The Precession Index and a Nonlinear Energy Balance Climate Model

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  9. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  10. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  11. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    PubMed

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  12. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace

    PubMed Central

    Pyshkin, P. V.; Luo, Da-Wei; Jing, Jun; You, J. Q.; Wu, Lian-Ao

    2016-01-01

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol. PMID:27886234

  13. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    NASA Astrophysics Data System (ADS)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  14. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.

    PubMed

    Lord, Dominique; Washington, Simon P; Ivan, John N

    2005-01-01

    There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate

  15. New Whole-House Case Study: Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts

    SciTech Connect

    None

    2013-11-01

    In 2009, Transformations, Inc. partnered with Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE’s Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSCmore » studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners’ perceptions of equipment performance. BSC also examined the developer’s financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.« less

  16. Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support

    SciTech Connect

    Herk, Anastasia

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside themore » ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.« less

  17. Modelling The Energy And Mass Balance Of A Black Glacier

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Taschner, S.; Ranzi, R.

    A distributed energy balance hydrologic model has been implemented to simulate the melting season of the Belvedere glacier, situated in the Anza river basin (North- Western Italy) for a few years. The Belvedere Glacier is an example of SblackS glacier, ´ since the ablation zone is covered by a significant debris layer. The glacierSs termi- nus has an altitude of 1785 m asl which is very unusual for the Southern side of the European Alps. The model accounts for the energy exchange processes at the inter- face between the atmospheric boundary layer and the snow/ice/debris layer. To run the model hydrometeorological and physiographic data were collected, including the depth of the debris cover and the tritium (3H) concentration in the glacial river. Mea- surements of the soil thermal conductivity were carried out during a field campaign organised within the glaciers monitoring GLIMS project, at the time of the passage of the Landsat and the Terra satellites last 15 August 2001. A comparison of the different energy terms simulated by the model assigns a dominant role to the shortwave radia- tion, which provides the highest positive contribution to the energy available for snow- and ice-melt, while the sensible heat turns out to be the second major source of heat. Longwave radiation balance and latent heat seem to be less relevant and often nega- tive. The role of the debris cover is not negligible, since its thermal insulation causes, on average, a decrease in the ice melt volume. One of the model variables is the tem- perature of the debris cover, which can be a useful information when a black glacier is to be monitored through remote sensing techniques. The visible and near infrared radi- ation data do not always provide sufficient information to detect the glaciers' margins beneath the debris layer. For this reason the information of the different thermal sur- face characteristics (pure ice, debris covered ice, rock), proved by the energy balance model results was

  18. Acute Effects of Capsaicin on Energy Expenditure and Fat Oxidation in Negative Energy Balance

    PubMed Central

    Janssens, Pilou L. H. R.; Hursel, Rick; Martens, Eveline A. P.; Westerterp-Plantenga, Margriet S.

    2013-01-01

    Background Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. Aim We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Methods Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions ‘100%CAPS’, ‘100%Control’, ‘75%CAPS’ and ‘75%Control’. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. Results An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. Conclusion In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Trial Registration

  19. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  20. The structure and energy balance of cool star atmospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    The atmospheric structure and energy balance phenomena associated with magnetic fields in the Sun are reviewed and it is shown that similar phenomena occur in cool stars. The evidence for the weakening or disappearance of transition regions and coronae is discussed together with the appearance of extended cool chromospheres with large mass loss, near V-R = 0.80 in the H-R diagram. Like the solar atmosphere, these atmospheres are not homogeneous and there is considerable evidence for plage regions with bright TR emission lines that overlie dark (presumably magnetic) star spots. The IUE observations are providing important information on the energy balance in these atmospheres that should guide theoretical calculations of the nonradiative heating rate. Recent high dispersion spectra are providing unique information concerning which components of close binary systems are the dominant contributors to the observed emission. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in DRa (G2 Ib) and perhaps other stars. Finally, the G and K giants and supergiants are classified into three groups depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.

  1. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    PubMed

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  2. Measure Guideline. Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect

    Loomis, H.; Pettit, B.

    2015-05-29

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat wood-framed roof with brick masonry exterior walls using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat wood-framed roofs with wood-framed exterior walls.

  3. Measure Guideline: Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect

    Loomis, H.; Pettit, B.

    2015-05-01

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit (DEER) solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat, wood-framed roof with brick masonry exterior walls, using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat, wood-framed roofs with wood-framed exterior walls.

  4. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  5. Preliminary approach of the MELiSSA loop energy balance

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering

  6. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length,more » as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  7. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    PubMed Central

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  8. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    NASA Astrophysics Data System (ADS)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  9. Photonic microstructures for energy-generating clear glass and net-zero energy buildings.

    PubMed

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-23

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  10. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    NASA Astrophysics Data System (ADS)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  11. Valuation of clean energy investments: The case of the Zero Emission Coal (ZEC) technology

    NASA Astrophysics Data System (ADS)

    Yeboah, Frank Ernest

    Today, coal-fired power plants produce about 55% of the electrical energy output in the U.S. Demand for electricity is expected to grow in future. Coal can and will continue to play a substantial role in the future global energy supply, despite its high emission of greenhouse gases (e.g. CO2 etc.) and low thermal energy conversion efficiency of about 37%. This is due to the fact that, it is inexpensive and global reserves are abundant. Furthermore, cost competitive and environmentally acceptable energy alternatives are lacking. New technologies could also make coal-fired plants more efficient and environmentally benign. One such technology is the Zero Emission Carbon (ZEC) power plant, which is currently being proposed by the ZECA Corporation. How much will such a technology cost? How competitive will it be in the electric energy market when used as a technology for mitigating CO2 emission? If there were regulatory mechanisms, such as carbon tax to regulate CO2 emission, what would be the minimum carbon tax that should be imposed? How will changes in energy policy affect the implementation of the ZEC technology? How will the cost of the ZEC technology be affected, if a switch from coal (high emission-intensive fuel) to natural gas (low emission-intensive fuel) were to be made? This work introduces a model that can be used to analyze and assess the economic value of a ZEC investment using valuation techniques employed in the electric energy industry such as revenue requirement (e.g. cost-of-service). The study concludes that the cost of service for ZEC technology will be about 95/MWh at the current baseline scenario of using fuel cell as the power generation system and coal as the primary fuel, and hence will not be competitive in the energy markets. For the technology to be competitive, fuel cell capital cost should be as low as 500/kW with a lifetime of 20 years or more, the cost of capital should be around 10%, and a carbon tax of 30/t of CO2 should be in place

  12. Disturbance of the reproductive axis induced by negative energy balance.

    PubMed

    Judd, S J

    1998-01-01

    Animal reproduction is impaired when intake of energy is so restricted that activities essential to life are threatened; this is seen as a homeostatic adjustment that restricts wasteful energy expenditure. Fasting or exercising to a degree requiring considerable energy expenditure has major effects on the hypothalamus, including activation of corticotrophin-releasing factor (CRF) neurons, suppression of thyrotrophin-releasing hormone synthesis, and increased growth hormone secretion; these are associated with increased concentrations of hypothalamic neuropeptide Y mRNA and are corrected by administration of leptin, an adipose-tissue protein with a tertiary structure similar to the cytokine interleukin-2. This response to fasting results from a disordered pattern of activity in the gonadotrophin-releasing hormone (GnRH) pacemaker, characterized by reduced luteinizing hormone pulsatility, particularly during daytime. Animal studies have suggested that the response depends on an intact afferent vagal system from the stomach and the presence of oestrogen. Noradrenergic neurons forming the A2 group increase the activity of CRF neurons that, in turn, inhibit GnRH pulsatility. Reproductive impairment due to fasting is reversed by leptin, and abnormalities of leptin are described in individuals who fast or who develop exercise-induced amenorrhoea. This paper discusses these changes induced by negative energy balance and speculates on the involvement of leptin as a contributor to these abnormalities.

  13. [Strategies for successful weight reduction - focus on energy balance].

    PubMed

    Weck, M; Bornstein, S R; Barthel, A; Blüher, M

    2012-10-01

    The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options. Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis. The extremely high failure rate (> 80%) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called "adaptive thermogenesis" is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss. Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable. In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Design options analysis for a zero energy block of flats in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Soulti, Eleni

    Human activities and to a smaller degree other reasons have led to climate change. This is evident in meteorological phenomena and natural procedures which are constantly subject to modifications. Recent studies prove that a great percentage of the CO2 emissions, which are partly responsible for the climate change, are produced by buildings. In fact, a big part of them belongs to the residential sector. Countries like UK are quite aware of this problem, its causes, its consequences, as well as of some remedies that can at least limit the damage. Therefore, they develop the appropriate legislation, in an effort to decrease the problems and limit its causes. Greece, on the other hand, has been quite ineffective until now. Hopefully the new legislation will constrain the causes of the problem, in all sectors, including the building domain. This study involves designing a zero energy block of flats in Athens, with climatic data and environmental parameters taken into consideration from the initial steps of the design procedure. Appropriate software has been used in order to observe the improvement of thermal comfort conditions by changing the building design and using various strategies for passive cooling and heating. The predicted consumption of electricity, heating and cooling loads have been calculated and renewable sources of energy have been used in order to meet those needs. The economical analysis demonstrated that this type of building, is not only energy efficient and thermally comfortable for its occupants, but also economically profitable, especially with regard to the benefit of the occupants and the environment. In fact, it is only 11.2% more expensive to construct such a building, while its energy performance reduces the amount of CO2 emissions. The aim is to widely implement this type of buildings, which can have a significant effect on environmental, economical and social development related issues.

  15. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    SciTech Connect

    Aldrich, Robb

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption.more » In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.« less

  16. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    PubMed

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.

  17. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  18. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    SciTech Connect

    None

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verificationmore » and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.« less

  19. Re(De)fining Net Zero Energy: Renewable Emergy Balance in Environmental Building Design

    EPA Science Inventory

    The notion that raw materials for building construction are plentiful and can be extracted “at will” from Earth’s geobiosphere, and that these materials do not undergo any degradation or related deterioration in performance while in use is alarming and entirely inaccurate. For th...

  20. Acute effect of ephedrine on 24-h energy balance

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Gottesdiener, K.; Jordan, J.; Chen, K.; Flattery, S.; Larson, P. J.; Candelore, M. R.; Gertz, B.; Robertson, D.; Sun, M.

    1999-01-01

    Ephedrine is used to help achieve weight control. Data on its true efficacy and mechanisms in altering energy balance in human subjects are limited. We aimed to determine the acute effect of ephedrine on 24-h energy expenditure, mechanical work and urinary catecholamines in a double-blind, randomized, placebo-controlled, two-period crossover study. Ten healthy volunteers were given ephedrine (50 mg) or placebo thrice daily during each of two 24-h periods (ephedrine and placebo) in a whole-room indirect calorimeter, which accurately measures minute-by-minute energy expenditure and mechanical work. Measurements were taken of 24-h energy expenditure, mechanical work, urinary catecholamines and binding of (+/-)ephedrine in vitro to human beta1-, beta2- and beta3-adrenoreceptors. Twenty-four-hour energy expenditure was 3.6% greater (8965+/-1301 versus 8648+/-1347 kJ, P<0.05) with ephedrine than with placebo, but mechanical work was not different between the ephedrine and placebo periods. Noradrenaline excretion was lower with ephedrine (0.032+/-0.011 microg/mg creatinine) compared with placebo (0.044+/-0.012 microg/mg creatinine) (P<0.05). (+/-)Ephedrine is a relatively weak partial agonist of human beta1- and beta2-adrenoreceptors, and had no detectable activity at human beta3-adrenoreceptors. Ephedrine (50 mg thrice daily) modestly increases energy expenditure in normal human subjects. A lack of binding of ephedrine to beta3-adrenoreceptors and the observed decrease in urinary noradrenaline during ephedrine treatment suggest that the thermogenic effect of ephedrine results from direct beta1-/beta2-adrenoreceptor agonism. An indirect beta3-adrenergic effect through the release of noradrenaline seems unlikely as urinary noradrenaline decreased significantly with ephedrine.

  1. Energy Balance of Triathletes during an Ultra-Endurance Event

    PubMed Central

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-01-01

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit. PMID:25558906

  2. Energy balance of triathletes during an ultra-endurance event.

    PubMed

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-12-31

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit.

  3. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  4. Compensatory Changes in Energy Balance Regulation over One Athletic Season.

    PubMed

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B

    2017-06-01

    Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P < 0.05), but a large individual variability was found ranging from -6.1 to 5.2 kg. The TEE raise (16.8% ± 11.7%) was compensated by an increase EI change (16.3% ± 12.0%) for the whole group (P < 0.05). MA was found in triathletes, sparing 128 ± 168 kcal·d, and basketball players, dissipating 168 ± 205 kcal·d (P < 0.05). MA was associated (P < 0.05) with EB and energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport

  5. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  6. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  7. Obstructive sleep apnea and energy balance regulation: A systematic review.

    PubMed

    Shechter, Ari

    2017-08-01

    Obesity and obstructive sleep apnea (OSA) have a reciprocal relationship. Sleep disruptions characteristic of OSA may promote behavioral, metabolic, and/or hormonal changes favoring weight gain and/or difficulty losing weight. The regulation of energy balance (EB), i.e., the relationship between energy intake (EI) and energy expenditure (EE), is complex and multi-factorial, involving food intake, hormonal regulation of hunger/satiety/appetite, and EE via metabolism and physical activity (PA). The current systematic review describes the literature on how OSA affects EB-related parameters. OSA is associated with a hormonal profile characterized by abnormally high leptin and ghrelin levels, which may encourage excess EI. Data on actual measures of food intake are lacking, and not sufficient to make conclusions. Resting metabolic rate appears elevated in OSA vs. Findings on PA are inconsistent, but may indicate a negative relationship with OSA severity that is modulated by daytime sleepiness and body weight. A speculative explanation for the positive EB in OSA is that the increased EE via metabolism induces an overcompensation in the drive for hunger/food intake, which is larger in magnitude than the rise in EI required to re-establish EB. Understanding how OSA affects EB-related parameters can help improve weight loss efforts in these patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ring current-energy balance during intense magnetic storms

    NASA Astrophysics Data System (ADS)

    Clua de Gonzalez, A. L.; Gonzalez, W. D.

    2013-12-01

    The energy-rate balance that governs the storm-time ring current is analyzed in terms of the Burton-McPherron-Russell equation (Burton et al., 1975). This is a first order differential equation relating the time variation of the pressure corrected Dst index, with the energy input to the magnetosphere. Based on the Burton et al. equation, we have analyzed in detail the geomagnetic storm of February 11, 2004. The energy input is taken proportional to the interplanetary electric field, Q(t) = αBsV, where Bs is the southward component of the interplanetary magnetic field in GSM coordinates, V is the flow speed of the solar wind and α a constant. The equation is integrated using the OMNI-combined interplanetary data and, the value of the decay time is estimated from a best fit of the response to the observed curve. For this storm we also use a rectangular approximation for the energy input function, thus allowing an analytical solution of the Burton et al. equation. The results from this approximation are then compared to the numerical solution. The study is also extended to the geomagnetic storm of April 22, 2001. This analysis seems to indicate that the Burton et al. equation should contain also a corrective term proportional to the second time derivative of the Dst index. This corrective term might become important for intense storms, with an effect of counteracting the growth of |Dst| before the energy input from the interplanetary medium declines, such that the value of |Dst| starts to decrease instead of continuing to grow.

  9. Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.

    PubMed

    Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E

    2013-10-21

    We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.

  10. HIA 2016 DOE Zero Energy Ready Home Case Study: Imery & Co, High-performance Bungalow, Roswell, GA

    SciTech Connect

    Pacific Northwest National Laboratory

    Case study of a DOE 2016 Housing Innovation Award winning custom for buyer home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 41 without PV or HERS 6 with PV.

  11. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    NASA Astrophysics Data System (ADS)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  12. Simultaneously frequency down-conversion, independent multichannel phase shifting and zero-IF receiving using a phase modulator in a sagnac loop and balanced detection

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng

    2018-03-01

    Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.

  13. Simulating drought impacts on energy balance in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.

    2014-12-01

    The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.

  14. Does Sport-Drink Use During Exercise Promote an Acute Positive Energy Balance?

    PubMed

    Dragusin, Iulian B; Horswill, Craig A

    2016-10-01

    Sports drinks have been implicated in contributing to obesity and chronic diseases by providing surplus calories and excess sugars. Using existing literature we compared energy intake from sports drinks consumed during exercise with the exercise-induced calorie expenditure to determine whether sports drink use might eliminate the energy deficit and jeopardize conditions for improved metabolic fitness. We identified 11 published studies that compared sport drink consumption to placebo during exercise with a primary focused on the effect of sport drinks or total carbohydrate content on enhancing physical performance. Energy expenditure (EE) was calculated using VO 2 , RER, and exercise duration for the exercise protocol. Energy ingestion (EI) was determined using the carbohydrate dosing regimen administered before and during the exercise protocol. A two-tailed t test was used to test whether the energy balance (EI-EE) was different from zero (alpha level = 0.05). Sport drink consumption during aerobic exercise of sufficient duration (≥ 60 min) did not abolish the energy deficit (p < .001). Mean ± SD were EE, 1600 ± 639 Cal; EI, 394 ± 289 Cal; and EI-EE,-1206+594 Cal; VO 2 , 3.05 ± 0.55 L/min; RER, 0.91 ± 0.04; exercise duration 110 ± 42 min. Ingesting sports drinks to enhance performance did not abolish the caloric deficit of aerobic exercise. Sports drinks can be used in accordance with research protocols that typically provide 30-60 g of carbohydrate per hour when exercising at adequate durations for moderate to high intensity and still maintain a substantive caloric deficit.

  15. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    PubMed

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  16. Constraining the Surface Energy Balance of Snow in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.

    Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed

  17. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  18. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  19. On the contribution of intramolecular zero point energy to the equation of state of solid H2

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, V.; Etters, R. D.

    1978-01-01

    Experimental evidence shows that the internal zero-point energy of the H2 molecule exhibits a relatively strong pressure dependence in the solid as well as changing considerably upon condensation. It is shown that these effects contribute about 6% to the total sublimation energy and to the pressure in the solid state. Methods to modify the ab initio isolated pair potential to account for these environmental effects are discussed.

  20. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  1. Gut microbiota and energy balance: role in obesity.

    PubMed

    Blaut, Michael

    2015-08-01

    The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.

  2. 2016 U.S. Department of Energy Race to Zero Student Design Competition Guide

    SciTech Connect

    This Guide to the Race to Zero Student Design Competition is a comprehensive overview of the framework, timeline, design parameters, judging criteria, and awards. This Guide provides links to resources that the teams will need.

  3. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    PubMed

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water

  5. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    PubMed

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  6. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  7. Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance.

    PubMed

    Nakajo, Aya; Khoshnoodi, Jamshid; Takenaka, Hitoshi; Hagiwara, Emi; Watanabe, Takashi; Kawakami, Hayato; Kurayama, Ryota; Sekine, Yuji; Bessho, Fumio; Takahashi, Shori; Swiatecka-Urban, Agnieszka; Tryggvason, Karl; Yan, Kunimasa

    2007-09-01

    Proteins are modified and folded within the endoplasmic reticulum (ER). When the influx of proteins exceeds the capacity of the ER to handle the load, the ER is "stressed" and protein biogenesis is affected. We have previously shown that the induction of ER stress by ATP depletion in podocytes leads to mislocalization of nephrin and subsequent injury of podocytes. The aim of the present study was to determine whether ER stress is associated with proteinuria in vivo and whether the immunosuppressant mizoribine may exert its antiproteinuric effect by restoring normal nephrin biogenesis. Induction of nephrotic-range proteinuria with puromycin aminonucleoside in mice increased expression of the ER stress marker GRP78 in podocytes, and led to the mislocalization of nephrin to the cytoplasm. In vitro, mizoribine, through a mechanism likely dependent on the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH) activity in podocytes, restored the intracellular energy balance by increasing levels of ATP and corrected the posttranslational processing of nephrin. Therefore, we speculate that mizoribine may induce remission of proteinuria, at least in part, by restoring the biogenesis of slit diaphragm proteins in injured podocytes. Further understanding of the ER microenvironment may lead to novel approaches to treat diseases in which abnormal handling of proteins plays a role in pathogenesis.

  8. Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance

    PubMed Central

    Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R

    2015-01-01

    Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079

  9. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  10. Building America Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand, Denver, Colorado

    SciTech Connect

    "This report outlines the steps a developer can use when looking to create and implement higher performance standards such as the U.S. Department of Energy (DOE) Zero Energy Ready Home (ZERH) standards in a community. The report also describes the specific examples of how this process was followed by a developer, Forest City, in the Stapleton community in Denver, Colorado. IBACOS described the steps used to begin to bring the DOE ZERH standard to the Forest City Stapleton community based on 15 years of community-scale development work done by IBACOS. As a result of this prior IBACOS work, the teammore » gained an understanding of the various components that a master developer needs to consider and created strategies for incorporating those components in the initial phases of development to achieve higher performance buildings in the community. An automated scoring system can be used to perform an internal audit that provides a detailed and consistent evaluation of how several homes under construction or builders' floor plans compare with the requirements of the DOE Zero Energy Ready Home program. This audit can be performed multiple times at specific milestones during construction to allow the builder to make changes as needed throughout construction for the project to meet Zero Energy Ready Home standards. This scoring system also can be used to analyze a builder's current construction practices and design.« less

  11. Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises

    NASA Astrophysics Data System (ADS)

    Gao, Yunlong; Gao, Feng; Zhai, Qiaozhu; Guan, Xiaohong

    2013-06-01

    Balancing production and consumption with self-generation capacity in energy-intensive enterprises has huge economic and environmental benefits. However, balancing production and consumption with self-generation capacity is a challenging task since the energy production and consumption must be balanced in real time with the criteria specified by power grid. In this article, a mathematical model for minimising the production cost with exactly realisable energy delivery schedule is formulated. And a dynamic programming (DP)-based self-balancing dynamic scheduling algorithm is developed to obtain the complete solution set for such a multiple optimal solutions problem. For each stage, a set of conditions are established to determine whether a feasible control trajectory exists. The state space under these conditions is partitioned into subsets and each subset is viewed as an aggregate state, the cost-to-go function is then expressed as a function of initial and terminal generation levels of each stage and is proved to be a staircase function with finite steps. This avoids the calculation of the cost-to-go of every state to resolve the issue of dimensionality in DP algorithm. In the backward sweep process of the algorithm, an optimal policy is determined to maximise the realisability of energy delivery schedule across the entire time horizon. And then in the forward sweep process, the feasible region of the optimal policy with the initial and terminal state at each stage is identified. Different feasible control trajectories can be identified based on the region; therefore, optimising for the feasible control trajectory is performed based on the region with economic and reliability objectives taken into account.

  12. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction

  13. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  14. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  15. DOE Zero Energy Ready Home Case Study: John Hubert Associates — EXIT-0 House, North Cape May, NJ

    SciTech Connect

    none,

    This house is the first DOE Zero Energy Ready Home for this builder and won a Custom Builder award in the 2014 Housing Innovation Awards. The 1,871-ft2 home features advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB sheathing, R-18 rigid-foam-insulated crawlspace walls, solar water heating, a high-efficiency heat pump, an HRV, and mostly LED lighting.

  16. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    PubMed

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  17. Increased Protein Maintains Nitrogen Balance during Exercise-Induced Energy Deficit

    USDA-ARS?s Scientific Manuscript database

    PURPOSE: This study examined how a high-protein diet affected nitrogen balance and protein turnover during an exercise-induced energy deficit. METHODS: Twenty-two men completed a 4-d (D1-4) baseline period (BL) of an energy balance diet while maintaining usual physical activity level, followed by 7 ...

  18. Surface Energy Balance System for Estimating Daily Evapotranspiration Rates in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or a combination of these models for an operational ET remote sensing program requires thorough evaluation. The Surface Energy Balance S...

  19. Reassessing the effect of cloud type on Earth's energy balance

    NASA Astrophysics Data System (ADS)

    Hang, A.; L'Ecuyer, T.

    2017-12-01

    Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.

  20. Understanding the Relationship Between Food Variety, Food Intake, and Energy Balance.

    PubMed

    Raynor, Hollie A; Vadiveloo, Maya

    2018-03-01

    In accordance with US dietary guidance, incorporating variety into the diet can align with energy balance, though greater food variety in some categories may make energy balance more challenging. Thus, experimental and epidemiologic evidence is summarized on the relationship between food variety, food and energy intake, and energy balance. Lab-based, experimental research consistently demonstrates that greater variety within foods or sensory characteristics of food increases food and energy intake within an eating occasion. Epidemiologic evidence is less consistent, potentially driven by differing methodologies, particularly in defining and measuring food variety. Moreover, the effect of variety on energy balance appears to be moderated by food energy density. Integrating insights from experimental and epidemiologic research are essential for strengthening food variety guidance including developing evidence-based definitions of food variety, understanding moderators of the relationship, and developing practical guidance interpretable to consumers.

  1. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect

    Dean, J.; VanGeet, O.; Simkus, S.

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or withinmore » a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.« less

  2. Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings

    SciTech Connect

    Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica

    2008-06-16

    It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less

  3. Energy expenditure: a critical determinant of energy balance with key hypothalamic controls.

    PubMed

    Richard, D

    2007-09-01

    Energy stores are regulated through complex neural controls exerted on both food intake and energy expenditure. These controls are insured by interconnected neurons that produce different peptides or classic neurotransmitters, which have been regrouped into anabolic' and catabolic' systems. While the control of energy intake has been addressed in numerous investigations, that of energy expenditure has, as yet, only received a moderate interest, even though energy expenditure represents a key determinant of energy balance. In laboratory rodents, in particular, a strong regulatory control is exerted on brown adipose tissue (BAT), which represent an efficient thermogenic effector. BAT thermogenesis is governed by the sympathetic nervous system (SNS), whose activity is controlled by neurons comprised in various brain regions, which include the paraventricular hypothalamic nucleus (PVH), the arcuate nucleus (ARC) and the lateral hypothalamus (LH). Proopiomelanocortin neurons from the ARC project to the PVH and terminate in the vicinity of the melanocortin-4 receptors, which are concentrated in the descending division of the PVH, which comprise neurons controlling the SNS outflow to BAT. The LH contains neurons producing melanin-concentrating hormone or orexins, which also are important peptides in the control of energy expenditure. These neurons are not only polysynaptically connected to BAT, but also linked to brains regions controlling motivated behaviors and locomotor activity and, consequently, their role in the control of energy expenditure could go beyond BAT thermogenesis.

  4. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    PubMed

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  5. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  6. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  7. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates

    PubMed Central

    Rebnegger, Corinna; Vos, Tim; Graf, Alexandra B.; Valli, Minoska; Pronk, Jack T.

    2016-01-01

    ABSTRACT The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production

  8. Estimates of fluid and energy balances of Apollo 17

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Fluid and caloric balance has been calculated for the Apollo 17 crew. This included measurement of nitrogen, water, and caloric value of the ingested food and the volume and nitrogen content of the excreted urine and feces. Body composition changes were determined from total body water and extracellular fluid volume differences. The body composition measurements made it possible to divide the weight loss into lean body mass and adipose tissue losses. From this division a caloric equivalent was calculated. These tissue losses indicated that the caloric requirements of the mission were considerably greater than the actual caloric intake. The 3.3 kilo mean loss of body weight represented 1 kilo of lean body mass and 2.3 kilos of adipose tissue. Calculated fluid balance was more positive during the mission than during the control period. These changes are unlike the body composition and fluid balance changes reported in bedrested subjects.

  9. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    SciTech Connect

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  10. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    SciTech Connect

    Booth, Samuel

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  11. Zero energy states at a normal-metal/cuprate-superconductor interface probed by shot noise

    NASA Astrophysics Data System (ADS)

    Negri, O.; Zaberchik, M.; Drachuck, G.; Keren, A.; Reznikov, M.

    2018-06-01

    We report measurements of the current noise generated in the optimally doped, x =0.15 , Au-La2-xSrxCuO4 junctions. For high transmission junctions on a (110) surface, we observed a split zero-bias conductance peak (ZBCP), accompanied by enhanced shot noise. We observed no enhanced noise neither in low-transmission junctions on a (110) surface nor in any junction on a (100) surface. We attribute the enhanced noise to Cooper pair transport through the junctions.

  12. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at

  13. Technical and economic analysis use of flare gas into alternative energy as a breakthrough in achieving zero routine flaring

    NASA Astrophysics Data System (ADS)

    Petri, Y.; Juliza, H.; Humala, N.

    2018-03-01

    The activity of exploring natural oil and gas will produce gas flare 0.584 MMSCFD. A gas flare is the combustion of gas remaining to avoid poisonous gas like H2S and CO which is very dangerous for human and environmental health. The combustion can bring about environmental pollution and losses because it still contains valuable energy. It needs the policy to encourage the use of flare gas with Zero Routine Flaring and green productivity to reduce waste and pollution. The objective of the research was to determine the use of gas flare so that it will have economic value and can achieve Zero Routine Flaring. It was started by analysing based on volume or rate and composition gas flare was used to determine technical feasibility, and the estimation of the gas reserves as the determination of the economy of a gas well. The results showed that the use of flare gas as fuel for power generation feasible to be implemented technically and economically with Internal Rate of Return (IRR) 19.32% and the Payback Period (PP) 5 year. Thus, it can increase gas flare value economically and can achieve a breakthrough in Zero Routine Flaring.

  14. Energy balance during underwater implosion of ductile metallic cylinders.

    PubMed

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  15. HIA 2016 DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans, Beacon House, Deer Park, NY

    SciTech Connect

    Pacific Northwest National Laboratory

    Case study of a DOE 2016 Housing Innovation Award winning affordable home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 32 without PV or HERS 9 with PV.

  16. Evaluation of temperature and relative humidity on two types of zero energy cool chamber (ZECC) in South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Dirpan, Andi; Tahir Sapsal, Muhammad; Kadir Muhammad, Abdul; Tahir, Mulyati M.; Rahimuddin

    2017-12-01

    Zero Energy Cool Chamber (ZECC) is a cooling chamber for storing fruits and vegetables from the viewpoints of low cost and energy savings. The aim of the present study is to evaluate temperature and relative humidity (RH) on two types of zero energy cool chamber (ZECC) in South Sulawesi, Indonesia. The first category was placed underground while the second category was on the surface. Then, the performance of the ZECC was measured by calculating temperature and relative humidity. The results show that the ZECC was constructed on the surface produce lower temperature and higher RH compare to ZECC which placed underground. In average, the temperature in the outside (28.0°C) is greater than in inside (26.2°C) of the ZECC. On the other hand, the relative humidity in the outside (72.9%) is less than in inside (87.2%) of the ZECC. It was concluded that the ZECC where was constructed on the surface is more suitable than ZECC in the underground for decreasing temperature and increasing relative humidity.

  17. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    NASA Astrophysics Data System (ADS)

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  18. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    PubMed

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  19. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  20. Developmental programming of energy balance regulation: Is physical activity more "programmable" than food intake

    USDA-ARS?s Scientific Manuscript database

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...

  1. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  2. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    DTIC Science & Technology

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy, solar heating (and cooling), and...peaks of individual buildings; thus the needed gen- eration and back-up capacity is smaller. To develop the community energy concept, energy models...overall thermal energy system, a hydraulic flow model (Figure 5) should be used to analyze critical capacities and flows in the system. This material is

  3. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    NASA Astrophysics Data System (ADS)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  4. People Bouncing on Trampolines: Dramatic Energy Transfer, a Table-Top Demonstration, Complex Dynamics and a Zero Sum Game

    PubMed Central

    Srinivasan, Manoj; Wang, Yang; Sheets, Alison

    2013-01-01

    Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., “seat drop war”), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline – in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria. PMID:24236029

  5. People bouncing on trampolines: dramatic energy transfer, a table-top demonstration, complex dynamics and a zero sum game.

    PubMed

    Srinivasan, Manoj; Wang, Yang; Sheets, Alison

    2013-01-01

    Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., "seat drop war"), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline - in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria.

  6. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  7. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    NASA Astrophysics Data System (ADS)

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel

    2018-02-01

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.

  8. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    DOE PAGES

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; ...

    2018-02-12

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less

  9. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    SciTech Connect

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less

  10. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  11. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  12. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-09-30

    Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE

  13. Integration of net zero energy building with smart grid to improve regional electrification ratio towards sustainable development

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu

    2017-12-01

    Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.

  14. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  15. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to themore » DOE ZERH specification that can be used to encourage participation by other California builders.« less

  16. Vibrational structure of vinyl chloride cation studied by using one-photon zero-kinetic energy photoelectron spectroscopy.

    PubMed

    Zhang, Ping; Li, Juan; Mo, Yuxiang

    2007-09-06

    The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).

  17. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg(-1)·day(-1)) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (-1.41 ± 1.11 (-1.98, -0.84) g·kg(-1)·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.

  18. Impacts of Topographic Shading on Surface Energy Balance of High Mountain Asia Glaciers

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.

    2016-12-01

    Topographic shading plays an important role in the energy balance of valley glaciers. While previous studies incorporate shading of varying complexity in surface energy balance models, to date, no large-scale studies have explored in depth the effects of topographic shading on glacier surface energy balance, and how these vary geographically within High Mountain Asia (HMA). Here we develop a model to examine the variability in potential insolation during the summer melt season using the ASTER GDEM and multi-hour solar geometry to simulate topographic shading on an idealized glacier. Shading is calculated in simulations utilizing a range of slopes, aspects, and latitudes. We test glacier mass balance sensitivity to these parameters for a suite of glaciers throughout HMA. Our results show that shading impacts on glaciers in HMA are highly variable across different geographic regions, but that they are largely predictable based on topographic characteristics such as slope and aspect. For example, we find in regions with steep topography and high relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. In these regions, topographic shading may play a more significant role in glacier energy balance. These results will better define the effects of topographic shading on surface energy balance, and improve model accuracy within HMA. Additionally, this topographic shading model provides a framework to quantify how shading effects vary for advancing or retreating glaciers as they respond to fluctuations in climate across HMA.

  19. Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1990-01-01

    The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.

  20. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    NASA Astrophysics Data System (ADS)

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  1. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  2. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  3. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  4. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    PubMed

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  5. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 1. Impact of farming systems

    NASA Astrophysics Data System (ADS)

    Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1

  6. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng

    2017-03-01

    Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.

  7. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic…

  8. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P < 0.05) for PRO (mean ± SD, 2.0 ± 0.3 g·kg·d) and CHO (5.8 ± 1.3 g·kg·d), but only CHO increased (P < 0.05) energy intake above CON. Energy expenditure (6155 ± 515 kcal·d), energy balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P < 0.05) with NET (r = 0.56) and NBAL (r = 0.69), and soldiers with the highest energy intake (3723 ± 359 kcal·d, 2.11 ± 0.45 g protein·kg·d, 6.654 ± 1.16 g carbohydrate·kg·d) achieved net protein balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  9. The effect of cooled dialysate on thermal energy balance in hemodialysis patients.

    PubMed

    Provenzano, R; Sawaya, B; Frinak, S; Polaschegg, H D; Roy, T; Zasuwa, G; Dumler, F; Levin, N W

    1988-01-01

    The authors have monitored extracorporeal thermal energy balance using continuous in-line arterial and venous temperature and blood flow measurements. Use of dialysate at 37 degrees C resulted in a mean heat energy gain of 83 +/- 61 cal/min, whereas dialysate at 34 degrees C produced a loss of 463 +/- 121 cal/min. Monitoring extracorporeal thermal energy balance during cooled-dialysate hemodialysis will facilitate the use of feedback loops for dialysate temperature control in order to maximize hemodynamic stability while reducing discomfort. This methodology also may be helpful in assessing the metabolic effects of protein intake, high flux dialysis, membrane biocompatibility, and adequacy of dialysis in relation to thermal energy balance.

  10. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Zhang, Xin-jian; Yuan, Feng-hui; Chen, Ni-na; Deng, Jun-li; Yu, Xiao-zhou; Sheng, Xue-jiao

    2011-03-01

    Based on the continuous measurements of an open-path eddy covariance system, this paper analyzed the characteristics of energy balance components and evapotranspiration in a broad-leaved Korean pine forest in Changbai Mountains in 2008, as well as the differences of energy balance components and evapotranspiration between growth season and dormant season. For the test forest, the year-round energy balance closure was 72%, being at a medium level, compared to the other studies in the Fluxnet community. The energy balance components had significant differences in their diurnal and seasonal variations. In growth season, turbulent energy exchange was dominated by upward latent heat flux, accounting for 66% of available energy; while in dormant season, the turbulent energy exchange was dominated by upward sensible heat flux, accounting for 63% of available energy. The accumulated annual evapotranspiration in the study site in 2008 was 484.7 mm, occupying 87% of the precipitation at the same time period (558.9 mm), which demonstrated that evapotranspiration was the main water loss item in temperate forests of northern China.

  11. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  12. Manipulating early lactation energy and protein balances using canola meal as a protein source

    USDA-ARS?s Scientific Manuscript database

    Negative energy and protein balances during the immediate postpartum period in a dairy cow pose opportunities to improve the cow’s health and production. The inability of the cow to consume an adequate supply of nutrients mobilizes its body reserves to serve as energy and protein required for milk p...

  13. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    SciTech Connect

    none,

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013more » Housing Innovation Award in the "systems builder" category.« less

  14. Dike propagation energy balance from deformation modeling and seismic release

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Aoki, Yosuke; Rivalta, Eleonora

    2017-06-01

    Magma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.Plain Language SummaryDike propagation is a dominant mechanism for magma ascent, transport, and eruptions. Besides being an intriguing physical process, it has critical hazard implications. After the magma intrusion starts, it is difficult to predict when and where a specific horizontal dike is going to halt and what its final length will be. In our study, we singled an equation that can be used as a proxy of the expected mechanical <span class="hlt">energy</span> to be released by the opening dike. We related this expected <span class="hlt">energy</span> to the seismic moment of several eruptive intrusions around the world (Afar region, Japanese volcanoes, and Mount Etna). The proposed novel approach is helpful to estimate the total seismic moment to be released, therefore allowing potentially predicting when the dike will end its propagation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20136303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20136303"><span>Method and basis set dependence of anharmonic ground state nuclear wave functions and <span class="hlt">zero</span>-point <span class="hlt">energies</span>: application to SSSH.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kolmann, Stephen J; Jordan, Meredith J T</p> <p>2010-02-07</p> <p>One of the largest remaining errors in thermochemical calculations is the determination of the <span class="hlt">zero</span>-point <span class="hlt">energy</span> (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential <span class="hlt">energy</span> surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in <span class="hlt">energy</span> than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in <span class="hlt">energy</span> at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JChPh.132e4105K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JChPh.132e4105K"><span>Method and basis set dependence of anharmonic ground state nuclear wave functions and <span class="hlt">zero</span>-point <span class="hlt">energies</span>: Application to SSSH</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolmann, Stephen J.; Jordan, Meredith J. T.</p> <p>2010-02-01</p> <p>One of the largest remaining errors in thermochemical calculations is the determination of the <span class="hlt">zero</span>-point <span class="hlt">energy</span> (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential <span class="hlt">energy</span> surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in <span class="hlt">energy</span> than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in <span class="hlt">energy</span> at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920048728&hterms=THC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DTHC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920048728&hterms=THC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DTHC"><span>Integrated <span class="hlt">energy</span> <span class="hlt">balance</span> analysis for Space Station Freedom</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tandler, John</p> <p>1991-01-01</p> <p>An integrated simulation model is described which characterizes the dynamic interaction of the <span class="hlt">energy</span> transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated <span class="hlt">energy</span> transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8011E..9GA','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8011E..9GA"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> in apodized diffractive multifocal intaocular lenses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.</p> <p>2011-08-01</p> <p>The <span class="hlt">energy</span> distribution between the distance and near images formed in a model eye by three different apodized diffractive multifocal intraocular lenses (IOLs) is experimentally determined in an optical bench. The model eye has an artificial cornea with positive spherical aberration (SA) similar to human cornea. The level of SA upon the IOL, which is pupil size dependent, is controlled using a Hartmann-Shack wave sensor. The <span class="hlt">energy</span> of the distance and near images as a function of the pupil size is experimentally obtained from image analysis. All three IOLs have the same base refractive power (20D) but different designs (aspheric, spherical) and add powers (+4.0 D, +3.0 D). The results show that in all the cases, the <span class="hlt">energy</span> efficiency of the distance image decreases for large pupils, in contrast with the theoretical and simulated results that only consider the diffractive profile of the lens. As for the near image, since the diffractive zone responsible for the formation of this image has the same apodization factor in the spherical and aspheric lenses and the apertures involved are small (and so the level of SA), the results turn out to be similar for all the three IOL designs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16164278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16164278"><span>Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in <span class="hlt">zero</span>-point <span class="hlt">energy</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Issack, Bilkiss B; Roy, Pierre-Nicholas</p> <p>2005-08-22</p> <p>An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in <span class="hlt">zero</span>-point <span class="hlt">energy</span>. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanos...5.9917Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanos...5.9917Z"><span>Reduction of aqueous Crvi using nanoscale <span class="hlt">zero</span>-valent iron dispersed by high <span class="hlt">energy</span> electron beam irradiation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan</p> <p>2013-09-01</p> <p>High <span class="hlt">energy</span> electron beam (HEEB) irradiation was used to disperse nanoscale <span class="hlt">zero</span>-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23982295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23982295"><span>Reduction of aqueous CrVI using nanoscale <span class="hlt">zero</span>-valent iron dispersed by high <span class="hlt">energy</span> electron beam irradiation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan</p> <p>2013-10-21</p> <p>High <span class="hlt">energy</span> electron beam (HEEB) irradiation was used to disperse nanoscale <span class="hlt">zero</span>-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.830a2162M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.830a2162M"><span>Investigation of the <span class="hlt">Energy</span> <span class="hlt">Balance</span> in the Spark Discharge Generator for Nanoparticles Synthesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.</p> <p>2017-07-01</p> <p>In this paper we investigate the <span class="hlt">balance</span> of <span class="hlt">energy</span> in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released <span class="hlt">energy</span> consists of several parts: the <span class="hlt">energy</span> in a discharge gap and the <span class="hlt">energy</span> dissipated in the other elements of the circuit. In turn, in the gap a one part of the <span class="hlt">energy</span> releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize <span class="hlt">energy</span> efficiency of the nanoparticles production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22522563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22522563"><span>Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leshan, Rebecca L; Greenwald-Yarnell, Megan; Patterson, Christa M; Gonzalez, Ian E; Myers, Martin G</p> <p>2012-05-01</p> <p>Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control <span class="hlt">energy</span> <span class="hlt">balance</span>. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily <span class="hlt">energy</span> stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, <span class="hlt">energy</span> expenditure and endocrine function(2-4). The modest contributions to <span class="hlt">energy</span> <span class="hlt">balance</span> that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in <span class="hlt">energy</span> <span class="hlt">balance</span>. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased <span class="hlt">energy</span> expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic <span class="hlt">energy</span> <span class="hlt">balance</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25903982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25903982"><span>The Role of <span class="hlt">Energy</span> <span class="hlt">Balance</span> in Successful Aging Among Elderly Individuals: The Multinational MEDIS Study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tyrovolas, Stefanos; Haro, Josep Maria; Mariolis, Anargiros; Piscopo, Suzanne; Valacchi, Giuseppe; Makri, Kornilia; Zeimbekis, Akis; Tyrovola, Dimitra; Bountziouka, Vassiliki; Gotsis, Efthimios; Metallinos, George; Tur, Josep-Antoni; Matalas, Antonia; Lionis, Christos; Polychronopoulos, Evangelos; Panagiotakos, Demosthenes</p> <p>2015-12-01</p> <p>The determinants that promote living beyond life expectancy and successful aging still remain unknown. The aim of the present work was to evaluate the role of <span class="hlt">energy</span> <span class="hlt">balance</span> in successful aging, in a random sample of older adults living in the Mediterranean basin. During 2005 to 2011, 2,663 older (aged 65-100 years) adults from 21 Mediterranean islands and the rural Mani region (Peloponnesus) of Greece were voluntarily enrolled in the study. Dietary habits, <span class="hlt">energy</span> intake, expenditure, and <span class="hlt">energy</span> <span class="hlt">balance</span> were derived throughout standard procedures. A successful aging index (range = 0-10) was used. After adjusting for several confounders, high <span class="hlt">energy</span> intake (i.e., >1,700 kcal/day), b-coefficient [95% CI] = -0.21[-0.37, -0.05], as well as positive <span class="hlt">energy</span> <span class="hlt">balance</span>, b-coefficient [95% CI] = -0.21 [-0.37, -0.05], were inversely associated with successful aging. A diet with excessive <span class="hlt">energy</span> intake and a positive <span class="hlt">energy</span> <span class="hlt">balance</span> seems to be associated with lower quality of life, as measured through successful aging. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28431449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28431449"><span>Peripheral and Central Glucocorticoid Signaling Contributes to Positive <span class="hlt">Energy</span> <span class="hlt">Balance</span> in Rats.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borba, Tássia Karin; Galindo, Lígia Cristina Monteiro; Ferraz-Pereira, Kelli Nogueira; da Silva Aragão, Raquel; Toscano, Ana Elisa; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul</p> <p>2017-06-01</p> <p>The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of <span class="hlt">energy</span> <span class="hlt">balance</span>. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of <span class="hlt">energy</span> <span class="hlt">balance</span>. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative <span class="hlt">energy</span> <span class="hlt">balance</span>. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and <span class="hlt">energy</span> expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine <span class="hlt">energy</span> expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased <span class="hlt">energy</span> expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive <span class="hlt">energy</span> <span class="hlt">balance</span> and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity. © Georg Thieme Verlag KG Stuttgart · New York.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3290465','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3290465"><span><span class="hlt">Energy</span> <span class="hlt">Balanced</span> Strategies for Maximizing the Lifetime of Sparsely Deployed Underwater Acoustic Sensor Networks</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan</p> <p>2009-01-01</p> <p>Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery <span class="hlt">energy</span> consumption will lead to early <span class="hlt">energy</span> depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, <span class="hlt">balanced</span> <span class="hlt">energy</span> dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the <span class="hlt">energy</span> <span class="hlt">balance</span> dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced <span class="hlt">energy</span> consumption in such networks, then we propose two <span class="hlt">energy</span> <span class="hlt">balanced</span> strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve <span class="hlt">balanced</span> <span class="hlt">energy</span> consumption per node while at the same time prolong the networks lifetime. PMID:22399970</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1008977','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1008977"><span>Demonstration of the <span class="hlt">Energy</span> Component of the Installation Master Plan Using the Net <span class="hlt">Zero</span> <span class="hlt">Energy</span> Planner Tool</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-10-07</p> <p>solutions such as solar photovoltaics, solar thermal, wind <span class="hlt">energy</span>, bio-mass ( wood chips, etc.), bio-gas, or synthetic gas are considered as part of the...Leonard Wood , MO, Fort Hunter Liggett, CA, Schofield Barracks, HI, and the Presidio of Monterey, CA. <span class="hlt">Energy</span> planning may be conducted at varying levels...installation goals at the lowest cost. In- dustrial scale supply solutions such as solar photovoltaics, solar-thermal, wind <span class="hlt">energy</span>, biomass ( wood chips</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1024263','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1024263"><span>Demonstrate <span class="hlt">Energy</span> Component of the Installation Master Plan Using Net <span class="hlt">Zero</span> Installation Virtual Testbed</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-01</p> <p>capabilities. Chapter 4 includes examples of their application and results. The tool has also been applied to EMP processes at Fort Leonard Wood , MO...such as solar photovoltaics, solar-thermal, wind <span class="hlt">energy</span>, biomass ( wood chips, etc.), biogas, or synthetic gas need to be considered as part of the mix...this project Besides its use on pilot projects funded by ESTCP program, NZP is currently being used at Fort Leonard Wood , MO and several other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1015571','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1015571"><span>A Green Prison: Santa Rita Jail Creeps Towards <span class="hlt">Zero</span> Net <span class="hlt">Energy</span> (ZNE)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Marnay, Chris; DeForest, Nicholas; Stadler, Michael</p> <p>2011-03-18</p> <p>A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed <span class="hlt">energy</span> resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellentmore » lessons for the struggle to lower building carbon footprint. The Distributed <span class="hlt">Energy</span> Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize <span class="hlt">energy</span> bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, <span class="hlt">energy</span> consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001512','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001512"><span>Intraseasonal Variations in Tropical <span class="hlt">Energy</span> <span class="hlt">Balance</span>: Relevance to Climate Sensitivity?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.</p> <p>2011-01-01</p> <p>Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat <span class="hlt">balance</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20520959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20520959"><span>Nutritional recovery with rice bran did not modify <span class="hlt">energy</span> <span class="hlt">balance</span> and leptin and insulin levels.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martins, Maria Salete F; Oyama, Lila M; Latorraca, Marcia Q; Gomes-da-Silva, Maria Helena G; Nascimento, Claudia M O</p> <p>2010-03-01</p> <p>To investigate the effect of nutritional recovery with rice bran on <span class="hlt">energy</span> <span class="hlt">balance</span>, leptin and insulin levels. Weaned Wistar rats were fed on a 17% (Control - C) or 0.5% (Aproteic - A) protein diet for 12d. After this, rats were kept on a C diet (C) or recovered with control (Recovered Control - RC) or control plus recovered rice bran diet (Recovered Rice Bran - RRB). Despite the increased food intake, group A exhibited lower carcass fat associated to low serum leptin. RRB and RC groups showed lower carcass weight and <span class="hlt">energy</span> intake and expenditure. <span class="hlt">Energy</span> expenditure was positively associated with food intake and carcass weight. Negative correlations between HOMA-IR and <span class="hlt">energy</span> expenditure and <span class="hlt">energy</span> intake were observed. Nutritional recovery with rice bran did not modify <span class="hlt">energy</span> <span class="hlt">balance</span>, leptin and insulin levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22979864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22979864"><span><span class="hlt">Zero</span> kinetic <span class="hlt">energy</span> photoelectron spectroscopy of tryptamine and the dissociation pathway of the singly hydrated cation cluster.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Quanli; Knee, J L</p> <p>2012-09-14</p> <p>The relative ionization <span class="hlt">energies</span> of tryptamine conformations are determined by <span class="hlt">zero</span> kinetic <span class="hlt">energy</span> photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer <span class="hlt">energies</span> in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation <span class="hlt">energy</span> measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation <span class="hlt">energy</span> of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation <span class="hlt">energy</span> measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23443827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23443827"><span>Obesity as malnutrition: the dimensions beyond <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wells, J C K</p> <p>2013-05-01</p> <p>The aetiology of obesity is seemingly simple to understand: individuals consume more <span class="hlt">energy</span> than they expend, with the excess <span class="hlt">energy</span> being stored in adipose tissue. Public health campaigns therefore promote dietary restraint and physical exercise, and emphasize individual responsibility for these behaviours. Increasingly, however, researchers are switching from thermodynamic to metabolic models of obesity, thereby clarifying how specific environmental factors promote lipogenesis. Obesity can best be explained not by counting 'calories in and out', but by understanding how specific dietary products and activity behaviours perturb cellular metabolism and promote net lipogenesis. This metabolic approach can furthermore be integrated with more sophisticated models of how commercial practices drive the consumer trends that promote obesogenic behaviours. Notably, obesity treatment has proven more effective if it bypasses individual responsibility, suggesting that a similar approach placing less emphasis on individual responsibility would improve the efficacy of obesity prevention. Successful obesity prevention campaigns are likely to emerge only when the public receive better 'protection' from the commercial practices that are driving the global obesity epidemic. Rather than populations failing to heed governments' public health advice, governments are currently failing the public by abandoning their responsibility for regulating commercial activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanop...7...48K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanop...7...48K"><span>Relative merits of phononics vs. plasmonics: the <span class="hlt">energy</span> <span class="hlt">balance</span> approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khurgin, Jacob B.</p> <p>2018-01-01</p> <p>The common feature of various plasmonic schemes is their ability to confine optical fields of surface plasmon polaritons (SPPs) into subwavelength volumes and thus achieve a large enhancement of linear and nonlinear optical properties. This ability, however, is severely limited by the large ohmic loss inherent to even the best of metals. However, in the mid- and far-infrared ranges of the spectrum, there exists a viable alternative to metals - polar dielectrics and semiconductors, in which dielectric permittivity (the real part) turns negative in the Reststrahlen region. This feature engenders the so-called surface phonon polaritons, capable of confining the field in a way akin to their plasmonic analogs, the SPPs. Since the damping rate of polar phonons is substantially less than that of free electrons, it is not unreasonable to expect that phononic devices may outperform their plasmonic counterparts. Yet a more rigorous analysis of the comparative merits of phononics and plasmonics reveals a more nuanced answer, namely, that while phononic schemes do exhibit narrower resonances and can achieve a very high degree of <span class="hlt">energy</span> concentration, most of the <span class="hlt">energy</span> is contained in the form of lattice vibrations so that enhancement of the electric field and, hence, the Purcell factor is rather small compared to what can be achieved with metal nanoantennas. Still, the sheer narrowness of phononic resonances is expected to make phononics viable in applications where frequency selectivity is important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16246381','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16246381"><span>Environmental influences on food choice, physical activity and <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Popkin, Barry M; Duffey, Kiyah; Gordon-Larsen, Penny</p> <p>2005-12-15</p> <p>In this paper, the environment is defined as the macro- and community-level factors, including physical, legal and policy factors, that influence household and individual decisions. Thus, environment is conceived as the external context in which household and individual decisions are made. This paper reviews the literature on the ways the environment affects diet, physical activity, and obesity. Other key environmental factors discussed include economic, legal, and policy factors. Behind the major changes in diet and physical activity in the US and globally lie large shifts in food production, processing, and distribution systems as well as food shopping and eating options, resulting in the increase in availability of <span class="hlt">energy</span>-dense foods. Similarly, the ways we move at home, work, leisure, and travel have shifted markedly, resulting in substantial reductions in <span class="hlt">energy</span> expenditure. Many small area studies have linked environmental shifts with diet and activity changes. This paper begins with a review of environmental influences on diet and physical activity, and includes the discussion of two case studies on environmental influences on physical activity in a nationally representative sample of US adolescents. The case studies illustrate the important role of physical activity resources and the inequitable distribution of such activity-related facilities and resources, with high minority, low educated populations at strong disadvantage. Further, the research shows a significant association of such facilities with individual-level health behavior. The inequity in environmental supports for physical activity may underlie health disparities in the US population.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23F0336W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23F0336W"><span>Cloud Impacts on Pavement Temperature in <span class="hlt">Energy</span> <span class="hlt">Balance</span> Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, C. L.</p> <p>2013-12-01</p> <p>Forecast systems provide decision support for end-users ranging from the solar <span class="hlt">energy</span> industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant <span class="hlt">Energy</span> System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JFuE...18...65B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JFuE...18...65B"><span>Report of the Fusion <span class="hlt">Energy</span> Sciences Advisory Committee Panel on Priorities and <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, Charles; Davidson, Ronald; Dean, Stephen; Freidberg, Jeffrey; Sheffield, John</p> <p>1999-06-01</p> <p>This report presents the results and recommendations of the deliberations of the DOE Fusion <span class="hlt">Energy</span> Sciences Advisory Committee (FESAC) Panel on Priorities and <span class="hlt">Balance</span>, which met in Knoxville, TN, 18-21 August 1999. The Panel identified the achievement of a more integrated national program in magnetic fusion <span class="hlt">energy</span> (MFE) and inertial fusion <span class="hlt">energy</span> (IFE) as a major programmatic and policy goal for the years ahead.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880008713','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880008713"><span>Evaluation of surface <span class="hlt">energy</span> and radiation <span class="hlt">balance</span> systems on the Konza Prairie</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritschen, Leo J.</p> <p>1987-01-01</p> <p>Four Surface <span class="hlt">Energy</span> and Radiation <span class="hlt">Balance</span> Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface <span class="hlt">energy</span> and radiation <span class="hlt">balances</span> were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the <span class="hlt">energy</span> <span class="hlt">balance</span> components for all days and systems are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220902','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220902"><span>DOE <span class="hlt">Zero</span> <span class="hlt">Energy</span> Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, Florida</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>none,</p> <p>2013-09-01</p> <p>In this 18-home community, all homes are LEED Platinum and meet <span class="hlt">ENERGY</span> STAR for Homes Version 3 requirements, HERS 23–53. Half way through the project, Habitat for Humanity heard about the DOE Challenge Home program and signed on, committing to build the next home, a three-bedroom, two-bath, 1,143 ft2 duplex, to Challenge Home criteria. The home is the first DOE Challenge Home in Manatee County, and was awarded a 2013 Housing Innovation Award in the affordable builder category.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGeo....9..593L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGeo....9..593L"><span>Effect of mosaic representation of vegetation in land surface schemes on simulated <span class="hlt">energy</span> and carbon <span class="hlt">balances</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, R.; Arora, V. K.</p> <p>2012-01-01</p> <p><span class="hlt">Energy</span> and carbon <span class="hlt">balance</span> implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for <span class="hlt">energy</span> and water <span class="hlt">balance</span> calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach <span class="hlt">energy</span> and water <span class="hlt">balance</span> calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon <span class="hlt">balance</span> evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary <span class="hlt">energy</span> fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon <span class="hlt">balance</span> between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BGD.....8.5849L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BGD.....8.5849L"><span>Effect of mosaic representation of vegetation in land surface schemes on simulated <span class="hlt">energy</span> and carbon <span class="hlt">balances</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, R.; Arora, V. K.</p> <p>2011-06-01</p> <p><span class="hlt">Energy</span> and carbon <span class="hlt">balance</span> implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for <span class="hlt">energy</span> and water <span class="hlt">balance</span> calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach <span class="hlt">energy</span> and water <span class="hlt">balance</span> calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon <span class="hlt">balance</span> evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary <span class="hlt">energy</span> fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon <span class="hlt">balance</span> between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29203517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29203517"><span>Uroguanylin: a new actor in the <span class="hlt">energy</span> <span class="hlt">balance</span> movie.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Folgueira, C; Barja-Fernandez, S; Gonzalez-Saenz, P; Pena-Leon, V; Castelao, C; Ruiz-Piñon, M; Casanueva, F F; Nogueiras, R; Seoane, L M</p> <p>2018-02-01</p> <p>Uroguanylin (UGN) is a potential target in the fight against obesity. The mature protein is released after enzymatic cleavage from its natural precursor, proUGN. UGN is mostly produced in the gut, and its production is regulated by nutritional status. However, UGN is also produced in other tissues such as the kidneys. In the past, UGN has been widely studied as a natriuretic peptide owing to its involvement in several different pathologies such as heart failure, cancer and gastrointestinal diseases. However, recent studies have suggested that UGN also acts as a regulator of body weight homeostasis because it modulates both food intake and <span class="hlt">energy</span> expenditure. This ultimately results in a decrease in body weight. This action is mediated by the sympathetic nervous system. Future studies should be directed at the potential effects of UGN agonists in regulating body weight in human obesity. © 2018 Society for Endocrinology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...93a2025C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...93a2025C"><span>Prediction of <span class="hlt">energy</span> <span class="hlt">balance</span> and utilization for solar electric cars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.</p> <p>2017-11-01</p> <p>Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar <span class="hlt">energy</span> based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24499148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24499148"><span>Resistant starch and <span class="hlt">energy</span> <span class="hlt">balance</span>: impact on weight loss and maintenance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Higgins, Janine A</p> <p>2014-01-01</p> <p>The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on <span class="hlt">energy</span> <span class="hlt">balance</span>--the net difference between <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure. Negative <span class="hlt">energy</span> <span class="hlt">balance</span>, lower intake than expenditure, results in weight loss whereas positive <span class="hlt">energy</span> <span class="hlt">balance</span>, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total <span class="hlt">energy</span> expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total <span class="hlt">energy</span> expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, <span class="hlt">energy</span> intake, <span class="hlt">energy</span> expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29772782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29772782"><span>An <span class="hlt">Energy</span> <span class="hlt">Balanced</span> and Lifetime Extended Routing Protocol for Underwater Sensor Networks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi</p> <p>2018-05-17</p> <p><span class="hlt">Energy</span> limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an <span class="hlt">energy</span> <span class="hlt">balanced</span> and efficient routing protocol, called <span class="hlt">energy</span> <span class="hlt">balanced</span> and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only <span class="hlt">balances</span> traffic loads according to the residual <span class="hlt">energy</span>, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual <span class="hlt">energy</span> level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual <span class="hlt">energy</span> and relatively low-cost paths are selected based on the cost function and residual <span class="hlt">energy</span> level information. We also introduce detailed analysis of optimal <span class="hlt">energy</span> consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and <span class="hlt">energy</span> efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12348461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12348461"><span>A comparative study of <span class="hlt">energy</span> <span class="hlt">balance</span> among housewives of Ludhiana city.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaur, N; Mann, S K; Sidhu, P; Sangha, J K</p> <p>1997-01-01</p> <p><span class="hlt">Energy</span> gap is the main nutritional factor which affects work efficiency in all age groups. The low intake of food results in impaired working efficiency and a low level of vitality. <span class="hlt">Energy</span> <span class="hlt">balance</span> was evaluated among 30 healthy, nonpregnant, nonlactating housewives aged 29-40 years drawn from the campus of Punjab Agricultural University and its surrounding areas. The women's mean overall <span class="hlt">energy</span> intake was 1777 +or- 31 kcal/day, 87% of the ICMR (1990) recommended allowances. Total <span class="hlt">energy</span> expenditure was measured using a computer-based Nutriguide program of Song et al., Caltrac, FAO/WHO/UNU (1985) equations based upon body weight, and an ICMR (1990) prediction equation also based upon body weight. Statistical analysis identified a significant difference in the <span class="hlt">energy</span> expenditure measured by all 4 methods except between the FAO/WHO/UNU and ICMR prediction equations. The overall <span class="hlt">energy</span> <span class="hlt">balance</span> was maximum and positive according to Caltrac at 4.5 kcal/day. The <span class="hlt">energy</span> expenditure measured by the Nutriguide, FAO/WHO/UNU, and ICMR methods was significantly correlated to weight. <span class="hlt">Energy</span> intake was significantly and highly correlated to <span class="hlt">energy</span> <span class="hlt">balance</span> in all of the 4 methods. While the subjects were overweight when compared with Life Insurance Corporation of India (1965) Standards, the women's body mass index of 23.11 kg/sq.m was within the normal range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27834738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27834738"><span>Contribution of adaptive thermogenesis to the hypothalamic regulation of <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lage, Ricardo; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel</p> <p>2016-11-15</p> <p>Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess <span class="hlt">energy</span> as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of <span class="hlt">energy</span> <span class="hlt">balance</span>. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust <span class="hlt">energy</span> <span class="hlt">balance</span>. A greater understanding of the neural basis of the hypothalamic regulation of <span class="hlt">energy</span> <span class="hlt">balance</span> might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common <span class="hlt">energy</span> sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span> with particular focus on thermogenesis. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1358500-ten-questions-concerning-future-buildings-beyond-zero-energy-carbon-neutrality','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1358500-ten-questions-concerning-future-buildings-beyond-zero-energy-carbon-neutrality"><span>Ten questions concerning future buildings beyond <span class="hlt">zero</span> <span class="hlt">energy</span> and carbon neutrality</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wang, Na; Phelan, Patrick E.; Gonzalez, Jorge</p> <p>2017-07-01</p> <p>Architects, planners, and building scientists have been at the forefront of envisioning a future built environment for centuries. However, fragmental views that emphasize one facet of the built environment, such as <span class="hlt">energy</span>, environment, or groundbreaking technologies, often do not achieve expected outcomes. Buildings are responsible for approximately one-third of worldwide carbon emissions and account for over 40% of primary <span class="hlt">energy</span> consumption in the U.S. In addition to achieving the ambitious goal of reducing building greenhouse gas emissions by 75% by 2050, buildings must improve their functionality and performance to meet current and future human, societal, and environmental needs in amore » changing world. In this article, we introduce a new framework to guide potential evolution of the building stock in the next century, based on greenhouse gas emissions as the common thread to investigate the potential implications of new design paradigms, innovative operational strategies, and disruptive technologies. This framework emphasizes integration of multidisciplinary knowledge, scalability for mainstream buildings, and proactive approaches considering constraints and unknowns. The framework integrates the interrelated aspects of the built environment through a series of quantitative metrics that aim to improve environmental outcomes while optimizing building performance to achieve healthy, adaptive, and productive buildings.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26511431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26511431"><span>Developmental programming of <span class="hlt">energy</span> <span class="hlt">balance</span> regulation: is physical activity more 'programmable' than food intake?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A</p> <p>2016-02-01</p> <p>Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in <span class="hlt">energy</span> <span class="hlt">balance</span> regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of <span class="hlt">energy</span> <span class="hlt">balance</span> are poorly understood, limiting our ability to intervene. Most studies of developmental programming of <span class="hlt">energy</span> <span class="hlt">balance</span> have focused on persistent alterations in the regulation of <span class="hlt">energy</span> intake; <span class="hlt">energy</span> expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of <span class="hlt">energy</span> <span class="hlt">balance</span> appeared to be due to persistent alterations in <span class="hlt">energy</span> expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of <span class="hlt">energy</span> <span class="hlt">balance</span>. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4028172','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4028172"><span>Effects of Buffer Size and Shape on Associations between the Built Environment and <span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Berrigan, David; Hart, Jaime E.; Hipp, J. Aaron; Hoehner, Christine M.; Kerr, Jacqueline; Major, Jacqueline M.; Oka, Masayoshi; Laden, Francine</p> <p>2014-01-01</p> <p>Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and <span class="hlt">energy</span> <span class="hlt">balance</span>. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and <span class="hlt">energy</span> <span class="hlt">balance</span> literature. PMID:24607875</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24607875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24607875"><span>Effects of buffer size and shape on associations between the built environment and <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine</p> <p>2014-05-01</p> <p>Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and <span class="hlt">energy</span> <span class="hlt">balance</span>. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and <span class="hlt">energy</span> <span class="hlt">balance</span> literature. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53A0856P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53A0856P"><span>Committed warming inferred from observations and an <span class="hlt">energy</span> <span class="hlt">balance</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pincus, R.; Mauritsen, T.</p> <p>2017-12-01</p> <p>Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's <span class="hlt">energy</span> imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21324248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21324248"><span>The quality of school wellness policies and <span class="hlt">energy-balance</span> behaviors of adolescent mothers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haire-Joshu, Debra; Yount, Byron W; Budd, Elizabeth L; Schwarz, Cynthia; Schermbeck, Rebecca; Green, Scoie; Elliott, Michael</p> <p>2011-03-01</p> <p>In this study, we 1) compared the quality of school wellness policies among schools participating in Moms for a Healthy <span class="hlt">Balance</span> (<span class="hlt">BALANCE</span>), a school- and home-based weight loss study conducted with postpartum adolescents in 27 states; and 2) assessed the relationship between policy quality with <span class="hlt">energy-balance</span> behaviors and body mass index z scores of postpartum adolescents. As a part of <span class="hlt">BALANCE</span>, we collected data on high-calorie food and beverage consumption, minutes spent walking, and height and weight for 647 participants. The School Wellness Policy Coding Tool was used to assess the strength and comprehensiveness of school district wellness policies from 251 schools attended by participating adolescent mothers. Schools averaged low scores for wellness policy comprehensiveness and strength. When compared with participants in schools with the lowest policy comprehensiveness scores, adolescent mothers in schools with the highest scores reported consuming significantly fewer daily calories from sweetened beverages while reporting higher consumption of water (P = .04 and P = .01, respectively). School wellness policy strength was associated with lower BMI z scores among adolescent mothers (P = .01). School wellness policies associated with <span class="hlt">BALANCE</span> may be limited in their ability to promote a healthy school environment. Future studies are needed to evaluate the effect of the strength and comprehensiveness of policy language on <span class="hlt">energy</span> <span class="hlt">balance</span> in high-risk postpartum adolescents. Evidence from this work can provide additional guidance to federal or state government in mandating not only policy content, but also systematic evaluation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877198','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877198"><span>Load <span class="hlt">Balancing</span> Integrated Least Slack Time-Based Appliance Scheduling for Smart Home <span class="hlt">Energy</span> Management</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Silva, Bhagya Nathali; Khan, Murad; Han, Kijun</p> <p>2018-01-01</p> <p>The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. <span class="hlt">Energy</span> management and <span class="hlt">energy</span> conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of <span class="hlt">energy</span> management systems is highly influenced by user behaviors and adopted <span class="hlt">energy</span> management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic <span class="hlt">energy</span> consumption. Hence, we propose a smart home <span class="hlt">energy</span> management system that reduces unnecessary <span class="hlt">energy</span> consumption by integrating an automated switching off system with load <span class="hlt">balancing</span> and appliance scheduling algorithm. The load <span class="hlt">balancing</span> scheme acts according to defined constraints such that the cumulative <span class="hlt">energy</span> consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing <span class="hlt">energy</span> management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based <span class="hlt">energy</span> management scheme in terms of cost of <span class="hlt">energy</span>, along with reduced domestic <span class="hlt">energy</span> consumption facilitated by an automated switching off mechanism. PMID:29495346</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29495346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29495346"><span>Load <span class="hlt">Balancing</span> Integrated Least Slack Time-Based Appliance Scheduling for Smart Home <span class="hlt">Energy</span> Management.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silva, Bhagya Nathali; Khan, Murad; Han, Kijun</p> <p>2018-02-25</p> <p>The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. <span class="hlt">Energy</span> management and <span class="hlt">energy</span> conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of <span class="hlt">energy</span> management systems is highly influenced by user behaviors and adopted <span class="hlt">energy</span> management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic <span class="hlt">energy</span> consumption. Hence, we propose a smart home <span class="hlt">energy</span> management system that reduces unnecessary <span class="hlt">energy</span> consumption by integrating an automated switching off system with load <span class="hlt">balancing</span> and appliance scheduling algorithm. The load <span class="hlt">balancing</span> scheme acts according to defined constraints such that the cumulative <span class="hlt">energy</span> consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing <span class="hlt">energy</span> management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based <span class="hlt">energy</span> management scheme in terms of cost of <span class="hlt">energy</span>, along with reduced domestic <span class="hlt">energy</span> consumption facilitated by an automated switching off mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhRvB..77b4310C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhRvB..77b4310C"><span>Atomic kinetic <span class="hlt">energy</span>, momentum distribution, and structure of solid neon at <span class="hlt">zero</span> temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cazorla, C.; Boronat, J.</p> <p>2008-01-01</p> <p>We report on the calculation of the ground-state atomic kinetic <span class="hlt">energy</span> Ek and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51(6)K , which agrees perfectly with the recent prediction made by Timms , 41(2)K , based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4-20K , and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid He4 in terms of the Debye model in order to assess the relevance of anharmonic effects in Ne.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9998E..0OF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9998E..0OF"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> in the watershed of Ipê, Northwestern São Paulo State, Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feitosa, Diego G.; T. Hernandez, Fernando B.; Franco, Renato A. M.; Teixeira, Antonio H. C.; Neale, Christopher M.</p> <p>2016-10-01</p> <p>The region of Ilha Solteira, in the Northwestern of São Paulo State, has been undergoing significant changes in agricultural land use and cover since 2006, as pasture fields have been replaced by sugarcane crop. This drastic change can lead to a disturbance in the <span class="hlt">energy</span> <span class="hlt">balance</span>, affecting the local climate. The aim of this paper was to assess some parameters related to the <span class="hlt">energy</span> <span class="hlt">balance</span> of Ipê's watershed, that changed since no sugarcane cultivation in 2006 to 2,164 hectares in 2011, occupying 31% of the catchment area with this important <span class="hlt">energy</span> crop for the economy and the environment of Brazil. This study was carried out using remote sensing combined with weather data and using the SAFER (Simple Algorithm for Retrieving Evapotranspiration) model applied in 9 Landsat images collected between 2003 and 2011. The results showed a wide variation between the components of <span class="hlt">energy</span> <span class="hlt">balance</span> and when considering only the sugarcane crop were verified the increase values of ETa (Actual Evapotranspiration), H/Rn (Sensible Heat Flux/Net Radiation), TS (Surface Temperature), Rl↑ (Emitted longwave), Rl↓ (Incidente longwave) and surface albedo after the sugarcane production over these years. On the other hand, the NDVI, λE/Rn (Latent Heat Flux/Net Radiation) and Rn values (data) decreased in the same period. Also there was satisfactory correlation between NDVI and ETa. The SAFER model showed satisfactory results for studies of <span class="hlt">energy</span> <span class="hlt">balance</span> applied in the Northwestern of São Paulo State.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29112285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29112285"><span>Alcohol-Induced Impairment of <span class="hlt">Balance</span> is Antagonized by <span class="hlt">Energy</span> Drinks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F</p> <p>2018-01-01</p> <p>The acute administration of alcohol reliably impairs <span class="hlt">balance</span> and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced <span class="hlt">balance</span> impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine <span class="hlt">energy</span> drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and <span class="hlt">energy</span> drinks, alone and in combination. Following dose administration, participants completed automated assessments of <span class="hlt">balance</span> stability (both eyes open and eyes closed) measured using the Biosway Portable <span class="hlt">Balance</span> System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of <span class="hlt">energy</span> drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not <span class="hlt">energy</span> drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, <span class="hlt">energy</span> drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following <span class="hlt">energy</span> drink administration were also observed. Visual assessment of <span class="hlt">balance</span> impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that <span class="hlt">energy</span> drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/930897','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/930897"><span>Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-<span class="hlt">Zero-Energy</span> Homes - Update to Include Evaluation of Impact of Including a Humidifier Option</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Baxter, Van D</p> <p>2007-02-01</p> <p>The long range strategic goal of the Department of <span class="hlt">Energy</span>'s Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-<span class="hlt">zero</span> <span class="hlt">energy</span> homes at low incremental cost (DOE/BT 2005). A net <span class="hlt">zero</span> <span class="hlt">energy</span> home (NZEH) is a residential building with greatly reduced needs for <span class="hlt">energy</span> through efficiency gains, with the <span class="hlt">balance</span> of <span class="hlt">energy</span> needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in <span class="hlt">energy</span> use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar <span class="hlt">Energy</span> Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-<span class="hlt">Zero-Energy</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARZ12001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARZ12001A"><span>Phonon self-<span class="hlt">energy</span> corrections to non-<span class="hlt">zero</span> wavevector phonon modes in single-layer graphene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred</p> <p>2012-02-01</p> <p>Phonon self-<span class="hlt">energy</span> corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-<span class="hlt">energy</span> for the phonons with non-<span class="hlt">zero</span> wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25771059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25771059"><span>Dry period plane of <span class="hlt">energy</span>: Effects on feed intake, <span class="hlt">energy</span> <span class="hlt">balance</span>, milk production, and composition in transition dairy cows.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V</p> <p>2015-05-01</p> <p>The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of <span class="hlt">energy</span> fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative <span class="hlt">energy</span> <span class="hlt">balance</span> postpartum. Our hypothesis was that a high-fiber, controlled-<span class="hlt">energy</span> diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-<span class="hlt">energy</span> diet (H), or a diet where an intermediate level of <span class="hlt">energy</span> would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-<span class="hlt">energy</span> diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and <span class="hlt">energy</span> <span class="hlt">balance</span> was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, <span class="hlt">energy</span> <span class="hlt">balance</span>, BHBA and NEFA concentrations, milk and <span class="hlt">energy</span>-corrected milk yield, as well as milk composition. Predicted <span class="hlt">energy</span> <span class="hlt">balance</span> tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28497214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28497214"><span>Comparative theoretical studies of differently bridged nitramino-substituted ditetrazole 2-N-oxides with high detonation performance and an oxygen <span class="hlt">balance</span> of around <span class="hlt">zero</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Qiong; Kou, Bo; Hang, Zusheng; Zhu, Weihua</p> <p>2017-06-01</p> <p>In this work, six (A-F) nitramino (-NHNO 2 )-substituted ditetrazole 2-N-oxides with different bridging groups (-CH 2 -, -CH 2 -CH 2 -, -NH-, -N=N-, and -NH-NH-) were designed. The six compounds were based on the parent compound tetrazole 2-N-oxide, which possesses a high oxygen <span class="hlt">balance</span> and high density. The structure, heat of formation, density, detonation properties (detonation velocity D and detonation pressure P), and the sensitivity of each compound was investigated systematically via density functional theory, by studying the electrostatic potential, and using molecular mechanics. The results showed that compounds A-F all have outstanding energetic properties (D: 9.1-10.0 km/s; P: 38.0-46.7 GPa) and acceptable sensitivities (h 50 : 28-37 cm). The bridging group present was found to greatly affect the detonation performance of each ditetrazole 2-N-oxide, and the compound with the -NH-NH- bridging group yielded the best results. Indeed, this compound (F) was calculated to have comparable sensitivity to the famous and widely used high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), but with values of D and P that were about 8.7% and 19.4% higher than those for HMX, respectively. The present study shows that tetrazole 2-N-oxide is a useful parent compound which could potentially be used in the design of new and improved high-<span class="hlt">energy</span> compounds to replace existing energetic compounds such as HMX.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..977A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..977A"><span>Modelling surface <span class="hlt">energy</span> fluxes over a Dehesa ecosystem using a two-source <span class="hlt">energy</span> <span class="hlt">balance</span> model.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria</p> <p>2013-04-01</p> <p>The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based <span class="hlt">energy</span> <span class="hlt">balance</span> techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source <span class="hlt">energy</span> <span class="hlt">balance</span> (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176124','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1176124"><span><span class="hlt">Zero</span>-mode waveguides</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.</p> <p>2007-02-20</p> <p>The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a <span class="hlt">zero</span>-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic <span class="hlt">energy</span> of a frequency less than a cutoff frequency longitudinally through the core of the <span class="hlt">zero</span>-mode waveguide. The analyte is positioned in the core of the <span class="hlt">zero</span>-mode waveguide and is then subjected, in the core of the <span class="hlt">zero</span>-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the <span class="hlt">zero</span>-mode waveguide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724...96F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724...96F"><span>Improving the XAJ Model on the Basis of Mass-<span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Yuanhao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco</p> <p>2014-11-01</p> <p>Introduction: The Xin'anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass <span class="hlt">balance</span>. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both <span class="hlt">energy</span> and mass <span class="hlt">balance</span> to compute the ET following the <span class="hlt">energy</span>-mass <span class="hlt">balance</span> scheme of FEST-EWB. model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724E..96F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724E..96F"><span>Improving the XAJ Model on the Basis of Mass-<span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco</p> <p>2014-11-01</p> <p>The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass <span class="hlt">balance</span>. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both <span class="hlt">energy</span> and mass <span class="hlt">balance</span> to compute the ET following the <span class="hlt">energy</span>-mass <span class="hlt">balance</span> scheme of FEST-EWB. model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910063858&hterms=Hydrostatic+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHydrostatic%2Bpressure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910063858&hterms=Hydrostatic+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHydrostatic%2Bpressure"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> in the solar transition region. II - Effects of pressure and <span class="hlt">energy</span> input on hydrostatic models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fontenla, J. M.; Avrett, E. H.; Loeser, R.</p> <p>1991-01-01</p> <p>The radiation of <span class="hlt">energy</span> by hydrogen lines and continua in hydrostatic <span class="hlt">energy-balance</span> models of the transition region between the solar chromosphere and corona is studied using models which assume that mechanical or magnetic <span class="hlt">energy</span> is dissipated in the hot corona and is then transported toward the chromosphere down the steep temperature gradient of the transition region. These models explain the average quiet sun and also the entire range of variability of the Ly-alpha lines. The relations between the downward <span class="hlt">energy</span> flux, the pressure of the transition region, and the different hydrogen emission are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPRS..128..192W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPRS..128..192W"><span>Performance of five surface <span class="hlt">energy</span> <span class="hlt">balance</span> models for estimating daily evapotranspiration in high biomass sorghum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.</p> <p>2017-06-01</p> <p>Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface <span class="hlt">energy</span> <span class="hlt">balance</span> (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> System (SEBS), Simplified Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> Index (S-SEBI), and operational Simplified Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available <span class="hlt">energy</span>. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409786-evaluation-energy-balance-closure-adjustment-methods-independent-evapotranspiration-estimates-from-lysimeters-hydrological-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409786-evaluation-energy-balance-closure-adjustment-methods-independent-evapotranspiration-estimates-from-lysimeters-hydrological-simulations"><span>Evaluation of <span class="hlt">energy</span> <span class="hlt">balance</span> closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mauder, Matthias; Genzel, Sandra; Fu, Jin; ...</p> <p>2017-11-10</p> <p>Here, we report non-closure of the surface <span class="hlt">energy</span> <span class="hlt">balance</span> is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the <span class="hlt">energy</span> <span class="hlt">balance</span> residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint <span class="hlt">energy</span> and water <span class="hlt">balance</span> simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual <span class="hlt">energy</span> to the latent heat flux than to the sensible heat flux for closing the <span class="hlt">energy</span> <span class="hlt">balance</span> for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the <span class="hlt">energy</span> <span class="hlt">balance</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409786-evaluation-energy-balance-closure-adjustment-methods-independent-evapotranspiration-estimates-from-lysimeters-hydrological-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409786-evaluation-energy-balance-closure-adjustment-methods-independent-evapotranspiration-estimates-from-lysimeters-hydrological-simulations"><span>Evaluation of <span class="hlt">energy</span> <span class="hlt">balance</span> closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Mauder, Matthias; Genzel, Sandra; Fu, Jin</p> <p></p> <p>Here, we report non-closure of the surface <span class="hlt">energy</span> <span class="hlt">balance</span> is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the <span class="hlt">energy</span> <span class="hlt">balance</span> residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint <span class="hlt">energy</span> and water <span class="hlt">balance</span> simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual <span class="hlt">energy</span> to the latent heat flux than to the sensible heat flux for closing the <span class="hlt">energy</span> <span class="hlt">balance</span> for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the <span class="hlt">energy</span> <span class="hlt">balance</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3548187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3548187"><span>Coming Full Circle: Contributions of Central and Peripheral Oxytocin Actions to <span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Blevins, James E.</p> <p>2013-01-01</p> <p>The neuropeptide oxytocin has emerged as an important anorexigen in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span>. Its effects on food intake have largely been attributed to limiting meal size through interactions in key regulatory brain regions such as the hypothalamus and hindbrain. Pharmacologic and pair-feeding studies indicate that its ability to reduce body mass extends beyond that of food intake, affecting multiple factors that determine <span class="hlt">energy</span> <span class="hlt">balance</span> such as <span class="hlt">energy</span> expenditure, lipolysis, and glucose regulation. Systemic administration of oxytocin recapitulates many of its effects when administered centrally, raising the questions of whether and to what extent circulating oxytocin contributes to <span class="hlt">energy</span> regulation. Its therapeutic potential to treat metabolic conditions remains to be determined, but data from diet-induced and genetically obese rodent models as well as application of oxytocin in humans in other areas of research have revealed promising results thus far. PMID:23270805</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.127S"><span>Analysis of the <span class="hlt">balancing</span> of the wind and solar <span class="hlt">energy</span> resources in Andalusia (Southern Spain)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.</p> <p>2010-09-01</p> <p>A higher penetration of the renewable <span class="hlt">energy</span> in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the <span class="hlt">balancing</span> between the productions of different sources of renewable <span class="hlt">energy</span>, trying to combine these productions. In this work we analyze, from a meteorological point of view, the <span class="hlt">balancing</span> between wind and solar <span class="hlt">energy</span> resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed <span class="hlt">balancing</span> between the wind and solar <span class="hlt">energy</span> resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable <span class="hlt">balancing</span> effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Animation+AND+reading&id=EJ1148654','ERIC'); return false;" href="https://eric.ed.gov/?q=Animation+AND+reading&id=EJ1148654"><span>High Textbook Reading Rates When Using an Interactive Textbook for a Material and <span class="hlt">Energy</span> <span class="hlt">Balances</span> Course</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Liberatore, Matthew</p> <p>2017-01-01</p> <p>Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and <span class="hlt">Energy</span> <span class="hlt">Balances</span> zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=exam+AND+c&pg=6&id=EJ945566','ERIC'); return false;" href="https://eric.ed.gov/?q=exam+AND+c&pg=6&id=EJ945566"><span>Improved Student Achievement Using Personalized Online Homework for a Course in Material and <span class="hlt">Energy</span> <span class="hlt">Balances</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Liberatore, Matthew W.</p> <p>2011-01-01</p> <p>Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and <span class="hlt">energy</span> <span class="hlt">balances</span>. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=taste+AND+preference+AND+sweet&id=EJ412834','ERIC'); return false;" href="https://eric.ed.gov/?q=taste+AND+preference+AND+sweet&id=EJ412834"><span>Changes in <span class="hlt">Energy</span> <span class="hlt">Balance</span> Following Smoking Cessation and Resumption of Smoking in Women.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Perkins, Kenneth A.; And Others</p> <p>1990-01-01</p> <p>Prospectively examined caloric intake, resting metabolic rate (RMR), leisure time physical activity, and sensitivity and preference for sweet taste in seven female smokers during normal smoking, complete cessation, and resumption of smoking. Findings suggest that smoking cessation may cause rapid change in <span class="hlt">energy</span> <span class="hlt">balance</span> which is quickly reversed…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=338571','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=338571"><span>Application of an <span class="hlt">energy</span> <span class="hlt">balance</span> method for estimating evapotranspiration in cropping systems</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Accurate quantification of evapotranspiration (ET, consumptive water use) from planting through harvest is critical for managing the limited water resources for crop irrigation. Our objective was to develop and apply an improved land-crop surface residual <span class="hlt">energy</span> <span class="hlt">balance</span> (EB) method for quantifying E...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=342507','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=342507"><span>Microwave implementation of two-source <span class="hlt">energy</span> <span class="hlt">balance</span> approach for estimating evapotranspiration</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A newly developed microwave (MW) land surface temperature (LST) product is used to effectively substitute thermal infrared (TIR) based LST in the two-source <span class="hlt">energy</span> <span class="hlt">balance</span> approach (TSEB) for estimating ET from space. This TSEB land surface scheme, used in the Atmosphere Land Exchange Inverse (ALEXI...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162073','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162073"><span>Comparison of four different <span class="hlt">energy</span> <span class="hlt">balance</span> models for estimating evapotranspiration in the Midwestern United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singh, Ramesh K.; Senay, Gabriel B.</p> <p>2016-01-01</p> <p>The development of different <span class="hlt">energy</span> <span class="hlt">balance</span> models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> Algorithm for Land (SEBAL) model, Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> System (SEBS) model, and the Operational Simplified Surface <span class="hlt">Energy</span> <span class="hlt">Balance</span> (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1) and a high Nash–Sutcliffe coefficient of efficiency (>0.80), whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=292812','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=292812"><span>Application of radiometric surface temperature for surface <span class="hlt">energy</span> <span class="hlt">balance</span> estimation: John Monteith's contributions</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface <span class="hlt">energy</span> <span class="hlt">balance</span> of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=health+AND+4.0&pg=3&id=EJ1099201','ERIC'); return false;" href="https://eric.ed.gov/?q=health+AND+4.0&pg=3&id=EJ1099201"><span>Enhancing <span class="hlt">Energy</span> <span class="hlt">Balance</span> Education through Physical Education and Self-Monitoring Technology</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chen, Senlin; Zhu, Xihe; Kim, Youngwon; Welk, Gregory; Lanningham-Foster, Lorraine</p> <p>2016-01-01</p> <p>Schools are positioned to play a key role in nurturing students with knowledge and behaviours associated with healthful living. Our study examined the effects of an intervention on <span class="hlt">energy</span> <span class="hlt">balance</span> (EB) knowledge. Twelve 6th and 7th grade classrooms (n = 140) were assigned to receive either two standardised lessons on EB or a combined intervention…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1136349.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1136349.pdf"><span>Mass, <span class="hlt">Energy</span>, Entropy and Exergy Rate <span class="hlt">Balance</span> in a Ranque-Hilsh Vortex Tube</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carrascal Lecumberri, Edorta; Sala Lizarraga, José María</p> <p>2013-01-01</p> <p>The objective of this paper is to present a laboratory program designed for the Thermodynamics course offered in the Department of Thermal Engineering at the University of the Basque Country. With reference to one of the examples given in the textbook by Moran, Shapiro, Boettner and Bailey (2012), the <span class="hlt">balances</span> of mass, <span class="hlt">energy</span>, entropy and exergy…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=290857','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=290857"><span>Breath carbon stable isotope ratios identify changes in <span class="hlt">energy</span> <span class="hlt">balance</span> and substrate utilization in humans</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Rapid detection of shifts in substrate utilization and <span class="hlt">energy</span> <span class="hlt">balance</span> would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850018236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850018236"><span>The Martian climate: <span class="hlt">Energy</span> <span class="hlt">balance</span> models with CO2/H2O atmospheres</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoffert, M. I.</p> <p>1985-01-01</p> <p>Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and <span class="hlt">energy</span> <span class="hlt">balance</span>; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=expectancy+AND+value+AND+model&pg=6&id=EJ997930','ERIC'); return false;" href="https://eric.ed.gov/?q=expectancy+AND+value+AND+model&pg=6&id=EJ997930"><span>Ninth Graders' <span class="hlt">Energy</span> <span class="hlt">Balance</span> Knowledge and Physical Activity Behavior: An Expectancy-Value Perspective</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chen, Senlin; Chen, Ang</p> <p>2012-01-01</p> <p>Expectancy beliefs and task values are two essential motivators in physical education. This study was designed to identify the relation between the expectancy-value constructs (Eccles & Wigfield, 1995) and high school students' physical activity behavior as associated with their <span class="hlt">energy</span> <span class="hlt">balance</span> knowledge. High school students (N = 195) in two…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=just+AND+time&pg=2&id=EJ1037338','ERIC'); return false;" href="https://eric.ed.gov/?q=just+AND+time&pg=2&id=EJ1037338"><span>Active Learning and Just-in-Time Teaching in a Material and <span class="hlt">Energy</span> <span class="hlt">Balances</span> Course</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Liberatore, Matthew W.</p> <p>2013-01-01</p> <p>The delivery of a material and <span class="hlt">energy</span> <span class="hlt">balances</span> course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.346..262M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.346..262M"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> and mass conservation in reduced order models of fluid flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian</p> <p>2017-10-01</p> <p>In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) <span class="hlt">energy</span> <span class="hlt">balance</span> and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM <span class="hlt">energy</span> <span class="hlt">balance</span>. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect <span class="hlt">energy</span> <span class="hlt">balance</span>. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate <span class="hlt">energy</span> <span class="hlt">balance</span>. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=291860','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=291860"><span>Effect of fescue toxicosis on ruminal kinetics, nitrogen and <span class="hlt">energy</span> <span class="hlt">balance</span> in Holstein steers</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study was designed to examine alteration of ruminal kinetics, as well as N and <span class="hlt">energy</span> <span class="hlt">balance</span> during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=217 ±7 kg) were weight-matched into pairs and pair-fed throughout a cross-over design experiment with a 2x2 factorial treatment str...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329669','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329669"><span>Across-phase biomass pyrolysis stoichiometry, <span class="hlt">energy</span> <span class="hlt">balance</span>, and product formation kinetics</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Predictive correlations between reactions occurring in the gas-, liquid- and solid-phases are necessary to economically utilize the thermochemical conversion of agricultural wastes impacting the food, water, and <span class="hlt">energy</span> nexus. On the basis of an empirical mass <span class="hlt">balance</span> (99.7%), this study established...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=347059','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=347059"><span>Effects of feeding monensin to bred heifers fed in a drylot on nutrient and <span class="hlt">energy</span> <span class="hlt">balance</span></span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objective of this study was to determine if feeding monensin would improve diet digestion, <span class="hlt">energy</span> and nitrogen <span class="hlt">balance</span> in bred heifers receiving a limit-fed corn stalk-based diet. Sixteen pregnant Meat Animal Research Center (MARC) III composite heifers were used in a 161 d completely randomized...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1002568','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1002568"><span>Demonstration of the <span class="hlt">Energy</span> Component of the Installation Master Plan Using the Net <span class="hlt">Zero</span> <span class="hlt">Energy</span> Planner Tool</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-01</p> <p>capabilities. Chapter 4 includes examples of their application and results. The tool has also been applied to EMP processes at Fort Leonard Wood , MO...such as solar photovoltaics, solar-thermal, wind <span class="hlt">energy</span>, biomass ( wood chips, etc.), biogas, or synthetic gas need to be considered as part of the mix...this project Besides its use on pilot projects funded by ESTCP program, NZP is currently being used at Fort Leonard Wood , MO and several other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23556702','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23556702"><span>Communication: A new ab initio potential <span class="hlt">energy</span> surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized <span class="hlt">zero</span>-point wavefunction.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mancini, John S; Bowman, Joel M</p> <p>2013-03-28</p> <p>We report a global, full-dimensional, ab initio potential <span class="hlt">energy</span> surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ <span class="hlt">energies</span>. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-<span class="hlt">energy</span> saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation <span class="hlt">energy</span> are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the <span class="hlt">zero</span>-point <span class="hlt">energy</span> and wavefunction of the complex and the separated fragments. The calculated <span class="hlt">zero</span>-point <span class="hlt">energies</span> together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the <span class="hlt">zero</span>-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized <span class="hlt">zero</span>-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the <span class="hlt">zero</span>-point <span class="hlt">energy</span> is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4804010','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4804010"><span>Astrocytes Regulate GLP-1 Receptor-Mediated Effects on <span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reiner, David J.; Mietlicki-Baase, Elizabeth G.; McGrath, Lauren E.; Zimmer, Derek J.; Bence, Kendra K.; Sousa, Gregory L.; Konanur, Vaibhav R.; Krawczyk, Joanna; Burk, David H.; Kanoski, Scott E.; Hermann, Gerlinda E.; Rogers, Richard C.</p> <p>2016-01-01</p> <p>Astrocytes are well established modulators of extracellular glutamate, but their direct influence on <span class="hlt">energy</span> <span class="hlt">balance</span>-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates <span class="hlt">energy</span> <span class="hlt">balance</span> in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for <span class="hlt">energy</span> <span class="hlt">balance</span> control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9–39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9–39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in <span class="hlt">energy</span> <span class="hlt">balance</span> control. SIGNIFICANCE STATEMENT Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating <span class="hlt">energy</span> <span class="hlt">balance</span> is largely unstudied. The current data provide novel evidence that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1131386','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1131386"><span>National Assessment of <span class="hlt">Energy</span> Storage for Grid <span class="hlt">Balancing</span> and Arbitrage: Phase 1, WECC</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.</p> <p>2012-06-01</p> <p>To examine the role that <span class="hlt">energy</span> storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the <span class="hlt">balancing</span> requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of <span class="hlt">energy</span> storage and fast-ramping generation devices for estimating size requirements of <span class="hlt">energy</span> storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future <span class="hlt">balancing</span> requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro <span class="hlt">energy</span> storage, compressed air <span class="hlt">energy</span> storage, flywheels, redox flow batteries, and demand response. Distinct power and <span class="hlt">energy</span> capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting <span class="hlt">balancing</span> requirements include Na-S batteries and flywheels.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24441037','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24441037"><span>Breath carbon stable isotope ratios identify changes in <span class="hlt">energy</span> <span class="hlt">balance</span> and substrate utilization in humans.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whigham, L D; Butz, D E; Johnson, L K; Schoeller, D A; Abbott, D H; Porter, W P; Cook, M E</p> <p>2014-09-01</p> <p>Rapid detection of shifts in substrate utilization and <span class="hlt">energy</span> <span class="hlt">balance</span> would provide a compelling biofeedback tool for individuals attempting weight loss. As a proof of concept, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath δ(13)C) reflects shifts between negative and positive <span class="hlt">energy</span> <span class="hlt">balance</span>. Volunteers (n=5) consumed a 40% <span class="hlt">energy</span>-restricted diet for 6 days followed by 50% excess on day 7. Breath was sampled immediately before and 1 h and 2 h after breakfast, lunch and dinner. Exhaled breath δ(13)C values were measured by cavity ring-down spectroscopy. Using repeated measures analysis of variance (ANOVA) followed by Dunnett's contrasts, pre-breakfast breath values on days 2-6 were compared with day 1, and postprandial day 7 time points were compared with pre-breakfast day 7. <span class="hlt">Energy</span> restriction diminished pre-breakfast breath δ(13)C by day 3 (P<0.05). On day 7, increased <span class="hlt">energy</span> intake was first detected immediately before dinner (-23.8±0.6 vs -21.9±0.7‰, P=0.002 (means±s.d.)), and breath δ(13)C remained elevated at least 2 h post dinner. In conclusion, when shifting between negative and positive <span class="hlt">energy</span> <span class="hlt">balance</span>, breath δ(13)C showed anticipated isotopic changes. Although additional research is needed to determine specificity and repeatability, this method may provide a biomarker for marked increases in caloric intake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnMP....8...11I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnMP....8...11I"><span>Effects of zonal flows on correlation between <span class="hlt">energy</span> <span class="hlt">balance</span> and <span class="hlt">energy</span> conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibragimov, Ranis N.</p> <p>2018-03-01</p> <p>The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The <span class="hlt">energy</span> <span class="hlt">balance</span> is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the <span class="hlt">energy</span> <span class="hlt">balance</span> is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the <span class="hlt">energy</span> <span class="hlt">balance</span> to the conservation law.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21587281','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21587281"><span>The effect of parenteral nitrogen and <span class="hlt">energy</span> intake on electrolyte <span class="hlt">balance</span> in the preterm infant.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonsante, F; Iacobelli, S; Chantegret, C; Martin, D; Gouyon, J-B</p> <p>2011-10-01</p> <p>Recent guidelines for preterm parenteral nutrition (PN) recommend an earlier and higher intake of amino acids (AA) and <span class="hlt">energy</span> to avoid postnatal catabolism and approximate normal fetal growth. Few investigations explored how early PN may affect electrolyte and water homeostasis. We performed a prospective observational trial to assess the effect of nutrient intake on electrolyte homeostasis and <span class="hlt">balance</span>. During 16 months, all infants ≤32 weeks were eligible. In the first week of life, we recorded the following daily: electrolytes (plasma and 8-h urine collection), nutritional intake, urine output, body weight, and we calculated sodium (Na) and potassium (K) <span class="hlt">balance</span>. Infants were divided, for analysis, into three groups of AA intake: low <1.5 g/kg/day (LAA), medium 1.5-2 g/kg/day (MAA) and high >2 g/kg/day (HAA). A total of 154 infants were included. HAA group presented lower weight loss. Na <span class="hlt">balance</span> was influenced by urine output and postnatal age, with little contribution of nutrition. Kalemia and K <span class="hlt">balance</span> were mainly influenced by AA intake. K <span class="hlt">balance</span> differed among groups: LAA, -2.3 mmol/kg/week; MAA, 1.1 mmol/kg/week; and HAA 2.6 mmol/kg/week (P<0.0001). In the HAA group, plasma and urine K were significantly lower and non-oliguric hyperkalemia was reduced. Na homeostasis was very slightly modified by early nutrition, suggesting that a negative Na <span class="hlt">balance</span> is obligatory after birth. We showed that AA intake strongly affects K <span class="hlt">balance</span>, minimize hyperkalemia and reduces weight loss. As K <span class="hlt">balance</span> is strictly linked to cellular metabolism, we speculate that early nutrition may inhibit cellular catabolism and reduce the contraction of intracellular water compartment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23437644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23437644"><span>Study on the combined sewage sludge pyrolysis and gasification process: mass and <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhonghui; Chen, Dezhen; Song, Xueding; Zhao, Lei</p> <p>2012-12-01</p> <p>A combined pyrolysis and gasification process for sewage sludge was studied in this paper for the purpose of its safe disposal with <span class="hlt">energy</span> self-<span class="hlt">balance</span>. Three sewage sludge samples with different dry basis lower heat values (LHV(db)) were used to evaluate the constraints on this combined process. Those samples were pre-dried and then pyrolysed within the temperature range of 400-550 degrees C. Afterwards, the char obtained from pyrolysis was gasified to produce fuel gas. The experimental results showed that the char yield ranged between 37.28 and 53.75 wt% of the dry sludge and it changed with ash content, pyrolysis temperature and LHV(db) of the sewage sludge. The gas from char gasification had a LHV around 5.31-5.65 MJ/Nm3, suggesting it can be utilized to supply <span class="hlt">energy</span> in the sewage sludge drying and pyrolysis process. It was also found that <span class="hlt">energy</span> <span class="hlt">balance</span> in the combined process was affected by the LHV(db) of sewage sludge, moisture content and pyrolysis temperature. Higher LHV(db), lower moisture content and higher pyrolysis temperature benefit <span class="hlt">energy</span> self-<span class="hlt">balance</span>. For sewage sludge with a moisture content of 80 wt%, LHV(db) of sewage sludge should be higher than 18 MJ/kg and the pyrolysis temperature should be higher than 450 degrees C to maintain <span class="hlt">energy</span> self-sufficiency when volatile from the pyrolysis process is the only <span class="hlt">energy</span> supplier; when the LHV(db) was in the range of 14.65-18 MJ/kg, <span class="hlt">energy</span> self-<span class="hlt">balance</span> could be maintained in this combined process with fuel gas from char gasification as a supplementary fuel; auxiliary fuel was always needed if the LHV(db) was lower than 14.65 MJ/kg.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41B1203O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41B1203O"><span>Topographic forcing and related uncertainties on glacier surface <span class="hlt">energy</span> <span class="hlt">balance</span> in High Mountain Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olson, M.; Rupper, S.; Shean, D. E.</p> <p>2017-12-01</p> <p>Topography directly influences the amount of global radiation, as well as other key <span class="hlt">energy</span> flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface <span class="hlt">energy</span> and mass <span class="hlt">balance</span> estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface <span class="hlt">energy</span> <span class="hlt">balance</span> for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface <span class="hlt">energy</span> due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and <span class="hlt">energy</span> <span class="hlt">balance</span> results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier <span class="hlt">energy</span> and mass <span class="hlt">balance</span> modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface <span class="hlt">energy</span> fluxes due to surrounding topography for mountain glaciers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11271846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11271846"><span>Dietary change, <span class="hlt">energy</span> <span class="hlt">balance</span> and body weight regulation among migrating students.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reeves, S L; Henry, C J</p> <p>2000-11-01</p> <p>This study was conducted to examine how subjects modulate their food intake and <span class="hlt">energy</span> <span class="hlt">balance</span> when they migrate from a low <span class="hlt">energy</span> density food intake pattern to one of high <span class="hlt">energy</span> density. It was hypothesised that an increase in the <span class="hlt">energy</span> density of food consumed would result in increased body weight of the migrating subjects unless food intake and <span class="hlt">energy</span> <span class="hlt">balance</span> could be modulated. Food selection, food intake, basal metabolic rate (BMR) and anthropometric measurements were made on 53 female and 56 male newly arrived overseas students. All subjects were from Malaysia, but the data was collected at Oxford Brookes University where the subjects were studying. Food intake using 3-day food diaries and food frequency questionnaires (FFQs). BMR and anthropometric measurements including body weight were measured on arrival in the UK and after 3 and 6 months' stay. Student's t-tests and analysis of variance (ANOVA) were used to compare the data. A significant difference (P < 0.05) was found between the <span class="hlt">energy</span> density of the foods consumed in Malaysia and after 3 and 6 months in the UK. There was also a significant decrease (P < 0.05) in protein consumed. However, there were no differences in total <span class="hlt">energy</span> intake. From results of the FFQs, differences were found in food selection due mainly to the lack of availability of certain foods in UK supermarkets. No significant differences were found in the BMR and anthropometric measurements made at the start of the study and later assessments. It appears that Malaysian students are able to remain in <span class="hlt">energy</span> <span class="hlt">balance</span> and are weight stable at least during the first 6 months of residence in the UK, despite the wider choice of <span class="hlt">energy</span> dense food available. This suggests that at least in the short term, subjects are able to modulate their food intake in response to changes in the <span class="hlt">energy</span> densities and free choice of food.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JChPh.131x4518H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JChPh.131x4518H"><span><span class="hlt">Zero</span> point <span class="hlt">energy</span> leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habershon, Scott; Manolopoulos, David E.</p> <p>2009-12-01</p> <p>The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized <span class="hlt">zero</span> point <span class="hlt">energy</span> (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20059090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20059090"><span><span class="hlt">Zero</span> point <span class="hlt">energy</span> leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Habershon, Scott; Manolopoulos, David E</p> <p>2009-12-28</p> <p>The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized <span class="hlt">zero</span> point <span class="hlt">energy</span> (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23473182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23473182"><span>Splitting of the <span class="hlt">zero-energy</span> Landau level and universal dissipative conductivity at critical points in disordered graphene.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ortmann, Frank; Roche, Stephan</p> <p>2013-02-22</p> <p>We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene <span class="hlt">zero-energy</span> Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29133920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29133920"><span><span class="hlt">Energy</span> neutral: the human foot and ankle subsections combine to produce near <span class="hlt">zero</span> net mechanical work during walking.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takahashi, Kota Z; Worster, Kate; Bruening, Dustin A</p> <p>2017-11-13</p> <p>The human foot and ankle system is equipped with structures that can produce mechanical work through elastic (e.g., Achilles tendon, plantar fascia) or viscoelastic (e.g., heel pad) mechanisms, or by active muscle contractions. Yet, quantifying the work distribution among various subsections of the foot and ankle can be difficult, in large part due to a lack of objective methods for partitioning the forces acting underneath the stance foot. In this study, we deconstructed the mechanical work production during barefoot walking in a segment-by-segment manner (hallux, forefoot, hindfoot, and shank). This was accomplished by isolating the forces acting within each foot segment through controlling the placement of the participants' foot as it contacted a ground-mounted force platform. Combined with an analysis that incorporated non-rigid mechanics, we quantified the total work production distal to each of the four isolated segments. We found that various subsections within the foot and ankle showed disparate work distribution, particularly within structures distal to the hindfoot. When accounting for all sources of positive and negative work distal to the shank (i.e., ankle joint and all foot structures), these structures resembled an <span class="hlt">energy</span>-neutral system that produced net mechanical work close to <span class="hlt">zero</span> (-0.012 ± 0.054 J/kg).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1424119-significance-aerosol-radiative-effect-energy-balance-control-global-precipitation-change','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1424119-significance-aerosol-radiative-effect-energy-balance-control-global-precipitation-change"><span>Significance of aerosol radiative effect in <span class="hlt">energy</span> <span class="hlt">balance</span> control on global precipitation change</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe</p> <p>2017-10-17</p> <p>Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of <span class="hlt">energy</span> <span class="hlt">balance</span> controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly <span class="hlt">balanced</span> with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global <span class="hlt">energy</span> <span class="hlt">balance</span> to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global <span class="hlt">energy</span> <span class="hlt">balance</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1424119','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1424119"><span>Significance of aerosol radiative effect in <span class="hlt">energy</span> <span class="hlt">balance</span> control on global precipitation change</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe</p> <p></p> <p>Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of <span class="hlt">energy</span> <span class="hlt">balance</span> controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly <span class="hlt">balanced</span> with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global <span class="hlt">energy</span> <span class="hlt">balance</span> to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global <span class="hlt">energy</span> <span class="hlt">balance</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18348545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18348545"><span>Density functional theory calculations of the lowest <span class="hlt">energy</span> quintet and triplet states of model hemes: role of functional, basis set, and <span class="hlt">zero</span>-point <span class="hlt">energy</span> corrections.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman</p> <p>2008-04-24</p> <p>We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and <span class="hlt">zero</span>-point <span class="hlt">energy</span> (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic <span class="hlt">energy</span> gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point <span class="hlt">energy</span> calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The <span class="hlt">zero</span>-point <span class="hlt">energy</span> of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic <span class="hlt">energy</span> of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28715337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28715337"><span>Compact, <span class="hlt">Energy</span>-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge <span class="hlt">Balancing</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Wen-Yang; Schmid, Alexandre</p> <p>2017-08-01</p> <p>Safety and <span class="hlt">energy</span> efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge <span class="hlt">balancing</span> scheme, which achieves high <span class="hlt">energy</span> efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak <span class="hlt">energy</span> efficiency and confirms the effectiveness of active charge <span class="hlt">balancing</span> to prevent the electrode dissolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29511026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29511026"><span>Reduced Nonexercise Activity Attenuates Negative <span class="hlt">Energy</span> <span class="hlt">Balance</span> in Mice Engaged in Voluntary Exercise.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lark, Daniel S; Kwan, Jamie R; McClatchey, P Mason; James, Merrygay N; James, Freyja D; Lighton, John R B; Lantier, Louise; Wasserman, David H</p> <p>2018-05-01</p> <p>Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered <span class="hlt">energy</span> <span class="hlt">balance</span> in chow-fed C57BL/6J mice ( n = 12). <span class="hlt">Energy</span> expenditure (EE), <span class="hlt">energy</span> intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative <span class="hlt">energy</span> <span class="hlt">balance</span> but also decreased OWA, which was predicted to mitigate the expected change in <span class="hlt">energy</span> <span class="hlt">balance</span> by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity. © 2018 by the American Diabetes Association.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3545558','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3545558"><span>On Increasing Network Lifetime in Body Area Networks Using Global Routing with <span class="hlt">Energy</span> Consumption <span class="hlt">Balancing</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil</p> <p>2012-01-01</p> <p>Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to <span class="hlt">balance</span> <span class="hlt">energy</span> consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in <span class="hlt">energy</span> per bit. Network maintenance requirements are reduced as well, since <span class="hlt">balancing</span> <span class="hlt">energy</span> consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient <span class="hlt">balancing</span> of <span class="hlt">energy</span> consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in <span class="hlt">energy</span> per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23201987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23201987"><span>On increasing network lifetime in body area networks using global routing with <span class="hlt">energy</span> consumption <span class="hlt">balancing</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil</p> <p>2012-09-26</p> <p>Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to <span class="hlt">balance</span> <span class="hlt">energy</span> consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in <span class="hlt">energy</span> per bit. Network maintenance requirements are reduced as well, since <span class="hlt">balancing</span> <span class="hlt">energy</span> consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient <span class="hlt">balancing</span> of <span class="hlt">energy</span> consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in <span class="hlt">energy</span> per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3033043','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3033043"><span>Melanocortin-4-receptors Expressed by Cholinergic Neurons Regulate <span class="hlt">Energy</span> <span class="hlt">Balance</span> and Glucose Homeostasis</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rossi, Jari; Balthasar, Nina; Olson, David; Scott, Michael; Berglund, Eric; Lee, Charlotte E.; Choi, Michelle J.; Lauzon, Danielle; Lowell, Bradford B.; Elmquist, Joel K.</p> <p>2011-01-01</p> <p>Summary Melanocortin-4-receptor (MC4R) mutations cause dysregulation of <span class="hlt">energy</span> <span class="hlt">balance</span> and hyperinsulinemia. We have used mouse models to study the physiological roles of extrahypothalamic MC4Rs. Re-expression of MC4Rs in cholinergic neurons (ChAT-Cre, loxTB MC4R mice) modestly reduced body weight gain without altering food intake and was sufficient to normalize <span class="hlt">energy</span> expenditure and attenuate hyperglycemia and hyperinsulinemia. In contrast, restoration of MC4R expression in brainstem neurons including those in the dorsal motor nucleus of the vagus (Phox2b-Cre, loxTB MC4R mice) was sufficient to attenuate hyperinsulinemia, while the hyperglycemia and <span class="hlt">energy</span> <span class="hlt">balance</span> were not normalized. Additionally, hepatic insulin action and insulin mediated-suppression of hepatic glucose production were improved in ChAT-Cre, loxTB MC4R mice. These findings suggest that MC4Rs expressed by cholinergic neurons regulate <span class="hlt">energy</span> expenditure and hepatic glucose production. Our results also provide further evidence of the dissociation in pathways mediating the effects of melanocortins on <span class="hlt">energy</span> <span class="hlt">balance</span> and glucose homeostasis. PMID:21284986</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800026925&hterms=energy+transition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy%2Btransition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800026925&hterms=energy+transition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy%2Btransition"><span>The <span class="hlt">energy</span> <span class="hlt">balance</span> and pressure in the solar transition zone for network and active region features</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.</p> <p>1979-01-01</p> <p>The electron pressure and <span class="hlt">energy</span> <span class="hlt">balance</span> in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. <span class="hlt">Energy</span> <span class="hlt">balance</span> calculations reveal the <span class="hlt">balance</span> of the divergence of the conductive flux and turbulent <span class="hlt">energy</span> dissipation by radiative <span class="hlt">energy</span> losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an <span class="hlt">energy</span> source requirement for a cylindrical zone geometry (fill factor less than 0.04).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245d2011D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245d2011D"><span>Thermal Simulation of a <span class="hlt">Zero</span> <span class="hlt">Energy</span> Glazed Pavilion in Sofia, Bulgaria. New Strategies for <span class="hlt">Energy</span> Management by Means of Water Flow Glazing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen</p> <p>2017-10-01</p> <p>The building sector is primarily responsible for a major part of total <span class="hlt">energy</span> consumption. The European <span class="hlt">Energy</span> Performance of Buildings Directives (EPBD) emphasized the need to reduce the <span class="hlt">energy</span> consumption in buildings, and put forward the rationale for developing Near to <span class="hlt">Zero</span> <span class="hlt">Energy</span> Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new <span class="hlt">Energy</span> Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter <span class="hlt">energy</span> management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required <span class="hlt">energy</span> to maintain comfort conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27306267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27306267"><span>The Sleep/Wake Cycle is Directly Modulated by Changes in <span class="hlt">Energy</span> <span class="hlt">Balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collet, Tinh-Hai; van der Klaauw, Agatha A; Henning, Elana; Keogh, Julia M; Suddaby, Diane; Dachi, Sekesai V; Dunbar, Síle; Kelway, Sarah; Dickson, Suzanne L; Farooqi, I Sadaf; Schmid, Sebastian M</p> <p>2016-09-01</p> <p>The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However, the potential mechanisms linking <span class="hlt">energy</span> <span class="hlt">balance</span> and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating <span class="hlt">energy</span> <span class="hlt">balance</span> on the sleep/wake cycle. Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline, after <span class="hlt">energy</span> <span class="hlt">balance</span> was disrupted by 2 days of caloric restriction to 10% of <span class="hlt">energy</span> requirements, and after <span class="hlt">energy</span> <span class="hlt">balance</span> was restored by 2 days of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated respiratory parameters were measured by polysomnography. Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep (16.8% to 21.7% of total sleep time; P = 0.03); an effect which was entirely reversed upon free feeding (P = 0.01). Although the apnea-hypopnea index stayed within the reference range (< 5 events per hour), it decreased significantly from caloric restriction to free feeding (P = 0.03). Caloric restriction was associated with a marked fall in leptin (P < 0.001) and insulin levels (P = 0.002). The fall in orexin levels from baseline to caloric restriction correlated positively with duration of stage 4 sleep (Spearman rho = 0.83, P = 0.01) and negatively with the number of awakenings in caloric restriction (Spearman rho = -0.79, P = 0.01). We demonstrate that changes in <span class="hlt">energy</span> homeostasis directly and reversibly impact on the sleep/wake cycle. These findings provide a mechanistic framework for investigating the association between sleep duration and obesity risk. © 2016 Associated Professional Sleep Societies, LLC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...755...34L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...755...34L"><span>The Hydromagnetic Interior of a Solar Quiescent Prominence. I. Coupling between Force <span class="hlt">Balance</span> and Steady <span class="hlt">Energy</span> Transport</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Low, B. C.; Berger, T.; Casini, R.; Liu, W.</p> <p>2012-08-01</p> <p>This series of papers investigates the dynamic interiors of quiescent prominences revealed by recent Hinode and SDO/AIA high-resolution observations. This first paper is a study of the static equilibrium of the Kippenhahn-Schlüter diffuse plasma slab, suspended vertically in a bowed magnetic field, under the frozen-in condition and subject to a theoretical thermal <span class="hlt">balance</span> among an optically thin radiation, heating, and field-aligned thermal conduction. The everywhere-analytical solutions to this nonlinear problem are an extremely restricted subset of the physically admissible states of the system. For most values of the total mass frozen into a given bowed field, force <span class="hlt">balance</span> and steady <span class="hlt">energy</span> transport cannot both be met without a finite fraction of the total mass having collapsed into a cold sheet of <span class="hlt">zero</span> thickness, within which the frozen-in condition must break down. An exact, resistive hydromagnetic extension of the Kippenhahn-Schlüter slab is also presented, resolving the mass-sheet singularity into a finite-thickness layer of steadily falling dense fluid. Our hydromagnetic result suggests that the narrow, vertical prominence Hα threads may be falling across magnetic fields, with optically thick cores much denser and ionized to much lower degrees than conventionally considered. This implication is discussed in relation to (1) the recent SDO/AIA observations of quiescent prominences that are massive and yet draining mass everywhere in their interiors, (2) the canonical range of 5-60 G determined from spectral polarimetric observations of prominence magnetic fields over the years, and (3) the need for a more realistic multi-fluid treatment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=312790','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=312790"><span>Advances in the two-source <span class="hlt">energy</span> <span class="hlt">balance</span> model:Partioning of evaporation and transpiration for row crops</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source <span class="hlt">energy</span> <span class="hlt">balance</span> (TSEB) model solves the <span class="hlt">energy</span> <span class="hlt">balance</span> of the soil-plant...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=314349','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=314349"><span>Advances in the two-source <span class="hlt">energy</span> <span class="hlt">balance</span> model: Partioning of evaporation and transpiration for row crops for cotton</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source <span class="hlt">energy</span> <span class="hlt">balance</span> (TSEB) model solves the <span class="hlt">energy</span> <span class="hlt">balance</span> of the soil-plant...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........65Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........65Y"><span>"Watts per person" paradigm to design net <span class="hlt">zero</span> <span class="hlt">energy</span> buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yagi Kim, Mika</p> <p></p> <p>As building envelopes have improved due to more restrictive <span class="hlt">energy</span> codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net <span class="hlt">Zero</span> <span class="hlt">Energy</span> Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building <span class="hlt">energy</span> load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual <span class="hlt">Energy</span> Outlook 2008 (AEO2008), prepared by the <span class="hlt">Energy</span> Information Administration (EIA) that presents long-term projections of <span class="hlt">energy</span> supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net <span class="hlt">Zero</span> <span class="hlt">Energy</span> Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL <span class="hlt">energy</span> use in the commercial sector. By integrating real world data extracted from an <span class="hlt">energy</span> efficient commercial building of its <span class="hlt">energy</span> use, the results produce a new methodology on estimating PL <span class="hlt">energy</span> use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23511478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23511478"><span><span class="hlt">Energy</span> and angular momentum <span class="hlt">balance</span> in wall-bounded quantum turbulence at very low temperatures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hosio, J J; Eltsov, V B; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S</p> <p>2013-01-01</p> <p>A superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic <span class="hlt">energy</span>. Here we study experimentally whether these properties apply to the flow of superfluid (3)He-B in a rotating cylinder at low temperatures. It is found that ideal behaviour is broken by quantum turbulence, which leads to substantial <span class="hlt">energy</span> dissipation, as was also observed earlier. Remarkably, the angular momentum exchange between the superfluid and its container approaches nearly ideal behaviour, as the drag almost disappears in the <span class="hlt">zero</span>-temperature limit. Here the mismatch between <span class="hlt">energy</span> and angular momentum transfer results in a new physical situation, with severe implications on the flow dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840038182&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840038182&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy"><span>Roles of divergent and rotational winds in the kinetic <span class="hlt">energy</span> <span class="hlt">balance</span> during intense convective activity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuelberg, H. E.; Browning, P. A.</p> <p>1983-01-01</p> <p>Contributions of divergent and rotational wind components to the synoptic-scale kinetic <span class="hlt">energy</span> <span class="hlt">balance</span> are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. <span class="hlt">Energy</span> budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic <span class="hlt">energy</span>. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic <span class="hlt">energy</span> content, generation of kinetic <span class="hlt">energy</span> by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the <span class="hlt">energy</span> <span class="hlt">balance</span>. A random error analysis is presented to assess confidence limits in the various <span class="hlt">energy</span> parameters.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060046373&hterms=fermentation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfermentation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060046373&hterms=fermentation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfermentation"><span>An <span class="hlt">Energy</span> <span class="hlt">Balance</span> Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.</p> <p>2006-01-01</p> <p>Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also <span class="hlt">energy</span>, to these organisms, so that chemical and <span class="hlt">energy</span> budgets should be coupled. We tested this hypothesis by applying an <span class="hlt">energy</span> <span class="hlt">balance</span> model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of <span class="hlt">energy</span> available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal <span class="hlt">energy</span> demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative <span class="hlt">energy</span> generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that <span class="hlt">energy</span> <span class="hlt">balance</span> models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000IJCli..20..733H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000IJCli..20..733H"><span>Spatio-temporal variation in microclimate, the surface <span class="hlt">energy</span> <span class="hlt">balance</span> and ablation over a cirque glacier</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.</p> <p>2000-06-01</p> <p>Climatic processes, operating at a range of scales, drive <span class="hlt">energy</span> fluxes at the glacier surface which control meltwater generation and ultimately runoff. Nevertheless, to date, most glacier microclimate research has been both temporally (short-term) and spatially (single station) restricted. This paper addresses this knowledge gap by reporting on a detailed, empirical study which characterizes spatio-temporal variations in and linkages between glacier microclimate, surface <span class="hlt">energy</span> and mass exchanges within a small glacierized cirque (Taillon Glacier, French Pyrénées) over two melt seasons. Data collected at five automatic weather stations (AWSs) and over ablation stake networks suggest that topoclimates, altitude and transient snowline position primarily determine the distribution of glacier <span class="hlt">energy</span> receipt and, in turn, snow- and ice-melt patterns. Generally net radiation is the dominant <span class="hlt">energy</span> source, followed by sensible heat, while latent heat is an <span class="hlt">energy</span> sink. However, the magnitude and partitioning of <span class="hlt">energy</span> <span class="hlt">balance</span> terms, and consequently ablation, vary across the glacier both seasonally and with prevailing weather conditions. Importantly, this paper demonstrates that such monitoring programmes are required to truly represent and provide a sound basis for modelling glacier <span class="hlt">energy</span> and mass-<span class="hlt">balances</span> in both space and time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...422..526B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...422..526B"><span>A multi-harmonic generalized <span class="hlt">energy</span> <span class="hlt">balance</span> method for studying autonomous oscillations of nonlinear conservative systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.</p> <p>2018-05-01</p> <p>The Harmonic <span class="hlt">Balance</span> Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's <span class="hlt">Energy</span> <span class="hlt">Balance</span> Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-<span class="hlt">energy</span> manifolds in the phase space can be obtained very efficiently. The <span class="hlt">energy</span> level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the <span class="hlt">energy</span> <span class="hlt">balance</span> is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28855697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28855697"><span>Whey Protein Components - Lactalbumin and Lactoferrin - Improve <span class="hlt">Energy</span> <span class="hlt">Balance</span> and Metabolism.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zapata, Rizaldy C; Singh, Arashdeep; Pezeshki, Adel; Nibber, Traj; Chelikani, Prasanth K</p> <p>2017-08-30</p> <p>Whey protein promotes weight loss and improves diabetic control, however, less is known of its bioactive components that produce such benefits. We compared the effects of normal protein (control) diet with high protein diets containing whey, or its fractions lactalbumin and lactoferrin, on <span class="hlt">energy</span> <span class="hlt">balance</span> and metabolism. Diet-induced obese rats were randomized to isocaloric diets: Control, Whey, Lactalbumin, Lactoferrin, or pair-fed to lactoferrin. Whey and lactalbumin produced transient hypophagia, whereas lactoferrin caused prolonged hypophagia; the hypophagia was likely due to decreased preference. Lactalbumin decreased weight and fat gain. Notably, lactoferrin produced sustained weight and fat loss, and attenuated the reduction in <span class="hlt">energy</span> expenditure associated with calorie restriction. Lactalbumin and lactoferrin decreased plasma leptin and insulin, and lactalbumin increased peptide YY. Whey, lactalbumin and lactoferrin improved glucose clearance partly through differential upregulation of glucoregulatory transcripts in the liver and skeletal muscle. Interestingly, lactalbumin and lactoferrin decreased hepatic lipidosis partly through downregulation of lipogenic and/or upregulation of β-oxidation transcripts, and differentially modulated cecal bacterial populations. Our findings demonstrate that protein quantity and quality are important for improving <span class="hlt">energy</span> <span class="hlt">balance</span>. Dietary lactalbumin and lactoferrin improved <span class="hlt">energy</span> <span class="hlt">balance</span> and metabolism, and decreased adiposity, with the effects of lactoferrin being partly independent of caloric intake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3698025','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3698025"><span>Hunger can be taught: Hunger Recognition regulates eating and improves <span class="hlt">energy</span> <span class="hlt">balance</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ciampolini, Mario; Lovell-Smith, H David; Kenealy, Timothy; Bianchi, Riccardo</p> <p>2013-01-01</p> <p>A set of spontaneous hunger sensations, Initial Hunger (IH), has been associated with low blood glucose concentration (BG). These sensations may arise pre-meal or can be elicited by delaying a meal. With self-measurement of BG, subjects can be trained to formally identify and remember these sensations (Hunger Recognition). Subjects can then be trained to ensure that IH is present pre-meal for most meals and that their pre-meal BG is therefore low consistently (IH Meal Pattern). IH includes the epigastric Empty Hollow Sensation (the most frequent and recognizable) as well as less specific sensations such as fatigue or light-headedness which is termed inanition. This report reviews the method for identifying IH and the effect of the IH Meal Pattern on <span class="hlt">energy</span> <span class="hlt">balance</span>. In adults, the IH Meal Pattern has been shown to significantly decrease <span class="hlt">energy</span> intake by one-third, decrease preprandial BG, reduce glycosylated hemoglobin, and reduce insulin resistance and weight in those who are insulin resistant or overweight. Young children as well as adults can be trained in Hunger Recognition, giving them an elegant method for achieving <span class="hlt">energy</span> <span class="hlt">balance</span> without the stress of restraint-type dieting. The implications of improving insulin sensitivity through improved <span class="hlt">energy</span> <span class="hlt">balance</span> are as wide as improving immune activity. PMID:23825928</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17875272','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17875272"><span>Strategies for achieving healthy <span class="hlt">energy</span> <span class="hlt">balance</span> among African Americans in the Mississippi Delta.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parham, Groesbeck P; Scarinci, Isabel C</p> <p>2007-10-01</p> <p>Low-income African Americans who live in rural areas of the Deep South are particularly vulnerable to diseases associated with unhealthy <span class="hlt">energy</span> imbalance. The Centers for Disease Control and Prevention (CDC) has suggested various physical activity strategies to achieve healthy <span class="hlt">energy</span> <span class="hlt">balance</span>. Our objective was to conduct formal, open-ended discussions with low-income African Americans in the Mississippi Delta to determine 1) their dietary habits and physical activity levels, 2) their attitudes toward CDC's suggested physical activity strategies, and 3) their suggestions on how to achieve CDC's strategies within their own environment. A qualitative method (focus groups) was used to conduct the study during 2005. Prestudy meetings were held with African American lay health workers to formulate a focus group topic guide, establish inclusion criteria for focus group participants, select meeting sites and times, and determine group segmentation guidelines. Focus groups were divided into two phases. All discussions and focus group meetings were held in community centers within African American neighborhoods in the Mississippi Delta and were led by trained African American moderators. Phase I focus groups identified the following themes: overeating, low self-esteem, low income, lack of physical exercise, unhealthy methods of food preparation, a poor working definition of healthy <span class="hlt">energy</span> <span class="hlt">balance</span>, and superficial knowledge of strategies for achieving healthy <span class="hlt">energy</span> <span class="hlt">balance</span>. Phase 2 focus groups identified a preference for social support-based strategies for increasing physical activity levels. <span class="hlt">Energy</span> <span class="hlt">balance</span> strategies targeting low-income, rural African Americans in the Deep South may be more effective if they emphasize social interaction at the community and family levels and incorporate the concept of community volunteerism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25504446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25504446"><span>The influence of the menstrual cycle on <span class="hlt">energy</span> <span class="hlt">balance</span> and taste preference in Asian Chinese women.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elliott, Sarah A; Ng, Janet; Leow, Melvin Khee-Shing; Henry, Christiani J K</p> <p>2015-12-01</p> <p>In Caucasian women, research has shown that <span class="hlt">energy</span> <span class="hlt">balance</span> and taste preference change throughout the menstrual cycle. However, the contributory role of the menstrual cycle to obesity and insulin resistance among Asian women remains unclear. We investigate the impact of the menstrual cycle on <span class="hlt">energy</span> <span class="hlt">balance</span> and taste preference in Singaporean Chinese females. Thirty-one healthy young Chinese female subjects with regular menstrual cycles were recruited. Anthropometrics, body composition, <span class="hlt">energy</span> intake, resting metabolic rate, premenstrual syndrome (PMS) severity and taste preference to sucrose were assessed during three phases (menses, follicular and luteal), over one (N = 18) to two (N = 13) menstrual cycles. For all subjects (N = 31), we found significant reductions in <span class="hlt">energy</span>, fat intake (p < 0.05) and taste preference for sucrose (p < 0.05) in the luteal phase compared to early follicular phase as far as Cycle 1 is concerned. No significant differences were observed for carbohydrate and protein intake as well as PMS score. In those evaluated for two full cycles (N = 13), we found that taste preference for sucrose and PMS score were significantly higher in the menstrual phase in Cycle 2 (p < 0.05). No significant differences were observed in <span class="hlt">energy</span> and macronutrient intake throughout Cycle 2. RMR was similar across the three phases. However, non-significant cyclic variations were noted within and between the cycles. Cyclic variations in <span class="hlt">energy</span> intake and expenditure contributed by sensory and behavioural changes occur during the menstrual cycle. Whether this contributes to cyclic weight gain is speculative and remains to be proven. Further research in non-Caucasians spanning more than one menstrual cycle is needed to establish the impact of the menstrual cycle on taste preference and <span class="hlt">energy</span> <span class="hlt">balance</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..568G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..568G"><span>Carbon and <span class="hlt">energy</span> <span class="hlt">balances</span> for cellulosic biofuel crops in U.S. Midwest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.</p> <p>2012-04-01</p> <p>Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and <span class="hlt">energy</span> <span class="hlt">balance</span> implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and <span class="hlt">energy</span> <span class="hlt">balances</span> of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and <span class="hlt">energy</span> <span class="hlt">balances</span> for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and <span class="hlt">energy</span> <span class="hlt">balances</span> and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C <span class="hlt">balance</span>) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average <span class="hlt">energy</span> costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989258','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989258"><span>The Sleep/Wake Cycle is Directly Modulated by Changes in <span class="hlt">Energy</span> <span class="hlt">Balance</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Collet, Tinh-Hai; van der Klaauw, Agatha A.; Henning, Elana; Keogh, Julia M.; Suddaby, Diane; Dachi, Sekesai V.; Dunbar, Síle; Kelway, Sarah; Dickson, Suzanne L.; Farooqi, I. Sadaf; Schmid, Sebastian M.</p> <p>2016-01-01</p> <p>Study Objectives: The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However, the potential mechanisms linking <span class="hlt">energy</span> <span class="hlt">balance</span> and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating <span class="hlt">energy</span> <span class="hlt">balance</span> on the sleep/wake cycle. Methods: Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline, after <span class="hlt">energy</span> <span class="hlt">balance</span> was disrupted by 2 days of caloric restriction to 10% of <span class="hlt">energy</span> requirements, and after <span class="hlt">energy</span> <span class="hlt">balance</span> was restored by 2 days of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated respiratory parameters were measured by polysomnography. Results: Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep (16.8% to 21.7% of total sleep time; P = 0.03); an effect which was entirely reversed upon free feeding (P = 0.01). Although the apnea-hypopnea index stayed within the reference range (< 5 events per hour), it decreased significantly from caloric restriction to free feeding (P = 0.03). Caloric restriction was associated with a marked fall in leptin (P < 0.001) and insulin levels (P = 0.002). The fall in orexin levels from baseline to caloric restriction correlated positively with duration of stage 4 sleep (Spearman rho = 0.83, P = 0.01) and negatively with the number of awakenings in caloric restriction (Spearman rho = -0.79, P = 0.01). Conclusions: We demonstrate that changes in <span class="hlt">energy</span> homeostasis directly and reversibly impact on the sleep/wake cycle. These findings provide a mechanistic framework for investigating the association between sleep duration and obesity risk. Citation: Collet TH, van der Klaauw AA, Henning E, Keogh JM, Suddaby D, Dachi SV, Dunbar S, Kelway S, Dickson SL, Farooqi IS, Schmid SM. The sleep/ wake cycle is directly modulated by changes in <span class="hlt">energy</span> <span class="hlt">balance</span>. SLEEP 2016;39(9):1691–1700. PMID:27306267</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4703888','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4703888"><span>Aerosol influence on <span class="hlt">energy</span> <span class="hlt">balance</span> of the middle atmosphere of Jupiter</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Xi; West, Robert A.; Irwin, Patrick G. J.; Nixon, Conor A.; Yung, Yuk L.</p> <p>2015-01-01</p> <p>Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global <span class="hlt">energy</span> <span class="hlt">balance</span> in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5–10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative <span class="hlt">energy</span> <span class="hlt">balance</span> on other planets, as on Jupiter. PMID:26694318</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASS...34..225K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASS...34..225K"><span>Development of the Power Simulation Tool for <span class="hlt">Energy</span> <span class="hlt">Balance</span> Analysis of Nanosatellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Eun-Jung; Sim, Eun-Sup; Kim, Hae-Dong</p> <p>2017-09-01</p> <p>The <span class="hlt">energy</span> <span class="hlt">balance</span> in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLABⓇ graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STKⓇ-MATLABⓇ connectivity was used to send the generated power from STKⓇ to MATLABⓇ automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining <span class="hlt">energy</span> <span class="hlt">balance</span> in the satellites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900041679&hterms=iris&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Diris','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900041679&hterms=iris&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Diris"><span>The albedo, effective temperature, and <span class="hlt">energy</span> <span class="hlt">balance</span> of Uranus, as determined from Voyager IRIS data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.</p> <p>1990-01-01</p> <p>The albedo, T(eff), and <span class="hlt">energy</span> <span class="hlt">balance</span> of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an <span class="hlt">energy</span> <span class="hlt">balance</span> of 1.06 + or - 0.08 for Uranus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009336','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009336"><span>Botswana water and surface <span class="hlt">energy</span> <span class="hlt">balance</span> research program. Part 2: Large scale moisture and passive microwaves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vandegriend, A. A.; Owe, M.; Chang, A. T. C.</p> <p>1992-01-01</p> <p>The Botswana water and surface <span class="hlt">energy</span> <span class="hlt">balance</span> research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface <span class="hlt">energy</span> <span class="hlt">balance</span> modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26694318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26694318"><span>Aerosol influence on <span class="hlt">energy</span> <span class="hlt">balance</span> of the middle atmosphere of Jupiter.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L</p> <p>2015-12-22</p> <p>Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global <span class="hlt">energy</span> <span class="hlt">balance</span> in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative <span class="hlt">energy</span> <span class="hlt">balance</span> on other planets, as on Jupiter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20797849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20797849"><span>Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca</p> <p>2011-01-01</p> <p>An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass <span class="hlt">balance</span> accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive <span class="hlt">energy</span> <span class="hlt">balance</span> for the same period showed that for each tonne of input material the potential recoverable <span class="hlt">energy</span> was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS11B1141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS11B1141S"><span>Utilization of Sunlight into Methane Hydrate Production: Feasibility Study Based on <span class="hlt">Energy</span> <span class="hlt">Balance</span> Estimation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimada, J.; Shimada, M.; Tsunashima, K.; Aoyama, C.</p> <p>2017-12-01</p> <p>Methane hydrate is gaining remarkable attention as future natural gas resource. Collection procedures such as heating, depressurization, and chemical intrusion are being tested, but because of its high cost, they are still under development and not yet implemented. Cost reduction of the procedures cannot be expected as long as fossil fuel is used as power and heat source to extract methane gas from methane hydrate. In this regard, natural <span class="hlt">energy</span> such as sunlight, wind, tidal, and wave powers should be implemented as <span class="hlt">energy</span> resources as alternatives of fossil fuels. Using natural <span class="hlt">energy</span> instead of fossil fuel will also help to prevent global warming. However, only a few proposals have been made regarding extraction methods to use clean natural <span class="hlt">energy</span> effectively. In this study, authors will present a new extraction method using optical fibers to expose direct sunlight onto methane hydrate, and verify from various standpoints such as <span class="hlt">energy</span> <span class="hlt">balance</span> during extraction process and dependency of the environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=absolute+AND+zero&pg=2&id=EJ551946','ERIC'); return false;" href="https://eric.ed.gov/?q=absolute+AND+zero&pg=2&id=EJ551946"><span>Absolute <span class="hlt">Zero</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jones, Rebecca</p> <p>1997-01-01</p> <p>So far the courts have supported most schools' <span class="hlt">zero</span>-tolerance policies--even those banning toy weapons, over-the-counter drugs, and unseemly conduct. However, wide-ranging get-tough policies can draw criticism. Policy experts advise school boards to ask the community, decide what people want, allow some wiggle room, create an appeals process,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5712793','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5712793"><span>A Game Theoretic Approach for <span class="hlt">Balancing</span> <span class="hlt">Energy</span> Consumption in Clustered Wireless Sensor Networks</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang</p> <p>2017-01-01</p> <p>Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the <span class="hlt">energy</span> among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and <span class="hlt">energy</span> conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for <span class="hlt">balancing</span> <span class="hlt">energy</span> consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The <span class="hlt">energy</span> heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more <span class="hlt">energy</span> will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good <span class="hlt">energy</span> <span class="hlt">balancing</span> performance and consequently the network lifetime is greatly enhanced. PMID:29149075</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29149075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29149075"><span>A Game Theoretic Approach for <span class="hlt">Balancing</span> <span class="hlt">Energy</span> Consumption in Clustered Wireless Sensor Networks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Liu; Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang</p> <p>2017-11-17</p> <p>Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the <span class="hlt">energy</span> among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and <span class="hlt">energy</span> conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for <span class="hlt">balancing</span> <span class="hlt">energy</span> consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The <span class="hlt">energy</span> heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more <span class="hlt">energy</span> will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good <span class="hlt">energy</span> <span class="hlt">balancing</span> performance and consequently the network lifetime is greatly enhanced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26492248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26492248"><span><span class="hlt">Balancing</span> <span class="hlt">energy</span> consumption with hybrid clustering and routing strategy in wireless sensor networks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian</p> <p>2015-10-20</p> <p>Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited <span class="hlt">energy</span> resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced <span class="hlt">energy</span> consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the <span class="hlt">energy</span> consumption of HCR and discover an important result: the imbalanced <span class="hlt">energy</span> consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to <span class="hlt">balance</span> the <span class="hlt">energy</span> consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively <span class="hlt">balances</span> the <span class="hlt">energy</span> consumption and prolongs the network lifetime.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PPCF...60c5015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PPCF...60c5015B"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> in a Z pinch with suppressed Rayleigh-Taylor instability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.</p> <p>2018-03-01</p> <p>At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the <span class="hlt">energy</span> <span class="hlt">balance</span> in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The <span class="hlt">energy</span> coupled into the pinch plasma, is determined as the difference between the total <span class="hlt">energy</span> delivered to the load from the generator and the magnetic <span class="hlt">energy</span> of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled <span class="hlt">energy</span> and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the <span class="hlt">energy</span> <span class="hlt">balance</span> of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H21I..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H21I..08N"><span>Multi-scale Modeling of <span class="hlt">Energy</span> <span class="hlt">Balance</span> Fluxes in a Dense Tamarisk Riparian Forest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neale, C. M.; Santos, C. A.; Watts, D.; Osterberg, J.; Hipps, L. E.; Sritharan, S. I.</p> <p>2008-12-01</p> <p>Remote sensing of <span class="hlt">energy</span> <span class="hlt">balance</span> fluxes has become operationally more viable over the last 10 years with the development of more robust multi-layer models and the availability of quasi-real time satellite imagery from most sensors. Riparian corridors in semi-arid and arid areas present a challenge to satellite based techniques for estimating evapotranspiration due to issues of scale and pixel resolution, especially when using the thermal infrared bands. This paper will present <span class="hlt">energy</span> <span class="hlt">balance</span> measurement and modeling results over a Salt Cedar (Tamarix Ramosissima) forest in the Cibola National Wildlife Refuge along the Colorado River south of Blythe, CA. The research site encompasses a 600 hectare area populated by mostly Tamarisk stands of varying density. Three Bowen ratio systems are installed on tall towers within varying densities of forest cover in the upwind footprint and growing under varying depths to the water table. An additional eddy covariance tower is installed alongside a Bowen ratio system on one of the towers. Flux data has been gathered continuously since early 2007. In the summer of 2007, a Scintec large aperture scintillometer was installed between two of the towers over 1 km apart and has been working continuously along with the flux towers. Two intensive field campaigns were organized in June 2007 and May 2008 to coincide with LANDSAT TM5, MODIS and ASTER overpasses. High resolution multispectral and thermal imagery was acquired at the same time with the USU airborne system to provide information for the up- scaling of the <span class="hlt">energy</span> <span class="hlt">balance</span> fluxes from tower to satellite scales. The paper will present comparisons between the different <span class="hlt">energy</span> <span class="hlt">balance</span> measuring techniques under the highly advective conditions of the experimental site, concentrating on the scintillometer data. Preliminary results of remotely sensed modeling of the fluxes at different scales and model complexity will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900047003&hterms=gay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgay','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900047003&hterms=gay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgay"><span>Mapping surface <span class="hlt">energy</span> <span class="hlt">balance</span> components by combining Landsat Thematic Mapper and ground-based meteorological data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.</p> <p>1989-01-01</p> <p>Surface <span class="hlt">energy</span> <span class="hlt">balance</span> components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.118o5101K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.118o5101K"><span>Turbulent Kinetic <span class="hlt">Energy</span> in the <span class="hlt">Energy</span> <span class="hlt">Balance</span> of a Solar Flare</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kontar, E. P.; Perez, J. E.; Harra, L. K.; Kuznetsov, A. A.; Emslie, A. G.; Jeffrey, N. L. S.; Bian, N. H.; Dennis, B. R.</p> <p>2017-04-01</p> <p>The <span class="hlt">energy</span> released in solar flares derives from a reconfiguration of magnetic fields to a lower <span class="hlt">energy</span> state, and is manifested in several forms, including bulk kinetic <span class="hlt">energy</span> of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal <span class="hlt">energy</span> that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked <span class="hlt">energy</span> component—the kinetic <span class="hlt">energy</span> associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic <span class="hlt">energy</span> together provide persuasive evidence that turbulent <span class="hlt">energy</span> may play a key role in the transfer of <span class="hlt">energy</span> in solar flares. Although the kinetic <span class="hlt">energy</span> of turbulent motions accounts, at any given time, for only ˜(0.5 - 1 )% of the <span class="hlt">energy</span> released, its relatively rapid (˜1 - 10 s ) energization and dissipation causes the associated throughput of <span class="hlt">energy</span> (i.e., power) to rival that of major components of the released <span class="hlt">energy</span> in solar flares, and thus presumably in other astrophysical acceleration sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28452537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28452537"><span>Turbulent Kinetic <span class="hlt">Energy</span> in the <span class="hlt">Energy</span> <span class="hlt">Balance</span> of a Solar Flare.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R</p> <p>2017-04-14</p> <p>The <span class="hlt">energy</span> released in solar flares derives from a reconfiguration of magnetic fields to a lower <span class="hlt">energy</span> state, and is manifested in several forms, including bulk kinetic <span class="hlt">energy</span> of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal <span class="hlt">energy</span> that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked <span class="hlt">energy</span> component-the kinetic <span class="hlt">energy</span> associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic <span class="hlt">energy</span> together provide persuasive evidence that turbulent <span class="hlt">energy</span> may play a key role in the transfer of <span class="hlt">energy</span> in solar flares. Although the kinetic <span class="hlt">energy</span> of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the <span class="hlt">energy</span> released, its relatively rapid (∼1-10  s) energization and dissipation causes the associated throughput of <span class="hlt">energy</span> (i.e., power) to rival that of major components of the released <span class="hlt">energy</span> in solar flares, and thus presumably in other astrophysical acceleration sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53D0773K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53D0773K"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, J.; Pramanik, A.; van Pelt, W.</p> <p>2016-12-01</p> <p>Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface <span class="hlt">energy-balance</span> and firn model (Van Pelt et al. 2015) to calculate mass <span class="hlt">balance</span> and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass <span class="hlt">balance</span> data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass <span class="hlt">balance</span> stake locations to match observed and modelled surface mass <span class="hlt">balance</span>. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass <span class="hlt">balance</span> and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24463063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24463063"><span>Using a biocultural approach to examine migration/globalization, diet quality, and <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Himmelgreen, David A; Cantor, Allison; Arias, Sara; Romero Daza, Nancy</p> <p>2014-07-01</p> <p>The aim of this paper is to examine the role and impact that globalization and migration (e.g., intra-/intercontinental, urban/rural, and circular) have had on diet patterns, diet quality, and <span class="hlt">energy</span> <span class="hlt">balance</span> as reported on in the literature during the last 20 years. Published literature from the fields of anthropology, public health, nutrition, and other disciplines (e.g., economics) was collected and reviewed. In addition, case studies from the authors' own research are presented in order to elaborate on key points and dietary trends identified in the literature. While this review is not intended to be comprehensive, the findings suggest that the effects of migration and globalization on diet quality and <span class="hlt">energy</span> <span class="hlt">balance</span> are neither lineal nor direct, and that the role of social and physical environments, culture, social organization, and technology must be taken into account to better understand this relationship. Moreover, concepts such as acculturation and the nutrition transition do not necessarily explain or adequately describe all of the global processes that shape diet quality and <span class="hlt">energy</span> <span class="hlt">balance</span>. Theories from nutritional anthropology and critical bio-cultural medical anthropology are used to tease out some of these complex interrelationships. Copyright © 2014. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21532595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21532595"><span>A role for central nervous system PPAR-γ in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryan, Karen K; Li, Bailing; Grayson, Bernadette E; Matter, Emily K; Woods, Stephen C; Seeley, Randy J</p> <p>2011-05-01</p> <p>The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that is activated by lipids to induce the expression of genes involved in lipid and glucose metabolism, thereby converting nutritional signals into metabolic consequences. PPAR-γ is the target of the thiazolidinedione (TZD) class of insulin-sensitizing drugs, which have been widely prescribed to treat type 2 diabetes mellitus. A common side effect of treatment with TZDs is weight gain. Here we report a previously unknown role for central nervous system (CNS) PPAR-γ in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span>. We found that both acute and chronic activation of CNS PPAR-γ, by either TZDs or hypothalamic overexpression of a fusion protein consisting of PPAR-γ and the viral transcriptional activator VP16 (VP16-PPAR-γ), led to positive <span class="hlt">energy</span> <span class="hlt">balance</span> in rats. Blocking the endogenous activation of CNS PPAR-γ with pharmacological antagonists or reducing its expression with shRNA led to negative <span class="hlt">energy</span> <span class="hlt">balance</span>, restored leptin sensitivity in high-fat-diet (HFD)-fed rats and blocked the hyperphagic response to oral TZD treatment. These findings have implications for the widespread clinical use of TZD drugs and for understanding the etiology of diet-induced obesity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12369045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12369045"><span>[Thermal <span class="hlt">energy</span> <span class="hlt">balance</span> during hemodialysis: the role of the filter membrane].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panzetta, G; Bianco, F; Galli, G; Ianche, M; Savoldi, S; Vianello, S; Vidi, E; Cicinato, P</p> <p>2002-01-01</p> <p>Body temperature tends to increase during conventional haemodialysis; this might interfere with normal cardiovascular response to dialytic ultrafiltration, thus facilitating the occurrence of symptomatic hypotension. Putative factors responsible for changes in thermal <span class="hlt">balance</span> during haemodialysis include heat load from the dialysis bath, reduction in convective heat loss secondary to skin vessel vasoconstriction, heat overproduction due to central stimulation by bioincompatibility reactions to the filter membranes. The aim of the present study was twofold: to define thermal <span class="hlt">energy</span> <span class="hlt">balance</span> (ET) during dialysis and to investigate the effect of membrane bioincompatibility on <span class="hlt">energy</span> <span class="hlt">balance</span> We measured ET in 12 patients (9M, 3F) during two identical dialysis sessions, differing only in the membrane composition of the filters used: cuprophane 1.3- 1.6 mq and LF polysulphone 1.3- 1.6 mq. Thermal <span class="hlt">energy</span> <span class="hlt">balance</span> studies were performed by the Blood Temperature Monitor (Fresenius Medical Care) under conditions in which the core temperature of the patients was maintained unchanged from the start to the end of the dialysis procedure. Arterial blood temperatures were constant, while dialysate and venous blood temperatures progressively decreased (from 36.9 to 35.4 C and from 36.5 to 35.1 C for cuprophane; from 36.9 to 35.2 and from 36.9 to 35.1 for polysulphone membrane). Mean thermal <span class="hlt">energy</span> transfer was negative (removal of <span class="hlt">energy</span> from the patients to the extracorporeal circuit) with both filters, equal to 146 KJ with cuprophane and to 163 KJ with polysulphone. When a stepwise multiregression analysis was applied, hourly <span class="hlt">energy</span> transfer (ET) was significantly and independently correlated with both ultrafiltration rate (UF=% b.w.) and heart rate changes (HR) according to the equation: ET= -92.03+41.29 UF+1.04 HR (p<0.0003). Conclusions. In this study we present experimental evidence that increased body temperature during dialysis is not caused by heat load from the dialysis</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..695M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..695M"><span><span class="hlt">Energy</span> <span class="hlt">balance</span> in olive oil farms: comparison of organic and conventional farming systems.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreno, Marta M.; Meco, Ramón; Moreno, Carmen</p> <p>2013-04-01</p> <p>The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable <span class="hlt">energy</span> consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, <span class="hlt">energy</span> <span class="hlt">balance</span> analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the <span class="hlt">energy</span> <span class="hlt">balance</span> resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean <span class="hlt">energy</span> supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean <span class="hlt">energy</span> outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total <span class="hlt">energy</span> inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total <span class="hlt">energy</span> input in both cases (less than 1%). As conclusions, both management systems were efficient from an <span class="hlt">energy</span> point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20096714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20096714"><span>Alcohol, appetite and <span class="hlt">energy</span> <span class="hlt">balance</span>: is alcohol intake a risk factor for obesity?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeomans, Martin R</p> <p>2010-04-26</p> <p>The increased recognition that the worldwide increase in incidence of obesity is due to a positive <span class="hlt">energy</span> <span class="hlt">balance</span> has lead to a focus on lifestyle choices that may contribute to excess <span class="hlt">energy</span> intake, including the widespread belief that alcohol intake is a significant risk factor for development of obesity. This brief review examines this issue by contrasting short-term laboratory-based studies of the effects of alcohol on appetite and <span class="hlt">energy</span> <span class="hlt">balance</span> and longer-term epidemiological data exploring the relationship between alcohol intake and body weight. Current research clearly shows that <span class="hlt">energy</span> consumed as alcohol is additive to that from other dietary sources, leading to short-term passive over-consumption of <span class="hlt">energy</span> when alcohol is consumed. Indeed, alcohol consumed before or with meals tends to increase food intake, probably through enhancing the short-term rewarding effects of food. However, while these data might suggest that alcohol is a risk factor for obesity, epidemiological data suggests that moderate alcohol intake may protect against obesity, particularly in women. In contrast, higher intakes of alcohol in the absence of alcohol dependence may increase the risk of obesity, as may binge-drinking, however these effects may be secondary to personality and habitual beverage preferences. Copyright 2010 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11898769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11898769"><span>Associations between spontaneous meal initiations and blood glucose dynamics in overweight men in negative <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kovacs, Eva M R; Westerterp-Plantenga, Margriet S; Saris, Wim H M; Melanson, Kathleen J; Goossens, Ine; Geurten, Peter; Brouns, Fred</p> <p>2002-01-01</p> <p>The aim of the present study was to investigate associations between spontaneous meal initiations and blood glucose dynamics in overweight male subjects in negative <span class="hlt">energy</span> <span class="hlt">balance</span>. In a randomized crossover design, fifteen overweight male subjects (BMI 28.6 (SD 1.8 kg/m2) participated in three treatments, each of which consisted of 2 weeks consuming a low-<span class="hlt">energy</span> diet followed by a test of voluntary food ingestion in the absence of time-related cues. The low-<span class="hlt">energy</span> diet consisted of three daily meals (947 kJ) which were either semi-solid with or without 2.5 g guar gum, or solid, and a dinner of subject's own choice. During the time-blinded test, on the first, second, and third meal initiation subjects ingested a low-<span class="hlt">energy</span> meal corresponding to that used during the preceding weeks. Changes in blood glucose were monitored on-line. Associations between spontaneous meal initiations and blood glucose dynamics were determined using the chi2 test. No difference was found between treatments in the occurrence of postabsorptive and postprandial declines in blood glucose or in associations between meal initiations and blood glucose dynamics. Postprandial dynamic blood glucose declines were associated with meal initiation (chi2 26 8, P<0.00 1), but postabsorptive and postprandial transient declines were not. In overweight subjects, the usual association between transient declines and spontaneous meal initiation was completely absent in negative <span class="hlt">energy</span> <span class="hlt">balance</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CPL...685..477M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CPL...685..477M"><span>An improved experimental scheme for simultaneous measurement of high-resolution <span class="hlt">zero</span> electron kinetic <span class="hlt">energy</span> (ZEKE) photoelectron and threshold photoion (MATI) spectra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus</p> <p>2017-10-01</p> <p>An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the <span class="hlt">Zero</span> Electron Kinetic <span class="hlt">Energy</span> (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation <span class="hlt">energies</span> for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation <span class="hlt">energies</span> in clusters with substantial mass difference between parent and daughter ions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29761783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29761783"><span>Preoptic leptin signaling modulates <span class="hlt">energy</span> <span class="hlt">balance</span> independent of body temperature regulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Sangho; Cheng, Helia; François, Marie; Qualls-Creekmore, Emily; Huesing, Clara; He, Yanlin; Jiang, Yanyan; Gao, Hong; Xu, Yong; Zsombok, Andrea; Derbenev, Andrei V; Nillni, Eduardo A; Burk, David H; Morrison, Christopher D; Berthoud, Hans-Rudolf; Münzberg, Heike</p> <p>2018-05-15</p> <p>The adipokine leptin acts on the brain to regulate <span class="hlt">energy</span> <span class="hlt">balance</span> but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress <span class="hlt">energy</span> expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates <span class="hlt">energy</span> expenditure in response to internal <span class="hlt">energy</span> state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight. © 2018, Yu et al.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...592A..71M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...592A..71M"><span>HERschel Observations of Edge-on Spirals (HEROES). III. Dust <span class="hlt">energy</span> <span class="hlt">balance</span> study of IC 2531</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mosenkov, Aleksandr V.; Allaert, Flor; Baes, Maarten; Bianchi, Simone; Camps, Peter; De Geyter, Gert; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Hughes, Thomas M.; Lewis, Fraser; Verstappen, Joris; Verstocken, Sam; Viaene, Sébastien</p> <p>2016-07-01</p> <p>We investigate the dust <span class="hlt">energy</span> <span class="hlt">balance</span> for the edge-on galaxy IC 2531, one of the seven galaxies in the HEROES sample. We perform a state-of-the-art radiative transfer modelling based, for the first time, on a set of optical and near-infrared galaxy images. We show that by taking into account near-infrared imaging in the modelling significantly improves the constraints on the retrieved parameters of the dust content. We confirm the result from previous studies that including a young stellar population in the modelling is important to explain the observed stellar <span class="hlt">energy</span> distribution. However, the discrepancy between the observed and modelled thermal emission at far-infrared wavelengths, the so-called dust <span class="hlt">energy</span> <span class="hlt">balance</span> problem, is still present: the model underestimates the observed fluxes by a factor of about two. We compare two different dust models, and find that dust parameters, and thus the spectral <span class="hlt">energy</span> distribution in the infrared domain, are sensitive to the adopted dust model. In general, the THEMIS model reproduces the observed emission in the infrared wavelength domain better than the popular BARE-GR-S model. Our study of IC 2531 is a pilot case for detailed and uniform radiative transfer modelling of the entire HEROES sample, which will shed more light on the strength and origins of the dust <span class="hlt">energy</span> <span class="hlt">balance</span> problem. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced images (as FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A71</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22369253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22369253"><span>NPY modulates PYY function in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span> and glucose homeostasis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, L; Nguyen, A D; Lee, I-C J; Yulyaningsih, E; Riepler, S J; Stehrer, B; Enriquez, R F; Lin, S; Shi, Y-C; Baldock, P A; Sainsbury, A; Herzog, H</p> <p>2012-08-01</p> <p>Both the neuronal-derived neuropeptide Y (NPY) and the gut hormone peptide YY (PYY) have been implicated in the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span> and glucose homeostasis. However, despite similar affinities for the same Y receptors, the co-ordinated actions of these two peptides in <span class="hlt">energy</span> and glucose homeostasis remain largely unknown. To investigate the mechanisms and possible interactions between PYY with NPY in the regulation of these processes, we utilized NPY/PYY single and double mutant mouse models and examined parameters of <span class="hlt">energy</span> <span class="hlt">balance</span> and glucose homeostasis. PYY(-/-) mice exhibited increased fasting-induced food intake, enhanced fasting and oral glucose-induced serum insulin levels, and an impaired insulin tolerance, - changes not observed in NPY(-/-) mice. Interestingly, whereas PYY deficiency-induced impairment in insulin tolerance remained in NPY(-/-) PYY(-/-) mice, effects of PYY deficiency on fasting-induced food intake and serum insulin concentrations at baseline and after the oral glucose bolus were absent in NPY(-/-) PYY(-/-) mice, suggesting that NPY signalling may be required for PYY's action on insulin secretion and fasting-induced hyperphagia. Moreover, NPY(-/-) PYY(-/-) , but not NPY(-/-) or PYY(-/-) mice had significantly decreased daily food intake, indicating interactive control by NPY and PYY on spontaneous food intake. Furthermore, both NPY(-/-) and PYY(-/-) mice showed significantly reduced respiratory exchange ratio during the light phase, with no additive effects observed in NPY(-/-) PYY(-/-) mice, indicating that NPY and PYY may regulate oxidative fuel selection via partly shared mechanisms. Overall, physical activity and <span class="hlt">energy</span> expenditure, however, are not significantly altered by NPY and PYY single or double deficiencies. These findings show significant and diverse interactions between NPY and PYY signalling in the regulation of different aspects of <span class="hlt">energy</span> <span class="hlt">balance</span> and glucose homeostasis. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT........93K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT........93K"><span>The relevance of rooftops: Analyzing the microscale surface <span class="hlt">energy</span> <span class="hlt">balance</span> in the Chicago region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosla, Radhika</p> <p></p> <p>Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal <span class="hlt">energy</span> flows that take place at a microclimatic surface, this work develops a semi-empirical <span class="hlt">energy</span> <span class="hlt">balance</span> model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus <span class="hlt">energy</span> absorbed during daylight is released to the atmosphere later in the evening. The surface <span class="hlt">energy</span> <span class="hlt">balance</span> model responds well to site specific features for both locations. An analysis of the surface <span class="hlt">energy</span> <span class="hlt">balance</span> shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface <span class="hlt">energy</span> <span class="hlt">balance</span> model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990064097','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990064097"><span>Zarya <span class="hlt">Energy</span> <span class="hlt">Balance</span> Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoffman, David J.; Kolosov, Vladimir</p> <p>1999-01-01</p> <p>The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar <span class="hlt">energy</span> incident on the arrays. KHSC used the incident <span class="hlt">energy</span> results to determine Zarya's electrical power generation capability and orbit-average power <span class="hlt">balance</span>. The power <span class="hlt">balance</span> analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power <span class="hlt">balance</span> for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23800170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23800170"><span>Parental education associations with children's body composition: mediation effects of <span class="hlt">energy</span> <span class="hlt">balance</span>-related behaviors within the <span class="hlt">ENERGY</span>-project.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fernández-Alvira, Juan M; te Velde, Saskia J; De Bourdeaudhuij, Ilse; Bere, Elling; Manios, Yannis; Kovacs, Eva; Jan, Natasa; Brug, Johannes; Moreno, Luis A</p> <p>2013-06-21</p> <p>It is well known that the prevalence of overweight and obesity is considerably higher among youth from lower socio-economic families, but there is little information about the role of some <span class="hlt">energy</span> <span class="hlt">balance</span>-related behaviors in the association between socio-economic status and childhood overweight and obesity. The objective of this paper was to assess the possible mediation role of <span class="hlt">energy</span> <span class="hlt">balance</span>-related behaviors in the association between parental education and children's body composition. Data were obtained from the cross sectional study of the "EuropeaN <span class="hlt">Energy</span> <span class="hlt">balance</span> Research to prevent excessive weight Gain among Youth" (<span class="hlt">ENERGY</span>) project. 2121 boys and 2516 girls aged 10 to 12 from Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia and Spain were included in the analyses. Data were obtained via questionnaires assessing obesity related dietary, physical activity and sedentary behaviors and basic anthropometric objectively measured indicators (weight, height, waist circumference). The possible mediating effect of sugared drinks intake, breakfast consumption, active transportation to school, sports participation, TV viewing, computer use and sleep duration in the association between parental education and children's body composition was explored via MacKinnon's product-of-coefficients test in single and multiple mediation models. Two different body composition indicators were included in the models, namely Body Mass Index and waist circumference. The association between parental education and children's body composition was partially mediated by breakfast consumption, sports participation, TV viewing and computer use. Additionally, a suppression effect was found for sugared drinks intake. No mediation effect was found for active transportation and sleep duration. The significant mediators explained a higher proportion of the association between parental education and waist circumference compared to the association between parental education and BMI</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21448734-far-infrared-spectroscopy-cationic-polycyclic-aromatic-hydrocarbons-zero-kinetic-energy-photoelectron-spectroscopy-pentacene-vaporized-from-laser-desorption','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21448734-far-infrared-spectroscopy-cationic-polycyclic-aromatic-hydrocarbons-zero-kinetic-energy-photoelectron-spectroscopy-pentacene-vaporized-from-laser-desorption"><span>FAR-INFRARED SPECTROSCOPY OF CATIONIC POLYCYCLIC AROMATIC HYDROCARBONS: <span class="hlt">ZERO</span> KINETIC <span class="hlt">ENERGY</span> PHOTOELECTRON SPECTROSCOPY OF PENTACENE VAPORIZED FROM LASER DESORPTION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Zhang Jie; Han Fangyuan; Pei Linsen</p> <p>2010-05-20</p> <p>The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offermore » laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C{sub 22}H{sub 14}), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 {mu}m that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color <span class="hlt">zero</span> kinetic <span class="hlt">energy</span> photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of {approx}7 cm{sup -1}, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="https://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="https://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.science.gov"><img src="https://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="https://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>