Sample records for zero sound

  1. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  2. Digitizing Sound: How Can Sound Waves Be Turned into Ones and Zeros?

    ERIC Educational Resources Information Center

    Vick, Matthew

    2010-01-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing…

  3. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  4. Observation of acoustic Dirac-like cone and double zero refractive index

    PubMed Central

    Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-01-01

    Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

  5. Measurement of respiratory acoustical signals. Comparison of sensors.

    PubMed

    Pasterkamp, H; Kraman, S S; DeFrain, P D; Wodicka, G R

    1993-11-01

    We assessed the performance of three air-coupled and four contact sensors under standardized conditions of lung sound recording. Recordings were obtained from three of the investigators at the best site on the posterior lower chest as determined by auscultation. Lung sounds were band-pass filtered between 100 and 2,000 Hz and sampled simultaneously with calibrated airflow at a rate of 10 kHz. Fourier techniques were used for power spectral analysis. Average spectra for inspiratory sounds at flows of 2 +/- 0.5 L/s were referenced against background noise at zero flow. Air-coupled and contact sensors had comparable maximum signal-to-noise ratios and gave similar values for most spectral parameters. Unexpectedly, less sensitivity (lower signal-to-noise ratio) at high frequencies was observed in the air-coupled devices. Sensor performance needs to be characterized in studies of lung sounds. We suggest that lung sound spectra should be averaged at known airflows over several breaths and that all measurements should be reported relative to sounds recorded at zero flow.

  6. Search for the Acoustic Faraday Effect in Superfluid ^3He-B

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Haard, T. M.; Kycia, J. B.; Halperin, W. P.

    1997-03-01

    Transverse zero sound is another propagating mode predicted to exist in Fermi liquids by Landau. However, it has been difficult to achieve clear experimental evidence for propagating transverse zero sound in ^3He. A recent theoretical calculation(G.F. Moores and J.A. Sauls, JLTP 91), 13 (1993). showed that this mode may be rather easily detected at very low temperatures in the B-phase of superfluid ^3He. Futhermore, in the presence of a magnetic field the polarization of the sound wave rotates as it propagates, which is analogous to the Faraday effect in optics. We report our preliminary experimental results on the acoustic Faraday effect in ^3He-B.

  7. Measuring the Speed of Sound through Gases Using Nitrocellulose

    ERIC Educational Resources Information Center

    Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R.

    2015-01-01

    Measuring the heat capacity ratios, ?, of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger. Other…

  8. Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?

    NASA Astrophysics Data System (ADS)

    Vick, Matthew

    2010-10-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.

  9. A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1956-01-01

    Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.

  10. CLIVAR Mode Water Dynamics Experiment (CLIMODE), Fall 2006 R/V Oceanus Voyage 434, November 16, 2006-December 3, 2006

    DTIC Science & Technology

    2007-12-01

    except for the dive zero time which needed to be programmed during the cruise when the deployment schedule dates were confirmed. _ ACM - Aanderaa ACM...guards bolted on to complete the frame prior to deployment. Sound Source - Sound sources were scheduled to be redeployed. Sound sources were originally...battery voltages and a vacuum. A +27 second time drift was noted and the time was reset. The sound source was scheduled to go to full power on November

  11. On the Composition of Public-Coin Zero-Knowledge Protocols

    DTIC Science & Technology

    2011-05-31

    only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel...only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel repetitions...and Krawczyk [GK96b] show that only languages in BPP have constant-round public-coin (stand-alone) black-box ZK protocols with negligible soundness

  12. Frog sound identification using extended k-nearest neighbor classifier

    NASA Astrophysics Data System (ADS)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  13. Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments.

    PubMed

    Bolle, Loes J; de Jong, Christ A F; Bierman, Stijn M; van Beek, Pieter J G; van Keeken, Olvin A; Wessels, Peter W; van Damme, Cindy J G; Winter, Hendrik V; de Haan, Dick; Dekeling, René P A

    2012-01-01

    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.

  14. Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments

    PubMed Central

    Bolle, Loes J.; de Jong, Christ A. F.; Bierman, Stijn M.; van Beek, Pieter J. G.; van Keeken, Olvin A.; Wessels, Peter W.; van Damme, Cindy J. G.; Winter, Hendrik V.; de Haan, Dick; Dekeling, René P. A.

    2012-01-01

    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised. PMID:22431996

  15. It serves you right. Hassle-free health care builds loyalty, volume--and the bottom line.

    PubMed

    Larkin, H

    Zero barriers to care, zero waiting times: Tough as those targets sound, today's stars of customer service are scoring direct hits. "It's not a change in the services that are delivered," says one patient satisfaction pro. "It's a change in the way they're being delivered."

  16. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  17. Magnetic Field Effects on the Fluctuation Corrections to the Sound Attenuation in Liquid ^3He

    NASA Astrophysics Data System (ADS)

    Zhao, Erhai; Sauls, James A.

    2002-03-01

    We investigated the effect of a magnetic field on the excess sound attenuation due to order parameter fluctuations in bulk liquid ^3He and liquid ^3He in aerogel for temperatures just above the corresponding superfluid transition temperatures. The fluctuation corrections to the acoustic attenuation are sensitive to magnetic field pairbreaking, aerogel scattering as well as the spin correlations of fluctuating pairs. Calculations of the corrections to the zero sound velocity, δ c_0, and attenuation, δα_0, are carried out in the ladder approximation for the singular part of the quasiparticle-quasiparticle scattering amplitude(V. Samalam and J. W. Serene, Phys. Rev. Lett. \\underline41), 497 (1978). as a function of frequency, temperature, impurity scattering and magnetic field strength. The magnetic field suppresses the fluctuation contributions to the attenuation of zero sound. With increasing magnetic field the temperature dependence of δα_0(t) crosses over from δα_0(t) ~√ t to δα_0(t) ~ t, where t=T/Tc -1 is the reduced temperature.

  18. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    DTIC Science & Technology

    2015-05-08

    work on initial outfitting lists for Sally Ride. ii. Working on NS5 Hierarchy 4. Operator Concerns: • Tuff-Mass MLV and Acoustic Tiles – The...yard is continuing to install the Quad-zero MLV in various locations throughout Sally Ride. DCI is holding off on installing any new insulation in...Traction Winch Rm fwd bulkhead tiles • Sally Ride Quad-Zero MLV – The yard continues to install the Quad-Zero in location with no sound dampening tiles

  19. Analysis of High Temporal and Spatial Observations of Hurricane Joaquin During TCI-15

    NASA Technical Reports Server (NTRS)

    Creasey, Robert; Elsberry, Russell L.; Velden, Chris; Cecil, Daniel J.; Bell, Michael; Hendricks, Eric A.

    2016-01-01

    Objectives: Provide an example of why analysis of high density soundings across Hurricane Joaquin also require highly accurate center positions; Describe technique for calculating 3-D zero-wind center positions from the highly accurate GPS positions of sequences of High-Density Sounding System (HDSS) soundings as they fall from 10 km to the ocean surface; Illustrate the vertical tilt of the vortex above 4-5 km during two center passes through Hurricane Joaquin on 4 October 2015.

  20. Zero Energy Schools: Architects Take the Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Zero energy schools are possible and practical, and architects are leading the way. Imagine a school so inviting that students want to come to school. Now imagine this school housed in a beautiful, light-filled building that produces more energy on an annual basis than it uses. Finally, imagine that the district built this school on the same budget as a conventional school, using typical materials, equipment, and tradespeople. Sound too good to be true Discovery Elementary School in Arlington, Virginia, is living proof that zero energy (ZE) schools are feasible, affordable, and sensible.

  1. Effect of Pile-Driving Sounds on the Survival of Larval Fish.

    PubMed

    Bolle, Loes J; de Jong, Christ A F; Bierman, Stijn M; van Beek, Pieter J G; Wessels, Peter W; Blom, Ewout; van Damme, Cindy J G; Winter, Hendrik V; Dekeling, René P A

    2016-01-01

    Concern exists about the potential effects of pile-driving sounds on fish, but evidence is limited, especially for fish larvae. A device was developed to expose larvae to accurately reproduced pile-driving sounds. Controlled exposure experiments were carried out to examine the lethal effects in common sole larvae. No significant effects were observed at zero-to-peak pressure levels up to 210 dB re 1 μPa(2) and cumulative sound exposure levels up to 206 dB re 1 μPa(2)·s, which is well above the US interim criteria for nonauditory tissue damage in fish. Experiments are presently being carried out for European sea bass and herring larvae.

  2. AGOR 28

    DTIC Science & Technology

    2015-04-23

    to work on initial outfitting lists for Sally Ride. ii. Working on NS5 Hierarchy 4. Operator Concerns: • Tuff-Mass MLV and Acoustic Tiles...The yard is continuing to install the Quad-zero MLV in various locations throughout Sally Ride. DCI is holding off on installing any new insulation ...in location with no sound dampening tiles. This includes the Main Engine Space overhead and aft bulkhead as well as the MCS. The Quad-Zeros is not

  3. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    NASA Technical Reports Server (NTRS)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  4. Extraordinary absorption of sound in porous lamella-crystals.

    PubMed

    Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J

    2014-04-14

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

  5. Extraordinary absorption of sound in porous lamella-crystals

    PubMed Central

    Christensen, J.; Romero-García, V.; Picó, R.; Cebrecos, A.; de Abajo, F. J. García; Mortensen, N. A.; Willatzen, M.; Sánchez-Morcillo, V. J.

    2014-01-01

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material. PMID:24728322

  6. The hearing threshold of a harbor porpoise (Phocoena phocoena) for impulsive sounds (L).

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; de Jong, Christ A F

    2012-08-01

    The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.

  7. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  8. Mathematically trivial control of sound using a parametric beam focusing source.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2011-01-01

    By exploiting a case regarded as trivial, this paper presents global active noise control using a parametric beam focusing source (PBFS). As with a dipole model, one is used for a primary sound source and the other for a control sound source, the control effect for minimizing a total acoustic power depends on the distance between the two. When the distance becomes zero, the total acoustic power becomes null, hence nothing less than a trivial case. Because of the constraints in practice, there exist difficulties in placing a control source close enough to a primary source. However, by projecting a sound beam of a parametric array loudspeaker onto the target sound source (primary source), a virtual sound source may be created on the target sound source, thereby enabling the collocation of the sources. In order to further ensure feasibility of the trivial case, a PBFS is then introduced in an effort to meet the size of the two sources. Reflected sound wave of the PBFS, which is tantamount to the virtual sound source output, aims to suppress the primary sound. Finally, a numerical analysis as well as an experiment is conducted, verifying the validity of the proposed methodology.

  9. Digital Waveguide Architectures for Virtual Musical Instruments

    NASA Astrophysics Data System (ADS)

    Smith, Julius O.

    Digital sound synthesis has become a standard staple of modern music studios, videogames, personal computers, and hand-held devices. As processing power has increased over the years, sound synthesis implementations have evolved from dedicated chip sets, to single-chip solutions, and ultimately to software implementations within processors used primarily for other tasks (such as for graphics or general purpose computing). With the cost of implementation dropping closer and closer to zero, there is increasing room for higher quality algorithms.

  10. The radiation of sound from a propeller at angle of attack

    NASA Technical Reports Server (NTRS)

    Mani, Ramani

    1990-01-01

    The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the propeller axis is at an angle of attack to the freestream is examined. The measured noise field is distinctly non axially symmetric under such conditions with far field sound pressure levels both diminished and increased relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric sound field based on the unsteady (once per rev) loading experienced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propellers. A new mechanism is proposed; namely, that at angle of attack, there is a non axially symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers with a large number of blades. A calculation of this effect to first order in the crossflow Mach number (component of freestream Mach number normal to the propeller axis) is carried out and shows much better agreement with measured noise data on the angle of attack effect.

  11. Budgeting--A Management Approach for the '80s.

    ERIC Educational Resources Information Center

    Hodel, Ross A.

    1980-01-01

    Zero-base budgeting is a management tool that provides a system that is responsive to change, incorporates sound principles of management, satisfies the need to effectively shift resources, and does not overload the budget staff. (Author/MLF)

  12. Experiments on active isolation using distributed PVDF error sensors

    NASA Technical Reports Server (NTRS)

    Lefebvre, S.; Guigou, C.; Fuller, C. R.

    1992-01-01

    A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.

  13. Frequency dependent attenuation of zero sound in normal fluid ^3He.

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Ihas, G. G.; Meisel, M. W.

    1997-03-01

    Forty years ago, Landau (L.D. Landau, Sov. Phys. JETP 5), 101 (1957). predicted the attenuation of zero sound in ^3He to be given by α = α'(P)T^2[1+(frachν2π k_BT)^2]. Recently, qualitative agreement with the frequency dependence has been reported.(K. Matsumoto, T. Ikegami, Y. Okuda, Physica B 194-196), 743 (1994).^,(C. Barre et al.) Physica B 219 & 220, 663 (1996).^,(K. Matsumoto et al.) Czech. J. Phys. 46, 63 (1996). We have used non-resonant, broadband transducers to measure attenuation as a function of frequency (10-40 MHz) at T≈1 mK and P≈ 1 bar. Through careful identification and removal of background contributions, we present the first quantitative measurement of the size of the frequency contribution assuming a ν^2 dependence. Details of the background terms and comparisons to the theory will be presented.

  14. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2010-06-01

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  15. Constant-Round Concurrent Zero Knowledge From Falsifiable Assumptions

    DTIC Science & Technology

    2013-01-01

    assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12, GJO+12]), or in alternative models (e.g., super -polynomial-time simulation [Pas03b, PV10]). In the...T (·)-time computations, where T (·) is some “nice” (slightly) super -polynomial function (e.g., T (n) = nlog log logn). We refer to such proof...put a cap on both using a (slightly) super -polynomial function, and thus to guarantee soundness of the concurrent zero-knowledge protocol, we need

  16. Behavioral responses of a harbor porpoise (Phocoena phocoena) to playbacks of broadband pile driving sounds.

    PubMed

    Kastelein, Ronald A; van Heerden, Dorianne; Gransier, Robin; Hoek, Lean

    2013-12-01

    The high under-water sound pressure levels (SPLs) produced during pile driving to build offshore wind turbines may affect harbor porpoises. To estimate the discomfort threshold of pile driving sounds, a porpoise in a quiet pool was exposed to playbacks (46 strikes/min) at five SPLs (6 dB steps: 130-154 dB re 1 μPa). The spectrum of the impulsive sound resembled the spectrum of pile driving sound at tens of kilometers from the pile driving location in shallow water such as that found in the North Sea. The animal's behavior during test and baseline periods was compared. At and above a received broadband SPL of 136 dB re 1 μPa [zero-peak sound pressure level: 151 dB re 1 μPa; t90: 126 ms; sound exposure level of a single strike (SELss): 127 dB re 1 μPa(2) s] the porpoise's respiration rate increased in response to the pile driving sounds. At higher levels, he also jumped out of the water more often. Wild porpoises are expected to move tens of kilometers away from offshore pile driving locations; response distances will vary with context, the sounds' source level, parameters influencing sound propagation, and background noise levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Description of Methodologies Used in Estimation of A-Weighted Sound Levels for FAA Advisory Circular AC-36-3B.

    DTIC Science & Technology

    1982-01-01

    second) Dia propeller diameter (expressed in inches) T°F air temperature in degrees Farenheit T°C air temperature in degrees Celsius T:dBA total dBA...eMpiriC31 function to the absolute noise level ordinate. The term 240 log ( MH is the most sensitive and important part of the equation. The constant (240...standard day, zero wind, dry, zero gradient runway, at a sea level airport. 2. All aircraft operate at maximum takeoff gross weight. 3. All aircraft climb

  18. Effect of the next-nearest-neighbor hopping on the charge collective modes in the paramagnetic phase of the Hubbard model

    NASA Astrophysics Data System (ADS)

    Dao, Vu Hung; Frésard, Raymond

    2017-10-01

    The charge dynamical response function of the t-t'-U Hubbard model is investigated on the square lattice in the thermodynamical limit. The correlation function is calculated from Gaussian fluctuations around the paramagnetic saddle-point within the Kotliar and Ruckenstein slave-boson representation. The next-nearest-neighbor hopping only slightly affects the renormalization of the quasiparticle mass. In contrast a negative t'/t notably decreases (increases) their velocity, and hence the zero-sound velocity, at positive (negative) doping. For low (high) density n ≲ 0.5 (n ≳ 1.5) we find that it enhances (reduces) the damping of the zero-sound mode. Furthermore it softens (hardens) the upper-Hubbard-band collective mode at positive (negative) doping. It is also shown that our results differ markedly from the random-phase approximation in the strong-coupling limit, even at high doping, while they compare favorably with existing quantum Monte Carlo numerical simulations.

  19. Modal propagation angles in a cylindrical duct with flow and their relation to sound radiation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Heidmann, M. F.; Sofrin, T. G.

    1979-01-01

    The main emphasis is upon the propagation angle with respect to the duct axis and its relation to the far-field acoustic radiation pattern. When the steady flow Mach number is accounted for in the duct, the propagation angle in the duct is shown to be coincident with the angle of the principal lobe of far-field radiation obtained using the Wiener-Hopf technique. Different Mach numbers are allowed within the duct and in the external field. For static tests with a steady flow in an inlet but with no external Mach number the far-field radiation pattern is shifted considerably toward the inlet axis when compared to zero Mach number radiation theory. As the external Mach number is increased the noise radiation pattern is shifted away from the inlet axis. The theory is developed using approximations for sound propagation in circular ducts. An exact analysis using Hankel function solutions for the zero Mach number case is given to provide a check of the simpler approximate theory.

  20. ASK Magazine. No. 17

    NASA Technical Reports Server (NTRS)

    Laufer, Alexander (Editor); Post, Todd (Editor); Brady, Jody Lannen (Editor); McKee, Sally (Editor)

    2004-01-01

    The following articles were processed for inclusion in the NA&SD database:Right on Time, Radically; Radical is Temporary; Walking a Fine Line; Sounds Clear Enough; Bringing Up Baby; Transition Time: Zero; Passing the Baton - Lessons in Regret; The PMDP Roadmap; Managing History: A Practicum; and ASK Talks with Tom Gavin.

  1. 12 CFR 703.18 - Grandfathered investments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Grandfathered investments. 703.18 Section 703... INVESTMENT AND DEPOSIT ACTIVITIES § 703.18 Grandfathered investments. (a) Subject to safety and soundness... zero coupon security with a maturity greater than 10 years, if it purchased the investment: (1) Before...

  2. 12 CFR 703.18 - Grandfathered investments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Grandfathered investments. 703.18 Section 703... INVESTMENT AND DEPOSIT ACTIVITIES § 703.18 Grandfathered investments. (a) Subject to safety and soundness... zero coupon security with a maturity greater than 10 years, if it purchased the investment: (1) Before...

  3. Note on zero temperature holographic superfluids

    NASA Astrophysics Data System (ADS)

    Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao

    2016-06-01

    In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.

  4. Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    NASA Technical Reports Server (NTRS)

    Deming, A F

    1937-01-01

    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  5. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  6. Influence of airfoil thickness on convected gust interaction noise

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Tsai, C. T.

    1989-01-01

    The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.

  7. Sound propagation through a variable area duct - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.

    1981-01-01

    A comparison of experiment and theory has been made for the propagation of sound through a variable area axisymmetric duct with zero mean flow. Measurement of the acoustic pressure field on both sides of the constricted test section was resolved on a modal basis for various spinning mode sources. Transmitted and reflected modal amplitudes and phase angles were compared with finite element computations. Good agreement between experiment and computation was obtained over a wide range of frequencies and modal transmission variations. The study suggests that modal transmission through a variable area duct is governed by the throat modal cut-off ratio.

  8. Estimating the sound speed of a shallow-water marine sediment from the head wave excited by a low-flying helicopter.

    PubMed

    Bevans, Dieter A; Buckingham, Michael J

    2017-10-01

    The frequency bandwidth of the sound from a light helicopter, such as a Robinson R44, extends from about 13 Hz to 2.5 kHz. As such, the R44 has potential as a low-frequency sound source in underwater acoustics applications. To explore this idea, an experiment was conducted in shallow water off the coast of southern California in which a horizontal line of hydrophones detected the sound of an R44 hovering in an end-fire position relative to the array. Some of the helicopter sound interacted with seabed to excite the head wave in the water column. A theoretical analysis of the sound field in the water column generated by a stationary airborne source leads to an expression for the two-point horizontal coherence function of the head wave, which, apart from frequency, depends only on the sensor separation and the sediment sound speed. By matching the zero crossings of the measured and theoretical horizontal coherence functions, the sound speed in the sediment was recovered and found to take a value of 1682.42 ± 16.20 m/s. This is consistent with the sediment type at the experiment site, which is known from a previous survey to be a fine to very-fine sand.

  9. Reduced order modeling of head related transfer functions for virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley

    2003-04-01

    The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.

  10. Holography, black holes and condensed matter physics

    NASA Astrophysics Data System (ADS)

    Gentle, Simon Adam

    In this thesis we employ holographic techniques to explore strongly-coupled quantum field theories at non-zero temperature and density. First we consider a state dual to a charged black hole with planar horizon and compute retarded Green's functions for conserved currents in the shear channel. We demonstrate the intricate motion of their poles and stress the importance of the residues at the poles beyond the hydrodynamic regime. We then explore the collective excitations of holographic quantum liquids arising on D3/D5 and D3/D7 brane intersections as a function of temperature and magnetic field in the probe limit. We observe a crossover from hydrodynamic charge diffusion to a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The location of this crossover is approximately independent of the magnetic field. The sound mode has a gap proportional to the magnetic field, leading to strong suppression of spectral weight for intermediate frequencies and sufficiently large magnetic fields. In the second part we explore the solution space of AdS gravity in the hope of learning general lessons about such theories. First we study charged scalar solitons in global AdS4. These solutions have a rich phase space and exhibit critical behaviour as a function of the scalar charge and scalar boundary conditions. We demonstrate how the planar limit of global solitons coincides generically with the zero-temperature limit of black branes with charged scalar hair. We exhibit these features in both phenomenological models and consistent truncations of eleven-dimensional supergravity. We then discover new branches of hairy black brane in SO(6) gauged supergravity. Despite the imbalance provided by three chemical potentials conjugate to the three R-charges, there is always at least one branch with charged scalar hair, emerging at a temperature where the normal phase is locally thermodynamically stable.

  11. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.

    PubMed

    Babbs, Charles F

    2015-12-01

    This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from resonant motion of the arterial wall, which begins after the artery transitions from a buckled state to an expanding state. The motions of one mass, two nonlinear springs, and one damper, driven by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds according to principles of classical Newtonian physics. The natural resonance of this spring-mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff sounds. Fundamentally, wall stretching in expansion requires more force than wall bending in buckling. At cuff pressures between systolic and diastolic arterial pressure, audible vibrations (> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity in stiffness between bucked and expanded states. The idealized spring-mass-damper model faithfully reproduces the time-domain waveforms of actual Korotkoff sounds in humans. Appearance of arterial sounds occurs at or just above the level of systolic pressure. Disappearance of arterial sounds occurs at or just above the level of diastolic pressure. Muffling of the sounds is explained by increased resistance of the artery to collapse, caused by downstream venous engorgement. A simple analytical model can define the physical origin of Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective detection and confirming the disappearance of the Korotkoff sounds as the optimal diastolic end point. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Fluctuations and instabilities of a holographic metal

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2013-02-01

    We analyze the quasinormal modes of the D2-D8' model of 2+1-dimensional, strongly-coupled, charged fermions in a background magnetic field and at non-zero density. The model is known to include a quantum Hall phase with integer filling fraction. As expected, we find a hydrodynamical diffusion mode at small momentum and the nonzero-temperature holographic zero sound, which becomes massive above a critical magnetic field. We confirm the previously-known thermodynamic instability. In addition, we discover an instability at low temperature, large mass, and in a charge density and magnetic field range near the quantum Hall phase to an inhomogeneous striped phase.

  13. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  14. Global Ocean Forecast System V3.0 Validation Test Report Addendum: Addition of the Diurnal Cycle

    DTIC Science & Technology

    2010-11-05

    surface duct (e.g. Urick , 1983). When the solar radiation is zero during the night, the ocean surface cools and the associated mixing leads to the...HYCOMINCODA: Phase II. NRL Memo. Report, NRLIMRl7320--10-9236. Urick , R.J., 1983: Principles of underwater sound, 3rd Edition. Peninsula Publishing, Los

  15. Large-scale structure in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Okumura, Teppei; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2018-05-01

    In this paper, we propose to use the mimetic Horndeski model as a model for the dark universe. Both cold dark matter (CDM) and dark energy (DE) phenomena are described by a single component, the mimetic field. In linear theory, we show that this component effectively behaves like a perfect fluid with zero sound speed and clusters on all scales. For the simpler mimetic cubic Horndeski model, if the background expansion history is chosen to be identical to a perfect fluid DE (PFDE) then the mimetic model predicts the same power spectrum of the Newtonian potential as the PFDE model with zero sound speed. In particular, if the background is chosen to be the same as that of LCDM, then also in this case the power spectrum of the Newtonian potential in the mimetic model becomes indistinguishable from the power spectrum in LCDM on linear scales. A different conclusion may be found in the case of non-adiabatic perturbations. We also discuss the distinguishability, using power spectrum measurements from LCDM N-body simulations as a proxy for future observations, between these mimetic models and other popular models of DE. For instance, we find that if the background has an equation of state equal to ‑0.95 then we will be able to distinguish the mimetic model from the PFDE model with unity sound speed. On the other hand, it will be hard to do this distinction with respect to the LCDM model.

  16. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil

    PubMed Central

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-01

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method. PMID:29382144

  17. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    PubMed

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  18. Turbofan noise generation. Volume 1: Analysis

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.

  19. Turbofan noise generation. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.

  20. Scattering of sound waves by a compressible vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  1. A FPGA Implementation of the CAR-FAC Cochlear Model.

    PubMed

    Xu, Ying; Thakur, Chetan S; Singh, Ram K; Hamilton, Tara Julia; Wang, Runchun M; van Schaik, André

    2018-01-01

    This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on.

  2. A FPGA Implementation of the CAR-FAC Cochlear Model

    PubMed Central

    Xu, Ying; Thakur, Chetan S.; Singh, Ram K.; Hamilton, Tara Julia; Wang, Runchun M.; van Schaik, André

    2018-01-01

    This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on. PMID:29692700

  3. Noise in early childhood education institutions.

    PubMed

    Bitar, Mariangela Lopes; Calaço, Luiz Ferreira; Simões-Zenari, Marcia

    2018-01-01

    High sound pressure levels have been observed in schools, and its interference in the health of children and teachers it was taken to analyze these levels in childhood education centers serving children aged zero to six years, investigate the staff's perceptions concerning noise exposure and identify the auditory conditions of these workers and the occurrence of diseases. The study was conducted in ten institutions employing 320 workers. Sound pressure levels were measured according to the technical norms; employees completed a questionnaire on the perception of noise and underwent auditory evaluation. There was high sound pressure level and differences between institutions, situations and places. Most employees are considered exposed to noise with attention and concentration difficulties, anxiety and headache. About 30% of employees had bilateral sensorineural hearing loss in specific frequency. The sound pressure levels found can affect children's learning and the health of all. The employees also perceived elevated levels of noise and indicated some possible negative aspects in their work routine. Actions to improve the acoustic comfort in these institutions will be discussed with the management teams.

  4. Some applications of equilibrium thermodynamic properties to continuum gasdynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The speed of sound for the propagation of isentropic disturbances in a gas is developed, including corrections for chemical reaction. The term zero frequency is used to describe this isentropic limit sound speed; the term signifies that change in the gasdynamic variables are all very slow compared with the chemical rate changes in the gas. A faster, nonisentropic speed of propagation occurs for disturbances where the changes in gasdynamic variables are fast compared with the chemical rate changes. In the limit, this is known as the infinite frequency or frozen sound speed - the former term calling attention to the very high frequency of the disturbance, the latter term calling attention to the frozen character of the chemical reactions under such rapid changes of state. The true sound speed for a disturbance of finite frequency is shown to be between these two limits and is expressed in terms of the chemical relaxation time. The Riemann invariants that are useful in determining the changes in flow speed along characteristic directions in supersonic flow are derived in terms of integrations of acoustic impedance, and example results are given for air.

  5. Performance appraisal of VAS radiometry for GOES-4, -5 and -6

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Robinson, W. D.

    1983-01-01

    The first three VISSR Atmospheric Sounders (VAS) were launched on GOES-4, -5, and -6 in 1980, 1981 and 1983. Postlaunch radiometric performance is assessed for noise, biases, registration and reliability, with special attention to calibration and problems in the data processing chain. The postlaunch performance of the VAS radiometer meets its prelaunch design specifications, particularly those related to image formation and noise reduction. The best instrument is carried on GOES-5, currently operational as GOES-EAST. Single sample noise is lower than expected, especially for the small longwave and large shortwave detectors. Detector to detector offsets are correctable to within the resolution limits of the instrument. Truncation, zero point and droop errors are insignificant. Absolute calibration errors, estimated from HIRS and from radiation transfer calculations, indicate moderate, but stable biases. Relative calibration errors from scanline to scanline are noticeable, but meet sounding requirements for temporarily and spatially averaged sounding fields of view. The VAS instrument is a potentially useful radiometer for mesoscale sounding operations. Image quality is very good. Soundings derived from quality controlled data meet prelaunch requirements when calculated with noise and bias resistant algorithms.

  6. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  7. Mixed-Effects Models for Count Data with Applications to Educational Research

    ERIC Educational Resources Information Center

    Shin, Jihyung

    2012-01-01

    This research is motivated by an analysis of reading research data. We are interested in modeling the test outcome of ability to fluently recode letters into sounds of kindergarten children aged between 5 and 7. The data showed excessive zero scores (more than 30% of children) on the test. In this dissertation, we carefully examine the models…

  8. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes.

    PubMed

    Conlon, Stephen C; Fahnline, John B; Semperlotti, Fabio

    2015-01-01

    The concept of an Acoustic Black Hole (ABH) has been developed and exploited as an approach for passively attenuating structural vibration. The basic principle of the ABH relies on proper tailoring of the structure geometrical properties in order to produce a gradual reduction of the flexural wave speed, theoretically approaching zero. For practical systems the idealized "zero" wave speed condition cannot be achieved so the structural areas of low wave speed are treated with surface damping layers to allow the ABH to approach the idealized dissipation level. In this work, an investigation was conducted to assess the effects that distributions of ABHs embedded in plate-like structures have on both vibration and structure radiated sound, focusing on characterizing and improving low frequency performance. Finite Element and Boundary Element models were used to assess the vibration response and radiated sound power performance of several plate configurations, comparing baseline uniform plates with embedded periodic ABH designs. The computed modal loss factors showed the importance of the ABH unit cell low order modes in the overall vibration reduction effectiveness of the embedded ABH plates at low frequencies where the free plate bending wavelengths are longer than the scale of the ABH.

  9. A Pole-Zero Filter Cascade Provides Good Fits to Human Masking Data and to Basilar Membrane and Neural Data

    NASA Astrophysics Data System (ADS)

    Lyon, Richard F.

    2011-11-01

    A cascade of two-pole-two-zero filters with level-dependent pole and zero dampings, with few parameters, can provide a good match to human psychophysical and physiological data. The model has been fitted to data on detection threshold for tones in notched-noise masking, including bandwidth and filter shape changes over a wide range of levels, and has been shown to provide better fits with fewer parameters compared to other auditory filter models such as gammachirps. Originally motivated as an efficient machine implementation of auditory filtering related to the WKB analysis method of cochlear wave propagation, such filter cascades also provide good fits to mechanical basilar membrane data, and to auditory nerve data, including linear low-frequency tail response, level-dependent peak gain, sharp tuning curves, nonlinear compression curves, level-independent zero-crossing times in the impulse response, realistic instantaneous frequency glides, and appropriate level-dependent group delay even with minimum-phase response. As part of exploring different level-dependent parameterizations of such filter cascades, we have identified a simple sufficient condition for stable zero-crossing times, based on the shifting property of the Laplace transform: simply move all the s-domain poles and zeros by equal amounts in the real-s direction. Such pole-zero filter cascades are efficient front ends for machine hearing applications, such as music information retrieval, content identification, speech recognition, and sound indexing.

  10. Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations.

    PubMed

    Miller, Patrick J O

    2006-05-01

    Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131 to 168 dB re 1 microPa at 1 m, with differences in the means of different sound classes (whistles: 140.2+/-4.1 dB; variable calls: 146.6+/-6.6 dB; stereotyped calls: 152.6+/-5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with "long-range" stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16 km in sea state zero) and "short-range" sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.

  11. Acoustics and perception of overtone singing.

    PubMed

    Bloothooft, G; Bringmann, E; van Cappellen, M; van Luipen, J B; Thomassen, K P

    1992-10-01

    Overtone singing, a technique of Asian origin, is a special type of voice production resulting in a very pronounced, high and separate tone that can be heard over a more or less constant drone. An acoustic analysis is presented of the phenomenon and the results are described in terms of the classical theory of speech production. The overtone sound may be interpreted as the result of an interaction of closely spaced formants. For the lower overtones, these may be the first and second formant, separated from the lower harmonics by a nasal pole-zero pair, as the result of a nasalized articulation shifting from /c/ to /a/, or, as an alternative, the second formant alone, separated from the first formant by the nasal pole-zero pair, again as the result of a nasalized articulation around /c/. For overtones with a frequency higher than 800 Hz, the overtone sound can be explained as a combination of the second and third formant as the result of a careful, retroflex, and rounded articulation from /c/, via schwa /e/ to /y/ and /i/ for the highest overtones. The results indicate a firm and relatively long closure of the glottis during overtone phonation. The corresponding short open duration of the glottis introduces a glottal formant that may enhance the amplitude of the intended overtone. Perception experiments showed that listeners categorized the overtone sounds differently from normally sung vowels, which possibly has its basis in an independent perception of the small bandwidth of the resonance underlying the overtone. Their verbal judgments were in agreement with the presented phonetic-acoustic explanation.

  12. Asymmetric Cherenkov acoustic reverse in topological insulators

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  13. Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)

    PubMed Central

    Bredlau, Justin P.; Mohajer, Yasha J.; Cameron, Timothy M.; Kester, Karen M.; Fine, Michael L.

    2013-01-01

    Background Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ∼220 Hz, but the sound waveform indicates a higher frequency resonance ∼5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ∼1000. Conclusions and Significance Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production. PMID:23630622

  14. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  15. Material suspension within an acoustically excited resonant chamber. [at near weightless conditions

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    A method is described for positioning an object within a chamber, which is especially useful in performing manufacturing operations under zero gravity conditions. Sound waves are applied within the chamber in different directions and at a frequency for each direction that establishes a standing wave pattern so that the object is automatically urged towards the intersections of the nodes, or locations of minimum pressure.

  16. Sound Propagation around Underwater Seamounts

    DTIC Science & Technology

    2009-02-01

    Algorithm 177 C.1 Processing Real World Data .................. ........ 178 C.2 Method for Finding Zero -crossings ................... .... 179 C.3 Handling...BASSEX experiment (figure is from Hyun Joe Kim, M IT, PhD Thesis) ................... .. .......... 25 2-2 Time front generated using the Range...30 2-4 Pressure level, given in dB re 1lPa, inside the forward-scattered field of the Kermit-Roosevelt Seamount. Results are generated using the RAM

  17. Issue Brief: Supporting Student Achievement through Sound Behavior Management Practices in Schools and Juvenile Justice Facilities--A Spotlight on Positive Behavioral Interventions and Supports (PBIS)

    ERIC Educational Resources Information Center

    Read, Nicholas; Lampron, Stephanie

    2012-01-01

    Many students across the Nation struggle with emotional and behavioral problems that may lead them to act out in ways that school administrators and teachers might not understand or be prepared to respond to effectively. In today's era of highstakes testing, zero-tolerance discipline measures, and shrinking school and district budgets, there is an…

  18. The integration of nonsimultaneous frequency components into a single virtual pitch.

    PubMed

    Ciocca, V; Darwin, C J

    1999-04-01

    The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.

  19. Matter-wave dark solitons in boxlike traps

    NASA Astrophysics Data System (ADS)

    Sciacca, M.; Barenghi, C. F.; Parker, N. G.

    2017-01-01

    Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.

  20. The Velocity of Sound in Sea Water at Zero Depth

    DTIC Science & Technology

    1952-06-11

    the Woods Hole Oceanographic Institution. Toward the end of this investigation a potentiometric titration with the Beckman automatic titratcr and a...Interferon eter as soon as received, and at Intervals throughout the investigation. Ch!orlnitie3 were determined by the Mohr method of AgNOi titration ...chlorinity of each of the solutions was actually determined by Mohr titration in the sar.? manner as the chiorinities of the original samples. The

  1. Non-Black-Box Simulation from One-Way Functions and Applications to Resettable Security

    DTIC Science & Technology

    2012-11-05

    from 2001, Barak (FOCS’01) introduced a novel non-black-box simulation technique. This technique enabled the construc- tion of new cryptographic...primitives, such as resettably-sound zero-knowledge arguments, that cannot be proven secure using just black-box simulation techniques. The work of Barak ... Barak requires the existence of collision-resistant hash functions, and a very recent result by Bitansky and Paneth (FOCS’12) instead requires the

  2. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  3. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  4. Coherent active methods for applications in room acoustics.

    PubMed

    Guicking, D; Karcher, K; Rollwage, M

    1985-10-01

    An adjustment of reverberation time in rooms is often desired, even for low frequencies where passive absorbers fail. Among the active (electroacoustic) systems, incoherent ones permit lengthening of reverberation time only, whereas coherent active methods will allow sound absorption as well. A coherent-active wall lining consists of loudspeakers with microphones in front and adjustable control electronics. The microphones pick up the incident sound and drive the speakers in such a way that the reflection coefficient takes on prescribed values. An experimental device for the one-dimensional case allows reflection coefficients between almost zero and about 1.5 to be realized below 1000 Hz. The extension to three dimensions presents problems, especially by nearfield effects. Experiments with a 3 X 3 loudspeaker array and computer simulations proved that the amplitude reflection coefficient can be adjusted between 10% and 200% for sinusoidal waves at normal and oblique incidence. Future developments have to make the system work with broadband excitation and in more diffuse sound fields. It is also planned to combine the active reverberation control with active diffusion control.

  5. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Mestre, Vincent; Fidell, Linda

    2013-11-01

    Assessment of aircraft noise-induced sleep disturbance is problematic for several reasons. Current assessment methods are based on sparse evidence and limited understandings; predictions of awakening prevalence rates based on indoor absolute sound exposure levels (SELs) fail to account for appreciable amounts of variance in dosage-response relationships and are not freely generalizable from airport to airport; and predicted awakening rates do not differ significantly from zero over a wide range of SELs. Even in conjunction with additional predictors, such as time of night and assumed individual differences in "sensitivity to awakening," nominally SEL-based predictions of awakening rates remain of limited utility and are easily misapplied and misinterpreted. Probabilities of awakening are more closely related to SELs scaled in units of standard deviates of local distributions of aircraft SELs, than to absolute sound levels. Self-selection of residential populations for tolerance of nighttime noise and habituation to airport noise environments offer more parsimonious and useful explanations for differences in awakening rates at disparate airports than assumed individual differences in sensitivity to awakening.

  6. Transonic streamline of symmetric wing under the influence unilateral oscillations characterized by the spectrum of two frequencies

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2017-10-01

    Forced high-frequency vibrations of the airfoil surface part with the amplitude almost equal to the sound velocity can change significantly the lift force of the symmetric profile streamlined at zero angle of attack. The oscillation consists of two harmonics. The ratio of harmonics frequencies values is equal to 2. The present work shows that the aerodynamic properties depend significantly on the specific energy contribution of each frequency.

  7. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Kudo, Yuki; Hirose, Kei; Murakami, Motohiko; Asahara, Yuki; Ozawa, Haruka; Ohishi, Yasuo; Hirao, Naohisa

    2013-03-01

    The sound velocities of two aluminum-rich phases in the lower mantle, hexagonal new Al-rich phase (NAL) and its corresponding high-pressure polymorph orthorhombic Ca-ferrite-type phase (CF), were determined with the Brillouin scattering method in a pressure range from 9 to 73 GPa at room temperature. Both NAL and CF samples have identical chemical composition of Na0.4Mg0.6Al1.6Si0.4O4 (40 % NaAlSiO4-60 % MgAl2O4). Infrared laser annealing in the diamond anvil cell was performed to minimize the stress state of the sample and obtain the high-quality Brillouin spectra. The results show shear modulus at zero pressure G 0 = 121.960 ± 0.087 GPa and its pressure derivative G' = 1.961 ± 0.009 for the NAL phase, and G 0 = 129.653 ± 0.059 GPa and G' = 2.340 ± 0.004 for the CF phase. The zero-pressure shear velocities of the NAL and CF phases are obtained to be 5.601 ± 0.005 km/sec and 5.741 ± 0.001 km/sec, respectively. We also found that shear velocity increases by 2.5 % upon phase transition from NAL to CF at around 40 GPa.

  8. Modeling Count Outcomes from HIV Risk Reduction Interventions: A Comparison of Competing Statistical Models for Count Responses

    PubMed Central

    Xia, Yinglin; Morrison-Beedy, Dianne; Ma, Jingming; Feng, Changyong; Cross, Wendi; Tu, Xin

    2012-01-01

    Modeling count data from sexual behavioral outcomes involves many challenges, especially when the data exhibit a preponderance of zeros and overdispersion. In particular, the popular Poisson log-linear model is not appropriate for modeling such outcomes. Although alternatives exist for addressing both issues, they are not widely and effectively used in sex health research, especially in HIV prevention intervention and related studies. In this paper, we discuss how to analyze count outcomes distributed with excess of zeros and overdispersion and introduce appropriate model-fit indices for comparing the performance of competing models, using data from a real study on HIV prevention intervention. The in-depth look at these common issues arising from studies involving behavioral outcomes will promote sound statistical analyses and facilitate research in this and other related areas. PMID:22536496

  9. Noise from propellers with symmetrical sections at zero blade angle, II

    NASA Technical Reports Server (NTRS)

    Deming, A F

    1938-01-01

    In a previous paper (Technical Note No. 605), a theory was developed that required an empirical relation to calculate sound pressures for the higher harmonics. Further investigation indicated that the modified theory agrees with experiment and that the empirical relation was due to an interference phenomenon peculiar to the test arrangement used. Comparison is made between the test results for a two-blade arrangement and the theory. The comparison is made for sound pressures in the plane of the revolving blades for varying values of tip velocity. Comparison is also made at constant tip velocity for all values of azimuth angle B. A further check is made between the theory and the experimental results for the fundamental of a four-blade arrangement with blades of the same dimensions as those used in the two-blade arrangement.

  10. A Continued Study of Optical Sound Generation and Amplification

    DTIC Science & Technology

    1987-10-31

    compared to the output of a PVDF hydrophone as shown in Figure 1.2. Given the inaccuracies in beam size estimates, the agreement between theory and...on this curve which are separated by two regions of constant acoustic amplitude. The first extends from zero to 75 jiJ. The boiling point of CS2 is...the general shape of the experimental curves . Figure 1.5 shows the magnitude of the probe beam deflection versus time for propanol. Hutchins and Tam

  11. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  12. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    DTIC Science & Technology

    2015-07-30

    sides of the lower engine room still have sections of bare acoustic tile that require thermal insulation and Quad-Zero • Main Deck Noise Levels, Sally...for Sally Ride. ii. Working on NS5 Hierarchy 4. Operator Concerns: • Acoustic Tiles & MLV – No additional tiles have been removed this...reporting period. DCI has no plans to remove any more per USCG. No indication as to what sound treatment will be placed in the engine room bilge or on

  13. Final Environmental Impact Statement for the Kauai Acoustic Thermometry of Ocean Climate Project and Its Associated Marine Mammal Research Program: Vol 1

    DTIC Science & Technology

    1995-05-01

    at zero source level to allow time for any mobile marine animal who was annoyed by the sound to depart the affected area; and project facilities would...using conventional thermometers); autonomous polar hydrophones; and a dual site experiment using mobile playback experiments. Of the twelve alternatives...HYDROPHONES (ICE NOISE 2-43 MEASUREMENTS) (ALTERNATIVE 11) 2.2.12 DUAL SITE EXPERIMENT; ALTERNATIVE MMRP 2-44 TECHNIQUES -- MOBILE PLAYBACK EXPERIMENTS

  14. Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.

    NASA Technical Reports Server (NTRS)

    Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.

    1971-01-01

    Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.

  15. Axisymmetric electrostatic magnetohydrodynamic oscillations in tokamaks with general cross-sections and toroidal flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, M. S.; Guo, Wenfeng

    2016-06-15

    The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the “electrostatic continua.” Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solvedmore » analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic displacements. Based on the general notion that the geodesic component of the GAM is more effective in tearing up the eddies in the electrostatic turbulence, it is important to preferentially excite the GAMs that are non-sound-wave like to maximize the efficiency on turbulence suppression through external means. Finally, approximate formulae for the frequencies of the EMF, ZF, SW, and the GAM for a large aspect ratio circular tokamak rotating at low Mach numbers are also provided.« less

  16. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  17. Space-coiling metamaterials with double negativity and conical dispersion

    PubMed Central

    Liang, Zixian; Feng, Tianhua; Lok, Shukin; Liu, Fu; Ng, Kung Bo; Chan, Chi Hou; Wang, Jinjin; Han, Seunghoon; Lee, Sangyoon; Li, Jensen

    2013-01-01

    Metamaterials are effectively homogeneous materials that display extraordinary dispersion. Negative index metamaterials, zero index metamaterials and extremely anisotropic metamaterials are just a few examples. Instead of using locally resonating elements that may cause undesirable absorption, there are huge efforts to seek alternative routes to obtain these unusual properties. Here, we demonstrate an alternative approach for constructing metamaterials with extreme dispersion by simply coiling up space with curled channels. Such a geometric approach also has an advantage that the ratio between the wavelength and the lattice constant in achieving a negative or zero index can be changed in principle. It allows us to construct for the first time an acoustic metamaterial with conical dispersion, leading to a clear demonstration of negative refraction from an acoustic metamaterial with airborne sound. We also design and realize a double-negative metamaterial for microwaves under the same principle. PMID:23563489

  18. Acoustic impedance of micro perforated membranes: Velocity continuity condition at the perforation boundary.

    PubMed

    Li, Chenxi; Cazzolato, Ben; Zander, Anthony

    2016-01-01

    The classic analytical model for the sound absorption of micro perforated materials is well developed and is based on a boundary condition where the velocity of the material is assumed to be zero, which is accurate when the material vibration is negligible. This paper develops an analytical model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary condition such that the velocity of air particles on the hole wall boundary is equal to the membrane vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies with its position, is investigated. A prediction method for the overall impedance of the holes and the combined impedance of the MPM is also provided. The experimental results for four different MPM configurations are used to validate the model and good agreement between the experimental and predicted results is achieved.

  19. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  20. Low gravity synthesis of polymers with controlled molecular configuration

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.

    1975-01-01

    Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.

  1. Theory of Raman scattering in coupled electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  2. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  3. Instrumentation for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1975-01-01

    A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.

  4. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  5. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  6. Variations in respiratory sounds in relation to fluid accumulation in the upper airways.

    PubMed

    Yadollahi, Azadeh; Rudzicz, Frank; Montazeri, Aman; Bradley, T Douglas

    2013-01-01

    Obstructive sleep apnea (OSA) is a common disorder due to recurrent collapse of the upper airway (UA) during sleep that increases the risk for several cardiovascular diseases. Recently, we showed that nocturnal fluid accumulation in the neck can narrow the UA and predispose to OSA. Our goal is to develop non-invasive methods to study the pathogenesis of OSA and the factors that increase the risks of developing it. Respiratory sound analysis is a simple and non-invasive way to study variations in the properties of the UA. In this study we examine whether such analysis can be used to estimate the amount of neck fluid volume and whether fluid accumulation in the neck alters the properties of these sounds. Our acoustic features include estimates of formants, pitch, energy, duration, zero crossing rate, average power, Mel frequency power, Mel cepstral coefficients, skewness, and kurtosis across segments of sleep. Our results show that while all acoustic features vary significantly among subjects, only the variations in respiratory sound energy, power, duration, pitch, and formants varied significantly over time. Decreases in energy and power over time accompany increases in neck fluid volume which may indicate narrowing of UA and consequently an increased risk of OSA. Finally, simple discriminant analysis was used to estimate broad classes of neck fluid volume from acoustic features with an accuracy of 75%. These results suggest that acoustic analysis of respiratory sounds might be used to assess the role of fluid accumulation in the neck on the pathogenesis of OSA.

  7. Why noise-induced hearing loss of industrial workers is dramatic while that of similarly assessed musicians has been described as trivial

    NASA Astrophysics Data System (ADS)

    Bies, David

    2005-09-01

    Criteria for noise exposure considered acceptable for hearing protection are based upon industrial experience, yet these same criteria do not describe the experience of musicians. Investigation of the physics of the human ear reveals a basic design compromise that explains this anomaly. Acoustic stimulation is encoded in the velocity response of the basilar membrane, which makes possible the use of damping control to achieve the dynamic range of the ear. The use of damping control for this purpose without unacceptable distortions is possible if damping is slowly varying. The ear is free running and guided by previous instruction, making it vulnerable to loud impulsive sounds. To protect the ear the aural reflex is provided, but this protection is limited to frequencies below about 1 to 2 kHz. In the natural environment this design compromise is satisfactory, but in the industrial environment loud impulsive sounds are common and the compromise fails. It is to be noted that impulsive sounds of high frequency and level for which the ear has no defense, and which are not characteristic of music, are averaged to zero using standard assessment procedures.

  8. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    NASA Astrophysics Data System (ADS)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  9. Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Canuto, V.

    1975-01-01

    The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.

  10. Revisit of the relationship between the elastic properties and sound velocities at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenju; Yan, Xiaozhen; Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065

    2014-09-14

    The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find thatmore » the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.« less

  11. Communication: Analytic continuation of the virial series through the critical point using parametric approximants.

    PubMed

    Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  12. Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission

    NASA Astrophysics Data System (ADS)

    Bai, Weihua; Liu, Congliang; Meng, Xiangguang; Sun, Yueqiang; Kirchengast, Gottfried; Du, Qifei; Wang, Xianyi; Yang, Guanglin; Liao, Mi; Yang, Zhongdong; Zhao, Danyang; Xia, Junming; Cai, Yuerong; Liu, Lijun; Wang, Dongwei

    2018-02-01

    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou System (BDS) and the US Global Positioning System (GPS). An ultra-stable oscillator with 1 s stability (Allan deviation) at the level of 10-12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and four medium Earth orbit (MEO) satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013) for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation) of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 %) over the upper troposphere and lower stratosphere. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise. The validation results indicate that GNOS can provide, on top of GPS RO profiles, accurate and precise BDS RO profiles both from single- and zero-difference processing. The GNOS observations by the series of FY-3 satellites are thus expected to provide important contributions to numerical weather prediction and global climate change analysis.

  13. Measurement of Correlation Between Flow Density, Velocity, and Density*velocity(sup 2) with Far Field Noise in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.

    2002-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where correlation is related to the first, and correlation to the second source terms of Lighthill's equation. Three fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8 were studied for this purpose. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering. It was observed that along the jet centerline the density fluctuation spectra S(sub rho) have different shapes than the radial velocity spectra S(sub v), while data obtained from the peripheral shear layer show similarity between the two spectra. Density fluctuations in the jet showed significantly higher correlation, than either rhov(sub 2) or v fluctuations. It is found that a single point correlation from the peak sound emitting region at the end of the potential core can account for nearly 10% of all noise at 30 to the jet axis. The correlation, representing the effectiveness of a longitudinal quadrupole in generating noise 90 to the jet axis, is found to be zero within experimental uncertainty. In contrast rhov(exp 2) fluctuations were better correlated with sound pressure fluctuation at the 30 location. The strongest source of sound is found to lie at the centerline and beyond the end of potential core.

  14. Influence of Music on the Behaviors of Crowd in Urban Open Public Spaces

    PubMed Central

    Meng, Qi; Zhao, Tingting; Kang, Jian

    2018-01-01

    Sound environment plays an important role in urban open spaces, yet studies on the effects of perception of the sound environment on crowd behaviors have been limited. The aim of this study, therefore, is to explore how music, which is considered an important soundscape element, affects crowd behaviors in urban open spaces. On-site observations were performed at a 100 m × 70 m urban leisure square in Harbin, China. Typical music was used to study the effects of perception of the sound environment on crowd behaviors; then, these behaviors were classified into movement (passing by and walking around) and non-movement behaviors (sitting). The results show that the path of passing by in an urban leisure square with music was more centralized than without music. Without music, 8.3% of people passing by walked near the edge of the square, whereas with music, this percentage was zero. In terms of the speed of passing by behavior, no significant difference was observed with the presence or absence of background music. Regarding the effect of music on walking around behavior in the square, the mean area and perimeter when background music was played were smaller than without background music. The mean speed of those exhibiting walking around behavior with background music in the square was 0.296 m/s slower than when no background music was played. For those exhibiting sitting behavior, when background music was not present, crowd density showed no variation based on the distance from the sound source. When music was present, it was observed that as the distance from the sound source increased, crowd density of those sitting behavior decreased accordingly. PMID:29755390

  15. Influence of Music on the Behaviors of Crowd in Urban Open Public Spaces.

    PubMed

    Meng, Qi; Zhao, Tingting; Kang, Jian

    2018-01-01

    Sound environment plays an important role in urban open spaces, yet studies on the effects of perception of the sound environment on crowd behaviors have been limited. The aim of this study, therefore, is to explore how music, which is considered an important soundscape element, affects crowd behaviors in urban open spaces. On-site observations were performed at a 100 m × 70 m urban leisure square in Harbin, China. Typical music was used to study the effects of perception of the sound environment on crowd behaviors; then, these behaviors were classified into movement (passing by and walking around) and non-movement behaviors (sitting). The results show that the path of passing by in an urban leisure square with music was more centralized than without music. Without music, 8.3% of people passing by walked near the edge of the square, whereas with music, this percentage was zero. In terms of the speed of passing by behavior, no significant difference was observed with the presence or absence of background music. Regarding the effect of music on walking around behavior in the square, the mean area and perimeter when background music was played were smaller than without background music. The mean speed of those exhibiting walking around behavior with background music in the square was 0.296 m/s slower than when no background music was played. For those exhibiting sitting behavior, when background music was not present, crowd density showed no variation based on the distance from the sound source. When music was present, it was observed that as the distance from the sound source increased, crowd density of those sitting behavior decreased accordingly.

  16. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches

    NASA Astrophysics Data System (ADS)

    Qian, Zhenyun; Kang, Sungho; Rajaram, Vageeswar; Cassella, Cristian; McGruer, Nicol E.; Rinaldi, Matteo

    2017-10-01

    State-of-the-art sensors use active electronics to detect and discriminate light, sound, vibration and other signals. They consume power constantly, even when there is no relevant data to be detected, which limits their lifetime and results in high costs of deployment and maintenance for unattended sensor networks. Here we propose a device concept that fundamentally breaks this paradigm—the sensors remain dormant with near-zero power consumption until awakened by a specific physical signature associated with an event of interest. In particular, we demonstrate infrared digitizing sensors that consist of plasmonically enhanced micromechanical photoswitches (PMPs) that selectively harvest the impinging electromagnetic energy in design-defined spectral bands of interest, and use it to create mechanically a conducting channel between two electrical contacts, without the need for any additional power source. Our zero-power digitizing sensor prototypes produce a digitized output bit (that is, a large and sharp off-to-on state transition with an on/off conductance ratio >1012 and subthreshold slope >9 dec nW-1) when exposed to infrared radiation in a specific narrow spectral band (∼900 nm bandwidth in the mid-infrared) with the intensity above a power threshold of only ∼500 nW, which is not achievable with any existing photoswitch technologies.

  17. Removal of singularity in radial Langmuir probe models for non-zero ion temperature

    NASA Astrophysics Data System (ADS)

    Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo

    2017-10-01

    We solve a radial theoretical model that describes the ion sheath around a cylindrical Langmuir probe with finite non-zero ion temperature in which singularity in an a priori unknown point prevents direct integration. The singularity appears naturally in fluid models when the velocity of the ions reaches the local ion speed of sound. The solutions are smooth and continuous and are valid from the plasma to the probe with no need for asymptotic matching. The solutions that we present are valid for any value of the positive ion to electron temperature ratio and for any constant polytropic coefficient. The model is numerically solved to obtain the electric potential and the ion population density profiles for any given positive ion current collected by the probe. The ion-current to probe-voltage characteristic curves and the Sonin plot are calculated in order to use the results of the model in plasma diagnosis. The proposed methodology is adaptable to other geometries and in the presence of other presheath mechanisms.

  18. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Luo, Xudong; Zhao, Hui; Huang, Zhenyu

    2018-01-01

    We report the mechanism for simultaneous realization of acoustic perfect absorption (PA) and broadband insulation (BI) in the acoustic free field by a layered acoustic metamaterial (LAM). The proposed LAM comprises two critically coupled membrane-type acoustic metamaterials sandwiching a porous material layer. Both theoretical and experimental results verify that the proposed LAM sample can achieve nearly PA (98.4% in experiments) at 312 Hz with a thickness of 15 mm (1/73 of wavelength) and BI in the frequency range of 200-1000 Hz with an areal density of 2.2 kg/m2. In addition, the real parts of both the effective dynamic density and bulk modulus reach zero precisely at the critical frequency of 312 Hz, arising from the monopolar eigenmode of LAM. Our work advances the concept of synthetic design of sound absorption and insulation properties of multi-impedance-coupled acoustic systems and promotes membrane-type acoustic metamaterials to more practical engineering applications.

  19. Vibrations used to talk to quantum circuits

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-03-01

    The budding discipline of quantum acoustics could shake up embryonic quantum computers. Such machines run by flipping quantum bits, or qubits, that can be set not only to zero or one, but, bizarrely, to zero and one at the same time. The most advanced qubits are circuits made of superconducting metal, and to control or read out a qubit, researchers make it interact with a microwave resonator—typically a strip of metal on the qubit chip or a finger-size cavity surrounding it—which rings with microwave photons like an organ pipe rings with sound. But some physicists see advantages to replacing the microwave resonator with a mechanical one that rings with quantized vibrations, or phonons. A well-designed acoustic resonator could ring longer than a microwave one does and could be far smaller, enabling researchers to produce more compact technologies. But first scientists must gain quantum control over vibrations. And several groups are on the cusp of doing that, as they reported at a recent meeting.

  20. A lifting-surface theory solution for the diffraction of internal sound sources by an engine nacelle

    NASA Astrophysics Data System (ADS)

    Martinez, R.

    1986-07-01

    Lifting-surface theory is used to solve the problem of diffraction by a rigid open-ended pipe of zero thickness and finite length, with application to the prediction of acoustic insertion-loss performance for the encasing structure of a ducted propeller or turbofan. An axisymmetric situation is assumed, and the incident field due to a force applied directly to the fluid in the cylinder axial direction is used. A virtual-source distribution of unsteady dipoles is found whose integrated component of radial velocity is set to cancel that of the incident field over the surface. The calculated virtual load is verified by whether its effect on the near-field input power at the actual source is consistent with the far-field power radiated by the system, a balance which is possible if the no-flow-through boundary condition has been satisfied over the rigid pipe surface such that the velocity component of the acoustic intensity is zero.

  1. Acoustic Effects in Classical Nucleation Theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  2. Propagation of pulse pseudorandom signals from a shelf into shallow water in winter hydrological conditions of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Morgunov, Yu. N.; Burenin, A. V.; Besotvetnykh, V. V.; Golov, A. A.

    2017-11-01

    The paper discusses the results of an experiment conducted in the Sea of Japan in March 2016 on an acoustic track 194 km long under winter hydrological conditions. We have studied the most complex case of propagation of pulse pseudorandom signals from the shelf into shallow water during vortex generation on the acoustic track. Analysis of the experimentally obtained pulse characteristics have shown that the maximum first approach of acoustic energy recorded at all points agrees well with the calculation. This testifies to the fact that at a given reception depth, the first to arrive are pulses that have passed in the near-surface sound channel over the shortest distance and at small angles close to zero. We propose a technique for calculating the mean sound velocity on the track from satellite monitoring data on the surface temperature, which makes it possible to rely on the successful application of the results obtained in acoustic ranging and navigation problems.

  3. Features of the propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track

    NASA Astrophysics Data System (ADS)

    Akulichev, V. A.; Burenin, A. V.; Ladychenko, S. Yu.; Lobanov, V. B.; Morgunov, Yu. N.

    2017-08-01

    The paper discusses the results of an experiment conducted in the Sea of Japan in March 2016 on an acoustic track 194 km long in winter hydrological conditions. The most complex case of propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track. An analysis of the experimentally obtained pulse characteristics show that at all points, a maximum, in terms of amplitude, first arrival of acoustic energy is recorded. This is evidence that at a given depth horizon, pulses that have passed the shortest distance through a near-surface sound channel at small angles close to zero are received first. The calculation method of mean sound velocity on the track, based on the satellite data of surface temperature monitoring, is proposed. We expect that the results obtained with this method can be successfully used for the purposes of acoustic range finding and navigation.

  4. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    NASA Astrophysics Data System (ADS)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  5. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.

    PubMed

    Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu

    2014-05-01

    This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Impact of the Injection Protocol on an Impurity's Stationary State

    NASA Astrophysics Data System (ADS)

    Gamayun, Oleksandr; Lychkovskiy, Oleg; Burovski, Evgeni; Malcomson, Matthew; Cheianov, Vadim V.; Zvonarev, Mikhail B.

    2018-06-01

    We examine stationary-state properties of an impurity particle injected into a one-dimensional quantum gas. We show that the value of the impurity's end velocity lies between zero and the speed of sound in the gas and is determined by the injection protocol. This way, the impurity's constant motion is a dynamically emergent phenomenon whose description goes beyond accounting for the kinematic constraints of the Landau approach to superfluidity. We provide exact analytic results in the thermodynamic limit and perform finite-size numerical simulations to demonstrate that the predicted phenomena are within the reach of the ultracold gas experiments.

  7. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  8. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J.

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p=f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (“no-go” theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  9. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J., E-mail: john.kehayias@vanderbilt.edu, E-mail: robert.scherrer@vanderbilt.edu

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p = f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (''no-go'' theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  10. Magnetoacoustic Spectroscopy in Superfluid He3-B

    NASA Astrophysics Data System (ADS)

    Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.

    2008-01-01

    We have used the acoustic Faraday effect in superfluid He3 to perform high resolution spectroscopy of an excited state of the superfluid condensate, called the imaginary squashing mode. With acoustic cavity interferometry we measure the rotation of the plane of polarization of a transverse sound wave propagating in the direction of the magnetic field from which we determine the Zeeman energy of the mode. We interpret the Landé g factor, combined with the zero-field energies of this excited state, using the theory of Sauls and Serene, to calculate the strength of f-wave interactions in He3.

  11. Studies of Nonconventional Superfluids: Ultrasound Propagation in HELIUM-3-BORON and the Microwave Surface Impedance of the Heavy-Fermion Superconductor Uranium PLATINUM(3)

    NASA Astrophysics Data System (ADS)

    Zhao, Zuyu

    1990-06-01

    Two nonconventional superfluids, superfluid ^3He-B and the heavy fermion superconductor UPt_3 have been studied using different techniques: (1) A study of ^3He -B was performed in an acoustic sound cell with a path length of 381mum using the single-ended, c.w., acoustic impedance technique. The fundamental frequency of the x-cut quartz transducer employed in the experiments was 12.80 MHz. The following studies were performed: (a) A systematic measurement was made on the pair-breaking edge in zero magnetic field with ultrasonic frequencies of 64.3 MHz, 90.1 MHz, 141.6 MHz and 167.4 MHz, in the pressure range from 3 bar to 28 bar. The results of our measurements indirectly support the temperature scale of Greywall and the weak coupling plus (WCP) model of Rainer and Serene for the gap function. The pair-breaking edge was also measured in magnetic fields up to 1.36 kG perpendicular to the sound propagation direction and the predicted shift of the effective pair-breaking threshold (from 2 Delta(T) in zero field) by Omega = {gamma Hover 1+{1 over3}F_sp{o}{a}(2+Y) }(the renormalized Larmor frequency) has been observed. (b) The (imaginary) squashing mode was excited with sound frequencies of 141.6 MHz and 115.8 MHz. A doublet splitting (of about 0.3 MHz) of this mode was observed. This doublet splitting was found to be strongly pressure and frequency dependent, but independent of the magnetic field (at the low fields studied). Possible causes of this splitting include superfluid flow induced texture effects and finite wavevector (dispersion) effects. (c) Structure was observed with a sound frequency of 64.3 MHz in the vicinity of 2Delta(T) in a magnetic field of about 580 Gauss which is thought to be J_{z} = -1 component of the J = 1^- collective mode. (2) A surface impedance study of heavy Fermion superconductor UPt_3 was performed with an X-band microwave spectrometer (f ~eq 11.42 GHz) integrated with an Oxford 400 TLE dilution refrigerator so as to have top-loading capability. (3) Using a top loading magnetometer, measurements of the H_{cl} on UPt_3 were performed and kinks were observed along the c axis and in the basal plane. The results support a model of unconventional superconductivity by Hess, Tokuyasu and Sauls.

  12. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Churazov, Eugene

    2017-07-01

    We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.

  13. Turbulence Scales, Rise Times, Caustics, and the Simulation of Sonic Boom Propagation

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.

    1996-01-01

    The general topic of atmospheric turbulence effects on sonic boom propagation is addressed with especial emphasis on taking proper and efficient account of the contributions of the portion oi the turbulence that is associated with extremely high wavenumber components. The recent work reported by Bart Lipkens in his doctoral thesis is reexamined to determine whether the good agreement between his measured rise times with the 1971 theory of the author is fortuitous. It is argued that Lipken's estimate of the distance to the first caustic was a gross overestimate because of the use of a sound speed correlation function shaped like a gaussian curve. In particular, it is argued that the expected distance to the first caustic varies with the kinematic viscosity nu and the energy epsilon dissipated per unit mass per unit time, and the sound speed c as : d(sub first caustic) = nu(exp 7/12) c(exp 2/3)/ epsilon(exp 5/12)(nu x epsilon/c(exp 4))(exp a), where the exponent a is greater than -7/12 and can be argued to be either O or 1/24. In any event, the surprising aspect of the relationship is that it actually goes to zero as the viscosity goes to zero with s held constant. It is argued that the apparent overabundance of caustics can be grossly reduced by a general computational and analytical perspective that partitions the turbulence into two parts, divided by a wavenumber k(sub c). Wavenumbers higher than kc correspond to small-scale turbulence, and the associated turbulence can be taken into account by a renormalization of the ambient sound speed so that the result has a small frequency dependence that results from a spatial averaging over of the smaller-scale turbulent fluctuations. Selection of k(sub c). can be made so large that only a very small number of caustics are encountered if one adopts the premise that the frequency dispersion of pulses is caused by that part of the turbulence spectrum which lies in the inertial range originally predicted by Kolmogoroff. The acoustic propagating wave's dispersion relation has the acoustic wavenumber being of the form k = (omega/c) + F(omega), where c is a spatially averaged sound speed and where, for mechanical turbulence, the extra term F(omega) must depend on only the angular frequency omega, the sound speed c, and the turbulent energy dissipation epsilon per unit fluid mass and per unit time. If the turbulence is weak, then the quantity F(omega) has to be of second order in the portions of the turbulent fluid velocity in the inertial range, so, following Kolmogoroff's reasoning, it must vary with epsilon as epsilon(exp 2/3). Simple dimensional analysis then reveals that F(omega) is K epsilon(exp 2/3) c(exp -7/3) omega(exp l/3), K being a universal dimensionless complex constant.

  14. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  15. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  16. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to themore » atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.« less

  17. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurich, R.; Lustig, S., E-mail: ralf.aurich@uni-ulm.de, E-mail: sven.lustig@uni-ulm.de

    Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenologicalmore » UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c{sub eff} of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied.« less

  19. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  20. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  1. The influence of cross-order terms in interface mobilities for structure-borne sound source characterization

    NASA Astrophysics Data System (ADS)

    Bonhoff, H. A.; Petersson, B. A. T.

    2010-08-01

    For the characterization of structure-borne sound sources with multi-point or continuous interfaces, substantial simplifications and physical insight can be obtained by incorporating the concept of interface mobilities. The applicability of interface mobilities, however, relies upon the admissibility of neglecting the so-called cross-order terms. Hence, the objective of the present paper is to clarify the importance and significance of cross-order terms for the characterization of vibrational sources. From previous studies, four conditions have been identified for which the cross-order terms can become more influential. Such are non-circular interface geometries, structures with distinctively differing transfer paths as well as a suppression of the zero-order motion and cases where the contact forces are either in phase or out of phase. In a theoretical study, the former four conditions are investigated regarding the frequency range and magnitude of a possible strengthening of the cross-order terms. For an experimental analysis, two source-receiver installations are selected, suitably designed to obtain strong cross-order terms. The transmitted power and the source descriptors are predicted by the approximations of the interface mobility approach and compared with the complete calculations. Neglecting the cross-order terms can result in large misinterpretations at certain frequencies. On average, however, the cross-order terms are found to be insignificant and can be neglected with good approximation. The general applicability of interface mobilities for structure-borne sound source characterization and the description of the transmission process thereby is confirmed.

  2. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Liang, Shanjun; Chen, Fei; Zhu, Jie

    2018-03-01

    Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the optical "trapped rainbow," which allows spatial-spectral modulation and broadband trapping of sound. It can be realized with metamaterials that provide the required strong dispersion absent in natural materials. However, as the group velocity cannot be reduced to exactly zero before the forward mode being coupled to the backward mode, such trapping is temporary and the local sound oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface structured with gradient perforation along the wave propagation direction, in which the inherent thermal and viscous losses inside the holes are considered. We show that the gradually diminished group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasurface becomes anomalous at the trapping position, induced by the existence of the inherent losses, which implies that the system's absorption reaches its maximum. Together with the progressively increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a lossy metasurface and may contribute to the practical design of acoustic devices for high performance sensing and filtering.

  3. Gravitational baryogenesis in running vacuum models

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Pan, Supriya; Nunes, Rafael C.

    2017-08-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless of whether these models can produce a viable cosmological evolution, we demonstrate that they produce a nonzero baryon-to-entropy ratio even if the universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two well known and most used running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data. Moreover, we also show that the mechanism of gravitational baryogenesis may constrain the running vacuum models.

  4. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  5. A new phase of disordered phonons modelled by random matrices

    NASA Astrophysics Data System (ADS)

    Schmittner, Sebastian; Zirnbauer, Martin

    2015-03-01

    Starting from the clean harmonic crystal and not invoking two-level systems, we propose a model for phonons in a disordered solid. In this model the strength of mass and spring constant disorder can be increased separately. Both types of disorder are modelled by random matrices that couple the degrees of freedom locally. Treated in coherent potential approximation (CPA), the speed of sound decreases with increasing disorder until it reaches zero at finite disorder strength. There, a critical transition to a strong disorder phase occurs. In this novel phase, we find the density of states at zero energy in three dimensions to be finite, leading to a linear temperature dependence of the heat capacity, as observed experimentally for vitreous systems. For any disorder strength, our model is stable, i.e. masses and spring constants are positive, and there are no runaway dynamics. This is ensured by using appropriate probability distributions, inspired by Wishart ensembles, for the random matrices. The CPA self-consistency equations are derived in a very accessible way using planar diagrams. The talk focuses on the model and the results. The first author acknowledges financial support by the Deutsche Telekom Stiftung.

  6. Embedded class solutions compatible for physical compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Tewari, Neeraj; Aria, Anil K.

    2018-05-01

    We have explored a family of new solutions satisfying Einstein's field equations and Karmarkar condition. We have assumed an anisotropic stress-tensor with no net electric charge. Interestingly, the new solutions yield zero values of all the physical quantities for all even integer n > 0. However, for all n >0 (n ≠ even numbers) they yield physically possible solutions. We have tuned the solution for neutron star Vela X-1 so that the solutions matches the observed mass and radius. For the same star we have extensively discussed the behavior of the solutions. The solutions yield a stiffer equation of state for larger values of n since the adiabatic index increases and speed of sound approaches the speed of light. It is also found that the solution is physically possible for Vela X-1 if 1.8 ≤ n < 7 (with n≠ 2,4,6). All the solutions for n ≥ 7 violates the causality condition and all the solutions with 0 < n < 1.8 lead to complex values of transverse sound speed vt. The range of well-behaved n depends on the mass and radius of compact stars.

  7. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  8. Visual feedback for retuning to just intonation intervals

    NASA Astrophysics Data System (ADS)

    Ayers, R. Dean; Nordquist, Peter R.; Corn, Justin S.

    2005-04-01

    Musicians become used to equal temperament pitch intervals due to their widespread use in tuning pianos and other fixed-pitch instruments. For unaccompanied singing and some other performance situations, a more harmonious blending of sounds can be achieved by shifting to just intonation intervals. Lissajous figures provide immediate and striking visual feedback that emphasizes the frequency ratios and pitch intervals found among the first few members of a single harmonic series. Spirograph patterns (hypotrochoids) are also especially simple for ratios of small whole numbers, and their use for providing feedback to singers has been suggested previously [G. W. Barton, Jr., Am. J. Phys. 44(6), 593-594 (1976)]. A hybrid mixture of these methods for comparing two frequencies generates what appears to be a three dimensional Lissajous figure-a cylindrical wire mesh that rotates about its tilted vertical axis, with zero tilt yielding the familiar Lissajous figure. Sine wave inputs work best, but the sounds of flute, recorder, whistling, and a sung ``oo'' are good enough approximations to work well. This initial study compares the three modes of presentation in terms of the ease with which a singer can obtain a desired pattern and recognize its shape.

  9. Nonlinear resonances and antiresonances of a forced sonic vacuum

    DOE PAGES

    Pozharskiy, D.; Zhang, Y.; Williams, M. O.; ...

    2015-12-23

    We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude- and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force (“antiresonances”) between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., ofmore » period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) “nonlinear spectrum” in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). As a result, we rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves.« less

  10. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices

    NASA Technical Reports Server (NTRS)

    Hersch, A. S.; Walker, B.

    1979-01-01

    A semiempirical fluid mechanical model is derived for the acoustic behavior of thin-walled single orifice Helmholtz resonators in a grazing flow environment. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two-microphone method. Measurements show that at high grazing flow speeds, acoustical resistance is almost linearly proportional to the grazing flow speed and almost independent of incident sound pressure. The corresponding values of reactance are much smaller and tend towards zero. For thicker-walled orifice plates, resistance and reactance were observed to be less sensitive to grazing flow as the ratio of plate thickness to orifice diameter increased. Loud tones were observed to radiate from a single orifice Helmholtz resonator due to interaction between the grazing flow shear layer and the resonator cavity. Measurements showed that the tones radiated at a Strouhal number equal to 0.26. The effects of grazing flow on the impedance of Helmholtz resonators consisting of clusters of orifices was also studied. In general, both resistance and reaction were found to be virtually independent of orifice relative spacing and number. These findings are valid with and without grazing flow.

  11. Aeroacoustic Analysis of Turbofan Noise Generation

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.; Envia, Edmane

    1996-01-01

    This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.

  12. Modal radiation patterns of baffled circular plates and membranes.

    PubMed

    Christiansen, Thomas Lehrmann; Hansen, Ole; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2014-05-01

    The far field velocity potential and radiation pattern of baffled circular plates and membranes are found analytically using the full set of modal velocity profiles derived from the corresponding equation of motion. The derivation is valid for a plate or membrane subjected to an external excitation force, which is used as a sound receiver in any medium or as a sound transmitter in a gaseous medium. A general, concise expression is given for the radiation pattern of any mode of the membrane and the plate with arbitrary boundary conditions. Specific solutions are given for the four special cases of a plate with clamped, simply supported, and free edge boundary conditions as well as for the membrane. For all non-axisymmetric modes, the velocity potential along the axis of the radiator is found to be strictly zero. In the long wavelength limit, the radiation pattern of all axisymmetric modes approaches that of a monopole, while the non-axisymmetric modes exhibit multipole behavior. Numerical results are also given, demonstrating the implications of having non-axisymmetric excitation using both a point excitation with varying eccentricity and a homogeneous excitation acting on half of the circular radiator.

  13. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.

    PubMed

    Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fatigue behavior of 5Ni-Cr-Mo-V steel weldments containing fabrication discontinuities

    NASA Technical Reports Server (NTRS)

    Gill, Steven J.; Hauser, Joseph A., II; Crooker, Thomas W.; Kruse, Brian J.; Menon, Ravi

    1988-01-01

    The applicability of linear elastic fracture mechanics to characterize the fatigue behavior of high-strength steel weldments containing lack-of-penetration (LOP) and slag/lack-of-fusion (S/LOF) discontinuities is explored. Full penetration, double-V butt welds with reinforcements removed were tested under zero-to-tension axial loading. Various filler metals and welding techniques were used. Both sound welds and welds containing discontinuities were cycled to failure. Where possible, cycles to crack initiation were estimated by strain gage measurements. The fracture mechanics approach was successful in correlating the fatigue lifetimes of specimens containing single LOP discontinuities of varying size. However, the fatigue behavior of specimens containing multiple S/LOF discontinuities proved to be much more complex and difficult to analyze.

  15. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  16. Gravitational effects on electrochemical batteries

    NASA Technical Reports Server (NTRS)

    Meredith, R. E.; Juvinall, G. L.; Uchiyama, A. A.

    1972-01-01

    The existing work on gravitational effects on electrochemical batteries is summarized, certain conclusions are drawn, and recommendations are made for future activities in this field. The effects of sustained high-G environments on cycle silver-zinc and nickel-cadmium cells have been evaluated over four complete cycles in the region of 10 to 75 G. Although no effects on high current discharge performances or on ampere-hour capacity were noted, severe zinc migration and sloughing of active material from the zinc electrode were observed. This latter effect constitutes real damage, and over a long period of time would result in loss of capacity. It is recommended that a zero-G battery experiment be implemented. Both an orbiting satellite and a sounding rocket approach are being considered.

  17. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    PubMed

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  18. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    NASA Technical Reports Server (NTRS)

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  19. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-11-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  20. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2016-11-28

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  1. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    PubMed Central

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-01-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite. PMID:27892452

  2. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  3. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-06-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  4. Fabrication of FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Fleming, Brian; Kaiser, Mary Elizabeth; Kruk, Jeffrey; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Goodwin, Phillip A.; Rapchun, David; Lyness, Eric; Brown, Ari D.; Moseley, Harvey; Siegmund, Oswald; Vallerga, John

    2010-07-01

    The Johns Hopkins University sounding rocket group is building the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS), which is a Gregorian telescope with rulings on the secondary mirror. FORTIS will be launched on a sounding rocket from White Sand Missile Range to study the relationship between Lyman alpha escape and the local gas-to-dust ratio in star forming galaxies with non-zero redshifts. It is designed to acquire images of a 30' x 30' field and provide fully redundant "on-the-fly" spectral acquisition of 43 separate targets in the field with a bandpass of 900 - 1800 Angstroms. FORTIS is an enabling scientific and technical activity for future cutting edge far- and near-uv survey missions seeking to: search for Lyman continuum radiation leaking from star forming galaxies, determine the epoch of He II reionization and characterize baryon acoustic oscillations using the Lyman forest. In addition to the high efficiency "two bounce" dual-order spectro-telescope design, FORTIS incorporates a number of innovative technologies including: an image dissecting microshutter array developed by GSFC; a large area (~ 45 mm x 170 mm) microchannel plate detector with central imaging and "outrigger" spectral channels provided by Sensor Sciences; and an autonomous targeting microprocessor incorporating commercially available field programable gate arrays. We discuss progress to date in developing our pathfinder instrument.

  5. Evaluation of small arms noise in a natural soundscape-Bear Butte, SD

    NASA Astrophysics Data System (ADS)

    Braslau, David

    2005-09-01

    Most studies on soundscape intrusion have been limited to moving sources. Of less concern is noise from small arms. Potential impact was predicted from a proposed large small arms facility with 10000 rounds or more per day on the natural soundscape at Bear Butte, one of the most sacred sites of the Northern Cheyenne and other tribes. The primary impacted activity is meditation and oneness with the natural environment that can continue for several days through day and night. Non-natural sources included limited vehicles on a nearby highway and farm equipment, but few aircraft. Second-by-second ambient octave band readings were taken at 20 sites starting before sunrise. The minimum ambient level observed was 19.6 dBA but limits were encountered with a 1/2 in. microphone. Sound level data on small arms were projected from the proposed range four miles north of Bear Butte to elevated points on the Butte assuming a zero wind environment. Impact was evaluated using audibility, intrusiveness and impulse-weighted DNL. Projected levels were well above ambient. While the DNL was projected to increase by 15 dBA, this metric has little meaning for this type of activity. Assumptions related to outdoor sound propagation, audibility and impulsive noise perception are discussed.

  6. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  7. Focussing on recycling attitudes of engineering students at UiTM Shah Alam - towards zero discharge

    NASA Astrophysics Data System (ADS)

    Sharifah, A. S. A. K.; Khamaruddin, P. F. M.; Mohamad, N. N.; Saharuddin, M. Q.

    2018-03-01

    The generation of municipal solid waste (MSW) in Malaysia over the past 10 years has increased by 95 percent due to rapid development in the urban areas. 16.76 million tonne of waste is expected to be generated by Malaysian in the year 2020. Presently, there are about 70 percent of waste produced reported to be collected and 95 percent of it are disposed in landfills with only 5 percent left are being recycled. A 40 percent reduction of waste disposed to landfill by year 2020, through recycling and intermediate treatments such as waste to energy, composting and material recovery is very much needed as opening new landfills are not socially attractive. It clearly shows the awareness in reducing waste through recycling is still at infancy among Malaysians. Hence, a proper solid waste management should be enhanced through education among youngsters to ensure an integrated solid waste management towards zero discharge is achievable. The purpose of the research is two-fold. Firstly, to determine the recycling practices awareness among engineering students through manual and on-line survey. Secondly, a study on the effectiveness of recycling bins at the engineering students’ centre. The data collected were analyzed using statistical analysis. Results show that there is significant relationship (p<0.05) between gender and knowledge on recycling using Chi square test. However, there is an insignificant relationship (p>0.05) between knowledge and awareness of students towards recycling using partial correlation. Nevertheless, it is important to note that recycling practices through the provision of well-designed recycling bins and continuous education will ensure a sound society upholding a Zero Discharge attitude in the future.

  8. Vertical head and pelvic movement symmetry at the trot in dogs with induced supporting limb lameness.

    PubMed

    Gómez Álvarez, C B; Gustås, P; Bergh, A; Rhodin, M

    2017-11-01

    Compensatory limb loading has been studied in lame dogs; however, little is known about how these compensations relate to motion of the head and pelvis, assessment of which is an important component of lameness examinations. The aim of this study was to describe the patterns of vertical head and pelvic motion symmetry at the trot in dogs with induced supporting limb lameness in the forelimbs or hind limbs. Ten sound dogs were trotted on a treadmill before and after temporary induction of moderate lameness (grade 2/5) in each limb. Reflective markers were located on the head, pelvis and right forelimb, and kinematic data were captured with a motion capture system. Upper body symmetry parameters were calculated, including differences in the highest (HDmax) and in the lowest (HDmin) positions of the head, and in the highest (PDmax) and in the lowest (PDmin) positions of the mid-pelvis, with a value of zero indicating symmetry. The head was lowered more during the sound limb stance phase and lowered less during the lame limb stance phase in supporting forelimb lameness (HDmin: 4.6mm in dogs when sound, -18.3mm when left limb lameness was induced and 20.5mm when right limb lameness was induced). The mid-pelvis was lowered more during the sound limb stance phase and lowered and lifted less during the lame limb stance phase in supporting hind limb lameness (PDmin: 1mm in dogs when sound, -10.1mm in left limb lameness and 8.4mm in right limb lameness). The hip of the lame side, measured at the level of the greater trochanter, had an increased downwards displacement during the lame limb swing phase (-21mm in left hind limb lameness, P=0.005; 23.4mm in right hind limb lameness, P=0.007). Asymmetry in the lowering of the head or mid-pelvis is a more sensitive indicator of supporting forelimb and hind limb lameness, respectively, than asymmetry in the raising of the head. Increased displacement of the hip ('hip drop' of the lame side during its swing phase) is a good indicator of hind limb lameness in dogs. Copyright © 2017. Published by Elsevier Ltd.

  9. On a two-dimensional mode-matching technique for sound generation and transmission in axial-flow outlet guide vanes

    NASA Astrophysics Data System (ADS)

    Bouley, Simon; François, Benjamin; Roger, Michel; Posson, Hélène; Moreau, Stéphane

    2017-09-01

    The present work deals with the analytical modeling of two aspects of outlet guide vane aeroacoustics in axial-flow fan and compressor rotor-stator stages. The first addressed mechanism is the downstream transmission of rotor noise through the outlet guide vanes, the second one is the sound generation by the impingement of the rotor wakes on the vanes. The elementary prescribed excitation of the stator is an acoustic wave in the first case and a hydrodynamic gust in the second case. The solution for the response of the stator is derived using the same unified approach in both cases, within the scope of a linearized and compressible inviscid theory. It is provided by a mode-matching technique: modal expressions are written in the various sub-domains upstream and downstream of the stator as well as inside the inter-vane channels, and matched according to the conservation laws of fluid dynamics. This quite simple approach is uniformly valid in the whole range of subsonic Mach numbers and frequencies. It is presented for a two-dimensional rectilinear-cascade of zero-staggered flat-plate vanes and completed by the implementation of a Kutta condition. It is then validated in sound generation and transmission test cases by comparing with a previously reported model based on the Wiener-Hopf technique and with reference numerical simulations. Finally it is used to analyze the tonal rotor-stator interaction noise in a typical low-speed fan architecture. The interest of the mode-matching technique is that it could be easily transposed to a three-dimensional annular cascade in cylindrical coordinates in a future work. This makes it an attractive alternative to the classical strip-theory approach.

  10. Towards a unifying basis of auditory thresholds: binaural summation.

    PubMed

    Heil, Peter

    2014-04-01

    Absolute auditory threshold decreases with increasing sound duration, a phenomenon explainable by the assumptions that the sound evokes neural events whose probabilities of occurrence are proportional to the sound's amplitude raised to an exponent of about 3 and that a constant number of events are required for threshold (Heil and Neubauer, Proc Natl Acad Sci USA 100:6151-6156, 2003). Based on this probabilistic model and on the assumption of perfect binaural summation, an equation is derived here that provides an explicit expression of the binaural threshold as a function of the two monaural thresholds, irrespective of whether they are equal or unequal, and of the exponent in the model. For exponents >0, the predicted binaural advantage is largest when the two monaural thresholds are equal and decreases towards zero as the monaural threshold difference increases. This equation is tested and the exponent derived by comparing binaural thresholds with those predicted on the basis of the two monaural thresholds for different values of the exponent. The thresholds, measured in a large sample of human subjects with equal and unequal monaural thresholds and for stimuli with different temporal envelopes, are compatible only with an exponent close to 3. An exponent of 3 predicts a binaural advantage of 2 dB when the two ears are equally sensitive. Thus, listening with two (equally sensitive) ears rather than one has the same effect on absolute threshold as doubling duration. The data suggest that perfect binaural summation occurs at threshold and that peripheral neural signals are governed by an exponent close to 3. They might also shed new light on mechanisms underlying binaural summation of loudness.

  11. Quantitative calcaneal ultrasound parameters and bone mineral density at final height in girls treated with depot gonadotrophin-releasing hormone agonist for central precocious puberty or idiopathic short stature.

    PubMed

    Kapteijns-van Kordelaar, Simone; Noordam, Kees; Otten, Barto; van den Bergh, Joop

    2003-11-01

    To evaluate the effect of gonadotrophin-releasing hormone (GnRH) agonist treatment on bone quality at final height, we studied girls with central precocious puberty (CPP) and with idiopathic short stature (ISS). A total of 25 Caucasian girls were included: group A (n=14) with idiopathic CPP (mean age at start 7.4 years) and group B (n=11) with ISS (mean age at start 11.7 years). Treatment duration was 3.8 and 1.7 years respectively. The quantitative ultrasound parameters (QUS) broadband ultrasound attenuation (BUA) and speed of sound (SOS) were measured at the calcaneus (UBIS 3000 device). Lumbar spine bone mineral density (BMD; L2-L4) was measured by dual energy X-ray absorptiometry (DXA) (Hologic QDR1000). Measurements were performed at final height and expressed as Z-scores corrected for bone age. Mean Z-scores of QUS parameters, areal BMD and volumetric BMD (BMDvol) were above -1 in both groups (group A: BUA Z-score -0.21, SOS Z-score -0.29, BMD Z-score 0.02, BMDvol Z-score 0.05, group B: BUA Z-score -0.93, SOS Z-score -0.40, BMD Z-score -0.86, BMDvol Z-score -0.68), although mean Z-scores of BUA and areal BMD in group B were significantly different from zero (P=0.03 and P=0.02 respectively). Mean Z-score BMDvol was not significantly different from zero (P=0.05), we found no significant difference between the groups for BMDvol (P=0.13). Although quantitative ultrasound parameters parameters and bone mineral density were normal in girls with central precocious puberty at final height after gonadotrophin-releasing hormone agonist treatment, mean Z-score for broadband ultrasound attenuation and areal bone mineral density were significantly different from zero and mean Z-score for volumetric bone mineral density was (just) not significantly different from zero in idiopathic short stature girls with normal puberty treated with gonadotrophin-releasing hormone agonists. Therefore we cannot say that this treatment is safe in these girls with regard to bone health.

  12. Impact on a Compressible Fluid

    NASA Technical Reports Server (NTRS)

    Egorov, L. T.

    1958-01-01

    Upon impact of a solid body on the plane surface of a fluid, there occurs on the vetted surface of the body an abrupt pressure rise which propagates into both media with the speed of sound. Below, we assume the case where the speed of propagation of sound in the body which falls on the surface of the fluid may be regarded as infinitely large in comparison with the speed of propagation of sound in the fluid; that is, we shall assume that the falling body is absolutely rigid. IN this case, the entire relative speed of the motion which takes place at the beginning of the impact is absorbed by the fluid. The hydrodynamic pressures arising thereby are propagated from the contact surface within the fluid with the speed of sound in the form of compression and expansion waves and are gradually damped. After this, they are dispersed like impact pressures, reach ever larger regions of the fluid remote fran the body and became equal to zero; in the fluid there remain hydrodynamic pressures corresponding to the motion of the body after the impact. Neglecting the forces of viscosity and taking into account, furthermore, that the motion of the fluid begins from a state of rest, according to Thomson's theorem, we may consider the motion of an ideal compressible fluid in the process of impact to be potential. We examine the case of impact upon the surface of a ccmpressible fluid of a flat plate of infinite extent or of a body, the immersed part of the surface of which may be called approximately flat. In this report we discuss the first phase of the impact pressure on the surface of a fluid, prior to the appearance of a cavity, since at this stage the hydrodynamic pressures reach their maximum values. Observations, after the fall of the bodies on the surface of the fluid, show that the free surface of the fluid at this stage is almost completely at rest if one does not take into account the small rise in the neighborhood of the boundaries of the impact surface.

  13. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus

    PubMed Central

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-01-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation frequency are (95% CI) 11.6% (10.0–13.1) for PL units, 9.8% (8.2–11.5) for CT units, and 10.8% (8.4–13.2) for CS units. The most sensitive guinea-pig VCN single unit AM detection thresholds are similar to human psychophysical performance (∼3% AM), while the mean neurometric thresholds approach whole animal behavioural performance (∼10% AM). PMID:23629508

  14. Use of complex frequency plane to design broadband and sub-wavelength absorbers.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V

    2016-06-01

    The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.

  15. Electrical structure in two thunderstorm anvil clouds

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.

    1989-01-01

    Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.

  16. Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Del Genio, Anthony D.; Zhou, Wei

    1994-01-01

    The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.

  17. Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, O.

    2015-04-01

    We study the dynamics of a mobile impurity in a quantum fluid at zero temperature. Two related settings are considered. In the first setting, the impurity is injected in the fluid with some initial velocity v0, and we are interested in its velocity at infinite time, v∞. We derive a rigorous upper bound on | v0-v∞| for initial velocities smaller than the generalized critical velocity. In the limit of vanishing impurity-fluid coupling, this bound amounts to v∞=v0 , which can be regarded as a rigorous proof of the Landau criterion of superfluidity. In the case of a finite coupling, the velocity of the impurity can drop, but not to zero; the bound quantifies the maximal possible drop. In the second setting, a small constant force is exerted upon the impurity. We argue that two distinct dynamical regimes exist—backscattering oscillations of the impurity velocity and saturation of the velocity without oscillations. For fluids with vc L=vs (where vc L and vs are the Landau critical velocity and sound velocity, respectively), the latter regime is realized. For fluids with vc L

  18. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  19. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  20. On the cosmology of scalar-tensor-vector gravity theory

    NASA Astrophysics Data System (ADS)

    Jamali, Sara; Roshan, Mahmood; Amendola, Luca

    2018-01-01

    We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.

  1. Progress and challenges associated with halal authentication of consumer packaged goods.

    PubMed

    Premanandh, Jagadeesan; Bin Salem, Samara

    2017-11-01

    Abusive business practices are increasingly evident in consumer packaged goods. Although consumers have the right to protect themselves against such practices, rapid urbanization and industrialization result in greater distances between producers and consumers, raising serious concerns on the supply chain. The operational complexities surrounding halal authentication pose serious challenges on the integrity of consumer packaged goods. This article attempts to address the progress and challenges associated with halal authentication. Advancement and concerns on the application of new, rapid analytical methods for halal authentication are discussed. The significance of zero tolerance policy in consumer packaged foods and its impact on analytical testing are presented. The role of halal assurance systems and their challenges are also considered. In conclusion, consensus on the establishment of one standard approach coupled with a sound traceability system and constant monitoring would certainly improve and ensure halalness of consumer packaged goods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav

    2018-02-01

    Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

  3. Macroscopic Relationships among Latent Heating, Precipitation, Organized Convection and the Environment

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitchell W.; Liu, Changhai

    2002-01-01

    Three-dimensional Cloud Resolving Model (CRM) simulations were conducted to examine the squall line observed on 26 January, 1999 from the Tropical Rainfall Measuring Mission Large Scale Biosphere Atmosphere Experiment in Amazonia (TRMM-LBA) field campaign. The computational domain was 600 kilometers x 180 kilometers x 20 kilometers with a horizontal resolution of 1 kilometer and a vertical resolution of 200 meters. The CRM was initialized from the Abracos Hill and Rebio soundings. Convection was initiated by a surface-based and NW-SE oriented cold pool over a region 60 kilometers in the y-direction and 30 kilometers wide in the x-direction. The cold pool temperature perturbation is a maximum of -6K at the surface, decreasing linearly to zero at 3 kilometers. The simulated convection is in the form of a NW-SE band that moves toward the southwest at a speed of 8 meters per second, and is generally comparable to radar observations.

  4. Experimental and simulation studies on the effect of suction opening orientation on solar vertical chimney

    NASA Astrophysics Data System (ADS)

    Kumar, L. Madan Ananda; Sivaramakrishnan, V.; Premalatha, M.; Vivekanandan, M.

    2017-07-01

    The zero energy building considered is a single storey building in Tiruchirappalli city retrofitted with various green features. This study investigated the effect of a suction opening orientation on a vertical solar chimney (VSC), integrated into a one-storey building. It was designed, manufactured and tested through selection of different suction openings for the entry of air, including right, left, front, back, both right and left and both front and back sides. Genetic algorithm (GA) calculates maximum air flow rate for a building with VSC for better suction opening, in Tiruchirappalli's dry, environmental conditions. GA is a useful technique for finding an improved suction opening specifically in the presence of a host of independent parameters which are large. The obtained results are related to fluid flow temperature distribution along the chimney, mass flow rate and air change per hour. The findings between the GA and the experimental results show sound agreement.

  5. Transmission and reflection of strongly nonlinear solitary waves at granular interfaces.

    PubMed

    Tichler, A M; Gómez, L R; Upadhyaya, N; Campman, X; Nesterenko, V F; Vitelli, V

    2013-07-26

    The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell's law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.

  6. Transmission and Reflection of Strongly Nonlinear Solitary Waves at Granular Interfaces

    NASA Astrophysics Data System (ADS)

    Tichler, A. M.; Gómez, L. R.; Upadhyaya, N.; Campman, X.; Nesterenko, V. F.; Vitelli, V.

    2013-07-01

    The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell’s law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.

  7. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  8. The difference between LSMC and replicating portfolio in insurance liability modeling.

    PubMed

    Pelsser, Antoon; Schweizer, Janina

    2016-01-01

    Solvency II requires insurers to calculate the 1-year value at risk of their balance sheet. This involves the valuation of the balance sheet in 1 year's time. As for insurance liabilities, closed-form solutions to their value are generally not available, insurers turn to estimation procedures. While pure Monte Carlo simulation set-ups are theoretically sound, they are often infeasible in practice. Therefore, approximation methods are exploited. Among these, least squares Monte Carlo (LSMC) and portfolio replication are prominent and widely applied in practice. In this paper, we show that, while both are variants of regression-based Monte Carlo methods, they differ in one significant aspect. While the replicating portfolio approach only contains an approximation error, which converges to zero in the limit, in LSMC a projection error is additionally present, which cannot be eliminated. It is revealed that the replicating portfolio technique enjoys numerous advantages and is therefore an attractive model choice.

  9. Strongly coupled colloidal plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus M.; Morfill, Gregor E.; Konopka, Uwe; Rothermel, Hermann; Zuzic, Milenko

    1998-11-01

    The research of strongly coupled effects in colloidal plasmas started a few years ago with the discovery of the Coulomb crystallization of micron-sized particles in a plasma. The particles are charged negatively to a few thousands of electron charges due to the flux of electrons and ions from the plasma and then react via their Coulomb-potentials. The Coulomb coupling parameter Γ - which is the ratio of the Coulomb energy between two neighboring particles to their thermal energy - could be much larger than the critical value of 172 (calculated for an one-component-plasma). That means that Coulomb-crystallization can be achieved easily. Such systems, which reach equilibrium very rapidly and can be easily tuned between their ordered and disordered states, are ideally suited for investigating the processes underlying the solid-to-liquid phase transition. Furthermore, the strongly coupled collidal plasma can be excited externally and the response can be studied in great detail dynamically. Gravity plays an important role for the production and stability of plasma crystals. In laboratory plasmas gravity has to be balanced out by the electrostatic field in the sheath of the electrodes of the experimental apparatus. Thus, in the vertical direction only monolayer crystals or crystals with a few lattice layers can be formed. This restricts the analysis to processes in 2-dimensional or ``2 1/2-dimensional'' crystals (e.g. the physics of monolayers, nano-crystals or grain boundaries). Under zero gravity larger (volume) systems are possible and the field of plasma crystal research can be extended to include the physics of 3-dimensional systems. We performed the worldwide first experiments under zero-g conditions on parabolic flights and two sounding rockets. During these experiments the behaviour of dust particles in a rf-discharge under zero-g conditions was investigated. Very interesting experiments were performed, which are possible only under low gravity conditions.

  10. Effect of transmitter turn-off time on transient soundings

    USGS Publications Warehouse

    Fitterman, D.V.; Anderson, W.L.

    1987-01-01

    A general procedure for computing the effect of non-zero turn-off time on the transient electromagnetic response is presented which can be applied to forward and inverse calculation methods for any transmitter-receiver configuration. We consider in detail the case of a large transmitter loop which has a receiver coil located at the center of the loop (central induction or in-loop array). For a linear turn-off ramp of width t0, the voltage response is shown to be the voltage due to an ideal step turn-off averaged over windows of width t0. Thus the effect is similar to that obtained by using averaging windows in the receiver. In general when time zero is taken to be the end of the ramp, the apparent resistivity increases for a homogeneous half-space over a limited time range. For time zero taken to be the start of the ramp the apparent resistivity is affected in the opposite direction. The effect of the ramp increases with increasing t0 and first-layer resistivity, is largest during the intermediate stage, and decreases with increasing time. It is shown that for a ramp turn-off, there is no effect in the early and late stages. For two-layered models with a resistive first layer (??1>??2), the apparent resistivity is increased in the intermediate stage. When the first layer is more conductive than the second layer (??1

  11. Analyzing hospitalization data: potential limitations of Poisson regression.

    PubMed

    Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

    2015-08-01

    Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. BCS to BEC evolution for mixtures of fermions with unequal masses

    NASA Astrophysics Data System (ADS)

    de Melo, Carlos A. R. Sa

    2009-03-01

    I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx

  13. Hearing the Sound in the Brain: Influences of Different EEG References.

    PubMed

    Wu, Dan

    2018-01-01

    If the scalp potential signals, the electroencephalogram (EEG), are due to neural "singers" in the brain, how could we listen to them with less distortion? One crucial point is that the data recording on the scalp should be faithful and accurate, thus the choice of reference electrode is a vital factor determining the faithfulness of the data. In this study, music on the scalp derived from data in the brain using three different reference electrodes were compared, including approximate zero reference-reference electrode standardization technique (REST), average reference (AR), and linked mastoids reference (LM). The classic music pieces in waveform format were used as simulated sources inside a head model, and they were forward calculated to scalp as standard potential recordings, i.e., waveform format music from the brain with true zero reference. Then these scalp music was re-referenced into REST, AR, and LM based data, and compared with the original forward data (true zero reference). For real data, the EEG recorded in an orthodontic pain control experiment were utilized for music generation with the three references, and the scale free index (SFI) of these music pieces were compared. The results showed that in the simulation for only one source, different references do not change the music/waveform; for two sources or more, REST provide the most faithful music/waveform to the original ones inside the brain, and the distortions caused by AR and LM were spatial locations of both source and scalp electrode dependent. The brainwave music from the real EEG data showed that REST and AR make the differences of SFI between two states more recognized and found the frontal is the main region that producing the music. In conclusion, REST can reconstruct the true signals approximately, and it can be used to help to listen to the true voice of the neural singers in the brain.

  14. Hearing the Sound in the Brain: Influences of Different EEG References

    PubMed Central

    Wu, Dan

    2018-01-01

    If the scalp potential signals, the electroencephalogram (EEG), are due to neural “singers” in the brain, how could we listen to them with less distortion? One crucial point is that the data recording on the scalp should be faithful and accurate, thus the choice of reference electrode is a vital factor determining the faithfulness of the data. In this study, music on the scalp derived from data in the brain using three different reference electrodes were compared, including approximate zero reference—reference electrode standardization technique (REST), average reference (AR), and linked mastoids reference (LM). The classic music pieces in waveform format were used as simulated sources inside a head model, and they were forward calculated to scalp as standard potential recordings, i.e., waveform format music from the brain with true zero reference. Then these scalp music was re-referenced into REST, AR, and LM based data, and compared with the original forward data (true zero reference). For real data, the EEG recorded in an orthodontic pain control experiment were utilized for music generation with the three references, and the scale free index (SFI) of these music pieces were compared. The results showed that in the simulation for only one source, different references do not change the music/waveform; for two sources or more, REST provide the most faithful music/waveform to the original ones inside the brain, and the distortions caused by AR and LM were spatial locations of both source and scalp electrode dependent. The brainwave music from the real EEG data showed that REST and AR make the differences of SFI between two states more recognized and found the frontal is the main region that producing the music. In conclusion, REST can reconstruct the true signals approximately, and it can be used to help to listen to the true voice of the neural singers in the brain. PMID:29593487

  15. Assessing the Underwater Acoustics of the World's Largest Vibration Hammer (OCTA-KONG) and Its Potential Effects on the Indo-Pacific Humpbacked Dolphin (Sousa chinensis)

    PubMed Central

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, “soft start” and “power down” techniques. PMID:25338113

  16. Field validation of sound mitigation models and air pollutant emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2005-08-01

    The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-l-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.

  17. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis).

    PubMed

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, "soft start" and "power down" techniques.

  18. Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.

    NASA Astrophysics Data System (ADS)

    Tian, Yuren

    Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results illustrate the existence of surface viscoelasticities.

  19. Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2013-10-01

    The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents: incident pressure generated in the boundary layer without a trailing edge and the pressure formed by the scattering of the incident pressure at the trailing edge. The predictions made using each of the incident and scattered pressures reveal that the convective velocity of turbulence in the boundary layer dominantly affects the radiated sound pressure spectrum, both in terms of the gross behavior of the overall acoustic pressure spectrum through the scattered pressure and in terms of the narrow band small fluctuations of the spectrum through the incident pressure. The interaction term between the incident and the scattered is defined and the incident is shown to contribute to the radiated acoustic pressure through the interaction term. Based on this finding, a simple model to effectively compute the effects of convection velocities of the turbulence on the radiated sound pressure spectrum is proposed. It is shown that the proposed method can effectively and accurately predict the broadband trailing edge noise from the plate with considering both the incident and the scattered contributions.

  20. Recognition and characterization of unstructured environmental sounds

    NASA Astrophysics Data System (ADS)

    Chu, Selina

    2011-12-01

    Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply be used for realistic environmental sound. Natural unstructured environment sounds contain a large variety of sounds, which are in fact noise-like and are not effectively modeled by Mel-frequency cepstral coefficients (MFCCs) or other commonly-used audio features, e.g. energy, zero-crossing, etc. Due to the lack of appropriate features that is suitable for environmental audio and to achieve a more effective representation, I proposed a specialized feature extraction algorithm for environmental sounds that utilizes the matching pursuit (MP) algorithm to learn the inherent structure of each type of sounds, which we called MP-features. MP-features have shown to capture and represent sounds from different sources and different ranges, where frequency domain features (e.g., MFCCs) fail and can be advantageous when combining with MFCCs to improve the overall performance. The third component leads to our investigation on modeling and detecting the background audio. One of the goals of this research is to characterize an environment. Since many events would blend into the background, I wanted to look for a way to achieve a general model for any particular environment. Once we have an idea of the background, it will enable us to identify foreground events even if we havent seen these events before. Therefore, the next step is to investigate into learning the audio background model for each environment type, despite the occurrences of different foreground events. In this work, I presented a framework for robust audio background modeling, which includes learning the models for prediction, data knowledge and persistent characteristics of the environment. This approach has the ability to model the background and detect foreground events as well as the ability to verify whether the predicted background is indeed the background or a foreground event that protracts for a longer period of time. In this work, I also investigated the use of a semi-supervised learning technique to exploit and label new unlabeled audio data. The final components of my thesis will involve investigating on learning sound structures for generalization and applying the proposed ideas to context aware applications. The inherent nature of environmental sound is noisy and contains relatively large amounts of overlapping events between different environments. Environmental sounds contain large variances even within a single environment type, and frequently, there are no divisible or clear boundaries between some types. Traditional methods of classification are generally not robust enough to handle classes with overlaps. This audio, hence, requires representation by complex models. Using deep learning architecture provides a way to obtain a generative model-based method for classification. Specifically, I considered the use of Deep Belief Networks (DBNs) to model environmental audio and investigate its applicability with noisy data to improve robustness and generalization. A framework was proposed using composite-DBNs to discover high-level representations and to learn a hierarchical structure for different acoustic environments in a data-driven fashion. Experimental results on real data sets demonstrate its effectiveness over traditional methods with over 90% accuracy on recognition for a high number of environmental sound types.

  1. Optimizing acoustical conditions for speech intelligibility in classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with SNS = 4 dB and increased to 0.8 and 1.2 s with decreased SNS = 0 dB, for both normal and hearing-impaired listeners. Hearing-impaired listeners required more early energy than normal-hearing listeners. Reflective ceiling barriers and ceiling reflectors---in particular, parallel front-back rows of semi-circular reflectors---achieved the goal of decreasing reverberation with the least speech-level reduction.

  2. Compressible flow at high pressure with linear equation of state

    NASA Astrophysics Data System (ADS)

    Sirignano, William A.

    2018-05-01

    Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.

  3. GPS Vertical Land Motion Corrections to Sea-Level Rise Estimates in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Montillet, J.-P.; Melbourne, T. I.; Szeliga, W. M.

    2018-02-01

    We construct coastal Pacific Northwest profiles of vertical land motion (VLM) known to bias long-term tide-gauge measurements of sea-level rise (SLR) and use them to estimate absolute sea-level rise with respect to Earth's center of mass. Multidecade GPS measurements at 47 coastal stations along the Cascadia subduction zone show VLM varies regionally but smoothly along the Pacific coast and inland Puget Sound with rates ranging from + 4.9 to -1.2 mm/yr. Puget Sound VLM is characterized by uniform subsidence at relatively slow rates of -0.1 to -0.3 mm/yr. Uplift rates of 4.5 mm/yr persist along the western Olympic Peninsula of northwestern Washington State and decrease southward becoming nearly 0 mm/yr south of central coastal Washington through Cape Blanco, Oregon. South of Cape Blanco, uplift increases to 1-2 mm/yr, peaks at 4 mm/yr near Crescent City, California, and returns to zero at Cape Mendocino, California. Using various stochastic noise models, we estimate long-term (˜50 -100 yr) relative sea-level rise rates at 18 coastal Cascadia tide gauges and correct them for VLM. Uncorrected SLR rates are scattered, ranging between -2 mm/yr and + 5 mm/yr with mean 0.52 ± 1.59 mm/yr, whereas correcting for VLM increases the mean value to 1.99 mm/yr and reduces the uncertainty to ± 1.18 mm/yr, commensurate with, but approximately 17% higher than, twentieth century global mean.

  4. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, P. T., E-mail: t.pham@hzdr.de; Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main; Postulka, L.

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperaturemore » and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.« less

  5. Energy: where are we headed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiBona, C.J.

    1977-01-01

    The author sums the United States energy situation using six figures to tell the story: (1) 75% of our energy supplies are now derived from oil and gas; (2) we currently depend on foreign suppliers for 45% of our oil supplies, and the trend is upwards; (3) the nation's demand for energy will be 50% greater by 1990; (4) at current production rates, we now have 11 years of proved reserves of oil and of natural gas; (5) pending legislation such as Senate Bill 9--the Outer Continental Shelf Lands Act Amendments--if enacted, could defeat our national energy goals by inhibitingmore » development of domestic energy sources; and (6) zero-risk environmental policies may well add up to zero opportunities for modifying all the other numbers crucial to the nation's future energy welfare. He then presents an energy policy he believes viable on three premises: (a) to bring the demand side of our energy equation under control, conservation is a must; incentives such as market prices that reflect the real value and cost of energy; standards that are flexible enough to optimize energy use in many varying situations; and perhaps other inducements to conserve all our fuels; (b) to reduce our dependence on foreign producers and also to meet our growing needs, we must increase domestic supplies; (c) to permit the growth so vital to the nation's economic welfare, we must redress the balance between environmental concerns and energy needs. At the least, a sound environmental policy, like a viable energy policy, must be based on stringent cost benefit analyses, scientific findings, and the need for flexibility. (MCW)« less

  6. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun; Kodama, Masao

    2016-01-21

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime wasmore » determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.« less

  7. How to Activate a Plant Gravireceptor. Early Mechanisms of Gravity Sensing Studied in Characean Rhizoids during Parabolic Flights1

    PubMed Central

    Limbach, Christoph; Hauslage, Jens; Schäfer, Claudia; Braun, Markus

    2005-01-01

    Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14g, but not of 0.05g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 × 10−14 n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths. PMID:16183834

  8. How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights.

    PubMed

    Limbach, Christoph; Hauslage, Jens; Schäfer, Claudia; Braun, Markus

    2005-10-01

    Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14 g, but not of 0.05 g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 x 10(-14) n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths.

  9. Magnetotellurics with long distance remote reference to reject DC railway noise

    NASA Astrophysics Data System (ADS)

    Hanstein, T.; Jiang, J.; Strack, K.; Ritter, O.

    2014-12-01

    Some parts of railway network in Europe is electrified by DC current. The return current in the ground is varying in space, time and power when the train is moving. Since the train traffic is active 24 hours, there is no quite time. The train signal is dominating for periods longer than 1 s and is a near field source. The transfer function of the magnetotelluric sounding (MT) is influenced by this near field source, the phase is going to zero and amplitude increase with slope 1 for longer periods. Since this dominating noise is present all day robust magnetotelluric processing technique to identify and remove outliers are not applicable and sufficient. The remote reference technique has successfully been applied for magnetotelluric soundings Combining an disturbed local MT data set with the data of the remote station, which is recording simultaneously the horizontal magnetic fields, can improve the data quality. Finding a good remote station during field survey is difficult and expensive. There is a permanent MT remote reference station in Germany. The set up and maintance is done by the GFZ - Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. The location is near Wittstock and has good signal-to-noise-ratio with low cutural noise, the ground is almost lD and recording since May 2010. The electric and magnetic field is continously recorded with 250 Hz sampling and induction coils. The magnetic field is also recorded with fluxgate magnetometers and 5 Hz sampling. The distance to the local MT site is about 600 km.

  10. Mutual interactions of phonons, rotons, and gravity

    NASA Astrophysics Data System (ADS)

    Nicolis, Alberto; Penco, Riccardo

    2018-04-01

    We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.

  11. Hydrogel microphones for stealthy underwater listening

    PubMed Central

    Gao, Yang; Song, Jingfeng; Li, Shumin; Elowsky, Christian; Zhou, You; Ducharme, Stephen; Chen, Yong Mei; Zhou, Qin; Tan, Li

    2016-01-01

    Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming the device in thickness directions, this hydrogel device responds with a transient modulation of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa−1 or 24 μC N−1 at a bias of 1.0 V) without using any signal amplification tools. PMID:27554792

  12. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity

    PubMed Central

    Verhaar, Auke P.; Hoekstra, Elmer; Tjon, Angela S. W.; Utomo, Wesley K.; Deuring, J. Jasper; Bakker, Elvira R. M.; Muncan, Vanesa; Peppelenbosch, Maikel P.

    2014-01-01

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease. PMID:24968806

  13. In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Matikas, Theodore E.; Na, Jeong K.; Sathish, Shamachary

    1999-02-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. A previous experiment using the f-2f technique on Ti-6Al-4V dog bone specimen fatigued at different stage of fatigue has shown that the material nonlinearity exhibit large change compared to the other ultrasonic parameter. Real-time monitoring of the nonlinearity may be a future tool to characterize early fatigue damage in the material. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. For the first time, a real-time experiment has been performed on a dog-bone specimen from zero fatigue al the way to the final fracture.

  14. Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2016-11-01

    Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.

  15. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    PubMed Central

    Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.

    2017-01-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685

  16. Superfluidity of 4He in dense aerogel studied using quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.

    2018-03-01

    Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.

  17. Modeling the distribution of illicit oily discharges detected by aerial surveillance in western Canadian marine waters.

    PubMed

    Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline

    2014-10-15

    Oily discharges from vessel operations have been documented in Canada's Pacific region by the National Aerial Surveillance Program (NASP) since the early 1990s. We explored a number of regression methods to explain the distribution and counts per grid cell of oily discharges detected from 1998 to 2007 using independent predictor variables, while trying to address the large number of zeros present in the data. Best-fit models indicate that discharges are generally concentrated close to shore typically in association with small harbours, and with major commercial and tourist centers. Oily discharges were also concentrated in Barkley Sound and at the entrance of Juan de Fuca Strait. The identification of important factors associated with discharge patterns, and predicting discharge rates in areas with surveillance effort can be used to inform future surveillance. Model output can also be used as inputs for risk models for existing conditions and as baseline for future scenarios. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Deep-Focusing Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jensen, J. M.; Kosovichev, A. G.; Birch, A. C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Much progress has been made by measuring the travel times of solar acoustic waves from a central surface location to points at equal arc distance away. Depth information is obtained from the range of arc distances examined, with the larger distances revealing the deeper layers. This method we will call surface-focusing, as the common point, or focus, is at the surface. To obtain a clearer picture of the subsurface region, it would, no doubt, be better to focus on points below the surface. Our first attempt to do this used the ray theory to pick surface location pairs that would focus on a particular subsurface point. This is not the ideal procedure, as Born approximation kernels suggest that this focus should have zero sensitivity to sound speed inhomogeneities. However, the sensitivity is concentrated below the surface in a much better way than the old surface-focusing method, and so we expect the deep-focusing method to be more sensitive. A large sunspot group was studied by both methods. Inversions based on both methods will be compared.

  19. Generation of acoustic self-bending and bottle beams by phase engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Tongcang; Zhu, Jie; Zhu, Xuefeng; Yang, Sui; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang

    2014-07-01

    Directing acoustic waves along curved paths is critical for applications such as ultrasound imaging, surgery and acoustic cloaking. Metamaterials can direct waves by spatially varying the material properties through which the wave propagates. However, this approach is not always feasible, particularly for acoustic applications. Here we demonstrate the generation of acoustic bottle beams in homogeneous space without using metamaterials. Instead, the sound energy flows through a three-dimensional curved shell in air leaving a close-to-zero pressure region in the middle, exhibiting the capability of circumventing obstacles. By designing the initial phase, we develop a general recipe for creating self-bending wave packets, which can set acoustic beams propagating along arbitrary prescribed convex trajectories. The measured acoustic pulling force experienced by a rigid ball placed inside such a beam confirms the pressure field of the bottle. The demonstrated acoustic bottle and self-bending beams have potential applications in medical ultrasound imaging, therapeutic ultrasound, as well as acoustic levitations and isolations.

  20. A New Look at Titan's Zonal Winds from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schinder, P. J.

    2012-01-01

    We use the existing thirteen Cassini radio'occultation soundings to construct a meridional cross section of geopotential height vs. pressure and latitude. The assumption of balanced flow permits the construction of a similar cross section of zonal winds, from near the surface to the 0.1'mbar level. In the lower troposphere, the winds are approx.10 m/s, except within 20deg of the equator, where they are much smaller. The winds increase higher up in the troposphere to nearly 40 m/s in the tropopause region, but then decay rapidly in the lower stratosphere to near'zero values at 20 mbar (approx.80 km), reminiscent of the Huygens Doppler Wind Experiment result. This null zone extends over most latitudes, except for limited bands at mid'latitudes. Higher up in the stratosphere, the winds become larger. They are highest in the northern (winter) hemisphere. We compare the occultation results with the DWE and CIRS retrievals and discuss the similarities and differences among the data sets.

  1. Electrode surface profile and the performance of condenser microphones.

    PubMed

    Fletcher, N H; Thwaites, S

    2002-12-01

    Condenser microphones of all types are traditionally made with a planar electrode parallel to an electrically conducting diaphragm, additional diaphragm stiffness at acoustic frequencies being provided by the air enclosed in a cavity behind the diaphragm. In all designs, the motion of the diaphragm in response to an acoustic signal is greatest near its center and reduces to zero at its edges. Analysis shows that this construction leads to less than optimal sensitivity and to harmonic distortion at high sound levels when the diaphragm motion is appreciable compared with its spacing from the electrode. Microphones of this design are also subject to acoustic collapse of the diaphragm under the influence of pressure pulses such as might be produced by wind. A new design is proposed in which the electrode is shaped as a shallow dish, and it is shown that this construction increases the sensitivity by about 4.5 dB, and also completely eliminates harmonic distortion originating in the cartridge.

  2. Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.

    1976-01-01

    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.

  3. Information entropy and dark energy evolution

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Luongo, Orlando

    Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.

  4. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity.

    PubMed

    Verhaar, Auke P; Hoekstra, Elmer; Tjon, Angela S W; Utomo, Wesley K; Deuring, J Jasper; Bakker, Elvira R M; Muncan, Vanesa; Peppelenbosch, Maikel P

    2014-06-27

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.

  5. Spectral mass gauging of unsettled liquid with acoustic waves

    NASA Astrophysics Data System (ADS)

    Feller, Jeffrey; Kashani, Ali; Khasin, Michael; Muratov, Cyrill; Osipov, Viatcheslav; Sharma, Surendra

    2017-12-01

    Propellant mass gauging is one of the key technologies required to enable the next step in NASA’s space exploration program. At present, there is no reliable method to accurately measure the amount of unsettled liquid propellant in a large-scale propellant tank in micro- or zero gravity. Recently we proposed a new approach to use sound waves to probe the resonance frequencies of the two-phase liquid-gas mixture and take advantage of the mathematical properties of the high frequency spectral asymptotics to determine the volume fraction of the tank filled with liquid. We report the current progress in exploring the feasibility of this approach in the case of large propellant tanks, both experimental and theoretical. Excitation and detection procedures using solenoids for excitation and both hydrophones and accelerometers for detection have been developed. A 3% uncertainty for mass-gauging was demonstrated for a 200-liter tank partially filled with liquid for various unsettled configurations, such as tilts and artificial ullages.

  6. Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Hu, Hui; Liu, Xia-Ji

    2018-01-01

    We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of K 40 or Li 6 atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.

  7. From waste to sustainable materials management: Three case studies of the transition journey.

    PubMed

    Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen

    2017-03-01

    Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Yoshida, Koh; Inaba, Akira; Nakazawa, Yasuhiro

    2014-09-01

    Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, κT, a second derivative thermodynamic quantity of G, was evaluated for liquid H2O in the pressure range up to 350 MPa and the temperature to 50 °C. We then obtained its pressure derivative, dκT/dp, a third derivative numerically without using a fitting function to the κT data. On taking yet another p-derivative at a fixed T graphically without resorting to any fitting function, the resulting d2κT/dp2, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, dαp/dxGly and d2αp/dxGly2, at 0.1 MPa (αp is the thermal expansivity and xGly the mole fraction of solute glycerol) in our recent publication [J. Solution Chem. 43, 663-674 (2014); DOI:10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure H2O from a low to a high p-regions starting at point X and ending at Y at a fixed T. The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero p seems to be about 70 - 80 °C for points X and 90 - 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero xGly extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same T values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 °C there is no hydrogen bond network. Implication of these findings is discussed.

  9. Introduction to the theory and application of a unified Bohm criterion for arbitrary-ion-temperature collision-free plasmas with finite Debye lengths

    NASA Astrophysics Data System (ADS)

    Kos, L.; Jelić, N.; Kuhn, S.; Tskhakaya, D. D.

    2018-04-01

    At present, identifying and characterizing the common plasma-sheath edge (PSE) in the conventional fluid approach leads to intrinsic oversimplifications, while the kinetic one results in unusable over-generalizations. In addition, none of these approaches can be justified in realistic plasmas, i.e., those which are characterized by non-negligible Debye lengths and a well-defined non-negligible ion temperature. In an attempt to resolve this problem, we propose a new formulation of the Bohm criterion [D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields (McGraw-Hill, New York, 1949)], which is here expressed in terms of fluid, kinetic, and electrostatic-pressure contributions. This "unified" Bohm criterion consists of a set of two equations for calculating the ion directional energy (i.e., the mean directional velocity) and the plasma potential at the common PSE, and is valid for arbitrary ion-to-electron temperature ratios. It turns out to be exact at any point of the quasi-neutral plasma provided that the ion differential polytropic coefficient function (DPCF) of Kuhn et al. [Phys. Plasmas 13, 013503 (2006)] is employed, with the advantage that the DPCF is an easily measurable fluid quantity. Moreover, our unified Bohm criterion holds in plasmas with finite Debye lengths, for which the famous kinetic criterion formulated by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] fails. Unlike the kinetic criterion in the case of negligible Debye length, the kinetic contribution to the unified Bohm criterion, arising due to the presence of negative and zero velocities in the ion velocity distribution function, can be calculated separately from the fluid term. This kinetic contribution disappears identically at the PSE, yielding strict equality of the ion directional velocity there and the ion sound speed, provided that the latter is formulated in terms of the present definition of DPCFs. The numerical values of these velocities are found for the Tonks-Langmuir collision-free, plane-parallel discharge model [Phys. Rev. 34, 876 (1929)], however, with the ion-source temperature extended here from the original (zero) value to arbitrary high ones. In addition, it turns out, that the charge-density derivative (in the potential "space") with respect to the potential exhibits two characteristic points, i.e., potentials, namely the points of inflection and maximum of that derivative (in the potential space), which stay "fixed" at their respective potentials independent of the Debye length until it is kept fairly small. Plasma quasi-neutrality appears well satisfied up to the first characteristic point/potential, so we identify that one as the plasma edge (PE). Adopting the convention that the sheath is a region characterized by considerable electrostatic pressure (energy density), we identify the second characteristic point/potential as the sheath edge (SE). Between these points, the charge density increases from zero to a finite value. Thus, the interval between the PE and SE, with the "fixed" width (in the potential "space") of about one third of the electron temperature, will be named the plasma-sheath transition (PST). Outside the PST, the electrostatic-pressure term and its derivatives turn out to be nearly identical with each other, independent of the particular values of the ion temperature and Debye length. In contrast, an increase in Debye lengths from zero to finite values causes the location of the sonic point/potential (laying inside the PST) to shift from the PE (for vanishing Debye length) towards the SE, while at the same time, the absolute value of the corresponding ion-sound velocity slightly decreases. These shifts turn out to be manageable with employing the mathematical concept of the plasma-to-sheath transition (different from, but related to our natural PST concept), resulting in approximate, but sufficiently reliable semi-analytic expressions, which are functions of the ion temperature and Debye length.

  10. Toward Optimizing VEMP: Calculating VEMP Inhibition Depth With a Generic Template.

    PubMed

    Noij, Kimberley S; van Tilburg, Mark J; Herrmann, Barbara S; Marciniak, Piotr; Rauch, Steven D; Guinan, John J

    2018-04-05

    Cervical vestibular evoked myogenic potentials (cVEMP) indirectly reveal the response of the saccule to acoustic stimuli through the inhibition of sternocleidomastoid muscle electromyographic response. VEMP inhibition depth (VEMPid) is a recently developed metric that estimates the percentage of saccular inhibition. VEMPid provides both normalization and better accuracy at low response levels than amplitude-normalized cVEMPs. Hopefully, VEMPid will aid in the clinical assessment of patients with vestibulopatholgy. To calculate VEMPid a template is needed. In the original method, a subject's own cVEMP was used as the template, but this method can be problematic in patients who do not have robust cVEMP responses. We hypothesize that a "generic" template, created by assembling cVEMPs from healthy subjects, can be used to compute VEMPid, which would facilitate the use of VEMPid in subjects with pathological conditions. A generic template was created by averaging cVEMP responses from 6 normal subjects. To compare VEMPid calculations using a generic versus a subject-specific template, cVEMPs were obtained in 40 healthy subjects using 500, 750, and 1000 Hz tonebursts at sound levels ranging from 98 to 123 dB peSPL. VEMPids were calculated both with the generic template and with the subject's own template. The ability of both templates to determine whether a cVEMP was present or not was compared with receiver operating characteristic curves. No significant differences were found between VEMPid calculations using a generic template versus using a subject-specific template for all frequencies and sound levels. Based on the receiver operating characteristic curves, the subject-specific and generic template did an equally good job at determining threshold. Within limits, the shape of the generic template did not affect these results. A generic template can be used instead of a subject-specific template to calculate VEMPid. Compared with cVEMP normalized by electromyographic amplitudes, VEMPid is advantageous because it averages zero when there is no sound stimulus and it allows the accumulating VEMPid value to be shown during data acquisition as a guide to deciding when enough data has been collected.

  11. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the final HIFU treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Discovery of Sound in the Sea (DOSITS) Website Development

    DTIC Science & Technology

    2013-03-04

    life affect ocean sound levels? • Science of Sound > Sounds in the Sea > How will ocean acidification affect ocean sound levels? • Science of Sound...Science of Sound > Sounds in the Sea > How does shipping affect ocean sound levels? • Science of Sound > Sounds in the Sea > How does marine

  13. Physics of singularities in pressure-impulse theory

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  14. Array observations and analyses of Cascadia deep tremor

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; Creager, K.; Crosson, R.; La Rocca, M.; Saccoretti, G.

    2004-12-01

    The July 8-24, 2004 Cascadia Episodic Tremor and Slip (ETS) event was observed using three small aperture seismic arrays located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. Initial tremor burst epicenters located in the Strait of Juan de Fuca and were calculated using the relative arrivals of band-passed, rectified regional network signals. Most subsequent epicenters migrated to the northwest along Vancouver Island and a few occurred in the central to southern Puget Sound. Tremor bursts lasting on the order of a few seconds can be identified across the stations of any of the three arrays. Individual bursts from distinct back-azimuths often occur within five seconds of each other, indicating the presence of spatially distributed but near simultaneous tremor. None of this was visible at such a fine scale using Pacific Northwest Seismograph Network (PNSN). Several array processing techniques, including beam-forming, zero-lag cross correlation and multiple signal classification (MUSIC), are being investigated to determine the optimal technique for exploring the temporal and spatial evolution of the tremor signals during the whole ETS. The back-azimuth and slowness of consecutive time windows for a one half-hour period of strong tremor were calculated using beam-forming with a linear stack, with an nth-root stack, and using zero-lag cross-correlation. Results for each array and each method yield consistent estimates of back azimuth and slowness. Beam-forming with a nonlinear stack produces results similar to the linear case but with larger uncertainty. Among the arrays, the back-azimuths give a reasonable estimate of the tremor epicenter that is consistent with the network determined epicentral locations.

  15. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].

    PubMed

    Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z

    2016-08-01

    We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: //www.easyauscultation.com/lung-sounds-reference-guide) and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.

  16. Long-term biological investigations in space.

    PubMed

    Lotz, R G; Fuchs, H; Bertsche, U

    1975-01-01

    Missions in space within the next two decades will be of longer duration than those carried out up to the present time, and the effects of such long-term flights on biological organisms are unknown. Results of biological experiments that have been performed to date cannot be extrapolated to results in future flights because of the unknown influence of adaptation over a long period of time. Prior experiments with Axolotl, fishes, and vertebrates by our research team (in part with sounding rockets) showed that these specimens did not appear to be suitable for long-term missions on which minimization of expense, technique, and energy is required. Subsequent investigations have shown the suitability of the leech (Hirudo medicinalis), which consumes blood of mammals up to ten times its own weight (1 g) and can live more than 2 years without further food supply. Emphasis in the experiments with Hirudo medicinalis is placed on metabolic rhythm and motility. Resorption and diffusion in tissue, development, and growth under long-term effects of cosmic proton radiation and zero-gravity are other focal points. The constancy of cellular life in the mature animals is a point in favor of these specimens. We have also taken into account the synergistic effects of the space environment on the problems just mentioned. The life-support system constructed for the leech has been tested successfully in four sounding rocket flights and, on that basis, has been prepared for a long-term mission. Long-term investigations out of the terrestrial biosphere will provide us with information concerning the degree of adaptation of certain physiological and biochemical functions and as to what extent biological readjustment or repair processes can occur under the specific stress conditions of space flight.

  17. Optical Design of the MOSES Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.

  18. Noise and pitch interact during the cortical segregation of concurrent speech.

    PubMed

    Bidelman, Gavin M; Yellamsetty, Anusha

    2017-08-01

    Behavioral studies reveal listeners exploit intrinsic differences in voice fundamental frequency (F0) to segregate concurrent speech sounds-the so-called "F0-benefit." More favorable signal-to-noise ratio (SNR) in the environment, an extrinsic acoustic factor, similarly benefits the parsing of simultaneous speech. Here, we examined the neurobiological substrates of these two cues in the perceptual segregation of concurrent speech mixtures. We recorded event-related brain potentials (ERPs) while listeners performed a speeded double-vowel identification task. Listeners heard two concurrent vowels whose F0 differed by zero or four semitones presented in either clean (no noise) or noise-degraded (+5 dB SNR) conditions. Behaviorally, listeners were more accurate in correctly identifying both vowels for larger F0 separations but F0-benefit was more pronounced at more favorable SNRs (i.e., pitch × SNR interaction). Analysis of the ERPs revealed that only the P2 wave (∼200 ms) showed a similar F0 x SNR interaction as behavior and was correlated with listeners' perceptual F0-benefit. Neural classifiers applied to the ERPs further suggested that speech sounds are segregated neurally within 200 ms based on SNR whereas segregation based on pitch occurs later in time (400-700 ms). The earlier timing of extrinsic SNR compared to intrinsic F0-based segregation implies that the cortical extraction of speech from noise is more efficient than differentiating speech based on pitch cues alone, which may recruit additional cortical processes. Findings indicate that noise and pitch differences interact relatively early in cerebral cortex and that the brain arrives at the identities of concurrent speech mixtures as early as ∼200 ms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pulseless electrical activity: a misdiagnosed entity during asphyxia in newborn infants?

    PubMed

    Patel, Sparsh; Cheung, Po-Yin; Solevåg, Anne Lee; Barrington, Keith J; Kamlin, C Omar Farouk; Davis, Peter G; Schmölzer, Georg M

    2018-06-12

    The 2015 neonatal resuscitation guidelines added ECG as a recommended method of assessment of an infant's heart rate (HR) when determining the need for resuscitation at birth. However, a recent case report raised concerns about this technique in the delivery room. To compare accuracy of ECG with auscultation to assess asystole in asphyxiated piglets. Neonatal piglets had the right common carotid artery exposed and enclosed with a real-time ultrasonic flow probe and HR was continuously measured and recorded using ECG. This set-up allowed simultaneous monitoring of HR via ECG and carotid blood flow (CBF). The piglets were exposed to 30 min normocapnic alveolar hypoxia followed by asphyxia until asystole, achieved by disconnecting the ventilator and clamping the endotracheal tube. Asystole was defined as zero carotid blood flow and was compared with ECG traces and auscultation for heart sounds using a neonatal/infant stethoscope. Overall, 54 piglets were studied with a median (IQR) duration of asphyxia of 325 (200-491) s. In 14 (26%) piglets, CBF, ECG and auscultation identified asystole. In 23 (43%) piglets, we observed no CBF and no audible heart sounds, while ECG displayed an HR ranging from 15 to 80/min. Sixteen (30%) piglets remained bradycardic (defined as HR of <100/min) after 10 min of asphyxia, identified by CBF, ECG and auscultation. Clinicians should be aware of the potential inaccuracy of ECG assessment during asphyxia in newborn infants and should rather rely on assessment using a combination of auscultation, palpation, pulse oximetry and ECG. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Toward Optimizing Vestibular Evoked Myogenic Potentials: Normalization Reduces the Need for Strong Neck Muscle Contraction.

    PubMed

    Noij, Kimberley S; Herrmann, Barbara S; Rauch, Steven D; Guinan, John J

    2017-01-01

    The cervical vestibular evoked myogenic potential (cVEMP) represents an inhibitory reflex of the saccule measured in the ipsilateral sternocleidomastoid muscle (SCM) in response to acoustic or vibrational stimulation. Since the cVEMP is a modulation of SCM electromyographic (EMG) activity, cVEMP amplitude is proportional to muscle EMG amplitude. We sought to evaluate muscle contraction influences on cVEMP peak-to-peak amplitudes (VEMPpp), normalized cVEMP amplitudes (VEMPn), and inhibition depth (VEMPid). cVEMPs at 500 Hz were measured in 25 healthy subjects for 3 SCM EMG contraction ranges: 45-65, 65-105, and 105-500 μV root mean square (r.m.s.). For each range, we measured cVEMP sound level functions (93-123 dB peSPL) and sound off, meaning that muscle contraction was measured without acoustic stimulation. The effect of muscle contraction amplitude on VEMPpp, VEMPn, and VEMPid and the ability to distinguish cVEMP presence/absence were evaluated. VEMPpp amplitudes were significantly greater at higher muscle contractions. In contrast, VEMPn and VEMPid showed no significant effect of muscle contraction. Cohen's d indicated that for all 3 cVEMP metrics contraction amplitude variations produced little change in the ability to distinguish cVEMP presence/absence. VEMPid more clearly indicated saccular output because when no acoustic stimulus was presented the saccular inhibition estimated by VEMPid was zero, unlike those by VEMPpp and VEMPn. Muscle contraction amplitude strongly affects VEMPpp amplitude, but contractions 45-300 μV r.m.s. produce stable VEMPn and VEMPid values. Clinically, there may be no need for subjects to exert high contraction effort. This is especially beneficial in patients for whom maintaining high SCM contraction amplitudes is challenging. © 2018 S. Karger AG, Basel.

  1. Visual Presentation Effects on Identification of Multiple Environmental Sounds

    PubMed Central

    Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio

    2016-01-01

    This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the conceptual information promote identification of the denoted sound and suppress the processing of sounds for which the visual stimulus did not denote the sound source. Third, processing of the concurrent visual representation suppresses false hearing. PMID:26973478

  2. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  3. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  4. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  5. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  6. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  7. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  8. Distress sounds of thorny catfishes emitted underwater and in air: characteristics and potential significance.

    PubMed

    Knight, Lisa; Ladich, Friedrich

    2014-11-15

    Thorny catfishes produce stridulation (SR) sounds using their pectoral fins and drumming (DR) sounds via a swimbladder mechanism in distress situations when hand held in water and in air. It has been argued that SR and DR sounds are aimed at different receivers (predators) in different media. The aim of this study was to analyse and compare sounds emitted in both air and water in order to test different hypotheses on the functional significance of distress sounds. Five representatives of the family Doradidae were investigated. Fish were hand held and sounds emitted in air and underwater were recorded (number of sounds, sound duration, dominant and fundamental frequency, sound pressure level and peak-to-peak amplitudes). All species produced SR sounds in both media, but DR sounds could not be recorded in air for two species. Differences in sound characteristics between media were small and mainly limited to spectral differences in SR. The number of sounds emitted decreased over time, whereas the duration of SR sounds increased. The dominant frequency of SR and the fundamental frequency of DR decreased and sound pressure level of SR increased with body size across species. The hypothesis that catfish produce more SR sounds in air and more DR sounds in water as a result of different predation pressure (birds versus fish) could not be confirmed. It is assumed that SR sounds serve as distress sounds in both media, whereas DR sounds might primarily be used as intraspecific communication signals in water in species possessing both mechanisms. © 2014. Published by The Company of Biologists Ltd.

  9. 40 CFR 141.52 - Maximum contaminant level goals for microbiological contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Giardia lamblia zero (2) Viruses zero (3) Legionella zero (4) Total coliforms (including fecal) zero coliforms and Escherichia coli (5) Cryptosporidium zero (6) Escherichia coli (E. coli) zero (b) The MCLG...

  10. 40 CFR 141.52 - Maximum contaminant level goals for microbiological contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Giardia lamblia zero (2) Viruses zero (3) Legionella zero (4) Total coliforms (including fecal) zero coliforms and Escherichia coli (5) Cryptosporidium zero (6) Escherichia coli (E. coli) zero (b) The MCLG...

  11. Development of an alarm sound database and simulator.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Shinbo, Toshiro; Imai, Megumi; Mamorita, Noritaka; Ikeda, Noriaki

    2006-10-01

    The purpose of this study was to develop an interactive software package of alarm sounds to present, recognize and share problems about alarm sounds among medical staff and medical manufactures. The alarm sounds were recorded in variable alarm conditions in a WAV file. The alarm conditions were arbitrarily induced by modifying attachments of various medical devices. The software package that integrated an alarm sound database and simulator was used to assess the ability to identify the monitor that sounded the alarm for the medical staff. Eighty alarm sound files (40MB in total) were recorded from 41 medical devices made by 28 companies. There were three pairs of similar alarm sounds that could not easily be distinguished, two alarm sounds which had a different priority, either low or high. The alarm sound database was created in an Excel file (ASDB.xls 170 kB, 40 MB with photos), and included a list of file names that were hyperlinked to alarm sound files. An alarm sound simulator (AlmSS) was constructed with two modules for simultaneously playing alarm sound files and for designing new alarm sounds. The AlmSS was used in the assessing procedure to determine whether 19 clinical engineers could identify 13 alarm sounds only by their distinctive sounds. They were asked to choose from a list of devices and to rate the priority of each alarm. The overall correct identification rate of the alarm sounds was 48%, and six characteristic alarm sounds were correctly recognized by beetween 63% to 100% of the subjects. The overall recognition rate of the alarm sound priority was only 27%. We have developed an interactive software package of alarm sounds by integrating the database and the alarm sound simulator (URL: http://info.ahs.kitasato-u.ac.jp/tkweb/alarm/asdb.html ). The AlmSS was useful for replaying multiple alarm sounds simultaneously and designing new alarm sounds interactively.

  12. Representation of the Numerosity 'zero' in the Parietal Cortex of the Monkey.

    PubMed

    Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime

    2015-05-22

    Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity 'zero'. 'Zero' neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. "Numerosity-zero" neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.

  13. Geometric Constraints on Human Speech Sound Inventories

    PubMed Central

    Dunbar, Ewan; Dupoux, Emmanuel

    2016-01-01

    We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry. PMID:27462296

  14. Using therapeutic sound with progressive audiologic tinnitus management.

    PubMed

    Henry, James A; Zaugg, Tara L; Myers, Paula J; Schechter, Martin A

    2008-09-01

    Management of tinnitus generally involves educational counseling, stress reduction, and/or the use of therapeutic sound. This article focuses on therapeutic sound, which can involve three objectives: (a) producing a sense of relief from tinnitus-associated stress (using soothing sound); (b) passively diverting attention away from tinnitus by reducing contrast between tinnitus and the acoustic environment (using background sound); and (c) actively diverting attention away from tinnitus (using interesting sound). Each of these goals can be accomplished using three different types of sound-broadly categorized as environmental sound, music, and speech-resulting in nine combinations of uses of sound and types of sound to manage tinnitus. The authors explain the uses and types of sound, how they can be combined, and how the different combinations are used with Progressive Audiologic Tinnitus Management. They also describe how sound is used with other sound-based methods of tinnitus management (Tinnitus Masking, Tinnitus Retraining Therapy, and Neuromonics).

  15. Ultrasound Thermal Imaging and its application to Rayleigh-Bénard convection in mercury

    NASA Astrophysics Data System (ADS)

    Xu, Hongzhou; Andereck, C. David

    2003-11-01

    We have developed Ultrasound Thermal Imaging (UTI), a non-intrusive ultrasound technique for internal temperature measurement of opaque fluids, and have applied UTI to low Rayleigh number buoyancy driven convection in mercury. UTI relies upon the variation of sound speed with temperature of the fluid. An array of ultrasound transducers scanned electronically along the sidewall of a convection cell with aspect ratio of 6 yields a map of the thermal field over the chamber. The chamber has stainless steel sidewalls and molybdenum covered copper plates at the top and bottom. As the Rayleigh number increases slowly from zero, the data reveal the formation of a roll cell pattern and transitions between different cellular states. Based on standard deviation distributions of the temperature profile at the cell's mid-depth, the critical temperature difference agrees well with the theoretically predicted value. The heat flux through the horizontal mercury layer was determined by thermistors mounted at the exit and entrance of the internal channel in each copper plate through which flows warm/cool constant temperature water. Nusselt numbers and other experimental results will also be presented.

  16. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    PubMed

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Audiophonological results after cochlear implantation in 40 congenitally deaf patients: preliminary results.

    PubMed

    Loundon, N; Busquet, D; Roger, G; Moatti, L; Garabedian, E N

    2000-11-30

    The aim of this study is to evaluate the prognostic factors of audiophonological results in cochlear implant in congenitally deaf patients. Between 1991 and 1996. 40 congenitally deaf children underwent cochlear implantation in our department, at an average age of 7 years (median: 5 years). The results of speech therapy were evaluated with a mean follow-up of 2 years and were classified according to four criteria: perception of sound, speech perception, speech production and the level of oral language. For each criterion, a score was established ranging from zero to four. These scores were weighted according to age such that the results before and after implantation only reflected the changes related to the implantation. The prognostic factors for good results were: a good level of oral communication before implantation, residual hearing, progressive deafness and implantation at a young age. On the other hand, poor prognostic factors were: the presence of behavioral disorders and poor communication skills prior to implantation. Overall, the major prognostic factor for a good outcome appeared to be the preoperative level of oral language, even if this was rudimentary.

  18. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  19. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.

    PubMed

    Bianchi, Daniele; Monaldo, Elisabetta; Gizzi, Alessio; Marino, Michele; Filippi, Simonetta; Vairo, Giuseppe

    2017-09-01

    A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    NASA Astrophysics Data System (ADS)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-08-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  1. Spectral Mass Gauging of Unsettled Liquid with Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Feller, Jeffrey; Kashani, Ali; Khasin, Michael; Muratov, Cyrill; Osipov, Viatcheslav; Sharma, Surendra

    2018-01-01

    Propellant mass gauging is one of the key technologies required to enable the next step in NASA's space exploration program. At present, there is no reliable method to accurately measure the amount of unsettled liquid propellant of an unknown configuration in a propellant tank in micro- or zero gravity. We propose a new approach to use sound waves to probe the resonance frequencies of the two-phase liquid-gas mixture and take advantage of the mathematical properties of the high frequency spectral asymptotics to determine the volume fraction of the tank filled with liquid. We report the current progress in exploring the feasibility of this approach, both experimental and theoretical. Excitation and detection procedures using solenoids for excitation and both hydrophones and accelerometers for detection have been developed. A 3% uncertainty for mass-gauging was demonstrated for a 200-liter tank partially filled with water for various unsettled configurations, such as tilts and artificial ullages. A new theoretical formula for the counting function associated with axially symmetric modes was derived. Scaling analysis of the approach has been performed to predict an adequate performance for in-space applications.

  2. Isobaric Reconstruction of the Baryonic Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yu, Hao-Ran; Zhu, Hong-Ming; Yu, Yu; Pan, Qiaoyin; Pen, Ue-Li

    2017-06-01

    In this Letter, we report a significant recovery of the linear baryonic acoustic oscillation (BAO) signature by applying the isobaric reconstruction algorithm to the nonlinear matter density field. Assuming only the longitudinal component of the displacement being cosmologically relevant, this algorithm iteratively solves the coordinate transform between the Lagrangian and Eulerian frames without requiring any specific knowledge of the dynamics. For dark matter field, it produces the nonlinear displacement potential with very high fidelity. The reconstruction error at the pixel level is within a few percent and is caused only by the emergence of the transverse component after the shell-crossing. As it circumvents the strongest nonlinearity of the density evolution, the reconstructed field is well described by linear theory and immune from the bulk-flow smearing of the BAO signature. Therefore, this algorithm could significantly improve the measurement accuracy of the sound horizon scale s. For a perfect large-scale structure survey at redshift zero without Poisson or instrumental noise, the fractional error {{Δ }}s/s is reduced by a factor of ˜2.7, very close to the ideal limit with the linear power spectrum and Gaussian covariance matrix.

  3. Multisensor surveillance data augmentation and prediction with optical multipath signal processing

    NASA Astrophysics Data System (ADS)

    Bush, G. T., III

    1980-12-01

    The spatial characteristics of an oil spill on the high seas are examined in the interest of determining whether linear-shift-invariant data processing implemented on an optical computer would be a useful tool in analyzing spill behavior. Simulations were performed on a digital computer using data obtained from a 25,000 gallon spill of soy bean oil in the open ocean. Marked changes occurred in the observed spatial frequencies when the oil spill was encountered. An optical detector may readily be developed to sound an alarm automatically when this happens. The average extent of oil spread between sequential observations was quantified by a simulation of non-holographic optical computation. Because a zero crossover was available in this computation, it may be possible to construct a system to measure automatically the amount of spread. Oil images were subjected to deconvolutional filtering to reveal the force field which acted upon the oil to cause spreading. Some features of spill-size prediction were observed. Calculations based on two sequential photos produced an image which exhibited characteristics of the third photo in that sequence.

  4. Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2013-03-01

    The time domain boundary element method (TBEM) to calculate the exterior sound field using the Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a method to stabilize TBEM calculation for the exterior problem is suggested. The time domain CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral by forcing the pressures at the additional interior points to be zero when the shortest retarded time between boundary nodes and an interior point elapses. However, even after using the CHIEF method, the TBEM calculation suffers the exponential divergence due to the remaining unstable high order fictitious modes at frequencies higher than the frequency limit of the boundary element model. For complete stabilization, such troublesome modes are selectively adjusted by projecting the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final average error norm of the stabilized response compared to the analytic solution is 2.5%.

  5. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    PubMed

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  6. ESA and the arts: A programme in the making

    NASA Astrophysics Data System (ADS)

    Raitt, David

    2007-01-01

    Space exploration is arguably the greatest voyage of discovery ever undertaken and just as artists have traditionally accompanied the great ocean and land voyages of the past, so artists have been and are at the forefront of space voyages of the future. Increasingly, the European Space Agency (ESA) is being asked to support or participate in artistic and cultural events, largely as a result of its study into science fiction literature and artwork. The paper first gives an overview of the relationship between space and art by discussing art that has been sent into space, orbital sculptures, art on Earth seen from space, and performance art and dance in zero gravity. The paper then provides an update on ESA's involvement in some activities in this domain including the organization of science fiction and space art exhibitions, workshops and competitions, and a recently launched study into how ESA might use the European components of the International Space Station for artistic and cultural events to enable the public to better share the human experience of space missions and interact with the sights and sounds of space.

  7. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  8. High field charge order across the phase diagram of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David

    2018-03-01

    In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.

  9. Radiation force on drops and bubbles in acoustic Bessel beams modeled using finite elements

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.; Zhang, Likun

    2009-11-01

    Analysis of the scattering of sound by spheres centered on ordinary and helicoidal (higher-order) Bessel beams makes it possible to evaluate the acoustic radiation force on idealized drops and bubbles centered on the beam [1]. For potential applications it would be necessary to know if a small transverse displacement of the sphere from the beam's axis causes a radiation force that pushes the sphere toward (or away from) the axis of the beam. We applied 3D-finite elements to that problem. To trust FEM calculations of the radiation force with helicoidal beams it was first necessary to verify that analytical values for the axial force are recovered in the on-axis helicoidal case since only the zero-order beam had been previously studied with FEM. Cases have been identified where the force pushes a slightly off-set drop or bubble toward the axis. For some cases the effective potential method of Gorkov may be used to predict the transverse stability of small spheres.[4pt] [1] P. L. Marston, J. Acoust. Soc. Am. 125, 3539-3545 (2009).

  10. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  11. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  12. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  13. Sound localization and auditory response capabilities in round goby (Neogobius melanostomus)

    NASA Astrophysics Data System (ADS)

    Rollo, Audrey K.; Higgs, Dennis M.

    2005-04-01

    A fundamental role in vertebrate auditory systems is determining the direction of a sound source. While fish show directional responses to sound, sound localization remains in dispute. The species used in the current study, Neogobius melanostomus (round goby) uses sound in reproductive contexts, with both male and female gobies showing directed movement towards a calling male. The two-choice laboratory experiment was used (active versus quiet speaker) to analyze behavior of gobies in response to sound stimuli. When conspecific male spawning sounds were played, gobies moved in a direct path to the active speaker, suggesting true localization to sound. Of the animals that responded to conspecific sounds, 85% of the females and 66% of the males moved directly to the sound source. Auditory playback of natural and synthetic sounds showed differential behavioral specificity. Of gobies that responded, 89% were attracted to the speaker playing Padogobius martensii sounds, 87% to 100 Hz tone, 62% to white noise, and 56% to Gobius niger sounds. Swimming speed, as well as mean path angle to the speaker, will be presented during the presentation. Results suggest a strong localization of the round goby to a sound source, with some differential sound specificity.

  14. Experiments of multichannel least-square methods for sound field reproduction inside aircraft mock-up: Objective evaluations

    NASA Astrophysics Data System (ADS)

    Gauthier, P.-A.; Camier, C.; Lebel, F.-A.; Pasco, Y.; Berry, A.; Langlois, J.; Verron, C.; Guastavino, C.

    2016-08-01

    Sound environment reproduction of various flight conditions in aircraft mock-ups is a valuable tool for the study, prediction, demonstration and jury testing of interior aircraft sound quality and annoyance. To provide a faithful reproduced sound environment, time, frequency and spatial characteristics should be preserved. Physical sound field reproduction methods for spatial sound reproduction are mandatory to immerse the listener's body in the proper sound fields so that localization cues are recreated at the listener's ears. Vehicle mock-ups pose specific problems for sound field reproduction. Confined spaces, needs for invisible sound sources and very specific acoustical environment make the use of open-loop sound field reproduction technologies such as wave field synthesis (based on free-field models of monopole sources) not ideal. In this paper, experiments in an aircraft mock-up with multichannel least-square methods and equalization are reported. The novelty is the actual implementation of sound field reproduction with 3180 transfer paths and trim panel reproduction sources in laboratory conditions with a synthetic target sound field. The paper presents objective evaluations of reproduced sound fields using various metrics as well as sound field extrapolation and sound field characterization.

  15. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.

  16. Molecular Dynamics Studies of CaAl2Si2O8 Liquid to 800 GPa: An Equation of State (EOS), Hugoniot Analysis, and Thermodynamic Model Over the Temperature-Range 2500-5000 K (Invited)

    NASA Astrophysics Data System (ADS)

    Ghiorso, M. S.; Cutler, I.; Nevins, D.; Spera, F. J.

    2009-12-01

    Equilibrium Molecular Dynamics (MD) simulations are applied to molten CaAl2Si2O8 using a Coulomb-Born-Mayer-van der Waals pair potential form and parameters from Matsui (1996, GRL 23:395). Experiments were performed in the microcanonical ensemble (NEV) using 8000 atoms, a 1 fs time step, and simulation durations of 50 ps. Computations were carried out every 500 K over a temperature range of 2500 - 5000 K along 21 isochores to yield a grid of 141 state points spanning the pressure range 0-800 GPa. Atomic coordination statistics are determined by counting nearest neighbor configurations up to a cutoff distance defined by the first minima of the pair correlation function. A thermodynamic model (and EOS) for this liquid is developed from the MD simulation results by combining the Rosenfeld-Tarazona (1998, Mol Phys 95:141) potential energy-temperature scaling law with the Universal EOS (1986, J Phys C, 19:L467). The resulting model is used to estimate thermodynamic properties and the sound speed of the liquid near zero pressure and these compare favorably to physical experiments. By contrast to our previous work (DOI: 10.1016/j.gca.2009.08.012), which utilized an alternate pair potential, no structural phase transition is required to thermodynamically model these results — a single parameterization describes the properties of the system over the entire range of ~4-fold compression. Our analysis indicates the existence of polyamorphism with a critical point at ~0.6 GPa and ~3000 K. A modeled Hugoniot is consistent with the low-pressure shock experiments of Rigden et al. (JGR 94:9508) but inconsistent with the more recent measurements of Asimow and Ahrens (EOS 89,MR32B-04). The latter experiments are matched with a model isentrope emanating from just above the zero pressure melting point of anorthite, which also coincides with the initial conditions of the shock. The MD simulations reveal that near zero-pressure, CaAl2Si2O8 liquid is dominated by Si in tetrahedral coordination with oxygen. Pentahedral coordinated Si attains a maximum at ~25 GPa, and at higher pressures octahedral and higher-order O-Si structures dominate.

  17. Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique

    NASA Astrophysics Data System (ADS)

    Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven

    2017-11-01

    Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.

  18. A survey of noninteractive zero knowledge proof system and its applications.

    PubMed

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.

  19. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    PubMed

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics.

  20. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  1. 77 FR 37318 - Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ...-AA00 Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort... Coast Guard will enforce a Safety Zone for the Sound of Independence event in the Santa Rosa Sound, Fort... during the Sound of Independence. During the enforcement period, entry into, transiting or anchoring in...

  2. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  3. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  4. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  5. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  6. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  7. Behaviours Associated with Acoustic Communication in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Longrie, Nicolas; Poncin, Pascal; Denoël, Mathieu; Gennotte, Vincent; Delcourt, Johann; Parmentier, Eric

    2013-01-01

    Background Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species. Methodology/Principal Findings Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae. Conclusion/Significance Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa. PMID:23620756

  8. High-fidelity large eddy simulation for supersonic jet noise prediction

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the wall model treatment are then utilized to simulate military-style nozzles with and without beveling of the nozzle exit plane. Experiments of beveled converging-diverging nozzles have found reduced noise levels for some observer locations. Predicting the noise for these geometries provides a good initial test of the overall methodology for a more complex nozzle. The jet flowfield and acoustic data are analyzed and compared to similar experiments and excellent agreement is found. Potential areas of improvement are discussed for future research.

  9. Meteorological effects on long-range outdoor sound propagation

    NASA Technical Reports Server (NTRS)

    Klug, Helmut

    1990-01-01

    Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.

  10. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    DTIC Science & Technology

    2012-06-01

    installations for Energy, Waste, and Water. This means Fort Bliss will strive to become Net Zero Energy, Net Zero Waste , and Net Zero Water in the coming...years. Net Zero Energy requires Fort Bliss to produce as much energy on-installation as it consumes annually. Net Zero Waste aims to reduce, reuse...become Net Zero Energy and Net Zero Waste by 2020. A WtE facility actually goes well beyond Fort Bliss’ Net Zero Energy mission. That mission

  11. Structural zeroes and zero-inflated models.

    PubMed

    He, Hua; Tang, Wan; Wang, Wenjuan; Crits-Christoph, Paul

    2014-08-01

    In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of 'structural zeroes' that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes (responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

  12. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution

    PubMed Central

    Imai, Mutsumi; Kita, Sotaro

    2014-01-01

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. PMID:25092666

  13. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  14. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  15. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero... samples. Proceed as follows: (1) Adjust analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero grade nitrogen. (3) Calibrate on each normally used operating range...

  16. 33 CFR 154.2181 - Alternative testing program-Test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CE test must check the calibrated range of each analyzer using a lower (zero) and upper (span... instrument, R = reference value of zero or high-level calibration gas introduced into the monitoring system... Difference Zero Span 1-Zero 1-Span 2-Zero 2-Span 3-Zero 3-Span Mean Difference = Calibration Error = % % (3...

  17. Psychophysiological acoustics of indoor sound due to traffic noise during sleep

    NASA Astrophysics Data System (ADS)

    Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.

    1986-10-01

    The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.

  18. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  19. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.

    PubMed

    Tervaniemi, M; Kruck, S; De Baene, W; Schröger, E; Alter, K; Friederici, A D

    2009-10-01

    By recording auditory electrical brain potentials, we investigated whether the basic sound parameters (frequency, duration and intensity) are differentially encoded among speech vs. music sounds by musicians and non-musicians during different attentional demands. To this end, a pseudoword and an instrumental sound of comparable frequency and duration were presented. The accuracy of neural discrimination was tested by manipulations of frequency, duration and intensity. Additionally, the subjects' attentional focus was manipulated by instructions to ignore the sounds while watching a silent movie or to attentively discriminate the different sounds. In both musicians and non-musicians, the pre-attentively evoked mismatch negativity (MMN) component was larger to slight changes in music than in speech sounds. The MMN was also larger to intensity changes in music sounds and to duration changes in speech sounds. During attentional listening, all subjects more readily discriminated changes among speech sounds than among music sounds as indexed by the N2b response strength. Furthermore, during attentional listening, musicians displayed larger MMN and N2b than non-musicians for both music and speech sounds. Taken together, the data indicate that the discriminative abilities in human audition differ between music and speech sounds as a function of the sound-change context and the subjective familiarity of the sound parameters. These findings provide clear evidence for top-down modulatory effects in audition. In other words, the processing of sounds is realized by a dynamically adapting network considering type of sound, expertise and attentional demands, rather than by a strictly modularly organized stimulus-driven system.

  20. Is 9 louder than 1? Audiovisual cross-modal interactions between number magnitude and judged sound loudness.

    PubMed

    Alards-Tomalin, Doug; Walker, Alexander C; Shaw, Joshua D M; Leboe-McGowan, Launa C

    2015-09-01

    The cross-modal impact of number magnitude (i.e. Arabic digits) on perceived sound loudness was examined. Participants compared a target sound's intensity level against a previously heard reference sound (which they judged as quieter or louder). Paired with each target sound was a task irrelevant Arabic digit that varied in magnitude, being either small (1, 2, 3) or large (7, 8, 9). The degree to which the sound and the digit were synchronized was manipulated, with the digit and sound occurring simultaneously in Experiment 1, and the digit preceding the sound in Experiment 2. Firstly, when target sounds and digits occurred simultaneously, sounds paired with large digits were categorized as loud more frequently than sounds paired with small digits. Secondly, when the events were separated, number magnitude ceased to bias sound intensity judgments. In Experiment 3, the events were still separated, however the participants held the number in short-term memory. In this instance the bias returned. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Creating wavelet-based models for real-time synthesis of perceptually convincing environmental sounds

    NASA Astrophysics Data System (ADS)

    Miner, Nadine Elizabeth

    1998-09-01

    This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.

  2. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    PubMed Central

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  3. A Survey of Noninteractive Zero Knowledge Proof System and Its Applications

    PubMed Central

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions. PMID:24883407

  4. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  5. ZERO-G - Crippen, Robert L.

    NASA Image and Video Library

    1979-04-03

    Zero-gravity experiments in KC-135 conducted by John Young, Robert L. Crippen, Joseph Kerwin, and Margaret Seddon. 1. Kerwin, Joseph - Zero-G 2. Seddon, Margaret - Zero-G 3. Young, John - Zero-G 4. Aircraft - KC-135

  6. 75 FR 69429 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits tariff filing per 35.12: PSE Original...: ER11-2008-000. Applicants: Puget Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits... Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits tariff filing per 35.12: PSE Original...

  7. 40 CFR Table B-5 to Subpart B of... - Symbols and Abbreviations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—First analyzer zero reading for the 24ZD test. L 2—Second analyzer zero reading for the 24ZD test. n...' n—Adjusted analyzer zero reading on the n-the test day for the 24ZD test. ZD—Zero drift. 12ZD—12-hour zero drift. 24ZD—24-hour zero drift. ...

  8. 40 CFR Table B-5 to Subpart B of... - Symbols and Abbreviations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—First analyzer zero reading for the 24ZD test. L 2—Second analyzer zero reading for the 24ZD test. n...' n—Adjusted analyzer zero reading on the n-the test day for the 24ZD test. ZD—Zero drift. 12ZD—12-hour zero drift. 24ZD—24-hour zero drift. ...

  9. 40 CFR Table B-5 to Subpart B of... - Symbols and Abbreviations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...—First analyzer zero reading for the 24ZD test. L 2—Second analyzer zero reading for the 24ZD test. n...' n—Adjusted analyzer zero reading on the n-the test day for the 24ZD test. ZD—Zero drift. 12ZD—12-hour zero drift. 24ZD—24-hour zero drift. ...

  10. A review on models for count data with extra zeros

    NASA Astrophysics Data System (ADS)

    Zamri, Nik Sarah Nik; Zamzuri, Zamira Hasanah

    2017-04-01

    Typically, the zero inflated models are usually used in modelling count data with excess zeros. The existence of the extra zeros could be structural zeros or random which occur by chance. These types of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences. As found in the literature, the most popular zero inflated models used are zero inflated Poisson and zero inflated negative binomial. Recently, more complex models have been developed to account for overdispersion and unobserved heterogeneity. In addition, more extended distributions are also considered in modelling data with this feature. In this paper, we review related literature, provide a recent development and summary on models for count data with extra zeros.

  11. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds

    PubMed Central

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: “metallic and unpleasant” and “powerful”. LAeq had a strong relationship with “powerful impression”, calculated sharpness was positively related to “metallic impression”, and “unpleasant impression” was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics. PMID:27462903

  12. Vocal Imitations of Non-Vocal Sounds

    PubMed Central

    Houix, Olivier; Voisin, Frédéric; Misdariis, Nicolas; Susini, Patrick

    2016-01-01

    Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long-term sound representations, and sets the stage for the development of human-computer interfaces based on vocalizations. PMID:27992480

  13. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  14. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  15. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  16. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  17. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  18. Effects of capacity limits, memory loss, and sound type in change deafness.

    PubMed

    Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S

    2017-11-01

    Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.

  19. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.

    PubMed

    Imai, Mutsumi; Kita, Sotaro

    2014-09-19

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Continuous robust sound event classification using time-frequency features and deep learning

    PubMed Central

    Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478

  1. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation

    PubMed Central

    Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631

  2. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    PubMed

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  3. Continuous robust sound event classification using time-frequency features and deep learning.

    PubMed

    McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.

  4. Psychoacoustical evaluation of natural and urban sounds in soundscapes.

    PubMed

    Yang, Ming; Kang, Jian

    2013-07-01

    Among various sounds in the environment, natural sounds, such as water sounds and birdsongs, have proven to be highly preferred by humans, but the reasons for these preferences have not been thoroughly researched. This paper explores differences between various natural and urban environmental sounds from the viewpoint of objective measures, especially psychoacoustical parameters. The sound samples used in this study include the recordings of single sound source categories of water, wind, birdsongs, and urban sounds including street music, mechanical sounds, and traffic noise. The samples are analyzed with a number of existing psychoacoustical parameter algorithmic models. Based on hierarchical cluster and principal components analyses of the calculated results, a series of differences has been shown among different sound types in terms of key psychoacoustical parameters. While different sound categories cannot be identified using any single acoustical and psychoacoustical parameter, identification can be made with a group of parameters, as analyzed with artificial neural networks and discriminant functions in this paper. For artificial neural networks, correlations between network predictions and targets using the average and standard deviation data of psychoacoustical parameters as inputs are above 0.95 for the three natural sound categories and above 0.90 for the urban sound category. For sound identification/classification, key parameters are fluctuation strength, loudness, and sharpness.

  5. 40 CFR 141.52 - Maximum contaminant level goals for microbiological contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lamblia zero (2) Viruses zero (3) Legionella zero (4) Total coliforms (including fecal coliforms and Escherichia coli) zero. (5) Cryptosporidium zero. [54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19...

  6. 40 CFR 141.52 - Maximum contaminant level goals for microbiological contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lamblia zero (2) Viruses zero (3) Legionella zero (4) Total coliforms (including fecal coliforms and Escherichia coli) zero. (5) Cryptosporidium zero. [54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19...

  7. 40 CFR 141.52 - Maximum contaminant level goals for microbiological contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lamblia zero (2) Viruses zero (3) Legionella zero (4) Total coliforms (including fecal coliforms and Escherichia coli) zero. (5) Cryptosporidium zero. [54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19...

  8. Assessment and improvement of sound quality in cochlear implant users

    PubMed Central

    Caldwell, Meredith T.; Jiam, Nicole T.

    2017-01-01

    Objectives Cochlear implants (CIs) have successfully provided speech perception to individuals with sensorineural hearing loss. Recent research has focused on more challenging acoustic stimuli such as music and voice emotion. The purpose of this review is to evaluate and describe sound quality in CI users with the purposes of summarizing novel findings and crucial information about how CI users experience complex sounds. Data Sources Here we review the existing literature on PubMed and Scopus to present what is known about perceptual sound quality in CI users, discuss existing measures of sound quality, explore how sound quality may be effectively studied, and examine potential strategies of improving sound quality in the CI population. Results Sound quality, defined here as the perceived richness of an auditory stimulus, is an attribute of implant‐mediated listening that remains poorly studied. Sound quality is distinct from appraisal, which is generally defined as the subjective likability or pleasantness of a sound. Existing studies suggest that sound quality perception in the CI population is limited by a range of factors, most notably pitch distortion and dynamic range compression. Although there are currently very few objective measures of sound quality, the CI‐MUSHRA has been used as a means of evaluating sound quality. There exist a number of promising strategies to improve sound quality perception in the CI population including apical cochlear stimulation, pitch tuning, and noise reduction processing strategies. Conclusions In the published literature, sound quality perception is severely limited among CI users. Future research should focus on developing systematic, objective, and quantitative sound quality metrics and designing therapies to mitigate poor sound quality perception in CI users. Level of Evidence NA PMID:28894831

  9. On the effectiveness of vocal imitations and verbal descriptions of sounds.

    PubMed

    Lemaitre, Guillaume; Rocchesso, Davide

    2014-02-01

    Describing unidentified sounds with words is a frustrating task and vocally imitating them is often a convenient way to address the issue. This article reports on a study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds. The stimuli included mechanical and synthesized sounds and were selected on the basis of participants' confidence in identifying the cause of the sounds, ranging from easy-to-identify to unidentifiable sounds. The study used a selection of vocal imitations and verbalizations deemed adequate descriptions of the referent sounds. These descriptions were used in a nine-alternative forced-choice experiment: Participants listened to a description and picked one sound from a list of nine possible referent sounds. Results showed that recognition based on verbalizations was maximally effective when the referent sounds were identifiable. Recognition accuracy with verbalizations dropped when identifiability of the sounds decreased. Conversely, recognition accuracy with vocal imitations did not depend on the identifiability of the referent sounds and was as high as with the best verbalizations. This shows that vocal imitations are an effective means of representing and communicating sounds and suggests that they could be used in a number of applications.

  10. Tuning the cognitive environment: Sound masking with 'natural' sounds in open-plan offices

    NASA Astrophysics Data System (ADS)

    DeLoach, Alana

    With the gain in popularity of open-plan office design and the engineering efforts to achieve acoustical comfort for building occupants, a majority of workers still report dissatisfaction in their workplace environment. Office acoustics influence organizational effectiveness, efficiency, and satisfaction through meeting appropriate requirements for speech privacy and ambient sound levels. Implementing a sound masking system is one tried-and-true method of achieving privacy goals. Although each sound masking system is tuned for its specific environment, the signal -- random steady state electronic noise, has remained the same for decades. This research work explores how `natural' sounds may be used as an alternative to this standard masking signal employed so ubiquitously in sound masking systems in the contemporary office environment. As an unobtrusive background sound, possessing the appropriate spectral characteristics, this proposed use of `natural' sounds for masking challenges the convention that masking sounds should be as meaningless as possible. Through the pilot study presented in this work, we hypothesize that `natural' sounds as sound maskers will be as effective at masking distracting background noise as the conventional masking sound, will enhance cognitive functioning, and increase participant (worker) satisfaction.

  11. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  12. Zero-truncated negative binomial - Erlang distribution

    NASA Astrophysics Data System (ADS)

    Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana

    2017-11-01

    The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.

  13. A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene

    PubMed Central

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Tian, He; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging. PMID:28335239

  14. An integrated experimental and computational approach to material selection for sound proof thermally insulted enclosure of a power generation system

    NASA Astrophysics Data System (ADS)

    Waheed, R.; Tarar, W.; Saeed, H. A.

    2016-08-01

    Sound proof canopies for diesel power generators are fabricated with a layer of sound absorbing material applied to all the inner walls. The physical properties of the majority of commercially available sound proofing materials reveal that a material with high sound absorption coefficient has very low thermal conductivity. Consequently a good sound absorbing material is also a good heat insulator. In this research it has been found through various experiments that ordinary sound proofing materials tend to rise the inside temperature of sound proof enclosure in certain turbo engines by capturing the heat produced by engine and not allowing it to be transferred to atmosphere. The same phenomenon is studied by creating a finite element model of the sound proof enclosure and performing a steady state and transient thermal analysis. The prospects of using aluminium foam as sound proofing material has been studied and it is found that inside temperature of sound proof enclosure can be cut down to safe working temperature of power generator engine without compromise on sound proofing.

  15. Prediction on the Enhancement of the Impact Sound Insulation to a Floating Floor with Resilient Interlayer

    NASA Astrophysics Data System (ADS)

    Huang, Xianfeng; Meng, Yao; Huang, Riming

    2017-10-01

    This paper describes a theoretical method for predicting the improvement of the impact sound insulation to a floating floor with the resilient interlayer. Statistical energy analysis (SEA) model, which is skilful in calculating the floor impact sound, is set up for calculating the reduction in impact sound pressure level in downstairs room. The sound transmission paths which include direct path and flanking paths are analyzed to find the dominant one; the factors that affect impact sound reduction for a floating floor are explored. Then, the impact sound level in downstairs room is determined and comparisons between predicted and measured data are conducted. It is indicated that for the impact sound transmission across a floating floor, the flanking path impact sound level contribute tiny influence on overall sound level in downstairs room, and a floating floor with low stiffness interlayer exhibits favorable sound insulation on direct path. The SEA approach applies to the floating floors with resilient interlayers, which are experimentally verified, provides a guidance in sound insulation design.

  16. Effect of real-world sounds on protein crystallization.

    PubMed

    Zhang, Chen-Yan; Liu, Yue; Tian, Xu-Hua; Liu, Wen-Jing; Li, Xiao-Yu; Yang, Li-Xue; Jiang, Han-Jun; Han, Chong; Chen, Ke-An; Yin, Da-Chuan

    2018-06-01

    Protein crystallization is sensitive to the environment, while audible sound, as a physical and environmental factor during the entire process, is always ignored. We have previously reported that protein crystallization can be affected by a computer-generated monotonous sound with fixed frequency and amplitude. However, real-world sounds are not so simple but are complicated by parameters (frequency, amplitude, timbre, etc.) that vary over time. In this work, from three sound categories (music, speech, and environmental sound), we selected 26 different sounds and evaluated their effects on protein crystallization. The correlation between the sound parameters and the crystallization success rate was studied mathematically. The results showed that the real-world sounds, similar to the artificial monotonous sounds, could not only affect protein crystallization, but also improve crystal quality. Crystallization was dependent not only on the frequency, amplitude, volume, irradiation time, and overall energy of the sounds but also on their spectral characteristics. Based on these results, we suggest that intentionally applying environmental sound may be a simple and useful tool to promote protein crystallization. Copyright © 2018. Published by Elsevier B.V.

  17. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics.

    PubMed

    Sun, Xiuwen; Li, Xiaoling; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants' cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena.

  18. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics

    PubMed Central

    Sun, Xiuwen; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants’ cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena. PMID:29507834

  19. Effectiveness of an acoustical product in reducing high-frequency sound within unoccupied incubators.

    PubMed

    Kellam, Barbara; Bhatia, Jatinder

    2009-08-01

    Few noise measurement studies in the neonatal intensive care unit have reported sound frequencies within incubators. Sound frequencies within incubators are markedly different from sound frequencies within the gravid uterus. This article reports the results of sound spectral analysis (SSA) within unoccupied incubators under control and treatment conditions. SSA indicated that acoustical foam panels (treatment condition) markedly reduced sound frequencies > or =500 Hz when compared with the control condition. The main findings of this study (a) illustrate the need to monitor high-frequency sound within incubators and (b) indicate one method to reduce atypical sound exposure within incubators.

  20. Development of a student-centered instrument to assess middle school students' conceptual understanding of sound

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2014-06-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound has material properties, and sound has process properties. The final SCII consists of 71 statements that respondents rate as either true or false and also indicate their confidence on a five-point scale. Administration to 355 middle school students resulted in a Cronbach alpha of 0.906, suggesting a high reliability. In addition, the average percentage of students' answers to statements that associate sound with material properties is significantly higher than the average percentage of statements associating sound with process properties (p <0.001). The SCII is a valid and reliable tool that can be used to determine students' conceptions of sound.

  1. Neighing, barking, and drumming horses-object related sounds help and hinder picture naming.

    PubMed

    Mädebach, Andreas; Wöhner, Stefan; Kieseler, Marie-Luise; Jescheniak, Jörg D

    2017-09-01

    The study presented here investigated how environmental sounds influence picture naming. In a series of four experiments participants named pictures (e.g., the picture of a horse) while hearing task-irrelevant sounds (e.g., neighing, barking, or drumming). Experiments 1 and 2 established two findings, facilitation from congruent sounds (e.g., picture: horse, sound: neighing) and interference from semantically related sounds (e.g., sound: barking), both relative to unrelated sounds (e.g., sound: drumming). Experiment 3 replicated the effects in a situation in which participants were not familiarized with the sounds prior to the experiment. Experiment 4 replicated the congruency facilitation effect, but showed that semantic interference was not obtained with distractor sounds which were not associated with target pictures (i.e., were not part of the response set). The general pattern of facilitation from congruent sound distractors and interference from semantically related sound distractors resembles the pattern commonly observed with distractor words. This parallelism suggests that the underlying processes are not specific to either distractor words or distractor sounds but instead reflect general aspects of semantic-lexical selection in language production. The results indicate that language production theories need to include a competitive selection mechanism at either the lexical processing stage, or the prelexical processing stage, or both. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Investigating emotional contagion in dogs (Canis familiaris) to emotional sounds of humans and conspecifics.

    PubMed

    Huber, Annika; Barber, Anjuli L A; Faragó, Tamás; Müller, Corsin A; Huber, Ludwig

    2017-07-01

    Emotional contagion, a basic component of empathy defined as emotional state-matching between individuals, has previously been shown in dogs even upon solely hearing negative emotional sounds of humans or conspecifics. The current investigation further sheds light on this phenomenon by directly contrasting emotional sounds of both species (humans and dogs) as well as opposed valences (positive and negative) to gain insights into intra- and interspecies empathy as well as differences between positively and negatively valenced sounds. Different types of sounds were played back to measure the influence of three dimensions on the dogs' behavioural response. We found that dogs behaved differently after hearing non-emotional sounds of their environment compared to emotional sounds of humans and conspecifics ("Emotionality" dimension), but the subjects responded similarly to human and conspecific sounds ("Species" dimension). However, dogs expressed more freezing behaviour after conspecific sounds, independent of the valence. Comparing positively with negatively valenced sounds of both species ("Valence" dimension), we found that, independent of the species from which the sound originated, dogs expressed more behavioural indicators for arousal and negatively valenced states after hearing negative emotional sounds. This response pattern indicates emotional state-matching or emotional contagion for negative sounds of humans and conspecifics. It furthermore indicates that dogs recognized the different valences of the emotional sounds, which is a promising finding for future studies on empathy for positive emotional states in dogs.

  3. Investigation of genesis of gallop sounds in dogs by quantitative phonocardiography and digital frequency analysis.

    PubMed

    Aubert, A E; Denys, B G; Meno, F; Reddy, P S

    1985-05-01

    Several investigators have noted external gallop sounds to be of higher amplitude than their corresponding internal sounds (S3 and S4). In this study we hoped to determine if S3 and S4 are transmitted in the same manner as S1. In 11 closed-chest dogs, external (apical) and left ventricular pressures and sounds were recorded simultaneously with transducers with identical sensitivity and frequency responses. Volume and pressure overload and positive and negative inotropic drugs were used to generate gallop sounds. Recordings were made in the control state and after the various interventions. S3 and S4 were recorded in 17 experiments each. The amplitude of the external S1 was uniformly higher than that of internal S1 and internal gallop sounds were inconspicuous. With use of Fourier transforms, the gain function was determined by comparing internal to external S1. By inverse transform, the amplitude of the internal gallop sounds was predicted from external sounds. The internal sounds of significant amplitude were predicted in many instances, but the actual recordings showed no conspicuous sounds. The absence of internal gallop sounds of expected amplitude as calculated from the external gallop sounds and the gain function derived from the comparison of internal and external S1 make it very unlikely that external gallop sounds are derived from internal sounds.

  4. Activation of auditory cortex by anticipating and hearing emotional sounds: an MEG study.

    PubMed

    Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina

    2013-01-01

    To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period.

  5. Activation of Auditory Cortex by Anticipating and Hearing Emotional Sounds: An MEG Study

    PubMed Central

    Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina

    2013-01-01

    To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period. PMID:24278270

  6. Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar.

    PubMed

    Bader, Rolf

    2012-01-01

    Two recently built vihuelas, quasi-replicas of the Spanish Renaissance guitar, one with a small body and one sound hole and one with a large body with five sound holes, together with a classical guitar are investigated. Frequency dependent radiation strengths are measured using a 128 microphone array, back-propagating the frequency dependent sound field upon the body surface. All three instruments have a strong sound hole radiation within the low frequency range. Here the five tone holes vihuela has a much wider frequency region of strong sound hole radiation up to about 500 Hz, whereas the single hole instruments only have strong sound hole radiations up to about 300 Hz due to the enlarged radiation area of the sound holes. The strong broadband radiation of the five sound hole vihuela up to about 500 Hz is also caused by the sound hole phases, showing very consistent in-phase relations up to this frequency range. Also the radiation strength of the sound holes placed nearer to the center of the sound box are much stronger than those near the ribs, pointing to a strong position dependency of sound hole to radiation strength. The Helmholtz resonance frequency of the five sound hole vihuela is influenced by this difference in radiation strength but not by the rosettas, which only have a slight effect on the Helmholtz frequency. © 2012 Acoustical Society of America.

  7. Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations

    NASA Astrophysics Data System (ADS)

    Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min

    2018-02-01

    In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.

  8. English Sounds and Their Spellings; a Handbook for Teachers and Students. Crowell Contemporary English Series.

    ERIC Educational Resources Information Center

    Allen, Robert L.; And Others

    This handbook introduces the important correspondences existing between English sounds and English spelling patterns. The lessons present the vowel sounds, one by one, along with systematically selected consonant sounds, and show how each sound or combination of sounds is usually spelled in English words. Irregularly spelled words are introduced…

  9. Nearshore Birds in Puget Sound

    DTIC Science & Technology

    2006-05-01

    Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Kriete, B. 2007. Orcas in Puget Sound . Puget Sound Near- shore...Technical Report 2006-05 Puget Sound Nearshore Partnership I Nearshore Birds in Puget Sound Prepared in...support of the Puget Sound Nearshore Partnership Joseph B. Buchanan Washington Department of Fish and Wildlife Technical Report 2006-05 ii

  10. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  11. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.

    PubMed

    Polat, Hüseyin; Güler, Inan

    2004-12-01

    Listening to various lung sounds has proven to be an important diagnostic tool for detecting and monitoring certain types of lung diseases. In this study a computer-based system has been designed for easy measurement and analysis of lung sound using the software package DasyLAB. The designed system presents the following features: it is able to digitally record the lung sounds which are captured with an electronic stethoscope plugged to a sound card on a portable computer, display the lung sound waveform for auscultation sites, record the lung sound into the ASCII format, acoustically reproduce the lung sound, edit and print the sound waveforms, display its time-expanded waveform, compute the Fast Fourier Transform (FFT), and display the power spectrum and spectrogram.

  12. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  13. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  14. Development of an ICT-Based Air Column Resonance Learning Media

    NASA Astrophysics Data System (ADS)

    Purjiyanta, Eka; Handayani, Langlang; Marwoto, Putut

    2016-08-01

    Commonly, the sound source used in the air column resonance experiment is the tuning fork having disadvantage of unoptimal resonance results due to the sound produced which is getting weaker. In this study we made tones with varying frequency using the Audacity software which were, then, stored in a mobile phone as a source of sound. One advantage of this sound source is the stability of the resulting sound enabling it to produce the same powerful sound. The movement of water in a glass tube mounted on the tool resonance and the tone sound that comes out from the mobile phone were recorded by using a video camera. Sound resonances recorded were first, second, and third resonance, for each tone frequency mentioned. The resulting sound stays longer, so it can be used for the first, second, third and next resonance experiments. This study aimed to (1) explain how to create tones that can substitute tuning forks sound used in air column resonance experiments, (2) illustrate the sound wave that occurred in the first, second, and third resonance in the experiment, and (3) determine the speed of sound in the air. This study used an experimental method. It was concluded that; (1) substitute tones of a tuning fork sound can be made by using the Audacity software; (2) the form of sound waves that occured in the first, second, and third resonance in the air column resonance can be drawn based on the results of video recording of the air column resonance; and (3) based on the experiment result, the speed of sound in the air is 346.5 m/s, while based on the chart analysis with logger pro software, the speed of sound in the air is 343.9 ± 0.3171 m/s.

  15. Material sound source localization through headphones

    NASA Astrophysics Data System (ADS)

    Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada

    2012-09-01

    In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.

  16. Neonatal incubators: a toxic sound environment for the preterm infant?*.

    PubMed

    Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth

    2012-11-01

    High sound pressure levels may be harmful to the maturing newborn. Current guidelines suggest that the sound pressure levels within a neonatal intensive care unit should not exceed 45 dB(A). It is likely that environmental noise as well as the noise generated by the incubator fan and respiratory equipment may contribute to the total sound pressure levels. Knowledge of the contribution of each component and source is important to develop effective strategies to reduce noise within the incubator. The objectives of this study were to determine the sound levels, sound spectra, and major sources of sound within a modern neonatal incubator (Giraffe Omnibed; GE Healthcare, Helsinki, Finland) using a sound simulation study to replicate the conditions of a preterm infant undergoing high-frequency jet ventilation (Life Pulse, Bunnell, UT). Using advanced sound data acquisition and signal processing equipment, we measured and analyzed the sound level at a dummy infant's ear and at the head level outside the enclosure. The sound data time histories were digitally acquired and processed using a digital Fast Fourier Transform algorithm to provide spectra of the sound and cumulative sound pressure levels (dBA). The simulation was done with the incubator cooling fan and ventilator switched on or off. In addition, tests were carried out with the enclosure sides closed and hood down and then with the enclosure sides open and the hood up to determine the importance of interior incubator reverberance on the interior sound levels With all the equipment off and the hood down, the sound pressure levels were 53 dB(A) inside the incubator. The sound pressure levels increased to 68 dB(A) with all equipment switched on (approximately 10 times louder than recommended). The sound intensity was 6.0 × 10(-8) watts/m(2); this sound level is roughly comparable with that generated by a kitchen exhaust fan on high. Turning the ventilator off reduced the overall sound pressure levels to 64 dB(A) and the sound pressure levels in the low-frequency band of 0 to 100 Hz were reduced by 10 dB(A). The incubator fan generated tones at 200, 400, and 600 Hz that raised the sound level by approximately 2 dB(A)-3 dB(A). Opening the enclosure (with all equipment turned on) reduced the sound levels above 50 Hz by reducing the revereberance within the enclosure. The sound levels, especially at low frequencies, within a modern incubator may reach levels that are likely to be harmful to the developing newborn. Much of the noise is at low frequencies and thus difficult to reduce by conventional means. Therefore, advanced forms of noise control are needed to address this issue.

  17. 33 CFR 67.10-40 - Sound signals authorized for use prior to January 1, 1973.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and 67.10-10, if the sound signal has a minimum sound pressure level as specified in Table A of... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sound signals authorized for use... STRUCTURES General Requirements for Sound signals § 67.10-40 Sound signals authorized for use prior to...

  18. 33 CFR 67.10-15 - Approval of sound signals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...

  19. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    ERIC Educational Resources Information Center

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  20. 75 FR 16700 - Special Local Regulation, Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...-AA08 Special Local Regulation, Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain... permanent Special Local Regulation on the navigable waters of Long Island Sound between Port Jefferson, NY and Captain's Cove Seaport, Bridgeport, CT due to the annual Swim Across the Sound event. The proposed...

  1. 75 FR 34634 - Special Local Regulation; Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-AA08 Special Local Regulation; Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain... Guard is establishing a permanent Special Local Regulation on the navigable waters of Long Island Sound... Sound event. This special local regulation is necessary to provide for the safety of life by protecting...

  2. 33 CFR 67.10-15 - Approval of sound signals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...

  3. 33 CFR 167.1322 - In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...

  4. 33 CFR 167.1322 - In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...

  5. 33 CFR 167.1322 - In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...

  6. Dr. Seuss's Sound Words: Playing with Phonics and Spelling.

    ERIC Educational Resources Information Center

    Gardner, Traci

    Boom! Br-r-ring! Cluck! Moo!--exciting sounds are everywhere. Whether visiting online sites that play sounds or taking a "sound hike," ask your students to notice the sounds they hear, then write their own book, using sound words, based on Dr. Seuss's "Mr. Brown Can MOO! Can You?" During the three 45-minute sessions, grade K-2…

  7. 33 CFR 67.10-15 - Approval of sound signals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...

  8. 33 CFR 67.10-15 - Approval of sound signals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...

  9. 33 CFR 67.10-15 - Approval of sound signals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...

  10. 33 CFR 167.1322 - In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...

  11. 33 CFR 100.121 - Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport, Bridgeport, CT. 100.121 Section 100.121... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.121 Swim Across the Sound, Long Island Sound, Port Jefferson, NY...

  12. Sound absorption of metallic sound absorbers fabricated via the selective laser melting process

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan

    2017-01-01

    The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.

  13. WODA Technical Guidance on Underwater Sound from Dredging.

    PubMed

    Thomsen, Frank; Borsani, Fabrizio; Clarke, Douglas; de Jong, Christ; de Wit, Pim; Goethals, Fredrik; Holtkamp, Martine; Martin, Elena San; Spadaro, Philip; van Raalte, Gerard; Victor, George Yesu Vedha; Jensen, Anders

    2016-01-01

    The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic biota and advice on underwater sound monitoring procedures. The paper follows a risk-based approach and provides guidance for standardization of acoustic terminology and methods for data collection and analysis. Furthermore, the literature on dredging-related sounds and the effects of dredging sounds on marine life is surveyed and guidance on the management of dredging-related sound risks is provided.

  14. Crew Training - STS-30/61B (Zero-G)

    NASA Image and Video Library

    1985-08-21

    KC-135 inflight training of the STS-30/61B Crew for suit donning doffing and Zero-G orientation for Rudolfo Neri, Astronaut Mary Cleave, and Ricardo Peralta, Backup Neri. 1. Astronaut Cleave, Mary - Zero-G 2. Neri, Rodolfo - Zero-G 3. Peralta, Ricard - Zero-G

  15. Some aspects of coupling-induced sound absorption in enclosures.

    PubMed

    Sum, K S; Pan, J

    2003-08-01

    It is known that the coupling between a modally reactive boundary structure of an enclosure and the enclosed sound field induces absorption in the sound field. However, the effect of this absorption on the sound-field response can vary significantly, even when material properties of the structure and dimensions of the coupled system are not changed. Although there have been numerous investigations of coupling between a structure and an enclosed sound field, little work has been done in the area of sound absorption induced by the coupling. Therefore, characteristics of the absorption are not well understood and the extent of its influence on the behavior of the sound-field response is not clearly known. In this paper, the coupling of a boundary structure and an enclosed sound field in frequency bands above the low-frequency range is considered. Three aspects of the coupling-induced sound absorption are studied namely, the effects of exciting either the structure or the sound field directly, damping in the uncoupled sound field and damping in the uncoupled structure. The results provide an understanding of some features of the coupling-induced absorption and its significance to the sound-field response.

  16. The influence of company identity on the perception of vehicle sounds.

    PubMed

    Humphreys, Louise; Giudice, Sebastiano; Jennings, Paul; Cain, Rebecca; Song, Wookeun; Dunne, Garry

    2011-04-01

    In order to determine how the interior of a car should sound, automotive manufacturers often rely on obtaining data from individual evaluations of vehicle sounds. Company identity could play a role in these appraisals, particularly when individuals are comparing cars from opposite ends of the performance spectrum. This research addressed the question: does company identity influence the evaluation of automotive sounds belonging to cars of a similar performance level and from the same market segment? Participants listened to car sounds from two competing manufacturers, together with control sounds. Before listening to each sound, participants were presented with the correct company identity for that sound, the incorrect identity or were given no information about the identity of the sound. The results showed that company identity did not influence appraisals of high performance cars belonging to different manufacturers. These results have positive implications for methodologies employed to capture the perceptions of individuals. STATEMENT OF RELEVANCE: A challenge in automotive design is to set appropriate targets for vehicle sounds, relying on understanding subjective reactions of individuals to such sounds. This paper assesses the role of company identity in influencing these subjective reactions and will guide sound evaluation studies, in which the manufacturer is often apparent.

  17. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria.

    PubMed

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-10-01

    We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6-10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound-induced pulsations of the lungs.

  18. Students' Learning of a Generalized Theory of Sound Transmission from a Teaching-Learning Sequence about Sound, Hearing and Health

    NASA Astrophysics Data System (ADS)

    West, Eva; Wallin, Anita

    2013-04-01

    Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.

  19. The Influence of Environmental Sound Training on the Perception of Spectrally Degraded Speech and Environmental Sounds

    PubMed Central

    Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N.

    2012-01-01

    Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients. PMID:22891070

  20. Net Zero Ft. Carson: making a greener Army base

    EPA Science Inventory

    The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...

  1. 31 CFR 363.136 - Do zero-percent certificates of indebtedness pay interest?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Do zero-percent certificates of... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.136 Do zero-percent certificates of indebtedness pay interest? Zero-percent certificates of...

  2. 31 CFR 363.136 - Do zero-percent certificates of indebtedness pay interest?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Do zero-percent certificates of... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.136 Do zero-percent certificates of indebtedness pay interest? Zero-percent certificates of...

  3. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  4. The Syntax of Zero in African American Relative Clauses

    ERIC Educational Resources Information Center

    Sistrunk, Walter

    2012-01-01

    African American relative clauses are distinct from Standard English relative clauses in allowing zero subject relatives and zero appositive relatives. Pesetsky and Torrego's (2003) (P&T) analysis of the subject-nonsubject asymmetry in relative clauses accounts for zero object relatives while restricting zero subject relatives. P&T…

  5. 31 CFR 363.136 - Do zero-percent certificates of indebtedness pay interest?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Do zero-percent certificates of... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.136 Do zero-percent certificates of indebtedness pay interest? Zero-percent certificates of...

  6. 31 CFR 344.10 - What are Special Zero Interest securities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false What are Special Zero Interest...-STATE AND LOCAL GOVERNMENT SERIES Special Zero Interest Securities § 344.10 What are Special Zero Interest securities? Special zero interest securities were issued as certificates of indebtedness and notes...

  7. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  8. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  9. 31 CFR 344.10 - What are Special Zero Interest securities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false What are Special Zero Interest...-STATE AND LOCAL GOVERNMENT SERIES Special Zero Interest Securities § 344.10 What are Special Zero Interest securities? Special zero interest securities were issued as certificates of indebtedness and notes...

  10. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  11. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  12. 31 CFR 363.136 - Do zero-percent certificates of indebtedness pay interest?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Do zero-percent certificates of... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.136 Do zero-percent certificates of indebtedness pay interest? Zero-percent certificates of...

  13. 31 CFR 344.10 - What are Special Zero Interest securities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-STATE AND LOCAL GOVERNMENT SERIES Special Zero Interest Securities § 344.10 What are Special Zero.... The provisions of subpart B of this part (Time Deposit securities) apply except as specified in... zero interest securities available after October 28, 1996, are zero interest Time Deposit securities...

  14. 31 CFR 344.10 - What are Special Zero Interest securities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-STATE AND LOCAL GOVERNMENT SERIES Special Zero Interest Securities § 344.10 What are Special Zero.... The provisions of subpart B of this part (Time Deposit securities) apply except as specified in... zero interest securities available after October 28, 1996, are zero interest Time Deposit securities...

  15. 31 CFR 344.10 - What are Special Zero Interest securities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-STATE AND LOCAL GOVERNMENT SERIES Special Zero Interest Securities § 344.10 What are Special Zero.... The provisions of subpart B of this part (Time Deposit securities) apply except as specified in... zero interest securities available after October 28, 1996, are zero interest Time Deposit securities...

  16. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  17. Zero/zero rotorcraft certification issues. Volume 2: Plenary session presentations

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 2 of three. It presents the operator perspectives (system needs), applicable technology and zero/zero concepts developed in the first 12 months of research of this project.

  18. Zero-block mode decision algorithm for H.264/AVC.

    PubMed

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  19. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  20. Zero modes of the non-relativistic self-dual Chern-Simons vortices on the Toda backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yongsung

    The two-dimensional self-dual equations are the governing equations of the static zero-energy vortex solutions for the non-relativistic, non-Abelian Chern-Simons models. The zero modes of the non-relativistic vortices are examined by index calculation for the self-dual equations. The index for the self-dual equations is zero for non-Abelian groups, but a non-zero index is obtained by the Toda Ansatz which reduces the self-dual equations to the Toda equations. The number of zero modes for the non-relativistic Toda vortices is 2 {Sigma}{sub {alpha},{beta}}{sup r}K{sub {alpha}{beta}}Q{sup {beta}} which is twice the total number of isolated zeros of the vortex functions. For the affine Todamore » system, there are additional adjoint zero modes which give a zero index for the SU(N) group.« less

  1. Zero adjusted models with applications to analysing helminths count data.

    PubMed

    Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N

    2014-11-27

    It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.

  2. The impact of artificial vehicle sounds for pedestrians on driver stress.

    PubMed

    Cottrell, Nicholas D; Barton, Benjamin K

    2012-01-01

    Electrically based vehicles have produced some concern over their lack of sound, but the impact of artificial sounds now being implemented have not been examined in respect to their effects upon the driver. The impact of two different implementations of vehicle sound on driver stress in electric vehicles was examined. A Nissan HEV running in electric vehicle mode was driven by participants in an area of congestion using three sound implementations: (1) no artificial sounds, (2) manually engaged sounds and (3) automatically engaged sounds. Physiological and self-report questionnaire measures were collected to determine stress and acceptance of the automated sound protocol. Driver stress was significantly higher in the manually activated warning condition, compared to both no artificial sounds and automatically engaged sounds. Implications for automation usage and measurement methods are discussed and future research directions suggested. The advent of hybrid- and all-electric vehicles has created a need for artificial warning signals for pedestrian safety that place task demands on drivers. We investigated drivers' stress differences in response to varying conditions of warning signals for pedestrians. Driver stress was lower when noises were automated.

  3. Sound therapy for tinnitus management: practicable options.

    PubMed

    Hoare, Derek J; Searchfield, Grant D; El Refaie, Amr; Henry, James A

    2014-01-01

    The authors reviewed practicable options of sound therapy for tinnitus, the evidence base for each option, and the implications of each option for the patient and for clinical practice. To provide a general guide to selecting sound therapy options in clinical practice. Practicable sound therapy options. Where available, peer-reviewed empirical studies, conference proceedings, and review studies were examined. Material relevant to the purpose was summarized in a narrative. The number of peer-reviewed publications pertaining to each sound therapy option reviewed varied significantly (from none to over 10). Overall there is currently insufficient evidence to support or refute the routine use of individual sound therapy options. It is likely, however, that sound therapy combined with education and counseling is generally helpful to patients. Clinicians need to be guided by the patient's point of care, patient motivation and expectations of sound therapy, and the acceptability of the intervention both in terms of the sound stimuli they are to use and whether they are willing to use sound extensively or intermittently. Clinicians should also clarify to patients the role sound therapy is expected to play in the management plan. American Academy of Audiology.

  4. Recurring patterns in the songs of humpback whales (Megaptera novaeangliae).

    PubMed

    Green, Sean R; Mercado, Eduardo; Pack, Adam A; Herman, Louis M

    2011-02-01

    Humpback whales, unlike most mammalian species, learn new songs as adults. Populations of singers progressively and collectively change the sounds and patterns within their songs throughout their lives and across generations. In this study, humpback whale songs recorded in Hawaii from 1985 to 1995 were analyzed using self-organizing maps (SOMs) to classify the sounds within songs, and to identify sound patterns that were present across multiple years. These analyses supported the hypothesis that recurring, persistent patterns exist within whale songs, and that these patterns are defined at least in part by acoustic relationships between adjacent sounds within songs. Sound classification based on acoustic differences between adjacent sounds yielded patterns within songs that were more consistent from year to year than classifications based on the properties of single sounds. Maintenance of fixed ratios of acoustic modulation across sounds, despite large variations in individual sounds, suggests intrinsic constraints on how sounds change within songs. Such acoustically invariant cues may enable whales to recognize and assess variations in songs despite propagation-related distortion of individual sounds and yearly changes in songs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Emergent categorical representation of natural, complex sounds resulting from the early post-natal sound environment

    PubMed Central

    Bao, Shaowen; Chang, Edward F.; Teng, Ching-Ling; Heiser, Marc A.; Merzenich, Michael M.

    2013-01-01

    Cortical sensory representations can be reorganized by sensory exposure in an epoch of early development. The adaptive role of this type of plasticity for natural sounds in sensory development is, however, unclear. We have reared rats in a naturalistic, complex acoustic environment and examined their auditory representations. We found that cortical neurons became more selective to spectrotemporal features in the experienced sounds. At the neuronal population level, more neurons were involved in representing the whole set of complex sounds, but fewer neurons actually responded to each individual sound, but with greater magnitudes. A comparison of population-temporal responses to the experienced complex sounds revealed that cortical responses to different renderings of the same song motif were more similar, indicating that the cortical neurons became less sensitive to natural acoustic variations associated with stimulus context and sound renderings. By contrast, cortical responses to sounds of different motifs became more distinctive, suggesting that cortical neurons were tuned to the defining features of the experienced sounds. These effects lead to emergent “categorical” representations of the experienced sounds, which presumably facilitate their recognition. PMID:23747304

  6. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  7. Marine Forage Fishes in Puget Sound

    DTIC Science & Technology

    2007-03-01

    Orcas in Puget Sound . Puget Sound Near- shore Partnership Report No. 2007-01. Published by Seattle District, U.S. Army Corps of Engineers, Seattle...Technical Report 2007-03 Marine Forage Fishes in Puget Sound Prepared in support of the Puget Sound Nearshore Partnership Dan Penttila Washington...Forage Fishes in Puget Sound Valued Ecosystem Components Report Series Front cover: Pacific herring (courtesy of Washington Sea Grant). Back cover

  8. Striving for Optimum Noise-Decreasing Strategies in Critical Care: Initial Measurements and Observations.

    PubMed

    Disher, Timothy C; Benoit, Britney; Inglis, Darlene; Burgess, Stacy A; Ellsmere, Barbara; Hewitt, Brenda E; Bishop, Tanya M; Sheppard, Christopher L; Jangaard, Krista A; Morrison, Gavin C; Campbell-Yeo, Marsha L

    To identify baseline sound levels, patterns of sound levels, and potential barriers and facilitators to sound level reduction. The study setting was neonatal and pediatric intensive care units in a tertiary care hospital. Participants were staff in both units and parents of currently hospitalized children or infants. One 24-hour sound measurements and one 4-hour sound measurement linked to observed sound events were conducted in each area of the center's neonatal intensive care unit. Two of each measurement type were conducted in the pediatric intensive care unit. Focus groups were conducted with parents and staff. Transcripts were analyzed with descriptive content analysis and themes were compared against results from quantitative measurements. Sound levels exceeded recommended standards at nearly every time point. The most common code was related to talking. Themes from focus groups included the critical care context and sound levels, effects of sound levels, and reducing sound levels-the way forward. Results are consistent with work conducted in other critical care environments. Staff and families realize that high sound levels can be a problem, but feel that the culture and context are not supportive of a quiet care space. High levels of ambient sound suggest that the largest changes in sound levels are likely to come from design and equipment purchase decisions. L10 and Lmax appear to be the best outcomes for measurement of behavioral interventions.

  9. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...

  10. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...

  11. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...

  12. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...

  13. Newborn infants detect cues of concurrent sound segregation.

    PubMed

    Bendixen, Alexandra; Háden, Gábor P; Németh, Renáta; Farkas, Dávid; Török, Miklós; Winkler, István

    2015-01-01

    Separating concurrent sounds is fundamental for a veridical perception of one's auditory surroundings. Sound components that are harmonically related and start at the same time are usually grouped into a common perceptual object, whereas components that are not in harmonic relation or have different onset times are more likely to be perceived in terms of separate objects. Here we tested whether neonates are able to pick up the cues supporting this sound organization principle. We presented newborn infants with a series of complex tones with their harmonics in tune (creating the percept of a unitary sound object) and with manipulated variants, which gave the impression of two concurrently active sound sources. The manipulated variant had either one mistuned partial (single-cue condition) or the onset of this mistuned partial was also delayed (double-cue condition). Tuned and manipulated sounds were presented in random order with equal probabilities. Recording the neonates' electroencephalographic responses allowed us to evaluate their processing of the sounds. Results show that, in both conditions, mistuned sounds elicited a negative displacement of the event-related potential (ERP) relative to tuned sounds from 360 to 400 ms after sound onset. The mistuning-related ERP component resembles the object-related negativity (ORN) component in adults, which is associated with concurrent sound segregation. Delayed onset additionally led to a negative displacement from 160 to 200 ms, which was probably more related to the physical parameters of the sounds than to their perceptual segregation. The elicitation of an ORN-like response in newborn infants suggests that neonates possess the basic capabilities of segregating concurrent sounds by detecting inharmonic relations between the co-occurring sounds. © 2015 S. Karger AG, Basel.

  14. Zero-state Markov switching count-data models: an empirical assessment.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2010-01-01

    In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.

  15. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  16. Sound absorption coefficient of coal bottom ash concrete for railway application

    NASA Astrophysics Data System (ADS)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  17. Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.

    PubMed

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun

    2017-10-17

    We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.

  18. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly covered with soft fine-grained clayey or silty sediments, so that P- and S-wave velocities of 1550 and 200 m/s and a wet bulk density of 1400 kg/m3 are assumed. In a first step the acoustic impact of one seismic line of 10 - 20 km length is computed for the two generic models, assuming a typical shot interval of 15 s and a ship speed of 5 kn. The acoustic impact is determined by running the finite-difference scheme once, shifting the resulting wavefields in space and time according to the movement of the ship and the shot interval, and summing-up the appropriate snapshots of the propagating wavefield. As results, time-dependent contour maps of the cumulative peak-to-peak, zero-to-peak, rms and sound exposure levels are derived. From these contour maps time-dependent exposure histories and histograms of the received sound pressure levels are extracted for animals staying at fixed depth and range positions along the seismic line. Different hearing abilities of low-, mid- and high-frequency cetaceans are taken into account by applying the M-weighting filter characteristics. In a second step the cumulative sound exposure of several parallel and intersecting seismic lines is computed. The layout of the lines is derived from the cruises ANT-XIV/3 and ANT-XXIII/4 to the Wedell and the Amundsen/Bellinghausen Sea, which on average had the closest seismic line spacings of former cruises to both regions.

  19. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    PubMed

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  20. Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Kim, Ho-Wuk; Na, Eun-Woo

    2010-08-01

    A new sound metric for impact sound is developed based on the continuous wavelet transform (CWT), a useful tool for the analysis of non-stationary signals such as impact noise. Together with new metric, two other conventional sound metrics related to sound modulation and fluctuation are also considered. In all, three sound metrics are employed to develop impact sound quality indexes for several specific impact courses on the road. Impact sounds are evaluated subjectively by 25 jurors. The indexes are verified by comparing the correlation between the index output and results of a subjective evaluation based on a jury test. These indexes are successfully applied to an objective evaluation for improvement of the impact sound quality for cases where some parts of the suspension system of the test car are modified.

  1. Relation of sound intensity and accuracy of localization.

    PubMed

    Farrimond, T

    1989-08-01

    Tests were carried out on 17 subjects to determine the accuracy of monaural sound localization when the head is not free to turn toward the sound source. Maximum accuracy of localization for a constant-volume sound source coincided with the position for maximum perceived intensity of the sound in the front quadrant. There was a tendency for sounds to be perceived more often as coming from a position directly toward the ear. That is, for sounds in the front quadrant, errors of localization tended to be predominantly clockwise (i.e., biased toward a line directly facing the ear). Errors for sounds occurring in the rear quadrant tended to be anticlockwise. The pinna's differential effect on sound intensity between front and rear quadrants would assist in identifying the direction of movement of objects, for example an insect, passing the ear.

  2. Event-related potential study to aversive auditory stimuli.

    PubMed

    Czigler, István; Cox, Trevor J; Gyimesi, Kinga; Horváth, János

    2007-06-15

    In an auditory oddball task emotionally negative (aversive) sounds (e.g. rubbing together of polystyrene) and everyday sounds (e.g. ringing of a bicycle bell) were presented as task-irrelevant (novel) sounds. Both the aversive and the everyday sounds elicited the orientation-related P3a component of the event-related potentials (ERPs). In the 154-250 ms range the ERPs for the aversive sounds were more negative than the ERP of the everyday sounds. For the aversive sounds, this negativity was followed by a frontal positive wave (372-456 ms). The aversive sounds elicited larger late positive shift than the everyday sounds. The early negativity is considered as an initial effect in a broad neural network including limbic structures, while the later is related to the cognitive assessment of the stimuli and to memory-related processes.

  3. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...

  4. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...

  5. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...

  6. The Trouble with Zero

    ERIC Educational Resources Information Center

    Lewis, Robert

    2015-01-01

    The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.

  7. 31 CFR 363.146 - Who may purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Who may purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.146 Who may purchase a payroll zero-percent...

  8. 31 CFR 363.146 - Who may purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Who may purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.146 Who may purchase a payroll zero-percent...

  9. 31 CFR 363.144 - Can I redeem my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Can I redeem my zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.144 Can I redeem my zero-percent certificate of indebtedness? You can redeem...

  10. 31 CFR 363.146 - Who may purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Who may purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.146 Who may purchase a payroll zero-percent...

  11. 31 CFR 363.146 - Who may purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Who may purchase a payroll zero... SERVICE REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.146 Who may purchase a payroll zero-percent...

  12. 31 CFR 363.144 - Can I redeem my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Can I redeem my zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.144 Can I redeem my zero-percent certificate of indebtedness? You can redeem...

  13. 31 CFR 363.144 - Can I redeem my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Can I redeem my zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.144 Can I redeem my zero-percent certificate of indebtedness? You can redeem...

  14. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  15. Scattering of sound by atmospheric turbulence predictions in a refractive shadow zone

    NASA Technical Reports Server (NTRS)

    Mcbride, Walton E.; Bass, Henry E.; Raspet, Richard; Gilbert, Kenneth E.

    1990-01-01

    According to ray theory, regions exist in an upward refracting atmosphere where no sound should be present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism involved in producing the sound levels measured in shadow zones. No existing analytical method includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones. In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering from randomly distributed scattering centers ('turbules'). Sound pressure levels are computed for many realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with existing theories and experimental data.

  16. Auditory laterality in a nocturnal, fossorial marsupial (Lasiorhinus latifrons) in response to bilateral stimuli.

    PubMed

    Descovich, K A; Reints Bok, T E; Lisle, A T; Phillips, C J C

    2013-01-01

    Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance, and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events, and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ(2) (1)=10.65, p=.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context.

  17. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    PubMed

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.

  18. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    PubMed

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  19. Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin M.; Romero-Wolf, Andrew; Carrer, Leonardo; Grima, Cyril; Campbell, Bruce A.; Kofman, Wlodek; Bruzzone, Lorenzo; Blankenship, Donald D.

    2016-12-01

    Recent work has raised the potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. Two radar sounding instruments, the Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been selected for ESA and NASA missions to Ganymede and Europa. Here, we revisit the projected performance of the passive sounding concept and assess the potential for its implementation as an additional mode for RIME and REASON. We find that the Signal to Noise Ratio (SNR) of passive sounding can approach or exceed that of active sounding in a noisy sub-Jovian environment, but that active sounding achieves a greater SNR in the presence of quiescent noise and outperforms passive sounding in terms of clutter. We also compare the performance of passive sounding at the 9 MHz HF center frequency of RIME and REASON to other frequencies within the Jovian decametric band. We conclude that the addition of a passive sounding mode on RIME or REASON stands to enhance their science return by enabling sub-Jovian HF sounding in the presence of decametric noise, but that there is not a compelling case for implementation at a different frequency.

  20. The effect of spatial distribution on the annoyance caused by simultaneous sounds

    NASA Astrophysics Data System (ADS)

    Vos, Joos; Bronkhorst, Adelbert W.; Fedtke, Thomas

    2004-05-01

    A considerable part of the population is exposed to simultaneous and/or successive environmental sounds from different sources. In many cases, these sources are different with respect to their locations also. In a laboratory study, it was investigated whether the annoyance caused by the multiple sounds is affected by the spatial distribution of the sources. There were four independent variables: (1) sound category (stationary or moving), (2) sound type (stationary: lawn-mower, leaf-blower, and chain saw; moving: road traffic, railway, and motorbike), (3) spatial location (left, right, and combinations), and (4) A-weighted sound exposure level (ASEL of single sources equal to 50, 60, or 70 dB). In addition to the individual sounds in isolation, various combinations of two or three different sources within each sound category and sound level were presented for rating. The annoyance was mainly determined by sound level and sound source type. In most cases there were neither significant main effects of spatial distribution nor significant interaction effects between spatial distribution and the other variables. It was concluded that for rating the spatially distrib- uted sounds investigated, the noise dose can simply be determined by a summation of the levels for the left and right channels. [Work supported by CEU.

  1. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds.

    PubMed

    Strori, Dorina; Zaar, Johannes; Cooke, Martin; Mattys, Sven L

    2018-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound specificity effects. In Experiment 1 , we examined two conditions where integrality is high. Namely, the classic voice-specificity effect (Exp. 1a) was compared with a condition in which the intensity envelope of a background sound was modulated along the intensity envelope of the accompanying spoken word (Exp. 1b). Results revealed a robust voice-specificity effect and, critically, a comparable sound-specificity effect: A change in the paired sound from exposure to test led to a decrease in word-recognition performance. In the second experiment, we sought to disentangle the contribution of integrality from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect. Rather, it is conditioned by the extent to which words and sounds are perceived as integral as opposed to distinct auditory objects.

  2. Promoting the perception of two and three concurrent sound objects: An event-related potential study.

    PubMed

    Kocsis, Zsuzsanna; Winkler, István; Bendixen, Alexandra; Alain, Claude

    2016-09-01

    The auditory environment typically comprises several simultaneously active sound sources. In contrast to the perceptual segregation of two concurrent sounds, the perception of three simultaneous sound objects has not yet been studied systematically. We conducted two experiments in which participants were presented with complex sounds containing sound segregation cues (mistuning, onset asynchrony, differences in frequency or amplitude modulation or in sound location), which were set up to promote the perceptual organization of the tonal elements into one, two, or three concurrent sounds. In Experiment 1, listeners indicated whether they heard one, two, or three concurrent sounds. In Experiment 2, participants watched a silent subtitled movie while EEG was recorded to extract the object-related negativity (ORN) component of the event-related potential. Listeners predominantly reported hearing two sounds when the segregation promoting manipulations were applied to the same tonal element. When two different tonal elements received manipulations promoting them to be heard as separate auditory objects, participants reported hearing two and three concurrent sounds objects with equal probability. The ORN was elicited in most conditions; sounds that included the amplitude- or the frequency-modulation cue generated the smallest ORN amplitudes. Manipulating two different tonal elements yielded numerically and often significantly smaller ORNs than the sum of the ORNs elicited when the same cues were applied on a single tonal element. These results suggest that ORN reflects the presence of multiple concurrent sounds, but not their number. The ORN results are compatible with the horse-race principle of combining different cues of concurrent sound segregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  4. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  5. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  6. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  7. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  8. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  9. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.

  10. Perception of environmental sounds by experienced cochlear implant patients.

    PubMed

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries, or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds, and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Seventeen experienced postlingually deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern, and temporal order for tones tests), and a backward digit recall test. The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants, and r = 0.48 for vowels. HINT and CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialling out the variance due to other variables. Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectrotemproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations and might also be predictive of speech performance for prelingually deafened patients with cochlear implants.

  11. Zero: A "None" Number?

    ERIC Educational Resources Information Center

    Anthony, Glenda J.; Walshaw, Margaret A.

    2004-01-01

    This article discusses the challenges students face in making sense of zero as a number. A range of different student responses to a computation problem involving zero reveal students' different understandings of zero.

  12. On functional determinants of matrix differential operators with multiple zero modes

    NASA Astrophysics Data System (ADS)

    Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.

    2017-12-01

    We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.

  13. More about unphysical zeroes in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, David; González Felipe, Ricardo

    2017-01-01

    We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.

  14. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  15. Extremal entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Hansen, Leif Ove; Hauge, Andreas; Myrheim, Jan; Sollid, Per Øyvind

    2015-02-01

    We present a study of extremal entanglement witnesses on a bipartite composite quantum system. We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ≥0 when Ω is a witness and ρ is a pure product state, ρ=ψψ† with ψ=ϕ⊗χ. The set of witnesses of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation value f(ϕ,χ)=TrΩρ as a function of vectors ϕ and χ is a positive semidefinite biquadratic form. Every zero of f(ϕ,χ) imposes strong real-linear constraints on f and Ω. The real and symmetric Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue, if such exist, we call Hessian zeros. A zero of f(ϕ,χ) is quadratic if it has no Hessian zeros, otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it has at least one quartic zero. A main result we prove is that a witness is extremal if and only if no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal witness has a minimum number of isolated zeros depending on dimensions. If a witness is not extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated searches in random directions, by numerical methods, leads to an extremal witness which is nearly always quadratic and has the minimum number of zeros. We discuss briefly some topics related to extremal witnesses, in particular the relation between the facial structures of the dual sets of witnesses and separable states. We discuss the relation between extremality and optimality of witnesses, and a conjecture of separability of the so-called structural physical approximation (SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a complex Hilbert space as a subset of the witnesses on a real Hilbert space.

  16. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...

  17. Soundsational Science

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Scott, Catherine Marie; Hall, Debra T.

    2012-01-01

    The science of sound helps students learn that sound is energy traveling in waves as vibrations transfer the energy through various media: solids, liquids, and gases. In addition to learning about the physical science of sound, students can learn about the sounds of different animal species: how sounds contribute to animals' survival, and how…

  18. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...

  19. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...

  20. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...

  1. 46 CFR 298.14 - Economic soundness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...

  2. 77 FR 50016 - Drawbridge Operation Regulation; Grassy Sound Channel, Middle Township, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Operation Regulation; Grassy Sound Channel, Middle Township, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Grassy Sound Channel (Ocean Drive) Bridge across the Grassy Sound... operating schedule to accommodate ``The Wild Half'' run. The Grassy Sound Channel (Ocean Drive) Bridge...

  3. A Comparison of Two Phonological Awareness Techniques between Samples of Preschool Children.

    ERIC Educational Resources Information Center

    Maslanka, Phyllis; Joseph, Laurice M.

    2002-01-01

    Examines the differential effects of sound boxes and sound sort phonological awareness instructional techniques on preschoolers' phonological awareness performance. Finds that children in the sound box group significantly outperformed children in the sound sort group on isolating medial sounds and segmenting phonemes. Reveals that preschool…

  4. 33 CFR 167.1700 - In Prince William Sound: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...

  5. 42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...

  6. 33 CFR 167.1700 - In Prince William Sound: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...

  7. 33 CFR 167.1700 - In Prince William Sound: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...

  8. 42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...

  9. 42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...

  10. Correlation between Identification Accuracy and Response Confidence for Common Environmental Sounds

    DTIC Science & Technology

    set of environmental sounds with stimulus control and precision. The present study is one in a series of efforts to provide a baseline evaluation of a...sounds from six broad categories: household items, alarms, animals, human generated, mechanical, and vehicle sounds. Each sound was presented five times

  11. 33 CFR 167.1700 - In Prince William Sound: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...

  12. 31 CFR 363.135 - In what form is a zero-percent certificate of indebtedness issued?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false In what form is a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.135 In what form is a zero-percent certificate of indebtedness issued? A zero-percent certificate of...

  13. 31 CFR 363.147 - How do I purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How do I purchase a payroll zero... SERVICE REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.147 How do I purchase a payroll zero-percent...

  14. 31 CFR 363.140 - May a zero-percent certificate of indebtedness be pledged or used as collateral?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false May a zero-percent certificate of... SERVICE REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.140 May a zero-percent certificate of indebtedness be pledged or used as collateral? A zero...

  15. 31 CFR 363.147 - How do I purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false How do I purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.147 How do I purchase a payroll zero-percent...

  16. 31 CFR 363.147 - How do I purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false How do I purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.147 How do I purchase a payroll zero-percent...

  17. 31 CFR 363.135 - In what form is a zero-percent certificate of indebtedness issued?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false In what form is a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.135 In what form is a zero-percent certificate of indebtedness issued? A zero-percent certificate of...

  18. 31 CFR 363.140 - May a zero-percent certificate of indebtedness be pledged or used as collateral?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false May a zero-percent certificate of... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.140 May a zero-percent certificate of indebtedness be pledged or used as collateral? A zero...

  19. 31 CFR 363.141 - How do I purchase a zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How do I purchase a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.141 How do I purchase a zero-percent certificate of indebtedness? (a...

  20. 31 CFR 363.140 - May a zero-percent certificate of indebtedness be pledged or used as collateral?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false May a zero-percent certificate of... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.140 May a zero-percent certificate of indebtedness be pledged or used as collateral? A zero...

  1. 31 CFR 363.139 - May I transfer or deliver my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false May I transfer or deliver my zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.139 May I transfer or deliver my zero-percent certificate of indebtedness? A zero-percent...

  2. 31 CFR 363.141 - How do I purchase a zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false How do I purchase a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.141 How do I purchase a zero-percent certificate of indebtedness? (a...

  3. 31 CFR 363.135 - In what form is a zero-percent certificate of indebtedness issued?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false In what form is a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.135 In what form is a zero-percent certificate of indebtedness issued? A zero-percent certificate of...

  4. 31 CFR 363.135 - In what form is a zero-percent certificate of indebtedness issued?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false In what form is a zero-percent... SERVICE REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.135 In what form is a zero-percent certificate of indebtedness issued? A zero-percent...

  5. 31 CFR 363.139 - May I transfer or deliver my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false May I transfer or deliver my zero... SERVICE REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.139 May I transfer or deliver my zero-percent certificate of indebtedness? A zero-percent...

  6. 31 CFR 363.141 - How do I purchase a zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false How do I purchase a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.141 How do I purchase a zero-percent certificate of indebtedness? (a...

  7. 31 CFR 363.139 - May I transfer or deliver my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false May I transfer or deliver my zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.139 May I transfer or deliver my zero-percent certificate of indebtedness? A zero-percent...

  8. 31 CFR 363.141 - How do I purchase a zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false How do I purchase a zero-percent... REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Zero-Percent Certificate of Indebtedness § 363.141 How do I purchase a zero-percent certificate of indebtedness? (a...

  9. 31 CFR 363.140 - May a zero-percent certificate of indebtedness be pledged or used as collateral?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false May a zero-percent certificate of... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.140 May a zero-percent certificate of indebtedness be pledged or used as collateral? A zero...

  10. 31 CFR 363.147 - How do I purchase a payroll zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false How do I purchase a payroll zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness Payroll Zero-Percent Certificate of Indebtedness § 363.147 How do I purchase a payroll zero-percent...

  11. 31 CFR 363.139 - May I transfer or deliver my zero-percent certificate of indebtedness?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false May I transfer or deliver my zero... DEBT REGULATIONS GOVERNING SECURITIES HELD IN TREASURYDIRECT Zero-Percent Certificate of Indebtedness General § 363.139 May I transfer or deliver my zero-percent certificate of indebtedness? A zero-percent...

  12. Method for chemically analyzing a solution by acoustic means

    DOEpatents

    Beller, Laurence S.

    1997-01-01

    A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.

  13. Application of acoustic radiosity methods to noise propagation within buildings

    NASA Astrophysics Data System (ADS)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2005-09-01

    The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.

  14. The effect of contextual sound cues on visual fidelity perception.

    PubMed

    Rojas, David; Cowan, Brent; Kapralos, Bill; Collins, Karen; Dubrowski, Adam

    2014-01-01

    Previous work has shown that sound can affect the perception of visual fidelity. Here we build upon this previous work by examining the effect of contextual sound cues (i.e., sounds that are related to the visuals) on visual fidelity perception. Results suggest that contextual sound cues do influence visual fidelity perception and, more specifically, our perception of visual fidelity increases with contextual sound cues. These results have implications for designers of multimodal virtual worlds and serious games that, with the appropriate use of contextual sounds, can reduce visual rendering requirements without a corresponding decrease in the perception of visual fidelity.

  15. [Synchronous playing and acquiring of heart sounds and electrocardiogram based on labVIEW].

    PubMed

    Dan, Chunmei; He, Wei; Zhou, Jing; Que, Xiaosheng

    2008-12-01

    In this paper is described a comprehensive system, which can acquire heart sounds and electrocardiogram (ECG) in parallel, synchronize the display; and play of heart sound and make auscultation and check phonocardiogram to tie in. The hardware system with C8051F340 as the core acquires the heart sound and ECG synchronously, and then sends them to indicators, respectively. Heart sounds are displayed and played simultaneously by controlling the moment of writing to indicator and sound output device. In clinical testing, heart sounds can be successfully located with ECG and real-time played.

  16. First and second sound in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Hu, H.; Liu, X.-J.; Pitaevskii, L. P.; Griffin, A.; Stringari, S.

    2009-11-01

    Using a variational approach, we solve the equations of two-fluid hydrodynamics for a uniform and trapped Fermi gas at unitarity. In the uniform case, we find that the first and second sound modes are remarkably similar to those in superfluid helium, a consequence of strong interactions. In the presence of harmonic trapping, first and second sound become degenerate at certain temperatures. At these points, second sound hybridizes with first sound and is strongly coupled with density fluctuations, giving a promising way of observing second sound. We also discuss the possibility of exciting second sound by generating local heat perturbations.

  17. NASA sounding rockets, 1958 - 1968: A historical summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1971-01-01

    The development and use of sounding rockets is traced from the Wac Corporal through the present generation of rockets. The Goddard Space Flight Center Sounding Rocket Program is discussed, and the use of sounding rockets during the IGY and the 1960's is described. Advantages of sounding rockets are identified as their simplicity and payload simplicity, low costs, payload recoverability, geographic flexibility, and temporal flexibility. The disadvantages are restricted time of observation, localized coverage, and payload limitations. Descriptions of major sounding rockets, trends in vehicle usage, and a compendium of NASA sounding rocket firings are also included.

  18. A novel method for pediatric heart sound segmentation without using the ECG.

    PubMed

    Sepehri, Amir A; Gharehbaghi, Arash; Dutoit, Thierry; Kocharian, Armen; Kiani, A

    2010-07-01

    In this paper, we propose a novel method for pediatric heart sounds segmentation by paying special attention to the physiological effects of respiration on pediatric heart sounds. The segmentation is accomplished in three steps. First, the envelope of a heart sounds signal is obtained with emphasis on the first heart sound (S(1)) and the second heart sound (S(2)) by using short time spectral energy and autoregressive (AR) parameters of the signal. Then, the basic heart sounds are extracted taking into account the repetitive and spectral characteristics of S(1) and S(2) sounds by using a Multi-Layer Perceptron (MLP) neural network classifier. In the final step, by considering the diastolic and systolic intervals variations due to the effect of a child's respiration, a complete and precise heart sounds end-pointing and segmentation is achieved. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Study of environmental sound source identification based on hidden Markov model for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2003-10-01

    Humans communicate with each other through speech by focusing on the target speech among environmental sounds in real acoustic environments. We can easily identify the target sound from other environmental sounds. For hands-free speech recognition, the identification of the target speech from environmental sounds is imperative. This mechanism may also be important for a self-moving robot to sense the acoustic environments and communicate with humans. Therefore, this paper first proposes hidden Markov model (HMM)-based environmental sound source identification. Environmental sounds are modeled by three states of HMMs and evaluated using 92 kinds of environmental sounds. The identification accuracy was 95.4%. This paper also proposes a new HMM composition method that composes speech HMMs and an HMM of categorized environmental sounds for robust environmental sound-added speech recognition. As a result of the evaluation experiments, we confirmed that the proposed HMM composition outperforms the conventional HMM composition with speech HMMs and a noise (environmental sound) HMM trained using noise periods prior to the target speech in a captured signal. [Work supported by Ministry of Public Management, Home Affairs, Posts and Telecommunications of Japan.

  20. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    PubMed Central

    Geangu, Elena; Quadrelli, Ermanno; Lewis, James W.; Macchi Cassia, Viola; Turati, Chiara

    2015-01-01

    Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011). Yet, little is known about the development of such specialization. Using event-related potentials (ERP), this study investigated neural correlates of 7-month-olds’ processing of human action (HA) sounds in comparison to human vocalizations (HV), environmental (ENV), and mechanical (MEC) sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV) led to significantly different response profiles compared to non-living sound sources (ENV + MEC) at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds. PMID:25732377

Top