Sample records for zero-dimensional positive column

  1. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2016-06-14

    A false positive is the mistake of inferring an effect when none exists, and although α controls the false positive (Type I error) rate in classical hypothesis testing, a given α value is accurate only if the underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth 1D data with a 0D model of variance will produce false positives. We first used random field theory (RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of public kinematic, force/moment and EMG datasets, the median false positive rate was 0.382 and not the assumed α=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false positive rate for experiments involving three-component vector trajectories was p=0.764. This rate increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component vectors. This implies that experiments involving vector trajectories have a high probability of yielding 0D statistical significance when there is, in fact, no 1D effect. Either (a) explicit a priori identification of 0D variables or (b) adoption of 1D methods can more tightly control α. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mobility, Deposition and Remobilization of pre-Synthesis Stabilized Nano-scale Zero Valent Iron in Long Column Experiments

    NASA Astrophysics Data System (ADS)

    de Boer, C. V.; O'Carroll, D. M.; Sleep, B.

    2014-12-01

    Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.

  3. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  4. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  5. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    PubMed

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  6. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.

  7. Design of two-dimensional zero reference codes with cross-entropy method.

    PubMed

    Chen, Jung-Chieh; Wen, Chao-Kai

    2010-06-20

    We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.

  8. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array

    PubMed Central

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-01-01

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements’ bypass currents, which were injected into array’s non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT’s measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately. PMID:27929410

  9. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    NASA Astrophysics Data System (ADS)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  10. Unraveling luminescence mechanisms in zero-dimensional halide perovskites

    DOE PAGES

    Han, Dan; Shi, Hongliang; Ming, Wenmei; ...

    2018-01-01

    Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.

  11. Unraveling luminescence mechanisms in zero-dimensional halide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dan; Shi, Hongliang; Ming, Wenmei

    Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.

  12. Unraveling luminescence mechanisms in zero-dimensional halide perovskites

    DOE PAGES

    Han, Dan; Shi, Hongliang; Ming, Wenmei; ...

    2018-05-18

    Here, zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6) 4– are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.

  13. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography.

    PubMed

    Bieri, Stefan; Marriott, Philip J

    2006-12-01

    A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index

  14. Surfactant 1-Hexadecyl-3-methylimidazolium Chloride Can Convert One-Dimensional Viologen Bromoplumbate into Zero-Dimensional.

    PubMed

    Liu, Guangfeng; Liu, Jie; Nie, Lina; Ban, Rui; Armatas, Gerasimos S; Tao, Xutang; Zhang, Qichun

    2017-05-15

    A zero-dimensional N,N'-dibutyl-4,4'-dipyridinium bromoplumbate, [BV] 6 [Pb 9 Br 30 ], with unusual discrete [Pb 9 Br 30 ] 12- anionic clusters was prepared via a facile surfactant-mediated solvothermal process. This bromoplumbate exhibits a narrower optical band gap relative to the congeneric one-dimensional viologen bromoplumbates.

  15. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Gaurav; Raju, Mandhapati P.; Sung, Chih-Jen

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluidmore » dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)« less

  16. Prediction of axial limit capacity of stone columns using dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  17. Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges

    PubMed Central

    2018-01-01

    Over the past decade, lead halide perovskites (LHPs) have emerged as new promising materials in the fields of photovoltaics and light emission due to their facile syntheses and exciting optical properties. The enthusiasm generated by LHPs has inspired research in perovskite-related materials, including the so-called “zero-dimensional cesium lead halides”, which will be the focus of this Perspective. The structure of these materials is formed of disconnected lead halide octahedra that are stabilized by cesium ions. Their optical properties are dominated by optical transitions that are localized within the individual octahedra, hence the title “‘zero-dimensional perovskites”. Controversial results on their physical properties have recently been reported, and the true nature of their photoluminescence is still unclear. In this Perspective, we will take a close look at these materials, both as nanocrystals and as bulk crystals/thin films, discuss the contrasting opinions on their properties, propose potential applications, and provide an outlook on future experiments. PMID:29652149

  18. Perceptual disturbances predicted in zero-g through three-dimensional modeling.

    PubMed

    Holly, Jan E

    2003-01-01

    Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g.

  19. Activation of zero-error classical capacity in low-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  20. Structural zeros in high-dimensional data with applications to microbiome studies.

    PubMed

    Kaul, Abhishek; Davidov, Ori; Peddada, Shyamal D

    2017-07-01

    This paper is motivated by the recent interest in the analysis of high-dimensional microbiome data. A key feature of these data is the presence of "structural zeros" which are microbes missing from an observation vector due to an underlying biological process and not due to error in measurement. Typical notions of missingness are unable to model these structural zeros. We define a general framework which allows for structural zeros in the model and propose methods of estimating sparse high-dimensional covariance and precision matrices under this setup. We establish error bounds in the spectral and Frobenius norms for the proposed estimators and empirically verify them with a simulation study. The proposed methodology is illustrated by applying it to the global gut microbiome data of Yatsunenko and others (2012. Human gut microbiome viewed across age and geography. Nature 486, 222-227). Using our methodology we classify subjects according to the geographical location on the basis of their gut microbiome. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  2. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    PubMed

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  3. Experimental analysis of the boundary layer transition with zero and positive pressure gradient

    NASA Technical Reports Server (NTRS)

    Arnal, D.; Jullen, J. C.; Michel, R.

    1980-01-01

    The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.

  4. Molecular behavior of zero-dimensional perovskites

    PubMed Central

    Yin, Jun; Maity, Partha; De Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman M.; Brédas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them. PMID:29250600

  5. Transient establishment of the wavefronts for negative, zero, and positive refraction.

    PubMed

    Zhao, Wenjuan; Wu, Qiang; Wang, Ride; Gao, Jianshun; Lu, Yao; Zhang, Qi; Qi, Jiwei; Zhang, Chunling; Pan, Chongpei; Rupp, Romano; Xu, Jingjun

    2018-01-22

    We quantitatively demonstrate transient establishment of wavefronts for negative, zero, and positive refraction through a wedge-shaped metamaterial consisting of periodically arranged split-ring resonators and metallic wires. The wavefronts for the three types of refractions propagate through the second interface of the wedge along positive refraction angles at first, then reorganize, and finally propagate along the effective refraction angles after a period of establishment time respectively. The establishment time of the wavefronts prevents violating causality or superluminal propagation for negative and zero refraction. The establishment time for negative or zero refraction is longer than that for positive refraction. For all three refraction processes, transient establishment processes precede the establishment of steady propagation. Moreover, some detailed characters are proven in our research, including infinite wavelength, uniform phase inside the zero-index material, and the phase velocity being antiparallel to the group velocity in the negative-index material.

  6. Two-dimensional liquid chromatography consisting of twelve second-dimension columns for comprehensive analysis of intact proteins.

    PubMed

    Ren, Jiangtao; Beckner, Matthew A; Lynch, Kyle B; Chen, Huang; Zhu, Zaifang; Yang, Yu; Chen, Apeng; Qiao, Zhenzhen; Liu, Shaorong; Lu, Joann J

    2018-05-15

    A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Modeling Stone Columns.

    PubMed

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  8. Modeling Stone Columns

    PubMed Central

    2017-01-01

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the “unit cell”, longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns. PMID:28773146

  9. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    PubMed

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  10. Photonic doping of epsilon-near-zero media

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Mahmoud, Ahmed M.; Li, Yue; Edwards, Brian; Engheta, Nader

    2017-03-01

    Doping a semiconductor with foreign atoms enables the control of its electrical and optical properties. We transplant the concept of doping to macroscopic photonics, demonstrating that two-dimensional dielectric particles immersed in a two-dimensional epsilon-near-zero medium act as dopants that modify the medium’s effective permeability while keeping its effective permittivity near zero, independently of their positions within the host. The response of a large body can be tuned with a single impurity, including cases such as engineering perfect magnetic conductor and epsilon-and-mu-near-zero media with nonmagnetic constituents. This effect is experimentally demonstrated at microwave frequencies via the observation of geometry-independent tunneling. This methodology might provide a new pathway for engineering electromagnetic metamaterials and reconfigurable optical systems.

  11. Zero Launch Mass Three Dimensional Print Head

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.

    2018-01-01

    NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.

  12. Blind column selection protocol for two-dimensional high performance liquid chromatography.

    PubMed

    Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G

    2016-07-01

    The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. On spectral synthesis on zero-dimensional Abelian groups

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2013-09-01

    Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is said to be an invariant subspace if it is invariant with respect to the translations \\tau_y\\colon f(x)\\mapsto f(x+y), y\\in G. In the paper, it is proved that any invariant subspace \\mathscr H admits spectral synthesis, that is, \\mathscr H coincides with the closed linear span of the characters of G belonging to \\mathscr H. Bibliography: 25 titles.

  14. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-09-01

    Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle "Carbo-Iron Colloids" (CIC) with a mean size of 0.63 μm in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110 × 40 × 5 cm. Results show a breakthrough maximum of 82 % of the input concentration in the column experiment and 58 % in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.

  15. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    PubMed

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  16. One-dimensional analysis of filamentary composite beam columns with thin-walled open sections

    NASA Technical Reports Server (NTRS)

    Lo, Patrick K.-L.; Johnson, Eric R.

    1986-01-01

    Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.

  17. Zero Dimensional Field Theory of Tachyon Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, D. D.; Djordjevic, G. S.

    2007-04-23

    The first issue about the object (now) called tachyons was published almost one century ago. Even though there is no experimental evidence of tachyons there are several reasons why tachyons are still of interest today, in fact interest in tachyons is increasing. Many string theories have tachyons occurring as some of the particles in the theory. In this paper we consider the zero dimensional version of the field theory of tachyon matter proposed by A. Sen. Using perturbation theory and ideas of S. Kar, we demonstrate how this tachyon field theory can be connected with a classical mechanical system, suchmore » as a massive particle moving in a constant field with quadratic friction. The corresponding Feynman path integral form is proposed using a perturbative method. A few promising lines for further applications and investigations are noted.« less

  18. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  19. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  20. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.

    PubMed

    Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun

    2008-07-01

    A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.

  1. Topological phases in two-dimensional arrays of parafermionic zero modes

    NASA Astrophysics Data System (ADS)

    Burrello, M.; van Heck, B.; Cobanera, E.

    2013-05-01

    It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.

  2. User's guide for FRMOD, a zero dimensional FRM burn code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driemeryer, D.; Miley, G.H.

    1979-10-15

    The zero-dimensional FRM plasma burn code, FRMOD is written in the FORTRAN language and is currently available on the Control Data Corporation (CDC) 7600 computer at the Magnetic Fusion Energy Computer Center (MFECC), sponsored by the US Department of Energy, in Livermore, CA. This guide assumes that the user is familiar with the system architecture and some of the utility programs available on the MFE-7600 machine, since online documentation is available for system routines through the use of the DOCUMENT utility. Users may therefore refer to it for answers to system related questions.

  3. Zero dimensional model of atmospheric SMD discharge and afterglow in humid air

    NASA Astrophysics Data System (ADS)

    Smith, Ryan; Kemaneci, Efe; Offerhaus, Bjoern; Stapelmann, Katharina; Peter Brinkmann, Ralph

    2016-09-01

    A novel mesh-like Surface Micro Discharge (SMD) device designed for surface wound treatment is simulated by multiple time-scaled zero-dimensional models. The chemical dynamics of the discharge are resolved in time at atmospheric pressure in humid conditions. Simulated are the particle densities of electrons, 26 ionic species, and 26 reactive neutral species including: O3, NO, and HNO3. The total of 53 described species are constrained by 624 reactions within the simulated plasma discharge volume. The neutral species are allowed to diffuse into a diffusive gas regime which is of primary interest. Two interdependent zero-dimensional models separated by nine orders of magnitude in temporal resolution are used to accomplish this; thereby reducing the computational load. Through variation of control parameters such as: ignition frequency, deposited power density, duty cycle, humidity level, and N2 content, the ideal operation conditions for the SMD device can be predicted. The described model has been verified by matching simulation parameters and comparing results to that of previous works. Current operating conditions of the experimental mesh-like SMD were matched and results are compared to the simulations. Work supported by SFB TR 87.

  4. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    PubMed

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Effects of zero reference position on bladder pressure measurements: an observational study.

    PubMed

    Soler Morejón, Caridad De Dios; Lombardo, Tomás Ariel; Tamargo Barbeito, Teddy Osmin; Sandra, Barquín García

    2012-07-05

    Although the World Society for Abdominal Compartment Syndrome in its guidelines recommends midaxillary line (MAL) as zero reference level in intra-abdominal pressure (IAP) measurements in aiming at standardizing the technique, evidence supporting this suggestion is scarce. The aim of this study is to study if the zero reference position influences bladder pressure measurements as estimate for IAP. The IAP of 100 surgical patients was measured during the first 24 h of admission to the surgical intensive care unit of General Calixto Garcia Hospital in Havana (Cuba) following laparotomy. The period was January 2009 to January 2010. The IAP was measured twice with a six-hour interval using the transurethral technique with a priming volume of 25 ml. IAP was first measured with the zero reference level placed at MAL (IAPMAL), followed by a second measurement at the level of the symphysis pubis (SP) after 3 minutes (IAPSP). Correlations were made between IAP and body mass index (BMI), type of surgery, gender, and age. Mean IAPMAL was 8.5 ± 2.8 mmHg vs. IAPSP 6.5 ± 2.8 mmHg (p < 0.0001). The bias between measurements was 2.0 ± 1.5, 95% confidence interval of 1.4 to 3.0, upper limit of 4.9, lower limit of -0.9, and a percentage error of 35.1%. IAPMAL was consistently higher than IAPSP regardless of the type of surgery. The BMI correlated with IAP values regardless of the zero reference level (R2 = 0.4 and 0.3 with IAPMAL and IAPSP respectively, p < 0.0001). The zero reference level has an important impact on IAP measurement in surgical patients after laparotomy and can potentially lead to over or underestimation. Further anthropometric studies are needed with regard to the relative MAL and SP zero reference position in relation to the theoretical ideal reference level at midpoint of the abdomen. Until better evidence is available, MAL remains the recommended zero reference position due to its best anatomical localization at iliac crest.

  6. Effects of zero reference position on bladder pressure measurements: an observational study

    PubMed Central

    2012-01-01

    Background Although the World Society for Abdominal Compartment Syndrome in its guidelines recommends midaxillary line (MAL) as zero reference level in intra-abdominal pressure (IAP) measurements in aiming at standardizing the technique, evidence supporting this suggestion is scarce. The aim of this study is to study if the zero reference position influences bladder pressure measurements as estimate for IAP. Methods The IAP of 100 surgical patients was measured during the first 24 h of admission to the surgical intensive care unit of General Calixto Garcia Hospital in Havana (Cuba) following laparotomy. The period was January 2009 to January 2010. The IAP was measured twice with a six-hour interval using the transurethral technique with a priming volume of 25 ml. IAP was first measured with the zero reference level placed at MAL (IAPMAL), followed by a second measurement at the level of the symphysis pubis (SP) after 3 minutes (IAPSP). Correlations were made between IAP and body mass index (BMI), type of surgery, gender, and age. Results Mean IAPMAL was 8.5 ± 2.8 mmHg vs. IAPSP 6.5 ± 2.8 mmHg (p < 0.0001). The bias between measurements was 2.0 ± 1.5, 95% confidence interval of 1.4 to 3.0, upper limit of 4.9, lower limit of -0.9, and a percentage error of 35.1%. IAPMAL was consistently higher than IAPSP regardless of the type of surgery. The BMI correlated with IAP values regardless of the zero reference level (R2 = 0.4 and 0.3 with IAPMAL and IAPSP respectively, p < 0.0001). Conclusions The zero reference level has an important impact on IAP measurement in surgical patients after laparotomy and can potentially lead to over or underestimation. Further anthropometric studies are needed with regard to the relative MAL and SP zero reference position in relation to the theoretical ideal reference level at midpoint of the abdomen. Until better evidence is available, MAL remains the recommended zero reference position due to its best anatomical localization at iliac

  7. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    PubMed

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  8. Primary decomposition of zero-dimensional ideals over finite fields

    NASA Astrophysics Data System (ADS)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  9. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  10. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  11. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    PubMed

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  12. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  13. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle'smore » position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.« less

  14. Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides

    NASA Astrophysics Data System (ADS)

    Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad

    2018-07-01

    The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.

  15. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  16. Zero-n gap in one dimensional photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chobey, Mahesh K., E-mail: mahesh01chobey@gmail.com; Suthar, B.

    2016-05-06

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  17. The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.

    PubMed

    Vidal, P P; Graf, W; Berthoz, A

    1986-01-01

    The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical

  18. Three-dimensional reproducibility of natural head position.

    PubMed

    Weber, Diana W; Fallis, Drew W; Packer, Mark D

    2013-05-01

    Although natural head position has proven to be reliable in the sagittal plane, with an increasing interest in 3-dimensional craniofacial analysis, a determination of its reproducibility in the coronal and axial planes is essential. This study was designed to evaluate the reproducibility of natural head position over time in the sagittal, coronal, and axial planes of space with 3-dimensional imaging. Three-dimensional photographs were taken of 28 adult volunteers (ages, 18-40 years) in natural head position at 5 times: baseline, 4 hours, 8 hours, 24 hours, and 1 week. Using the true vertical and horizontal laser lines projected in an iCAT cone-beam computed tomography machine (Imaging Sciences International, Hatfield, Pa) for orientation, we recorded references for natural head position on the patient's face with semipermanent markers. By using a 3-dimensional camera system, photographs were taken at each time point to capture the orientation of the reference points. By superimposing each of the 5 photographs on stable anatomic surfaces, changes in the position of the markers were recorded and assessed for parallelism by using 3dMDvultus (3dMD, Atlanta, Ga) and software (Dolphin Imaging & Management Solutions, Chatsworth, Calif). No statistically significant differences were observed between the 5 time points in any of the 3 planes of space. However, a statistically significant difference was observed between the mean angular deviations of 3 reference planes, with a hierarchy of natural head position reproducibility established as coronal > axial > sagittal. Within the parameters of this study, natural head position was found to be reproducible in the sagittal, coronal, and axial planes of space. The coronal plane had the least variation over time, followed by the axial and sagittal planes. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Flow determination of a pump-turbine at zero discharge

    NASA Astrophysics Data System (ADS)

    Edinger, G.; Erne, S.; Doujak, E.; Bauer, C.

    2014-03-01

    When starting up a reversible Francis pump-turbine in pump mode, the machine may operate at zero flow at a given gate opening. Besides reversal flow and prerotation in the draft tube cone, the onset of a fully separated flow in the vaned diffuser is observable at zero- discharge condition. In this paper, the occurrence of prerotation and reversal flow in the conical draft tube and the flow in one stay vane channel of a pump-turbine are examined experimentally and compared to numerical simulations. In order to assess the strongly three-dimensional flow in the stay vane channel, measurements with a 2D laser doppler velocimeter (LDV) were performed at various positions. The inlet flow in the draft tube cone, which becomes significantly at zero discharge in pump mode, is investigated by velocity measurements at two different positions. Pressure fluctuations in the draft tube cone induced by complex flow patterns are also recorded and analyzed. It is found that the swirl number at zero discharge does not significant differ from the values obtained at very low load pumping. Experimental investigations combined with CFD have shown that in the stay vane channel flow velocity components different from zero occur even at no discharge. Streamline plots show the fully separated flow structure.

  20. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  1. [Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].

    PubMed

    Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi

    2015-10-01

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

  2. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  3. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-04-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  4. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-06-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  5. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs.

    PubMed

    Zapadlo, Michal; Krupcík, Ján; Májek, Pavel; Armstrong, Daniel W; Sandra, Pat

    2010-09-10

    The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl-95%-methyl)siloxane was used as the first ((1)D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second ((2)D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on (1)D and (2)D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times t(R,i,2D) and t(R,i,1D) of corresponding PCB congeners on both column series. It was demonstrated that the apolar+ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105+127, 81+148 and 118+106). Copyright 2010 Elsevier B.V. All rights reserved.

  6. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  7. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  8. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  10. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width

  11. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio.

    PubMed

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng

    2015-01-20

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.

  12. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  13. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Nan; Cheng, Qiang, E-mail: qiangcheng@emfield.org; Zhao, Jie

    2014-02-03

    We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.

  14. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.

    PubMed

    Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro

    2015-07-31

    We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

  16. Getting to Zero Yield: The Evolution of the U.S. Position on the CTBT

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    1998-03-01

    In 1994 the United States favored a Comprehensive Test Ban Treaty (CTBT) which permitted tiny "hydronuclear" experiments with a nuclear energy release of four pounds or less. Other nuclear powers supported yield limits as high as large fractions of a kiloton, while most non-nuclear nations participating in the discussions at the United Nations Conference on Disarmament wanted to prohibit all nuclear explosions -- some even favoring an end to computer simulations. On the other hand, China wished an exception to permit high yield "peaceful" nuclear explosions. For the United States to adopt a new position favoring a "true zero" several pieces had to fall into place: 1) The President had to be assured that the U.S. could preserve the safety and reliability of the enduring stockpile without yield testing; 2) the U.S. needed to be sure that the marginal utility of zero-yield experiments was at least as great for this country as for any other; 3) that tests with any nuclear yield might have more marginal utility for nuclear proliferators than for the United States, thus marginally eroding this country's position; 4) the United States required a treaty which would permit maintenance of the capacity to return to testing should a national emergency requiring a nuclear test arise; and 5) all of the five nuclear weapons states had to realize that only a true-zero CTBT would have the desired political effects. This paper will outline the physics near zero yield and show why President Clinton was persuaded by arguments from many viewpoints to endorse a true test ban in August, 1996 and to sign the CTBT in September, 1997.

  17. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    PubMed

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    PubMed

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  19. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio

    NASA Astrophysics Data System (ADS)

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng

    2015-01-01

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.

  20. Three-Dimensional Printing in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.

  1. The Trouble with Zero

    ERIC Educational Resources Information Center

    Lewis, Robert

    2015-01-01

    The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.

  2. Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2018-02-01

    Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.

  3. Do Zero-Cost Workers’ Compensation Medical Claims Really Have Zero Costs?

    PubMed Central

    Asfaw, Abay; Rosa, Roger; Mao, Rebecca

    2015-01-01

    Objective Previous research suggests that non–workers’ compensation (WC) insurance systems, such as group health insurance (GHI), Medicare, or Medicaid, at least partially cover work-related injury and illness costs. This study further examined GHI utilization and costs. Methods Using two-part model, we compared those outcomes immediately after injuries for which accepted WC medical claims made zero or positive medical payments. Results Controlling for pre-injury GHI utilization and costs and other covariates, our results indicated that post-injury GHI utilization and costs increased regardless of whether a WC medical claim was zero or positive. The increases were highest for zero-cost WC medical claims. Conclusion Our national estimates showed that zero-cost WC medical claims alone could cost the GHI $212 million per year. PMID:24316724

  4. Analysis of underivatised low volatility compounds by comprehensive two-dimensional gas chromatography with a short primary column.

    PubMed

    Novaes, Fábio Junior Moreira; Kulsing, Chadin; Bizzo, Humberto Ribeiro; de Aquino Neto, Francisco Radler; Rezende, Claudia Moraes; Marriott, Philip John

    2018-02-09

    Comprehensive two-dimensional gas chromatography (GC×GC) approaches with cryogenic modulation were developed for the qualitative analysis of selected low volatility compounds in raw coffee bean extracts, without derivatisation. The approaches employed short first ( 1 D) and second ( 2 D) dimension columns, specifically a 1 D 65% phenyl methyl siloxane column (11m) and a 2 D 5% phenyl methyl siloxane column (1m), which allowed elution of high molar mass compounds (e.g.>600Da). Solutes included hydrocarbons, fatty acids, diterpenes, tocopherols, sterols, diterpene esters, and di- and triacylglycerides. An oven temperature program up to 370°C was employed. The effects of experimental conditions were investigated, revealing that the GC×GC results strongly depended on the cryogenic trap T, and oven T program. An appropriate condition was selected and further applied for group type analysis of low volatility compounds in green Arabica coffee beans. Retention indices were compiled for 1D GC analysis and were similar for the composite column data in GC×GC. The elution of some compounds was confirmed by use of authentic standards. The approach allowed direct analysis of coffee extract in ethyl acetate solution, with improved analyte peak capacity (approximately 200 compounds were detected) without prior fractionation or pre-treatment of the sample. This avoided potential hydrolysis of high molar mass conjugate esters as well as degradation of thermally labile compounds such as the derivatives of the diterpenes cafestol and kahweol. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Connection between Fermi contours of zero-field electrons and ν =1/2 composite fermions in two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Geraedts, Scott D.; Bhatt, R. N.

    2017-07-01

    We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν =1/2 , as the kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of "valley pseudospin" in many-valley systems is generically not transferred to the CFL, in agreement with experimental observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.

  6. ZERO-VALENT IRON FOR HIGH-LEVEL ARSENITE REMOVAL

    EPA Science Inventory

    This study conducted by flow through column systems was aimed at investigating the feasibility of using zero-valent iron for arsenic remediation in groundwater. A high concentration arsenic solution (50 mg l-1) was prepared by using sodium arsenite (arsenic (III)) to simulate gr...

  7. Rotary engine performance limits predicted by a zero-dimensional model

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  8. A Three-dimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio.

    PubMed

    Soman, Pranav; Fozdar, David Y; Lee, Jin Woo; Phadke, Ameya; Varghese, Shyni; Chen, Shaochen

    2012-05-14

    Poisson's ratio describes the degree to which a material contracts (expands) transversally when axially strained. A material with a zero Poisson's ratio does not transversally deform in response to an axial strain (stretching). In tissue engineering applications, scaffolding having a zero Poisson's ratio (ZPR) may be more suitable for emulating the behavior of native tissues and accommodating and transmitting forces to the host tissue site during wound healing (or tissue regrowth). For example, scaffolding with a zero Poisson's ratio may be beneficial in the engineering of cartilage, ligament, corneal, and brain tissues, which are known to possess Poisson's ratios of nearly zero. Here, we report a 3D biomaterial constructed from polyethylene glycol (PEG) exhibiting in-plane Poisson's ratios of zero for large values of axial strain. We use digital micro-mirror device projection printing (DMD-PP) to create single- and double-layer scaffolds composed of semi re-entrant pores whose arrangement and deformation mechanisms contribute the zero Poisson's ratio. Strain experiments prove the zero Poisson's behavior of the scaffolds and that the addition of layers does not change the Poisson's ratio. Human mesenchymal stem cells (hMSCs) cultured on biomaterials with zero Poisson's ratio demonstrate the feasibility of utilizing these novel materials for biological applications which require little to no transverse deformations resulting from axial strains. Techniques used in this work allow Poisson's ratio to be both scale-independent and independent of the choice of strut material for strains in the elastic regime, and therefore ZPR behavior can be imparted to a variety of photocurable biomaterial.

  9. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R

    2015-01-23

    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less

  11. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    PubMed

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  12. On the Asymmetric Zero-Range in the Rarefaction Fan

    NASA Astrophysics Data System (ADS)

    Gonçalves, Patrícia

    2014-02-01

    We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the constant-rate totally asymmetric zero-range with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.

  13. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  14. Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.

    2012-01-01

    Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.

  15. REMOVAL OF HIGH-LEVEL ARSENIC BY ZERO-VALENT IRON

    EPA Science Inventory

    The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the st...

  16. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-01-31

    A rapid and simple validated experimental protocol is proposed for the accurate determination of the true intrinsic column efficiency and for that of the variance of the extra-column volume of the instrument used, the latter being obtained without requiring the removal of the chromatographic column from the HPLC system. This protocol was applied to 2.1mm×100mm columns packed with sub-3 (2.7μm Halo Peptide ES-C18) and sub-2μm (1.6μm prototype) core-shell particles. It was validated by observing the linear behavior of the plot of the apparent column plate height versus the reciprocal of (1+k')(2) for at least three homologous compounds, with a linear regression coefficient R(2) larger than 0.999. Irrespective of the contribution of the several, different instruments used to the total band broadening, the same column HETP value was obtained within 5%. This new protocol outperform the classical one in which the chromatographic column is replaced with a zero dead volume (ZDV) union connector to measure the extra-column volume variance, which is subtracted from the variance measured with the column to measure the intrinsic HETP. This protocol fails because it significantly underestimates the system volume variance. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Two-dimensional flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  18. Two-dimensional flexible nanoelectronics.

    PubMed

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-17

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  19. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.

    2017-04-01

    In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.

  20. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    DOE PAGES

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...

    2017-02-14

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  1. Anion-exchange behavior of several alkylsilica reversed-phase columns.

    PubMed

    Marchand, D H; Snyder, L R

    2008-10-31

    Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.

  2. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  3. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    PubMed

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  4. Properties of Zero-Free Transfer Function Matrices

    NASA Astrophysics Data System (ADS)

    D. O. Anderson, Brian; Deistler, Manfred

    Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.

  5. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  6. HIGH-LEVEL ARSENITE REMOVAL FROM GROUNDWATER BY ZERO-VALENT IRON

    EPA Science Inventory

    The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the st...

  7. Autostereoscopic three-dimensional display by combining a single spatial light modulator and a zero-order nulled grating

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Lu, Yifan; Guo, Peiliang; Shi, Lingyan; Wu, Jianhong

    2018-04-01

    In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.

  8. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  9. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  10. Propagation in and scattering from a matched metamaterial having a zero index of refraction.

    PubMed

    Ziolkowski, Richard W

    2004-10-01

    Planar metamaterials that exhibit a zero index of refraction have been realized experimentally by several research groups. Their existence stimulated the present investigation, which details the properties of a passive, dispersive metamaterial that is matched to free space and has an index of refraction equal to zero. Thus, unlike previous zero-index investigations, both the permittivity and permeability are zero here at a specified frequency. One-, two-, and three-dimensional source problems are treated analytically. The one- and two-dimensional source problem results are confirmed numerically with finite difference time domain (FDTD) simulations. The FDTD simulator is also used to treat the corresponding one- and two-dimensional scattering problems. It is shown that in both the source and scattering configurations the electromagnetic fields in a matched zero-index medium take on a static character in space, yet remain dynamic in time, in such a manner that the underlying physics remains associated with propagating fields. Zero phase variation at various points in the zero-index medium is demonstrated once steady-state conditions are obtained. These behaviors are used to illustrate why a zero-index metamaterial, such as a zero-index electromagnetic band-gap structured medium, significantly narrows the far-field pattern associated with an antenna located within it. They are also used to show how a matched zero-index slab could be used to transform curved wave fronts into planar ones.

  11. Improvement of absolute positioning of precision stage based on cooperation the zero position pulse signal and incremental displacement signal

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Shi, Y. P.; Li, X. H.; Ni, K.; Zhou, Q.; Wang, X. H.

    2018-03-01

    In this paper, a scheme to measure the position of precision stages, with a high precision, is presented. The encoder is composed of a scale grating and a compact two-probe reading head, to read the zero position pulse signal and continuous incremental displacement signal. The scale grating contains different codes, multiple reference codes with different spacing superimposed onto the incremental grooves with an equal spacing structure. The codes of reference mask in the reading head is the same with the reference codes on the scale grating, and generate pulse signal to locate the reference position primarily when the reading head moves along the scale grating. After locating the reference position in a section by means of the pulse signal, the reference position can be located precisely with the amplitude of the incremental displacement signal. A kind of reference codes and scale grating were designed, and experimental results show that the primary precision of the design achieved is 1 μ m. The period of the incremental signal is 1μ m, and 1000/N nm precision can be achieved by subdivide the incremental signal in N times.

  12. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    PubMed

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  13. Chaotic behaviour of the short-term variations in ozone column observed in Arctic

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo

    2015-09-01

    The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.

  14. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Levin, A. D.; Momtaz, Z. S.; Gusev, G. M.; Raichev, O. E.; Bakarov, A. K.

    2015-11-01

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  15. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems.

    PubMed

    Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K

    2015-11-13

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  16. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  17. Two-dimensional chromatographic analysis using three second-dimension columns for continuous comprehensive analysis of intact proteins.

    PubMed

    Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong

    2018-03-01

    We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability.

    PubMed

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing

    2017-11-08

    Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

  19. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  20. Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire

    DOE PAGES

    Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; ...

    2016-02-25

    Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi 1.33Sb 0.67)Se 3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. As a result, we characterize the zero-bias peaks andmore » discuss their origin.« less

  1. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures.

    PubMed

    Gibert, O; de Pablo, J; Cortina, J-L; Ayora, C

    2010-08-01

    In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 microg/L.

  2. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  3. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  4. Exact zeros of entanglement for arbitrary rank-two mixtures derived from a geometric view of the zero polytope

    NASA Astrophysics Data System (ADS)

    Osterloh, Andreas

    2016-12-01

    Here I present a method for how intersections of a certain density matrix of rank 2 with the zero polytope can be calculated exactly. This is a purely geometrical procedure which thereby is applicable to obtaining the zeros of SL- and SU-invariant entanglement measures of arbitrary polynomial degree. I explain this method in detail for a recently unsolved problem. In particular, I show how a three-dimensional view, namely, in terms of the Bloch-sphere analogy, solves this problem immediately. To this end, I determine the zero polytope of the three-tangle, which is an exact result up to computer accuracy, and calculate upper bounds to its convex roof which are below the linearized upper bound. The zeros of the three-tangle (in this case) induced by the zero polytope (zero simplex) are exact values. I apply this procedure to a superposition of the four-qubit Greenberger-Horne-Zeilinger and W state. It can, however, be applied to every case one has under consideration, including an arbitrary polynomial convex-roof measure of entanglement and for arbitrary local dimension.

  5. Characterization of sulfur and nitrogen compounds in Brazilian petroleum derivatives using ionic liquid capillary columns in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection.

    PubMed

    Cappelli Fontanive, Fernando; Souza-Silva, Érica Aparecida; Macedo da Silva, Juliana; Bastos Caramão, Elina; Alcaraz Zini, Claudia

    2016-08-26

    Diesel and naphtha samples were analyzed using ionic liquid (IL) columns to evaluate the best column set for the investigation of organic sulfur compounds (OSC) and nitrogen(N)-containing compounds analyses with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry detector (GC×GC/TOFMS). Employing a series of stationary phase sets, namely DB-5MS/DB-17, DB-17/DB-5MS, DB-5MS/IL-59, and IL-59/DB-5MS, the following parameters were systematically evaluated: number of tentatively identified OSC, 2D chromatographic space occupation, number of polyaromatic hydrocarbons (PAH) and OSC co-elutions, and percentage of asymmetric peaks. DB-5MS/IL-59 was chosen for OSC analysis, while IL59/DB-5MS was chosen for nitrogen compounds, as each stationary phase set provided the best chromatographic efficiency for these two classes of compounds, respectively. Most compounds were tentatively identified by Lee and Van den Dool and Kratz retention indexes, and spectra-matching to library. Whenever available, compounds were also positively identified via injection of authentic standards. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mechanical topological insulator in zero dimensions

    NASA Astrophysics Data System (ADS)

    Lera, Natalia; Alvarez, J. V.

    2018-04-01

    We study linear vibrational modes in finite isostatic Maxwell lattices, mechanical systems where the number of degrees of freedom matches the number of constraints. Recent progress in topological mechanics exploits the nontrivial topology of BDI class Hamiltonians in one dimenson and arising topological floppy modes at the edges. A finite frame, or zero-dimensional system, also exhibits a nonzero topological index according to the classification table. We construct mechanical insulating models in zero dimensions that complete the BDI classification in the available real space dimensions. We compute and interpret its nontrivial invariant Z2.

  7. Validating the Goldstein-Wehner Law for the Stratified Positive Column of DC Discharge in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.

    2012-01-01

    In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…

  8. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail

    2014-10-01

    Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.

  9. Research on the Forward and Reverse Calculation Based on the Adaptive Zero-Velocity Interval Adjustment for the Foot-Mounted Inertial Pedestrian-Positioning System

    PubMed Central

    Wang, Qiuying; Guo, Zheng; Sun, Zhiguo; Cui, Xufei; Liu, Kaiyue

    2018-01-01

    Pedestrian-positioning technology based on the foot-mounted micro inertial measurement unit (MIMU) plays an important role in the field of indoor navigation and has received extensive attention in recent years. However, the positioning accuracy of the inertial-based pedestrian-positioning method is rapidly reduced because of the relatively low measurement accuracy of the measurement sensor. The zero-velocity update (ZUPT) is an error correction method which was proposed to solve the cumulative error because, on a regular basis, the foot is stationary during the ordinary gait; this is intended to reduce the position error growth of the system. However, the traditional ZUPT has poor performance because the time of foot touchdown is short when the pedestrians move faster, which decreases the positioning accuracy. Considering these problems, a forward and reverse calculation method based on the adaptive zero-velocity interval adjustment for the foot-mounted MIMU location method is proposed in this paper. To solve the inaccuracy of the zero-velocity interval detector during fast pedestrian movement where the contact time of the foot on the ground is short, an adaptive zero-velocity interval detection algorithm based on fuzzy logic reasoning is presented in this paper. In addition, to improve the effectiveness of the ZUPT algorithm, forward and reverse multiple solutions are presented. Finally, with the basic principles and derivation process of this method, the MTi-G710 produced by the XSENS company is used to complete the test. The experimental results verify the correctness and applicability of the proposed method. PMID:29883399

  10. Separation analysis of macrolide antibiotics with good performance on a positively charged C18HCE column.

    PubMed

    Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-03-01

    The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides.

    PubMed

    Agnew, Douglas W; DiMucci, Ida M; Arroyave, Alejandra; Gembicky, Milan; Moore, Curtis E; MacMillan, Samantha N; Rheingold, Arnold L; Lancaster, Kyle M; Figueroa, Joshua S

    2017-12-06

    A permanently porous, three-dimensional metal-organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2 ] 2 , and the d 10 Ni(0) precursor Ni(COD) 2 , produces a porous metal-organic material featuring tetrahedral [Ni(CNAr Mes2 ) 4 ] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2 -adsorption profile.

  12. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides

    DOE PAGES

    Agnew, Douglas W.; DiMucci, Ida M.; Arroyave, Alejandra; ...

    2017-11-13

    A permanently porous, three-dimensional metal–organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2] 2, and the d 10 Ni(0) precursor Ni(COD) 2, produces a porous metal–organic material featuring tetrahedral [Ni(CNAr Mes2) 4] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2-adsorption profile.

  13. Characterization of non-endcapped polymeric ODS column for the separation of triacylglycerol positional isomers.

    PubMed

    Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun

    2010-01-01

    The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.

  14. Adaptation of a zero-dimensional cylinder pressure model for diesel engines using the crankshaft rotational speed

    NASA Astrophysics Data System (ADS)

    Weißenborn, E.; Bossmeyer, T.; Bertram, T.

    2011-08-01

    Tighter emission regulations are driving the development of advanced engine control strategies relying on feedback information from the combustion chamber. In this context, it is especially seeked for alternatives to expensive in-cylinder pressure sensors. The present study addresses these issues by pursuing a simulation-based approach. It focuses on the extension of an empirical, zero-dimensional cylinder pressure model using the engine speed signal in order to detect cylinder-wise variations in combustion. As a special feature, only information available from the standard sensor configuration are utilized. Within the study, different methods for the model-based reconstruction of the combustion pressure including nonlinear Kalman filtering are compared. As a result, the accuracy of the cylinder pressure model can be enhanced. At the same time, the inevitable limitations of the proposed methods are outlined.

  15. Tube and column agglutination technology for autocontrol testing.

    PubMed

    Courtney, J E; Vincent, J L; Indrikovs, A J

    2001-01-01

    The incidence of positive autocontrol test results with column agglutination technology is a concern. This study investigates the incidence and significance of positive autocontrols in the ID Micro Typing System (gel) and the Gamma ReACT (ReACT). The study encompassed a total of 1021 randomly selected samples from patients and 95 samples from donors collected during 1 month. The autocontrol testing was carried out according to the manufacturer's instructions for the column agglutination tests. The tube method was carried out using low-ionic-strength solution (LISS). The direct antiglobulin test (DAT) was performed using the tube method, and further investigated with elution studies if warranted. Seventy-nine patient's samples (7.74%) had a positive autocontrol: the gel test, 72 (91.13%); ReACT, 21 (26.58%); and the tube method, 27 (34.18%). Of the 79 positive autocontrols, 44 samples had a negative DAT. Of the samples with positive DAT results, only one possessed a clinically significant antibody, anti-D. Moreover, the same sample also tested positive in all three methods. Column agglutination techniques have increased sensitivity for a positive autocontrol beyond the conventional tube method. However, ReACT and gel tests differ significantly in their frequency of positives. Investigation of the significance of a positive autocontrol in column agglutination technology when the conventional tube method is also positive is suggested.

  16. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography.

    PubMed

    Cheng, Cheanyeh; Wu, Shing-Chen

    2011-05-20

    An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For

  17. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  18. Measuring and modeling three-dimensional water uptake of a growing faba bean (Vicia faba) within a soil column

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry

    2014-05-01

    A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of

  19. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  20. Zero Tolerance: Advantages and Disadvantages. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2009-01-01

    What are the positives and negatives of zero tolerance? What should be considered when examining a school's program? Although there are no definitive definitions of zero tolerance, two commonly used ones are as follows: "Zero tolerance means that a school will automatically and severely punish a student for a variety of infractions" (American Bar…

  1. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  2. Degradation of Energetic Compounds using Zero-Valent Iron (ZVI)

    DTIC Science & Technology

    2012-03-01

    control number. 1. REPORT DATE MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4 . TITLE AND SUBTITLE Degradation of Energetic...the column effluents were collected and passed through a 0.22- µm cellulose membrane filter (Millipore, Bedford, MA) for HPLC analysis. Degradation ...FINAL REPORT Degradation of Energetic Compounds Using Zero-Valent Iron (ZVI) ESTCP Project WP-200524 MARCH 2012 Byung J. Kim U.S

  3. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  4. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    NASA Astrophysics Data System (ADS)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  5. Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP

    NASA Astrophysics Data System (ADS)

    Cordero Machado, Jorge; Heinrich, Thomas; Schuldt, Thilo; Gohlke, Martin; Lucarelli, Stefano; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-07-01

    Highly stable but lightweight structural materials are essential for the realization of spaceborne optical instruments, for example telescopes. In terms of optical performance, usually tight tolerances on the absolute spacing between telescope mirrors have to be maintained from integration on ground to operation in final orbit. Furthermore, a certain stability of the telescope structure must typically be ensured in the measurement band. Particular challenging requirements have to be met for the LISA Mission (Laser Interferometer Space Antenna), where the spacing between primary and secondary mirror must be stable to a few picometers. Only few materials offer sufficient thermal stability to provide such performance. Candidates are for example Zerodur and Carbon-Fiber Reinforced Plastic (CFRP), where the latter is preferred in terms of mechanical stiffness and robustness. We are currently investigating the suitability of CFRP with respect to the LISA requirements by characterization of its dimensional stability with heterodyne laser interferometry. The special, highly symmetric interferometer setup offers a noise level of 2 pm/√Hz at 0.1Hz and above, and therefore represents a unique tool for this purpose. Various procedures for the determination of the coefficient of thermal expansion (CTE) have been investigated, both on a test sample with negative CTE, as well as on a CFRP tube specifically tuned to provide a theoretical zero expansion in the axial dimension.

  6. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, Catherine

    2006-09-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in a quasi-static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall, and the material properties was investigated within the quasi-static regime. A change in the behavior of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau. Finally, we find that the structure of the slip planes that develop in our experiments are not well described by the failure of Coulomb's wedges for twin retaining rough walls.

  7. Zero-dimensional to three-dimensional nanojoining: current status and potential applications

    DOE PAGES

    Ma, Ying; Li, Hong; Bridges, Denzel; ...

    2016-08-01

    We report that the continuing miniaturization of microelectronics is pushing advanced manufacturing into nanomanufacturing. Nanojoining is a bottom-up assembly technique that enables functional nanodevice fabrication with dissimilar nanoscopic building blocks and/or molecular components. Various conventional joining techniques have been modified and re-invented for joining nanomaterials. Our review surveys recent progress in nanojoining methods, as compared to conventional joining processes. Examples of nanojoining are given and classified by the dimensionality of the joining materials. At each classification, nanojoining is reviewed and discussed according to materials specialties, low dimensional processing features, energy input mechanisms and potential applications. The preparation of new intermetallicmore » materials by reactive nanoscale multilayer foils based on self-propagating high-temperature synthesis is highlighted. This review will provide insight into nanojoining fundamentals and innovative applications in power electronics packaging, plasmonic devices, nanosoldering for printable electronics, 3D printing and space manufacturing.« less

  8. Quantum Transport Properties in Two-Dimensional and Low Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Fang, Hao

    1991-02-01

    The quantum transport properties in quasi two -dimensional and zero-dimensional systems have been studied at magnetic field of 0 - 8T and low temperatures down to 1.3K. In the (100) Si inversion layer, we investigated the effect of valley splitting on the value of the enhanced effective g factor by the tilted magnetic field measurement. The valley splitting is determined from the beat effect on samples with measurable valley splitting behavior due to misorientation effects. Experimental results illustrate that the effective g factor is enhanced by many body interactions and that the valley splitting has no obvious effect on the g-value. A simulation calculation with a Gaussian distribution of density of states has been carried out and the simulated results are in an excellent agreement with the experimental data. A new and very simple technique has been developed for fabricating two-dimensional periodic submicron structures with feature sizes down to about 300 A. The etching mask is made by coating the material surface with a monolayer of close-packed uniform latex particles. We have demonstrated the formation of a quasi zero-dimensional quantum dot array and performed capacitance measurements on GaAs/AlGaAs heterostructure samples with periodicities ranging from 3000 to 4000 A. A series of nearly equally spaced peaks in a curve of the derivative of capacitance with respect to gate voltage, which corresponds to the energy levels formed by the lateral electric confining potential, is observed. The energy spacings and effective dot widths estimated from a simple parabolic potential model are consistent with the experimental data. Novel magnetoresistance oscillations in a two -dimensional electron gas modulated by a two-dimensional triangular superlattice potential are observed in GaAs/AlGaAs heterostructures. The new oscillations appear at very low magnetic fields and the peak positions are directly determined by the magnetic field and the periodicity of the

  9. Nonmonotonic radial distribution of excited atoms in a positive column of pulsed direct currect discharges in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnat, E. V.; Kolobov, V. I.

    2013-01-21

    Nonmonotonic radial distributions of excited helium atoms have been experimentally observed in a positive column of pulsed helium discharges using planar laser induced fluorescence. Computational analysis of the discharge dynamics with a fluid plasma model confirms the experimental observations over a range of pressures and currents. The observed effect is attributed to the peculiarities of electron population-depopulation of the excited states during the 'dynamic discharge' conditions with strong modulations of the electric field maintaining the plasma.

  10. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    PubMed

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. A Comparison of Some Difference Schemes for a Parabolic Problem of Zero-Coupon Bond Pricing

    NASA Astrophysics Data System (ADS)

    Chernogorova, Tatiana; Vulkov, Lubin

    2009-11-01

    This paper describes a comparison of some numerical methods for solving a convection-diffusion equation subjected by dynamical boundary conditions which arises in the zero-coupon bond pricing. The one-dimensional convection-diffusion equation is solved by using difference schemes with weights including standard difference schemes as the monotone Samarskii's scheme, FTCS and Crank-Nicolson methods. The schemes are free of spurious oscillations and satisfy the positivity and maximum principle as demanded for the financial and diffusive solution. Numerical results are compared with analytical solutions.

  12. One-dimensional "atom" with zero-range potential perturbed by finite sequence of zero-duration laser pulses

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.

    2018-04-01

    The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.

  13. Structural zeroes and zero-inflated models.

    PubMed

    He, Hua; Tang, Wan; Wang, Wenjuan; Crits-Christoph, Paul

    2014-08-01

    In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of 'structural zeroes' that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes (responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

  14. Positive magnetoresistance in Fe3Se4 nanowires

    NASA Astrophysics Data System (ADS)

    Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.

    2011-04-01

    We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.

  15. Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column.

    PubMed

    Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro

    2014-10-01

    In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Topographic shear and the relation of ocular dominance columns to orientation columns in primate and cat visual cortex.

    PubMed

    Wood, Richard J.; Schwartz, Eric L.

    1999-03-01

    Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.

  17. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018572 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  18. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018486 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  19. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018466 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  20. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018383 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  1. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018390 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  2. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018417 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  3. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Singleton, John; ...

    2017-01-05

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less

  4. Experimental study of two-dimensional quantum Wigner solid in zero magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2014-03-31

    At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×10{sup 8} cm{sup −2}. The apparent metal-to-insulator transition (MIT) occurs for a large r{sub s} value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series ofmore » carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with r{sub s} > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.« less

  5. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency.

    PubMed

    Zhou, Chenkun; Lin, Haoran; Tian, Yu; Yuan, Zhao; Clark, Ronald; Chen, Banghao; van de Burgt, Lambertus J; Wang, Jamie C; Zhou, Yan; Hanson, Kenneth; Meisner, Quinton J; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Lambers, Eric; Djurovich, Peter; Ma, Biwu

    2018-01-21

    Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I) and (C 9 NH 20 ) 2 SbX 5 (X = Cl), in which the individual metal halide octahedra (SnX 6 4- ) and quadrangular pyramids (SbX 5 2- ) are completely isolated from each other and surrounded by the organic ligands C 4 N 2 H 14 X + and C 9 NH 20 + , respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.

  6. [Effect of calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint].

    PubMed

    Chen, Yanxi; Yu, Guangrong; Ding, Zhuquan

    2007-03-01

    To discuss the effect of the calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint and its clinical significance. Ten fresh-frozen foot specimens, three-dimensional kinematics of talonavicular joint were determined in the case of neutral position, dorsiflexion. plantoflexion, adduction, abduction, inversion and eversion motion by means of three-dimensional coordinate instrument (Immersion MicroScribe G2X) before and after calcaneocuboid arthrodesis under non-weight with moment of couple, bending moment, equilibrium dynamic loading. Calcaneocuboid arthrodesis was performed on these feet in neutral position and the lateral column of normal length. A significant decrease in the three-dimensional kinematics of talonavicular joint was observed (P < 0.01) in cadaver model following calcaneocuboid arthrodesis. Talonavicular joint motion was diminished by 31.21% +/- 6.08% in sagittal plane; by 51.46% +/- 7.91% in coronal plane; by 36.98% +/- 4.12% in transverse plane; and averagely by 41.25% +/- 6.02%. Calcancocuboid arthrodesis could limite motion of the talonavicular joints, and the disadvantage of calcaneocuboid arthrodesis shouldn't be neglected.

  7. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology.

    PubMed

    Wang, Chen-Chao; Tejwani Motwani, Monica R; Roach, Willie J; Kay, Jennifer L; Yoo, Jaedeok; Surprenant, Henry L; Monkhouse, Donald C; Pryor, Timothy J

    2006-03-01

    Three near zero-order controlled-release pseudoephedrine hydrochloride (PEH) formulations demonstrating proportional release rates were developed using 3-Dimensional Printing (3-DP) technology. Mixtures of Kollidon SR and hydroxypropylmethyl cellulose (HPMC) were used as drug carriers. The release rates were adjusted by varying the Kollidon SR-HPMC ratio while keeping fabrication parameters constant. The dosage forms were composed of an immediate release core and a release rate regulating shell, fabricated with an aqueous PEH and an ethanolic triethyl citrate (TEC) binder, respectively. The dosage form design called for the drug to be released via diffusional pathways formed by HPMC in the shell matrix. The release rate was shown to increase correspondingly with the fraction of HPMC contained in the polymer blend. The designed formulations resulted in dosage forms that were insensitive to changes in pH of the dissolution medium, paddle stirring rate, and the presence/absence of a sinker. The near zero-order release properties were unchanged regardless of the dissolution test being performed on either single cubes or on a group of eight cubes encased within a gelatin capsule shell. The chemical and dissolution properties of the three formulations remained unchanged following 1 month's exposure to 25 degrees C/60% RH or 40 degrees C/75% RH environment under open container condition. The in vivo performance of the three formulations was evaluated using a single-dose, randomized, open-label, four-way crossover clinical study composed of 10 fasted healthy volunteers. The pharmacokinetic parameters were analyzed using a noncompartmental model. Qualitative rank order linear correlations between in vivo absorption profiles and in vitro dissolution parameters (with slope and intercept close to unity and origin, respectively) were obtained for all three formulations, indicating good support for a Level A in vivo/in vitro correlation.

  8. Computing sparse derivatives and consecutive zeros problem

    NASA Astrophysics Data System (ADS)

    Chandra, B. V. Ravi; Hossain, Shahadat

    2013-02-01

    We describe a substitution based sparse Jacobian matrix determination method using algorithmic differentiation. Utilizing the a priori known sparsity pattern, a compression scheme is determined using graph coloring. The "compressed pattern" of the Jacobian matrix is then reordered into a form suitable for computation by substitution. We show that the column reordering of the compressed pattern matrix (so as to align the zero entries into consecutive locations in each row) can be viewed as a variant of traveling salesman problem. Preliminary computational results show that on the test problems the performance of nearest-neighbor type heuristic algorithms is highly encouraging.

  9. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    PubMed

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.

    PubMed

    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C

    2016-10-01

    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  12. A Zero-Dimensional Organic Seesaw-Shaped Tin Bromide with Highly Efficient Strongly Stokes-Shifted Deep-Red Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chenkun; Lin, Haoran; Shi, Hongliang

    The synthesis and characterization is reported of (C 9NH 20) 2SnBr 4, a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr 4 2-) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C 9NH 20 +). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. Furthermore, the unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals tomore » exhibit the intrinsic properties of individual SnBr 4 2- species, and 2) the seesaw structure then enables a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.« less

  13. Results of the eruptive column model inter-comparison study

    USGS Publications Warehouse

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  14. Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation.

    PubMed

    Liu, Wenwen; Dai, Zhiqiang; Liu, Yi; Zhu, Anquan; Zhong, Donglin; Wang, Juan; Pan, Jun

    2018-05-31

    Constructing a two-dimensional/zero-dimensional (2D/0D) composite with matched crystal structure, suitable energy band structure as well as intimate contact interface is an effective way to improve carriers separation for achieving highly photocatalytic performance. In this work, a novel bismuth titanate/bismuth oxychloride (Bi 4 Ti 3 O 12 /BiOCl) composite consisting of 2D Bi 4 Ti 3 O 12 nanosheets and 0D BiOCl nanoparticles was constructed for the first time. Germinating ultrafine BiOCl nanoparticles on Bi 4 Ti 3 O 12 nanosheets can provide abundant contact interface and shorten migration distance of photoinduced carriers via two-step synthesis contained molten salt process and facile chemical transformation process. The obtained Bi 4 Ti 3 O 12 /BiOCl 2D/0D composites exhibited enhanced photocatalytic performance for antibiotic tetracycline hydrochloride degradation. The rate constant of optimal Bi 4 Ti 3 O 12 /BiOCl composite was about 4.4 times higher than that of bare Bi 4 Ti 3 O 12 although Bi 4 Ti 3 O 12 /BiOCl composite appeared lesser photoabsorption. The enhanced photocatalytic performance can be mainly ascribed to matched crystal structure, suitable energy band structure and intimate contact interface between Bi 4 Ti 3 O 12 nanosheets and ultrafine BiOCl nanoparticles as well as unique 2D/0D composite structure. Besides, a probable degradation mechanism on the basis of active species trapping experiments, electrochemical impedance spectroscopy, photocurrent responses and energy band structures was proposed. This work may be stretched to other 2D/0D composite photocatalysts construction, which is inspiring for antibiotic residue treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Optimal design of zero-water discharge rinsing systems.

    PubMed

    Thöming, Jorg

    2002-03-01

    This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.

  16. Method of Forming Three-Dimensional Semiconductors Structures

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor)

    2002-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow columns of metal silicide embedded in a matrix of single crystal, epitaxially grown silicon. Higher substrate temperatures and lower deposition rates yield larger columns that are farther apart while more silicon produces smaller columns. Column shapes and locations are selected by seeding the substrate with metal silicide starting regions. A variety of 3-dimensional, exemplary electronic devices are disclosed.

  17. Zero-valent iron/biotic treatment system for perchlorate-contaminated water: lab-scale performance, modeling, and full-scale implications

    EPA Science Inventory

    The computer program AQUASIM was used to model biological treatment of perchlorate-contaminated water using zero-valent iron corrosion as the hydrogen gas source. The laboratory-scale column was seeded with an autohydrogenotrophic microbial consortium previously shown to degrade ...

  18. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.

    PubMed

    Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram

    2017-02-01

    In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.

  19. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  20. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  1. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  2. Dynamics of a Tapped Granular Column

    NASA Astrophysics Data System (ADS)

    Rosato, Anthony; Blackmore, Denis; Zuo, Luo; Hao, Wu; Horntrop, David

    2015-11-01

    We consider the behavior of a column of spheres subjected to a time-dependent vertical taps. Of interest are various dynamical properties, such as the motion of its mass center, its response to taps of different intensities and forms, and the effect of system size and material properties. The interplay between diverse time and length scales are the key contributors to the column's evolving dynamics. Soft sphere discrete element simulations were conducted over a very wide parameter space to obtain a portrait of column behavior as embodied by the collective dynamics of the mass center motion. Results compared favorably with a derived reduced-order paradigm of the mass center motion (surprisingly analogous to that for a single bouncing ball on an oscillating plate) with respect to dynamical regimes and their transitions. A continuum model obtained from a system of Newtonian equations, as a locally averaged limit in the transport mode along trajectories is described, and a numerical solution protocol for a one-dimensional system is outlined. Typical trajectories and density evolution profiles are shown. We conclude with a discussion of our investigations to relate predictions of the continuum and reduced dynamical systems models with discrete simulations.

  3. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    NASA Astrophysics Data System (ADS)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  4. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms.

    PubMed

    Rettig, Oliver; Krautwurst, Britta; Maier, Michael W; Wolf, Sebastian I

    2015-12-09

    Surgical interventions at the shoulder may alter function of the shoulder complex. Clinically, the outcome can be assessed by universal goniometry. Marker-based motion capture may not resemble these results due to differing angle definitions. The clinical inspection of bilateral arm abduction for assessing shoulder dysfunction is performed with a marker based 3D optical measurement method. An anatomical zero position of shoulder pose is proposed to determine absolute angles according to the Neutral-0-Method as used in orthopedic context. Static shoulder positions are documented simultaneously by 3D marker tracking and universal goniometry in 8 young and healthy volunteers. Repetitive bilateral arm abduction movements of at least 150° range of motion are monitored. Similarly a subject with gleno-humeral osteoarthritis is monitored for demonstrating the feasibility of the method and to illustrate possible shoulder dysfunction effects. With mean differences of less than 2°, the proposed anatomical zero position results in good agreement between shoulder elevation/depression angles determined by 3D marker tracking and by universal goniometry in static positions. Lesser agreement is found for shoulder pro-/retraction with systematic deviations of up to 6°. In the bilateral arm abduction movements the volunteers perform a common and specific pattern in clavicula-thoracic and gleno-humeral motion with maximum shoulder angles of 32° elevation, 5° depression and 45° protraction, respectively, whereas retraction is hardly reached. Further, they all show relevant out of (frontal) plane motion with anteversion angles of 30° in overhead position (maximum abduction). With increasing arm anteversion the shoulder is increasingly retroverted, with a maximum of 20° retroversion. The subject with gleno-humeral osteoarthritis shows overall less shoulder abduction range of motion but with increased out-of-plane movement during abduction. The proposed anatomical zero definition

  5. Zero modes of the non-relativistic self-dual Chern-Simons vortices on the Toda backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yongsung

    The two-dimensional self-dual equations are the governing equations of the static zero-energy vortex solutions for the non-relativistic, non-Abelian Chern-Simons models. The zero modes of the non-relativistic vortices are examined by index calculation for the self-dual equations. The index for the self-dual equations is zero for non-Abelian groups, but a non-zero index is obtained by the Toda Ansatz which reduces the self-dual equations to the Toda equations. The number of zero modes for the non-relativistic Toda vortices is 2 {Sigma}{sub {alpha},{beta}}{sup r}K{sub {alpha}{beta}}Q{sup {beta}} which is twice the total number of isolated zeros of the vortex functions. For the affine Todamore » system, there are additional adjoint zero modes which give a zero index for the SU(N) group.« less

  6. Feasibility of zero or near zero fluoroscopy during catheter ablation procedures.

    PubMed

    Haegeli, Laurent M; Stutz, Linda; Mohsen, Mohammed; Wolber, Thomas; Brunckhorst, Corinna; On, Chol-Jun; Duru, Firat

    2018-04-03

    Awareness of risks associated with radiation exposure to patients and medical staff has significantly increased. It has been reported before that the use of advanced three-dimensional electro-anatomical mapping (EAM) system significantly reduces fluoroscopy time, however this study aimed for zero or near zero fluoroscopy ablation to assess its feasibility and safety in ablation of atrial fibrillation (AF) and other tachyarrhythmias in a "real world" experience of a single tertiary care center. This was a single-center study where ablation procedures were attempted without fluoroscopy in 34 consecutive patients with different tachyarrhythmias under the support of EAM system. When transseptal puncture (TSP) was needed, it was attempted under the guidance of intracardiac echocardiography (ICE). Among 34 patients consecutively enrolled in this study, 28 (82.4%) patients were referred for radiofrequency ablation (RFA) of AF, 3 (8.8%) patients for ablation of right ventricular outflow tract (RVOT) ventricular extrasystole (VES), 1 (2.9%) patient for ablation of atrioventricular nodal reentry tachycardia (AVNRT), 2 (5.9%) patients for typical atrial flutter ablation. In 21 (62%) patients the entire procedure was carried out without the use of fluoroscopy. Among 28 AF patients, 15 (54%) patients underwent ablation without the use of fluoroscopy and among these 15 patients, 10 (67%) patients required TSP under ICE guidance while 5 (33%) patients the catheters were introduced to left atrium through a patent foramen ovale. In 13 AF patients, fluoroscopy was only required for double TSP. The total procedure time of AF ablation was 130 ± 50 min. All patients referred for atrial flutter, AVNRT, and VES of the RVOT ablation did not require any fluoroscopy. This study demonstrates the feasibility of zero or near zero fluoroscopy procedure including TSP with the support of EAM and ICE guidance in a "real world" experience of a single tertiary care center. When fluoroscopy was

  7. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  8. USE OF PRETREATMENT ZONES AND ZERO-VALENT IRON FOR THE REMEDIATION OF CHLOROALKENES IN AN OXIC AQUIFER

    EPA Science Inventory

    Pre-treatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in aboveground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, o...

  9. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  10. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved

  11. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns.

    PubMed

    Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M

    2016-06-15

    In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This

  12. Computational knee ligament modeling using experimentally determined zero-load lengths.

    PubMed

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.

  13. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths

    PubMed Central

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  14. Topological Superfluid and Majorana Zero Modes in Synthetic Dimension

    PubMed Central

    Yan, Zhongbo; Wan, Shaolong; Wang, Zhong

    2015-01-01

    Recently it has been shown that multicomponent spin-orbit-coupled fermions in one-dimensional optical lattices can be viewed as spinless fermions moving in two-dimensional synthetic lattices with synthetic magnetic flux. The quantum Hall edge states in these systems have been observed in recent experiments. In this paper we study the effect of an attractive Hubbard interaction. Since the Hubbard interaction is long-range in the synthetic dimension, it is able to efficiently induce Cooper pairing between the counterpropagating chiral edge states. The topological class of the resultant one-dimensional superfluid is determined by the parity (even/odd) of the Chern number in the two-dimensional synthetic lattice. We also show the presence of a chiral symmetry in our model, which implies Z classification and the robustness of multiple zero modes when this symmetry is unbroken. PMID:26515084

  15. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Max Planck Institute for the Physics of Complex Systems, Dresden

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as doesmore » the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.« less

  17. Positive column of a glow discharge in neon with charged dust grains (a review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less

  18. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    PubMed

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  20. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  1. Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients

    NASA Astrophysics Data System (ADS)

    He, Yan; Wright, Kevin; Kouachi, Said; Chien, Chih-Chun

    2018-02-01

    One-dimensional superlattices with periodic spatial modulations of onsite potentials or tunneling coefficients can exhibit a variety of properties associated with topology or symmetry. Recent developments of ring-shaped optical lattices allow a systematic study of those properties in superlattices with or without boundaries. While superlattices with additional modulating parameters are shown to have quantized topological invariants in the augmented parameter space, we also found localized or zero-energy states associated with symmetries of the Hamiltonians. Probing those states in ultracold atoms is possible by utilizing recently proposed methods analyzing particle depletion or the local density of states. Moreover, we summarize feasible realizations of configurable optical superlattices using currently available techniques.

  2. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    PubMed

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  3. SEMIPARAMETRIC ZERO-INFLATED MODELING IN MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA)

    PubMed Central

    Liu, Hai; Ma, Shuangge; Kronmal, Richard; Chan, Kung-Sik

    2013-01-01

    We analyze the Agatston score of coronary artery calcium (CAC) from the Multi-Ethnic Study of Atherosclerosis (MESA) using semi-parametric zero-inflated modeling approach, where the observed CAC scores from this cohort consist of high frequency of zeroes and continuously distributed positive values. Both partially constrained and unconstrained models are considered to investigate the underlying biological processes of CAC development from zero to positive, and from small amount to large amount. Different from existing studies, a model selection procedure based on likelihood cross-validation is adopted to identify the optimal model, which is justified by comparative Monte Carlo studies. A shrinkaged version of cubic regression spline is used for model estimation and variable selection simultaneously. When applying the proposed methods to the MESA data analysis, we show that the two biological mechanisms influencing the initiation of CAC and the magnitude of CAC when it is positive are better characterized by an unconstrained zero-inflated normal model. Our results are significantly different from those in published studies, and may provide further insights into the biological mechanisms underlying CAC development in human. This highly flexible statistical framework can be applied to zero-inflated data analyses in other areas. PMID:23805172

  4. Three-dimensional envelope instability in periodic focusing channels

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2018-03-01

    The space-charge driven envelope instability can be of great danger in high intensity accelerators and was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90 ° , the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90 ° . For the transverse zero current phase advance beyond 90 ° , the instability stopband width becomes larger with the increase of the longitudinal focusing strength and even shows different structure from the 2D case when the longitudinal zero current phase advance is beyond 90 ° . Breaking the symmetry of two longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the envelope instability in parameter space.

  5. Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas

    2013-06-01

    Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.

  6. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  7. Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Yucheng; Wang, Pei; Gao, Xianlong; Chen, Shu

    2017-05-01

    We investigate the quench dynamics of a one-dimensional incommensurate lattice described by the Aubry-André model by a sudden change of the strength of incommensurate potential Δ and unveil that the dynamical signature of localization-delocalization transition can be characterized by the occurrence of zero points in the Loschmidt echo. For the quench process with quenching taking place between two limits of Δ =0 and Δ =∞ , we give analytical expressions of the Loschmidt echo, which indicate the existence of a series of zero points in the Loschmidt echo. For a general quench process, we calculate the Loschmidt echo numerically and analyze its statistical behavior. Our results show that if both the initial and post-quench Hamiltonian are in extended phase or localized phase, Loschmidt echo will always be greater than a positive number; however if they locate in different phases, Loschmidt echo can reach nearby zero at some time intervals.

  8. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    PubMed

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  10. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.

    PubMed

    Kassahun, Wondwosen; Neyens, Thomas; Molenberghs, Geert; Faes, Christel; Verbeke, Geert

    2014-11-10

    Count data are collected repeatedly over time in many applications, such as biology, epidemiology, and public health. Such data are often characterized by the following three features. First, correlation due to the repeated measures is usually accounted for using subject-specific random effects, which are assumed to be normally distributed. Second, the sample variance may exceed the mean, and hence, the theoretical mean-variance relationship is violated, leading to overdispersion. This is usually allowed for based on a hierarchical approach, combining a Poisson model with gamma distributed random effects. Third, an excess of zeros beyond what standard count distributions can predict is often handled by either the hurdle or the zero-inflated model. A zero-inflated model assumes two processes as sources of zeros and combines a count distribution with a discrete point mass as a mixture, while the hurdle model separately handles zero observations and positive counts, where then a truncated-at-zero count distribution is used for the non-zero state. In practice, however, all these three features can appear simultaneously. Hence, a modeling framework that incorporates all three is necessary, and this presents challenges for the data analysis. Such models, when conditionally specified, will naturally have a subject-specific interpretation. However, adopting their purposefully modified marginalized versions leads to a direct marginal or population-averaged interpretation for parameter estimates of covariate effects, which is the primary interest in many applications. In this paper, we present a marginalized hurdle model and a marginalized zero-inflated model for correlated and overdispersed count data with excess zero observations and then illustrate these further with two case studies. The first dataset focuses on the Anopheles mosquito density around a hydroelectric dam, while adolescents' involvement in work, to earn money and support their families or themselves, is

  11. Observation of acoustic Dirac-like cone and double zero refractive index

    PubMed Central

    Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-01-01

    Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

  12. Edge-mode superconductivity in a two-dimensional topological insulator.

    PubMed

    Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P

    2015-07-01

    Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

  13. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  14. Copper Selenidophosphates Cu4P2Se6, Cu4P3Se4, Cu4P4Se3, and CuP2Se, Featuring Zero-, One-, and Two-Dimensional Anions.

    PubMed

    Kuhn, Alexander; Schoop, Leslie M; Eger, Roland; Moudrakovski, Igor; Schwarzmüller, Stefan; Duppel, Viola; Kremer, Reinhard K; Oeckler, Oliver; Lotsch, Bettina V

    2016-08-15

    Five new compounds in the Cu/P/Se phase diagram have been synthesized, and their crystal structures have been determined. The crystal structures of these compounds comprise four previously unreported zero-, one-, and two-dimensional selenidophosphate anions containing low-valent phosphorus. In addition to two new modifications of Cu4P2Se6 featuring the well-known hexaselenidohypodiphosphate(IV) ion, there are three copper selenidophosphates with low-valent P: Cu4P3Se4 contains two different new anions, (i) a monomeric (zero-dimensional) selenidophosphate anion [P2Se4](4-) and (ii) a one-dimensional selenidophosphate anion [Formula: see text], which is related to the well-known gray-Se-like [Formula: see text] Zintl anion. Cu4P4Se3 contains one-dimensional [Formula: see text] polyanions, whereas CuP2Se contains the 2D selenidophosphate [Formula: see text] polyanion. It consists of charge-neutral CuP2Se layers separated by a van der Waals gap which is very rare for a Zintl-type phase. Hence, besides black P, CuP2Se constitutes a new possible source of 2D oxidized phosphorus containing layers for intercalation or exfoliation experiments. Additionally, the electronic structures and some fundamental physical properties of the new compounds are reported. All compounds are semiconducting with indirect band gaps of the orders of around 1 eV. The phases reported here add to the structural diversity of chalcogenido phosphates. The structural variety of this family of compounds may translate into a variety of tunable physical properties.

  15. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  16. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  17. Dislocation Majorana zero modes in perovskite oxide 2DEG

    PubMed Central

    Chung, Suk Bum; Chan, Cheung; Yao, Hong

    2016-01-01

    Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors. PMID:27139319

  18. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media

    NASA Astrophysics Data System (ADS)

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E.

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from - 62 mV to - 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.

  19. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50=2.4μm) are investigated in column tests using columns of 40cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62mV to -80mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The paradoxical zero reflection at zero energy

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Sharma, Vibhu; Sharma, Mayank; Singhal, Ankush; Kaiwart, Rahul; Priyadarshini, Pallavi

    2017-03-01

    Usually, the reflection probability R(E) of a particle of zero energy incident on a potential which converges to zero asymptotically is found to be 1: R(0)=1. But earlier, a paradoxical phenomenon of zero reflection at zero energy (R(0)=0) has been revealed as a threshold anomaly. Extending the concept of half-bound state (HBS) of 3D, here we show that in 1D when a symmetric (asymmetric) attractive potential well possesses a zero-energy HBS, R(0)=0 (R(0)\\ll 1). This can happen only at some critical values q c of an effective parameter q of the potential well in the limit E\\to {0}+. We demonstrate this critical phenomenon in two simple analytically solvable models: square and exponential wells. However, in numerical calculations, even for these two models R(0)=0 is observed only as extrapolation to zero energy from low energies, close to a precise critical value q c. By numerical investigation of a variety of potential wells, we conclude that for a given potential well (symmetric or asymmetric), we can adjust the effective parameter q to have a low reflection at a low energy.

  1. Switchable and non-switchable zero backscattering of dielectric nano-resonators

    DOE PAGES

    Wang, Feng; Wei, Qi -Huo; Htoon, Han

    2015-02-27

    Previous studies have shown that two-dimensional (2D) arrays of high-permittivity dielectric nanoparticles are capable of fully suppressing backward light scattering when the resonant frequencies of electrical and magnetic dipolar modes are coincident. In this paper, we numerically demonstrate that the zero-backscattering of 2D Si nanocuboid arrays can be engineered to be switchable or non-switchable in response to a variation in the environmental refractive index. For each cuboid width/length, there exist certain cuboid heights and orthogonal periodicity ratio for which the electrical and magnetic resonances exhibit similar spectra widths and equivalent sensitivities to the environmental index changes, so that the zero-backscatteringmore » is non-switchable upon environmental change. For some other cuboid heights and certain anisotropic periodicity ratios, the electric and magnetic modes exhibit different sensitivities to environmental index changes, making the zero-backscattering sensitive to environmental changes. We also show that by using two different types of nano-resonators in the unit cell, Fano resonances can be introduced to greatly enhance the switching sensitivity of zero-backscattering.« less

  2. Majorana zero modes in Dirac semimetal Josephson junctions

    NASA Astrophysics Data System (ADS)

    Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander

    We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.

  3. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

    PubMed

    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

    2014-03-01

    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. 2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. W.

    2004-12-01

    We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the angular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and iteratively updates the total potential, solving Poisson's equation by Legendre polynomial decomposition; the algorithm can readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars of mass 1, 2, 5, 10 M⊙ with a range of angular velocities up to break up. The models have a composition X=0.70, Z=0.02 and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2 Re3/GM can exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.

  5. Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas

    2013-05-01

    The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.

  6. Zero-Totality in Action-Reaction Space:. A Generalization of Newton's Third Law?

    NASA Astrophysics Data System (ADS)

    Karam, Sabah E.

    2013-09-01

    In order to present the universe as a zero-totality the key concepts of nothingness and duality are required. Diaz and Rowlands introduce processes of conjugation, complexification, and dimensionalization using a universal alphabet and rewrite system to describe a physical universe composed of nilpotents. This paper will apply the concept of conjugation to the Newtonian duality actionreaction by introducing associated dual spaces called action space-reaction space. An attempt to generalize Newton's third law of motion, utilizing the concept of dual spaces, will follow in a manner suggestive of the zero-totality fermion-vacuum relationship.

  7. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  8. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  9. A statistical methodology for estimating transport parameters: Theory and applications to one-dimensional advectivec-dispersive systems

    USGS Publications Warehouse

    Wagner, Brian J.; Gorelick, Steven M.

    1986-01-01

    A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.

  10. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  11. Zero-field edge plasmons in a magnetic topological insulator [Zero-field edge magnetoplasmons in a magnetic topological insulator

    DOE PAGES

    Mahoney, Alice C.; Colless, James I.; Peeters, Lucas; ...

    2017-11-28

    Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb) 2Te 3. Wemore » identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Finally, our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.« less

  12. Zero-field edge plasmons in a magnetic topological insulator [Zero-field edge magnetoplasmons in a magnetic topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Alice C.; Colless, James I.; Peeters, Lucas

    Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb) 2Te 3. Wemore » identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Finally, our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.« less

  13. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  14. Latching mechanism for deployable/re-stowable columns useful in satellite construction

    NASA Technical Reports Server (NTRS)

    Ahl, E. L., Jr. (Inventor)

    1986-01-01

    A column longeron latch assembly provides the securing mechanism for the deployable, telescoping column of a hoop/column antenna. The column is an open lattice structure with three longerons disposed 120 deg apart as the principle load bearing member. The column is deployed from a pair of eleven nested bays disposed on opposite sides of a center section under the influence of a motor-cable-pulley system. The longeron latch is a four bar linkage mechanism using the over-center principle for automatically locking the longeron sections into position during deployment. The latch is unlocked when the antenna is to be restowed. A spring pack disposed in the end of each longeron serves to absorb stress forces on the deployed column through the cam head piston and abutting latch from an adjacent longeron.

  15. Theory of Random Copolymer Fractionation in Columns

    NASA Astrophysics Data System (ADS)

    Enders, Sabine

    Random copolymers show polydispersity both with respect to molecular weight and with respect to chemical composition, where the physical and chemical properties depend on both polydispersities. For special applications, the two-dimensional distribution function must adjusted to the application purpose. The adjustment can be achieved by polymer fractionation. From the thermodynamic point of view, the distribution function can be adjusted by the successive establishment of liquid-liquid equilibria (LLE) for suitable solutions of the polymer to be fractionated. The fractionation column is divided into theoretical stages. Assuming an LLE on each theoretical stage, the polymer fractionation can be modeled using phase equilibrium thermodynamics. As examples, simulations of stepwise fractionation in one direction, cross-fractionation in two directions, and two different column fractionations (Baker-Williams fractionation and continuous polymer fractionation) have been investigated. The simulation delivers the distribution according the molecular weight and chemical composition in every obtained fraction, depending on the operative properties, and is able to optimize the fractionation effectively.

  16. Modeling unstable alcohol flooding of DNAPL-contaminated columns

    NASA Astrophysics Data System (ADS)

    Roeder, Eberhard; Falta, Ronald W.

    Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.

  17. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    PubMed

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  18. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  19. Supersymmetric gauged matrix models from dimensional reduction on a sphere

    NASA Astrophysics Data System (ADS)

    Closset, Cyril; Ghim, Dongwook; Seong, Rak-Kyeong

    2018-05-01

    It was recently proposed that N = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional N = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple N = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.

  20. A comparison of three methods to evaluate the position of an artificial ear on the deficient side of the face from a three-dimensional surface scan of patients with hemifacial microsomia.

    PubMed

    Coward, Trevor J; Watson, Roger M; Richards, Robin; Scott, Brendan J J

    2012-01-01

    Patients with hemifacial microsomia may have a missing ear on the deficient side of the face. The fabrication of an ear for such individuals usually has been accomplished by directly measuring the ear on the normal side to construct a prosthesis based on these dimensions, and the positioning has been, to a large extent, primarily operator-dependent. The aim of the present study was to compare three methods, developed from the identification of landmarks plotted on three-dimensional surface scans, to evaluate the position of an artificial ear on the deficient side of the face compared with the position of the natural ear on the normally developed side. Laser scans were undertaken of the faces of 14 subjects with hemifacial microsomia. Landmarks on the ear and face on the normal side were identified. Three methods of mirroring the normal ear on the deficient side of the face were investigated, which used either facial landmarks from the orbital area or a zero reference point generated from the intersection of three orthogonal planes on a frame of reference. To assess the methods, landmarks were identified on the ear situated on the normal side as well as on the face. These landmarks yielded paired dimensional measurements that could be compared between the normal and deficient sides. Mean differences and 95% confidence intervals were calculated. It was possible to mirror the normal ear image on to the deficient side of the face using all three methods. Generally only small differences between the dimensional measurements on the normal and deficient sides were observed. However, two-way analysis of variance revealed statistically significant differences between the three methods (P = .005). The method of mirroring using the outer canthi was found to result in the smallest dimensional differences between the anthropometric points on the ear and face between the normally developed and deficient sides. However, the effects of the deformity can result in limitations in

  1. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  2. Human strength simulations for one and two-handed tasks in zero gravity

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A description is given of a three dimensional hand force capability model for the seated operator and a biomechanical model for analysis of symmetric sagittal plane activities. The models are used to simulate and study human strengths for one and two handed tasks in zero gravity. Specific conditions considered include: (1) one hand active, (2) both hands active but with different force directions on each, (3) body bracing situations provided by portable foot restraint when standing and lap belt when seated, (4) static or slow movement tasks with maximum length of 4 seconds and a minimum rest of 5 minutes between exertions, and (5) wide range of hand positions relative to either the feet or bisection of a line connecting the hip centers. Simulations were also made for shirt sleeved individuals and for the male population strengths with anthropometry matching that of astronauts.

  3. Tunable zero-line modes via magnetic field in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  4. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems

    NASA Astrophysics Data System (ADS)

    Olson, Mitchell R.; Sale, Tom C.

    2015-06-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.

  5. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  6. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  7. Zero/zero rotorcraft certification issues. Volume 2: Plenary session presentations

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 2 of three. It presents the operator perspectives (system needs), applicable technology and zero/zero concepts developed in the first 12 months of research of this project.

  8. Zero-power autonomous buoyancy system controlled by microbial gas production

    NASA Astrophysics Data System (ADS)

    Wu, Peter K.; Fitzgerald, Lisa A.; Biffinger, Justin C.; Spargo, Barry J.; Houston, Brian H.; Bucaro, Joseph A.; Ringeisen, Bradley R.

    2011-05-01

    A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design. The gas source can be of any origin, e.g., compressed air, underwater gas vent, gas produced by microbes, etc. The zero-power ballast system was initially tested using a gas pump and further tested using gas produced by Clostridium acetobutylicum. Using microbial gas production as the only source of gas and no electrical power during operation, the system successfully floated and submerged periodically with a period of 30 min for at least 24 h. Together with microbial fuel cells, this system opens up possibilities for underwater monitoring systems that could function indefinitely.

  9. Development of molecularly imprinted column-on line-two dimensional liquid chromatography for rapidly and selectively monitoring estradiol in cosmetics.

    PubMed

    Guo, Pengqi; Xu, Xinya; Xian, Liang; Ge, Yanhui; Luo, Zhimin; Du, Wei; Jing, Wanghui; Zeng, Aiguo; Chang, Chun; Fu, Qiang

    2016-12-01

    Nowadays, the illegal use of estradiol in cosmetics has caused a series of events which endangering public health seriously. Therefore, it is imperative to establish a simple, fast and specific method for monitoring the illegal use of estradiol in cosmetics. In current study, we developed a molecular imprinted monolithic column two dimensional liquid chromatography method (MIMC-2D-LC) for rapid and selective determination of estradiol in various cosmetic samples. The best polymerization, morphology, structure property, surface groups, and the adsorption performance of the prepared material were investigated. The MIMC-2D-LC was validated and successfully used for detecting estradiol in cosmetic samples with good selectivity, sensitivity, efficiency and reproducibility. The linear range of the MIMC-2D-LC for estradiol was 0.5-50μgg -1 with the limit of detection of 0.08μgg -1 . Finally, six batches of cosmetic samples obtained from local markets were tested by the proposed method. The test results showed that the illegal use of estradiol still existed in the commercially available samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  11. Flexural wave suppression by an elastic metamaterial beam with zero bending stiffness

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Hu, Guang Zhong; Wang, Yu Chun

    2017-04-01

    In this paper, different from Bragg scattering or local resonance mechanisms, a novel mechanism of an ultra-low-frequency broadband for flexural waves propagating in a one-dimensional elastic metamaterial beam with zero bending stiffness is proposed, which consists of periodic hinge-linked blocks. The dispersion relationship of this kind of metamaterial beam is derived and analyzed, from which we find that these hinge-linked blocks can produce the zero bending stiffness. Thus, the flexural waves within the metamaterial beam can be suppressed, and an ultra-low-frequency wide band-gap is formed in which the first branch is generated by the zero bending spring and the second branch by the negative velocity of the metamaterial beam. Numerical results show that the elastic metamaterial beams with zero bending stiffness can indeed generate an ultra-low-frequency wide band gap even starting from almost zero frequency, such as from 0 Hz to 525 Hz in our structure. Therefore, the puzzle of realizing an ultra-low-frequency broadband of flexural waves may have been better solved, which could be applied in controlling ultra-low-frequency elastic waves in engineering.

  12. Experimental and Numerical Investigation of Two Dimensional CO2 Adsorption/Desorption in Packed Sorption Beds under Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, J. E.; Croomes, Scott (Technical Monitor)

    2001-01-01

    The experimental results of CO2 adsorption and desorption in a packed column indicated that the concentration wave front at the center of the packed column differs from those which are close to the wall of column filled with adsorbent material even though the ratio of column diameter to the particle size is greater than 20. The comparison of the experimental results with one dimensional model of packed column shows that in order to simulate the average breakthrough in a packed column a two dimensional (radial and axial) model of packed column is needed. In this paper the mathematical model of a non-slip flow through a packed column with 2 inches in diameter and 18 inches in length filled with 5A zeolite pellets is presented. The comparison of experimental results of CO2 absorption and desorption for the mixed and central breakthrough of the packed column with numerical results is also presented.

  13. Zero tolerance enforcement varies with laws and practices among U.S. states

    DOT National Transportation Integrated Search

    2000-03-11

    All states now have zero tolerance laws prohibiting people younger than 21 from driving with any positive blood alcohol concentration (BAC). Congress made zero tolerance a national standard in 1995, passing a law to withhold highway funds from states...

  14. High performance liquid chromatography column efficiency enhancement by zero dead volume recycling and practical approach using park and recycle arrangement.

    PubMed

    Minarik, Marek; Franc, Martin; Minarik, Milan

    2018-06-15

    A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Comparison of Recent Modeled and Observed Trends in Total Column Ozone

    NASA Technical Reports Server (NTRS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.; hide

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  16. Comparison of recent modeled and observed trends in total column ozone

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  17. On-Line 1D and 2D PLOT/LC-ESI-MS Using 10 μm i.d. Poly(styrene–divinylbenzene) Porous Layer Open Tubular (PLOT) Columns For Ultrasensitive Proteomic Analysis

    PubMed Central

    Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L.

    2008-01-01

    Following on our recent work, on-line one dimensional (1D) and two dimensional (2D) PLOT/LC-ESI-MS platforms using 3.2 m × 10 μm i.d. poly(styrenedivinylbenzene) (PS-DVB) porous layer open tubular (PLOT) columns have been developed to provide robust, high performance and ultrasensitive proteomic analysis. Using a PicoClear tee, the dead volume connection between a 50 μm i.d. PS-DVB monolithic microSPE column and the PLOT column was minimized. The microSPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15 to 40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, ∼2.5 ng of protein in 2 μL solution, an amount corresponding to 20 SiHa cells, was subjected to on-line microSPE-PLOT/LC-ESIMS/MS analysis using a linear ion trap MS. 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate less than 1% . The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to ∼45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cm × 75 μm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only ∼5% of the injected sample amount. The resolving power of the microSPE/PLOT assembly was further extended by 2D chromatography via combination of the high-efficiency reversed phase PLOT column

  18. Modeling health survey data with excessive zero and K responses.

    PubMed

    Lin, Ting Hsiang; Tsai, Min-Hsiao

    2013-04-30

    Zero-inflated Poisson regression is a popular tool used to analyze data with excessive zeros. Although much work has already been performed to fit zero-inflated data, most models heavily depend on special features of the individual data. To be specific, this means that there is a sizable group of respondents who endorse the same answers making the data have peaks. In this paper, we propose a new model with the flexibility to model excessive counts other than zero, and the model is a mixture of multinomial logistic and Poisson regression, in which the multinomial logistic component models the occurrence of excessive counts, including zeros, K (where K is a positive integer) and all other values. The Poisson regression component models the counts that are assumed to follow a Poisson distribution. Two examples are provided to illustrate our models when the data have counts containing many ones and sixes. As a result, the zero-inflated and K-inflated models exhibit a better fit than the zero-inflated Poisson and standard Poisson regressions. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  1. Life and Death Near Zero: The distribution and evolution of NEA orbits of near-zero MOID, (e, i), and q

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Morbidelli, Alessandro; Granvik, Mikael

    2016-10-01

    Modeling the distribution of orbits with near-zero orbital parameters requires special attention to the dimensionality of the parameters in question. This is even more true since orbits of near-zero MOID, (e, i), or q are especially interesting as sources or sinks of NEAs. An essentially zero value of MOID (Minimum Orbital Intersection Distance) with respect to the Earth's orbit is a requirement for an impact trajectory, and initially also for ejecta from lunar impacts into heliocentric orbits. The collision cross section of the Earth goes up greatly with decreasing relative encounter velocity, venc, thus the impact flux onto the Earth is enhanced in such low-venc objects, which correspond to near-zero (e,i) orbits. And lunar ejecta that escapes from the Earth-moon system mostly does so at only barely greater than minimum velocity for escape (Gladman, et al., 1995, Icarus 118, 302-321), so the Earth-moon system is both a source and a sink of such low-venc orbits, and understanding the evolution of these populations requires accurately modeling the orbit distributions. Lastly, orbits of very low heliocentric perihelion distance, q, are particularly interesting as a "sink" in the NEA population as asteroids "fall into the sun" (Farinella, et al., 1994, Nature 371, 314-317). Understanding this process, and especially the role of disintegration of small asteroids as they evolve into low-q orbits (Granvik et al., 2016, Nature 530, 303-306), requires accurate modeling of the q distribution that would exist in the absence of a "sink" in the distribution. In this paper, we derive analytical expressions for the expected steady-state distributions near zero of MOID, (e,i), and q in the absence of sources or sinks, compare those to numerical simulations of orbit distributions, and lastly evaluate the distributions of discovered NEAs to try to understand the sources and sinks of NEAs "near zero" of these orbital parameters.

  2. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  3. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    PubMed

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  5. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  6. A simple and inexpensive on-column frit fabrication method for fused-silica capillaries for increased capacity and versatility in LC-MS/MS applications.

    PubMed

    Wang, Ling-Chi; Okitsu, Cindy Yen; Kochounian, Harold; Rodriguez, Anthony; Hsieh, Chih-Lin; Zandi, Ebrahim

    2008-05-01

    A modified sol-gel method for a one-step on-column frit preparation for fused-silica capillaries and its utility for peptide separation in LC-MS/MS is described. This method is inexpensive, reproducible, and does not require specialized equipments. Because the frit fabrication process does not damage polyimide coating, the frit-fabricated column can be tightly connected on-line for high pressure LC. These columns can replace any capillary liquid transfer tubing without any specialized connections up-stream of a spray tip column. Therefore multiple columns with different phases can be connected in series for one- or multiple-dimensional chromatography.

  7. Reset noise suppression in two-dimensional CMOS photodiode pixels through column-based feedback-reset

    NASA Technical Reports Server (NTRS)

    Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.

    2002-01-01

    We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.

  8. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  9. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    PubMed

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  10. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings

    PubMed Central

    Bao, Yihai; Main, Joseph A.; Noh, Sam-Young

    2017-01-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599

  11. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  12. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  13. Parametric Study of Fire Performance of Concrete Filled Hollow Steel Section Columns with Circular and Square Cross-Section

    NASA Astrophysics Data System (ADS)

    Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin

    2018-03-01

    Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.

  14. Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction.

    PubMed

    Zhao, Yao; Schreiner, Sarah M; Koo, Peter K; Colombi, Paolo; King, Megan C; Mochrie, Simon G J

    2016-07-12

    Many aspects of chromatin biology are influenced by the nuclear compartment in which a locus resides, from transcriptional regulation to DNA repair. Further, the dynamic and variable localization of a particular locus across cell populations and over time makes analysis of a large number of cells critical. As a consequence, robust and automatable methods to measure the position of individual loci within the nuclear volume in populations of cells are necessary to support quantitative analysis of nuclear position. Here, we describe a three-dimensional membrane reconstruction approach that uses fluorescently tagged nuclear envelope or endoplasmic reticulum membrane marker proteins to precisely map the nuclear volume. This approach is robust to a variety of nuclear shapes, providing greater biological accuracy than alternative methods that enforce nuclear circularity, while also describing nuclear position in all three dimensions. By combining this method with established approaches to reconstruct the position of diffraction-limited chromatin markers-in this case, lac Operator arrays bound by lacI-GFP-the distribution of loci positions within the nuclear volume with respect to the nuclear periphery can be quantitatively obtained. This stand-alone image analysis pipeline should be of broad practical utility for individuals interested in various aspects of chromatin biology, while also providing, to our knowledge, a new conceptual framework for investigators who study organelle shape. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures.

    PubMed

    Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish

    2014-10-01

    The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.

  16. Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh M.; Connaughton, Colm

    2008-03-01

    We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig’s XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms.

  17. Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence.

    PubMed

    Bandi, Mahesh M; Connaughton, Colm

    2008-03-01

    We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig's XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms.

  18. Two-dimensional convolute integers for analytical instrumentation

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1982-01-01

    As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.

  19. From Zero Energy Buildings to Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assistmore » them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.« less

  20. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew

    2009-06-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihoodmore » ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.« less

  1. Zero Thermal Noise in Resistors at Zero Temperature

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  2. Three dimensional separation trap based on dielectrophoresis and use thereof

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-05-04

    An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.

  3. A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; John, J.

    1996-01-01

    The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the

  4. Comment on ‘The paradoxical zero reflection at zero energy’

    NASA Astrophysics Data System (ADS)

    van Dijk, W.; Nogami, Y.

    2017-05-01

    We point out that the anomalous threshold effect in one dimension occurs when the reflection probability at zero energy R(0) has some other value than unity, rather than R(0)=0 or R(0)\\ll 1 as implied by Ahmed et al in their paper entitled ‘The paradoxical zero reflection at zero energy’ (2017 Eur. J. Phys. 38 025401).

  5. Defects and spatiotemporal disorder in a pattern of falling liquid columns

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Limat, Laurent

    2004-10-01

    Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular dish are investigated experimentally. The interaction of two basic dynamical modes (oscillations and drift) combined with the occurrence of defects (birth of new columns, disappearances by coalescences of two columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps. Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal and involve the propagation of blocks of elementary laminar states (such as propagative domains or local oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.

  6. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  7. TOPICAL REVIEW: Experimental study of organic zero-gap conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Kajita, Koji

    2009-04-01

    A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as n~T2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.

  8. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  9. DEM simulation of the granular Maxwell's Demon under zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, Wenguang; Zhou, Zhigang; Zong, Jin; Hou, Meiying

    2017-06-01

    In this work, granular segregation in a two-compartment cell (Maxwell's Demon) under zero gravity is studied numerically by DEM simulation for comparison with the experimental observation in satellite SJ-10. The effect of three parameters: the total number of particlesN, the excitation strengthΓ, and the position of the window coupling the two compartments, on the segregationɛ and the waiting timeτ are investigated. In the simulation, non-zero segregation under zero gravity is obtained, and the segregation ɛ is found independent of the excitation strengthΓ. The waiting time τ, however, depends strongly onΓ. For higher acceleration Γ, |ɛi| reaches steady state valueɛ faster.

  10. Towards Reconstructing a Doric Column in a Virtual Construction Site

    NASA Astrophysics Data System (ADS)

    Bartzis, D.

    2017-02-01

    This paper deals with the 3D reconstruction of ancient Greek architectural members, especially with the element of the Doric column. The case study for this project is the Choragic monument of Nicias on the South Slope of the Athenian Acropolis, from which a column drum, two capitals and smaller fragments are preserved. The first goal of this paper is to present some benefits of using 3D reconstruction methods not only in documentation but also in understanding of ancient Greek architectural members. The second goal is to take advantage of the produced point clouds. By using the Cloud Compare software, comparisons are made between the actual architectural members and an "ideal" point cloud of the whole column in its original form. Seeking for probable overlaps between the two point clouds could assist in estimating the original position of each member/fragment on the column. This method is expanded with more comparisons between the reference column model and other members/fragments around the Acropolis, which may have not yet been ascribed to the monument of Nicias.

  11. Near-field testing of the 15-meter hoop-column antenna

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Adams, Richard R.; Bailey, M. C.; Belvin, W. Keith; Butler, David H.; Campbell, Thomas G.

    1989-01-01

    A 15-m-diameter antenna was tested to verify that dimensional tolerances for acceptable performance could be achieved and to verify structural, electromagnetic, and mechanical performance predictions. This antenna utilized the hoop column structure, a gold plated molybdenum mesh reflector, and 96 control cables to adjust the reflector conformance with a paraboloid. The dimensional conformance of the antenna structure and surface was measured with metric camera and theodolites. Near field pattern data were used to assess the electromagnetic performance at five frequencies from 2.225 to 11.6 GHz. The reflector surface was adjusted to greatly improve electromagnetic performance with a finite element model and the surface measurements. Measurement results show that antenna surface figure and adjustments and electromagnetic patterns agree well with predictions.

  12. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  13. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  14. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  15. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  16. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    NASA Astrophysics Data System (ADS)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  17. Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo

    2018-04-01

    In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.

  18. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.

    PubMed

    Hayes, J D; Malik, A

    2001-03-01

    Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.

  19. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  20. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  1. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  2. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  3. Collaborated measurement of three-dimensional position and orientation errors of assembled miniature devices with two vision systems

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Wei; Luo, Yi; Yang, Weimin; Chen, Liang

    2013-01-01

    In assembly of miniature devices, the position and orientation of the parts to be assembled should be guaranteed during or after assembly. In some cases, the relative position or orientation errors among the parts can not be measured from only one direction using visual method, because of visual occlusion or for the features of parts located in a three-dimensional way. An automatic assembly system for precise miniature devices is introduced. In the modular assembly system, two machine vision systems were employed for measurement of the three-dimensionally distributed assembly errors. High resolution CCD cameras and high position repeatability precision stages were integrated to realize high precision measurement in large work space. The two cameras worked in collaboration in measurement procedure to eliminate the influence of movement errors of the rotational or translational stages. A set of templates were designed for calibration of the vision systems and evaluation of the system's measurement accuracy.

  4. Two-dimensional liquid chromatography (LC) of phenolic compounds from the shoots of Rubus idaeus 'Glen Ample' cultivar variety.

    PubMed

    Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława

    2016-03-20

    In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    NASA Astrophysics Data System (ADS)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  6. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2005-07-12

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  7. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols.

    PubMed

    Veenaas, Cathrin; Haglund, Peter

    2018-02-09

    The characterization and identification of compounds in complex real-world samples is quite difficult and new concepts and workflows are highly desirable. Retention indices (RIs) are widely used in gas chromatography (GC) to support the identification of unknown compounds. Several attempts have been made to introduce a similar concept for the second dimension in comprehensive two-dimensional (2D) GC (GC × GC) but, an easily applicable and robust system remains elusive. In the present study, a new RI system for GC × GC was developed. Polyethylene glycols (PEGs) were used in combination with a simple linear regression, with n-alkanes as reference points for virtually unretained compounds and PEG homologs as reference compounds for second-dimension RIs (PEG- 2 I). The n-alkanes were assigned a PEG- 2 I of zero and the distance between consecutive PEG homologs from PEG-2 (diethylene glycol) and higher were assigned a PEG- 2 I value of 10. We used ethylene glycol and PEG-2 through PEG-10 as reference compounds, thereby covering a PEG- 2 I range from 20.0 for ethylene glycol, over 50.0 for diethylene glycol (PEG-2) to 130.0 for decaethylene glycol (PEG-10); additional PEGs can be added to cover a wider polarity range. The PEG- 2 I system was initially evaluated using a 30 m × 0.25 mm non-polar (5% phenyl, 0.25 μm film thickness) first-dimension column and a 1.6 m × 0.18 mm polar (50% phenyl, 0.18 μm film thickness) second-dimension column. This system was validated for use with non-polar first-dimension columns and a semi-polar (50% phenyl) second-dimension column, and exhibited robustness to changes in the carrier gas flow velocity, oven temperature ramping rate, and secondary oven temperature offset. An average relative standard deviation of 2.7%, equal to a 95% confidence interval of 1.27 PEG- 2 I units, was obtained for the PEG- 2 I values of 72 environmental pollutants. Additionally, the system was found to be applicable over a wide

  8. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial

  9. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  10. Optical trapping and optical force positioning of two-dimensional materials.

    PubMed

    Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M

    2018-01-18

    In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.

  11. Four-dimensional black holes in Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-12-01

    We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.

  12. Particle-in-cell simulations of bounded plasma discharges applied to low pressure high density sources and positive columns

    NASA Astrophysics Data System (ADS)

    Kawamura, Emi

    Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC

  13. Transient Stress Wave Propagation in One-Dimensional Micropolar Bodies

    DTIC Science & Technology

    2009-02-01

    based on Biot’s theory of poro- elasticity. Two compressional waves were then observed in the resulting one-dimensional model of a poroelastic column...Lisina, S., Potapov, A., Nesterenko, V., 2001. A nonlinear granular medium with particle rotation: a one-dimensional model . Acoustical Physics 47 (5...zones in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees of freedom beyond the scope of classical

  14. 4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  15. Two-dimensional Dirac fermions in thin films of C d3A s2

    NASA Astrophysics Data System (ADS)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  16. Do natural biofilm impact nZVI mobility and interactions with porous media? A column study.

    PubMed

    Crampon, Marc; Hellal, Jennifer; Mouvet, Christophe; Wille, Guillaume; Michel, Caroline; Wiener, Anke; Braun, Juergen; Ollivier, Patrick

    2018-01-01

    Nanoparticles (NP) used as remediation agents for groundwater treatment may interact with biofilms naturally present, altering NP mobility and/or reactivity and thereby NP effectiveness. The influence of the presence of a multi species biofilm on the mobility of two types of zero-valent iron NP (nZVI; NANOFER 25S and optimized NANOFER STAR, NanoIron s.r.o. (Czech Republic)) was tested in laboratory experiments with columns mimicking aquifer conditions. Biofilms were grown in columns filled with sand in nitrate reducing conditions using groundwater from an industrial site as inoculum. After two months growth, they were composed of several bacterial species, dominated by Pseudomonas stutzeri. Biofilm strongly affected the physical characteristics of the sand, decreasing total porosity from ~30% to ~15%, and creating preferential pathways with high flow velocities. nZVI suspensions were injected into the columns at a seepage velocity of 10mday - 1 . Presence of biofilm did not impact the concentrations of Fe at the column outlet nor the amount of total Fe retained in the sand, as attested by the measurement of magnetic susceptibility. However, it had a significant impact on NP size sorting as well as on total Fe distribution along the column. This suggests nZVI-biofilm interactions that were confirmed by microscopic observations using SEM/STEM coupled with energy-dispersive X-ray spectroscopy. Our study shows that biofilm modifies the water flow velocity in the porous media, favoring the transport of large aggregates and decreased NP mobility due to physical and chemical interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  18. Zero/zero rotorcraft certification issues. Volume 3: Working group results

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 3 of three. It provides the issue-by-issue deliberations of the experts involved in the Working Groups assigned to deal with them in the Issues Forum.

  19. [Simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions by online two-dimensional liquid chromatography].

    PubMed

    Zhang, Yanhai; Qibule, Hasi; Jin, Yan; Wang, Jia; Ma, Wenli

    2015-03-01

    A rapid method for the simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions has been developed using online two-dimensional liquid chromatography (2D-LC). First of all, C8 and polar embedded C18 columns were chosen as the first and second dimensional column respectively according to hydrophobic-subtraction model, which constituted excellent orthogonal separation system. The detection wavelengths were set at 263 nm for vitamin D3, 296 nm for vitamin E and 325 nm for vitamin A. The purification of vitamin D3 and quantifications of vitamins A and E were completed simultaneously in the first dimensional separation using the left pump of Dual Gradient LC (DGLC) with methanol, acetonitrile and water as mobile phases. The heart-cutting time window of vitamin D3 was confirmed according to the retention time of vitamin D3 in the first dimensional separation. The elute from the first dimensional column (1-D column) which contained vitamin D3 was collected by a 500 µL sample loop and then taken into the second dimensional column (2-D column) by the right pump of DGLC with methanol, acetonitrile and water as mobile phases. The quantification of vitamin D3 was performed in the second dimensional separation with vitamin D2 as internal standard. At last, this method was applied for the analysis of the three vitamins in milk powder, cheese and yogurt. The injected sample solution with no further purification was pre-treated by hot-saponification using 1. 25 kg/L KOH solution and extracted by petroleum ether solvent. The recoveries of vitamin D3 spiked in all samples were 75.50%-85.00%. There was no statistically significant difference for the results between this method and standard method through t-test. The results indicate that vitamins A, D3 and E in infant formula and adult fortified dairy can be determined rapidly and accurately with this method.

  20. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.

    PubMed

    Whiting, Joshua; Sacks, Richard

    2003-05-15

    A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.

  1. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  2. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  3. On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Thess, A.; Zikanov, Oleg

    2004-01-01

    We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.

  4. Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression

    NASA Astrophysics Data System (ADS)

    Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay

    2018-01-01

    This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.

  5. Stability of column-supported embankments.

    DOT National Transportation Integrated Search

    2006-01-01

    Column-supported embankments have a great potential for application in the coastal regions of Virginia, where highway embankments are often constructed on soft ground. The columns can be driven piles, vibro-concrete columns, deep-mixing-method column...

  6. Structure of hadron resonances with a nearby zero of the amplitude

    NASA Astrophysics Data System (ADS)

    Kamiya, Yuki; Hyodo, Tetsuo

    2018-03-01

    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude. If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the K ¯ N -π Σ amplitude, we discuss the origin of the eigenstates in the Λ (1405 ) region.

  7. Spin-selective coupling to Majorana zero modes in mixed singlet and triplet superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Paul, Ganesh C.; Saha, Arijit; Das, Sourin

    2018-05-01

    We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.

  8. Zero: A "None" Number?

    ERIC Educational Resources Information Center

    Anthony, Glenda J.; Walshaw, Margaret A.

    2004-01-01

    This article discusses the challenges students face in making sense of zero as a number. A range of different student responses to a computation problem involving zero reveal students' different understandings of zero.

  9. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sh; Naddaf, M.

    2005-04-01

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density jd = 4.45 mA cm-2 and normalized electric field strength E/p = 1.88 V cm-1 Torr-1.

  10. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  11. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE PAGES

    Hu, Lei; Chen, Jun; Xu, Jiale; ...

    2016-10-26

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  12. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Chen, Jun; Xu, Jiale

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  13. Hysteresis in column systems

    NASA Astrophysics Data System (ADS)

    Ivanyi, P.; Ivanyi, A.

    2015-02-01

    In this paper one column of a telescopic construction of a bell tower is investigated. The hinges at the support of the column and at the connecting joint between the upper and lower columns are modelled with rotational springs. The characteristics of the springs are assumed to be non-linear and the hysteresis property of them is represented with the Preisach hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top of the column. The tolling process is simulated with a cycling load. The elements of the column are considered completely rigid. The time iteration of the non-linear equations of the motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis is handled by the fix-point technique. The numerical simulation of the dynamic system is carried out under different combination of soft, medium and hard hysteresis properties of hinges.

  14. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  15. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  16. Energy theorem for (2+1)-dimensional gravity.

    NASA Astrophysics Data System (ADS)

    Menotti, P.; Seminara, D.

    1995-05-01

    We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.

  17. Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.

    PubMed

    Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J

    2011-11-01

    Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.

  18. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2016-01-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM. PMID:27795617

  19. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.

    PubMed

    Boghosian, M E; Cassel, K W

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  20. Field theory of the inverse cascade in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Mayo, Jackson R.

    2005-11-01

    A two-dimensional fluid, stirred at high wave numbers and damped by both viscosity and linear friction, is modeled by a statistical field theory. The fluid’s long-distance behavior is studied using renormalization-group (RG) methods, as begun by Forster, Nelson, and Stephen [Phys. Rev. A 16, 732 (1977)]. With friction, which dissipates energy at low wave numbers, one expects a stationary inverse energy cascade for strong enough stirring. While such developed turbulence is beyond the quantitative reach of perturbation theory, a combination of exact and perturbative results suggests a coherent picture of the inverse cascade. The zero-friction fluctuation-dissipation theorem (FDT) is derived from a generalized time-reversal symmetry and implies zero anomalous dimension for the velocity even when friction is present. Thus the Kolmogorov scaling of the inverse cascade cannot be explained by any RG fixed point. The β function for the dimensionless coupling ĝ is computed through two loops; the ĝ3 term is positive, as already known, but the ĝ5 term is negative. An ideal cascade requires a linear β function for large ĝ , consistent with a Padé approximant to the Borel transform. The conjecture that the Kolmogorov spectrum arises from an RG flow through large ĝ is compatible with other results, but the accurate k-5/3 scaling is not explained and the Kolmogorov constant is not estimated. The lack of scale invariance should produce intermittency in high-order structure functions, as observed in some but not all numerical simulations of the inverse cascade. When analogous RG methods are applied to the one-dimensional Burgers equation using an FDT-preserving dimensional continuation, equipartition is obtained instead of a cascade—in agreement with simulations.

  1. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  2. Quantum dark soliton: Nonperturbative diffusion of phase and position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarmaga, J.

    2004-12-01

    The dark soliton solution of the Gross-Pitaevskii equation in one dimension has two parameters that do not change the energy of the solution: the global phase of the condensate wave function and the position of the soliton. These degeneracies appear in the Bogoliubov theory as Bogoliubov modes with zero frequencies and zero norms. These 'zero modes' cannot be quantized as the usual Bogoliubov quasiparticle harmonic oscillators. They must be treated in a nonperturbative way. In this paper I develop a nonperturbative theory of zero modes. This theory provides a nonperturbative description of quantum phase diffusion and quantum diffusion of solitonmore » position. An initially well localized wave packet for soliton position is predicted to disperse beyond the width of the soliton.« less

  3. ZERO-G - Crippen, Robert L.

    NASA Image and Video Library

    1979-04-03

    Zero-gravity experiments in KC-135 conducted by John Young, Robert L. Crippen, Joseph Kerwin, and Margaret Seddon. 1. Kerwin, Joseph - Zero-G 2. Seddon, Margaret - Zero-G 3. Young, John - Zero-G 4. Aircraft - KC-135

  4. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  5. Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.

    NASA Technical Reports Server (NTRS)

    Vahala, G.

    1972-01-01

    The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.

  6. Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column.

    PubMed

    Jiang, Xiaogang; Feng, Shun; Tian, Ruijun; Han, Guanghui; Jiang, Xinning; Ye, Mingliang; Zou, Hanfa

    2007-02-01

    An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.

  7. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  8. Equation of state of the one- and three-dimensional Bose-Bose gases

    NASA Astrophysics Data System (ADS)

    Chiquillo, Emerson

    2018-06-01

    We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.

  9. Multivariate data analysis to characterize gas chromatography columns for dioxin analysis.

    PubMed

    Do, Lan; Geladi, Paul; Haglund, Peter

    2014-06-20

    dipolar moment. Finally, the PCA and PLS analyses were complemented with linear regression analysis to identify the most orthogonal column combinations, which could be used in comprehensive two-dimensional gas chromatography (GC×GC) to enhance PCDD/F separation and congener profiling. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The obturator oblique and iliac oblique/outlet views predict most accurately the adequate position of an anterior column acetabular screw.

    PubMed

    Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David

    2018-06-08

    Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.

  11. Dynamic contraction of the positive column of a self-sustained glow discharge in air flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, M. N.; Mokrov, M. S.; Milikh, G. M.

    We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when themore » gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.« less

  12. Exoatmospheric intercepts using zero effort miss steering for midcourse guidance

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    The suitability of proportional navigation, or an equivalent zero effort miss formulation, for exatmospheric intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general, three dimensional framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect and thus, are less accurate than a direct numerical propagation of the governing equations, but more accurate than a baseline determination, which assumes equal accelerations for both vehicles. Approximations considered are constant, linear, quadratic, and linearized inverse square models. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.

  13. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, M.R.; Bechtold, W.E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.

  14. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, Michael R.; Bechtold, William E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.

  15. Intrinsic two-dimensional states on the pristine surface of tellurium

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  16. Blind separation of positive sources by globally convergent gradient search.

    PubMed

    Oja, Erkki; Plumbley, Mark

    2004-09-01

    The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.

  17. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  18. Transport of viruses through saturated and unsaturated columns packed with sand

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2009-01-01

    Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.

  19. Statistics of zero crossings in rough interfaces with fractional elasticity

    NASA Astrophysics Data System (ADS)

    Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro B.

    2018-04-01

    We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z =1 +2 ζ , such that the interfaces spontaneously relax, with a dynamical exponent z , to a self-affine geometry with roughness exponent ζ . By continuously increasing from ζ =-1 /2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930), 10.1103/PhysRev.36.823]) to ζ =3 /2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1 /2 <ζ <0 , (II) 0 <ζ <1 , and (III) 1 <ζ <3 /2 . Starting from a flat initial condition, the mean number of zeros of the discretized interface (I) decays exponentially in time and reaches an extensive value in the system size, or decays as a power-law towards (II) a subextensive or (III) an intensive value. In the steady state, the distribution of intervals between zeros changes from an exponential decay in (I) to a power-law decay P (ℓ ) ˜ℓ-γ in (II) and (III). While in (II) γ =1 -θ with θ =1 -ζ the steady-state persistence exponent, in (III) we obtain γ =3 -2 ζ , different from the exponent γ =1 expected from the prediction θ =0 for infinite super-rough interfaces with ζ >1 . The effect on P (ℓ ) of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.

  20. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  1. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  2. Nonlinear zero-sum differential game analysis by singular perturbation methods

    NASA Technical Reports Server (NTRS)

    Sinar, J.; Farber, N.

    1982-01-01

    A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.

  3. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  4. Monolithic stationary phases with a longitudinal gradient of porosity.

    PubMed

    Urban, Jiří; Hájek, Tomáš; Svec, Frantisek

    2017-04-01

    The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rotation sensitivity analysis of a two-dimensional array of coupled resonators

    NASA Astrophysics Data System (ADS)

    Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.

    2015-03-01

    In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.

  6. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  7. Flow-switching device for comprehensive two-dimensional gas chromatography.

    PubMed

    Bueno, Pedro A; Seeley, John V

    2004-02-20

    A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.

  8. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis

    2008-08-01

    A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.

  9. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  10. Enantioselective comprehensive two-dimensional gas chromatography of lavender essential oil.

    PubMed

    Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Armstrong, Daniel W; Sandra, Pat

    2016-12-01

    The enantiomeric composition of several chiral markers in lavender essential oil was studied by flow modulated comprehensive two-dimensional gas chromatography operated in the reverse flow mode and hyphenated to flame ionization and quadrupole mass spectrometric detection. Two capillary column series were used in this study, 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin or 2,3,6-tri-O-methyl-β-cyclodextrin, as the chiral column in the first dimension and α polyethylene glycol column in the second dimension. Combining the chromatographic data obtained on these column series, the enantiomeric and excess ratios for α-pinene, β-pinene, camphor, lavandulol, borneol, and terpinen-4-ol were determined. This maybe a possible route to assess the authenticity of lavender essential oil. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold.

    PubMed

    Lim, Seng Han; Chia, Samuel Ming Yuan; Kang, Lifeng; Yap, Kevin Yi-Lwern

    2016-07-01

    Carbamazepine is the first-line anti-epileptic drug for focal seizures and generalized tonic-clonic seizures. Although sustained-release formulations exist, an initial burst of drug release is still present and this results in side effects. Zero-order release formulations reduce fluctuations in serum drug concentrations, thereby reducing side effects. Three-dimensional printing can potentially fabricate zero-order release formulations with complex geometries. 3D printed scaffolds with varying hole positions (side and top/bottom), number of holes (4, 8, and 12), and hole diameters (1, 1.5, and 2 mm) were designed. Dissolution tests and high performance liquid chromatography analysis were conducted. Good correlations in the linear release profiles of all carbamazepine-containing scaffolds with side holes (R(2) of at least 0.91) were observed. Increasing the hole diameters (1, 1.5, and 2 mm) resulted in increased rate of drug release in the scaffolds with 4 holes (0.0048, 0.0065, and 0.0074 mg/min) and 12 holes (0.0021, 0.0050, and 0.0092 mg/min), and the initial amount of carbamazepine released in the scaffolds with 8 holes (0.4348, 0.7246, and 1.0246 mg) and 12 holes (0.1995, 0.8598, and 1.4366 mg). The ultimate goal of this research is to improve the compliance of patients through a dosage form that provides a zero-order drug release profile for anti-epileptic drugs, so as to achieve therapeutic doses and minimize side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Twist functions in vertebral column formation in medaka, Oryzias latipes.

    PubMed

    Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira

    2004-07-01

    Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.

  13. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures.

    PubMed

    Mani, Ramesh G; Smet, Jürgen H; von Klitzing, Klaus; Narayanamurti, Venkatesh; Johnson, William B; Umansky, Vladimir

    2002-12-12

    The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature T(c) (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs). In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum. Here we report the observation of zero-resistance states and energy gaps in a surprising setting: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2pifm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.

  14. A Zero-One Dichotomy Theorem for r-Semi-Stable Laws on Infinite Dimensional Linear Spaces.

    DTIC Science & Technology

    1978-10-01

    SEMISTABLE LAWS - LIKE STABLE ONES - ARE CONTINUOUS: i.e. THEY ASSIGN’ ZERO MASS TO SIIMGLETONS.. DD 172 1 1473 sov’ow as, IMail , 62 i 1 SOee..S $.M 0 102 LfP.Of 4 6601 1ECIuatY CLASSI’PICA1 130N 00 1 100 0449 (W%4 Dma rwer

  15. On the Origin of the High Column Density Turnover in the HI Column Density Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less

  16. Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual Fused-Core columns in the 2nd dimension.

    PubMed

    Alexander, Anthony J; Ma, Lianjia

    2009-02-27

    This paper focuses on the application of RPLC x RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe "hidden" within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC x LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC x RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.

  17. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  18. Laser cooling of molecules by zero-velocity selection and single spontaneous emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, C. H. Raymond

    2010-11-15

    A laser-cooling scheme for molecules is presented based on repeated cycle of zero-velocity selection, deceleration, and irreversible accumulation. Although this scheme also employs a single spontaneous emission as in [Raymond Ooi, Marzlin, and Audretsch, Eur. Phys. J. D 22, 259 (2003)], in order to circumvent the difficulty of maintaining closed pumping cycles in molecules, there are two distinct features which make the cooling process of this scheme faster and more practical. First, the zero-velocity selection creates a narrow velocity-width population with zero mean velocity, such that no further deceleration (with many stimulated Raman adiabatic passage (STIRAP) pulses) is required. Second,more » only two STIRAP processes are required to decelerate the remaining hot molecular ensemble to create a finite population around zero velocity for the next cycle. We present a setup to realize the cooling process in one dimension with trapping in the other two dimensions using a Stark barrel. Numerical estimates of the cooling parameters and simulations with density matrix equations using OH molecules show the applicability of the cooling scheme. For a gas at temperature T=1 K, the estimated cooling time is only 2 ms, with phase-space density increased by about 30 times. The possibility of extension to three-dimensional cooling via thermalization is also discussed.« less

  19. Extracting concrete thermal characteristics from temperature time history of RC column exposed to standard fire.

    PubMed

    Kim, Jung J; Youm, Kwang-Soo; Reda Taha, Mahmoud M

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.

  20. Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire

    PubMed Central

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment. PMID:25180197

  1. A Novel Three-Dimensional Vector Analysis of Axial Globe Position in Thyroid Eye Disease

    PubMed Central

    Guo, Jie; Yuan, Yifei; Zhang, Rui; Huang, Wenhu

    2017-01-01

    Purpose. To define a three-dimensional (3D) vector method to describe the axial globe position in thyroid eye disease (TED). Methods. CT data from 59 patients with TED were collected and 3D images were reconstructed. A reference coordinate system was established, and the coordinates of the corneal apex and the eyeball center were calculated to obtain the globe vector EC→. The measurement reliability was evaluated. The parameters of EC→ were analyzed and compared with the results of two-dimensional (2D) CT measurement, Hertel exophthalmometry, and strabismus tests. Results. The reliability of EC→ measurement was excellent. The difference between EC→ and 2D CT measurement was significant (p = 0.003), and EC→ was more consistent with Hertel exophthalmometry than with 2D CT measurement (p < 0.001). There was no significant difference between EC→ and Hirschberg test, and a strong correlation was found between EC→ and synoptophore test. When one eye had a larger deviation angle than its fellow, its corneal apex shifted in the corresponding direction, but the shift of the eyeball center was not significant. The parameters of EC→ were almost perfectly consistent with the geometrical equation. Conclusions. The establishment of a 3D globe vector is feasible and reliable, and it could provide more information in the axial globe position. PMID:28491471

  2. Enrichment isolation of adipose-derived stem/stromal cells from the liquid portion of liposuction aspirates with the use of an adherent column.

    PubMed

    Doi, Kentaro; Kuno, Shinichiro; Kobayashi, Akira; Hamabuchi, Takahisa; Kato, Harunosuke; Kinoshita, Kahori; Eto, Hitomi; Aoi, Noriyuki; Yoshimura, Kotaro

    2014-03-01

    Adipose-derived stem/progenitor cells (ASCs) are typically obtained from the lipoaspirates; however, a smaller number of ASCs can be isolated without enzymatic digestion from the infranatant liposuction aspirate fluid (LAF). We evaluated the effectiveness of an adherent column, currently used to isolate mesenchymal stromal cells from bone marrow, to isolate LAF cells. We applied peripheral blood (PB), PB mixed with cultured ASCs (PB-ASC), and LAF solution to the column and divided it into two fractions, the adherent (positive) and the non-adherent (negative) fractions. We compared this method with hypotonic hemolysis (lysis) for the red blood cell count, nucleated cells count and cell compositions as well as functional properties of isolated mesenchymal cells. The column effectively removed red blood cells, though the removal efficiency was slightly inferior to hemolysis. After column processing of PB-ASC, 60.5% of ASCs (53.2% by lysis) were selectively collected in the positive fraction, and the negative fraction contained almost no ASCs. After processing of LAF solution, nucleated cell yields were comparable between the column and hemolysis; however, subsequent adherent culture indicated that a higher average ASC yield was obtained from the column-positive samples than from the lysis samples, suggesting that the column method may be superior to hemolysis for obtaining viable ASCs. Mesenchymal differentiation and network formation assays showed no statistical differences in ASC functions between the lysis and column-positive samples. Our results suggest that a column with non-woven rayon and polyethylene fabrics is useful for isolating stromal vascular fraction cells from LAF solutions for clinical applications. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    PubMed

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A two-column formalism for time-dependent modelling of stellar convection. I. Description of the method

    NASA Astrophysics Data System (ADS)

    Stökl, A.

    2008-11-01

    Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical

  5. Net Zero Water Update

    DTIC Science & Technology

    2011-05-12

    www.epa.gov/nrmrl/pubs/600r09048/600r09048.pdf • http://www.epa.gov/awi/res_rehabilitation.html Net Zero Waste • http://www.army.mil/-news/2011/02...24/52403-net- zero - waste -goal-becoming-a-reality- at-jblm/ • http://www.operationfree.net/2011/04/11/u-s-army-looks-to-net- zero - waste / 27

  6. Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue

    PubMed Central

    Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann

    2015-01-01

    Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement

  7. Zero Energy Building Pays for Itself: Odyssey Elementary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less

  8. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis.

    PubMed

    Khan, Farman U; Qamar, Shamsul

    2017-05-01

    A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication

    NASA Astrophysics Data System (ADS)

    Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei

    2018-01-01

    This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.

  10. Density of states, Potts zeros, and Fisher zeros of the Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung-Yeon; Creswick, Richard J.

    2001-06-01

    The Q-state Potts model can be extended to noninteger and even complex Q by expressing the partition function in the Fortuin-Kasteleyn (F-K) representation. In the F-K representation the partition function Z(Q,a) is a polynomial in Q and v=a{minus}1 (a=e{sup {beta}J}) and the coefficients of this polynomial, {Phi}(b,c), are the number of graphs on the lattice consisting of b bonds and c connected clusters. We introduce the random-cluster transfer matrix to compute {Phi}(b,c) exactly on finite square lattices with several types of boundary conditions. Given the F-K representation of the partition function we begin by studying the critical Potts model Z{submore » CP}=Z(Q,a{sub c}(Q)), where a{sub c}(Q)=1+{radical}Q. We find a set of zeros in the complex w={radical}Q plane that map to (or close to) the Beraha numbers for real positive Q. We also identify {tilde Q}{sub c}(L), the value of Q for a lattice of width L above which the locus of zeros in the complex p=v/{radical}Q plane lies on the unit circle. By finite-size scaling we find that 1/{tilde Q}{sub c}(L){r_arrow}0 as L{r_arrow}{infinity}. We then study zeros of the antiferromagnetic (AF) Potts model in the complex Q plane and determine Q{sub c}(a), the largest value of Q for a fixed value of a below which there is AF order. We find excellent agreement with Baxter{close_quote}s conjecture Q{sub c}{sup AF}(a)=(1{minus}a)(a+3). We also investigate the locus of zeros of the ferromagnetic Potts model in the complex Q plane and confirm that Q{sub c}{sup FM}(a)=(a{minus}1){sup 2}. We show that the edge singularity in the complex Q plane approaches Q{sub c} as Q{sub c}(L){similar_to}Q{sub c}+AL{sup {minus}y{sub q}}, and determine the scaling exponent y{sub q} for several values of Q. Finally, by finite-size scaling of the Fisher zeros near the antiferromagnetic critical point we determine the thermal exponent y{sub t} as a function of Q in the range 2{le}Q{le}3. Using data for lattices of size 3{le}L{le}8 we find

  11. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  12. Zero-Based Budgeting.

    ERIC Educational Resources Information Center

    Wichowski, Chester

    1979-01-01

    The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…

  13. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  14. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  15. A Spatial Division Clustering Method and Low Dimensional Feature Extraction Technique Based Indoor Positioning System

    PubMed Central

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-01

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470

  16. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  17. Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Vanormelingen, Pieter; Vyverman, Wim; Rumpel, Klaus; Xu, Guowang; Sandra, Pat

    2011-05-20

    Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Emergence of domains and nonlinear transport in the zero-resistance state.

    PubMed

    Dmitriev, I A; Khodas, M; Mirlin, A D; Polyakov, D G

    2013-11-15

    We study transport in the domain state, the so-called zero-resistance state, that emerges in a two-dimensional electron system in which the combined action of microwave radiation and magnetic field produces a negative absolute conductivity. We show that the voltage-biased system has a rich phase diagram in the system size and voltage plane, with second- and first-order transitions between the domain and homogeneous states for small and large voltages, respectively. We find the residual negative dissipative resistance in the stable domain state.

  19. Zero-truncated negative binomial - Erlang distribution

    NASA Astrophysics Data System (ADS)

    Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana

    2017-11-01

    The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.

  20. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    PubMed

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Stress Analysis of Columns and Beam Columns by the Photoelastic Method

    NASA Technical Reports Server (NTRS)

    Ruffner, B F

    1946-01-01

    Principles of similarity and other factors in the design of models for photoelastic testing are discussed. Some approximate theoretical equations, useful in the analysis of results obtained from photoelastic tests are derived. Examples of the use of photoelastic techniques and the analysis of results as applied to uniform and tapered beam columns, circular rings, and statically indeterminate frames, are given. It is concluded that this method is an effective tool for the analysis of structures in which column action is present, particularly in tapered beam columns, and in statically indeterminate structures in which the distribution of loads in the structures is influenced by bending moments due to axial loads in one or more members.

  2. A low dimensional dynamical system for the wall layer

    NASA Technical Reports Server (NTRS)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  3. Positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Jonkoniec, T. G.

    1975-01-01

    A positive isolation disconnect was developed for component replacement in serviced liquid and gaseous spacecraft systems. Initially a survey of feasible concepts was made to determine the optimum method for fluid isolation, sealing techniques, coupling concepts, and foolproofing techniques. The top concepts were then further evaluated, including the fabrication of a semifunctional model. After all tradeoff analyses were made, a final configuration was designed and fabricated for development testing. This resulted in a 6.35 mm (1/4 inch) line and 12.7 mm (1/2 inch) line positive isolation disconnect, each unit consisting of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique was incorporated that prevents uncoupling of disconnect halves prior to fluid isolation.

  4. Isolation by cell-column chromatography of immunoglobulins specific for cell surface carbohydrates

    PubMed Central

    1977-01-01

    A new method of affinity chromatography using glutaraldehyde-fixed cells immobilized on Sephadex beads has been used to isolate immunoglobulins (Ig's) specific for cell surface glycoproteins. Ig's that specifically bound and agglutinated the same cells as those originally fixed on the columns were isolated from nonimmune sera of various species. Periodate treatment of the cell-columns and the free cells destroyed their ability to bind the Ig's, and the binding of the Ig's to untreated cells was inhibited by monosaccharides such as D- galactose and sialic acid. The binding of antibodies directed against cell surfaces obtained by immunizing animals with the same mouse tumor cell lines used on the columns (P388 and EL4) was not inhibited by various saccharides. Surface glycoproteins obtained from the mouse tumor cells by immunoprecipitation with the column-isolated Ig's yielded specific electrophoretic patterns that differed from those obtained using Ig's from the sera of rabbits immunized with the tumor cells. The data suggest that the Ig's isolated by cell-column chromatography were directed against carbohydrates, probably those in terminal positions of the polysaccharide portions of the tumor cell surface glycoproteins. Column-isolated Ig's specific for carbohydrates were also useful in studies of cell interactions in nonmammalian systems including Dictyostelium discoideum and Saccharomyces cerevisiae. The cell-column method appears to be adaptable to the isolation of a variety of molecules in addition to antibodies. PMID:833547

  5. Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching.

    PubMed

    Nizio, Katie D; Harynuk, James J

    2012-08-24

    Alkyl phosphate based gellants used as viscosity builders for fracturing fluids used in the process of hydraulic fracturing have been implicated in numerous refinery-fouling incidents in North America. In response, industry developed an inductively coupled plasma optical emission spectroscopy (ICP-OES) based method for the analysis of total volatile phosphorus in distillate fractions of crude oil; however, this method is plagued by poor precision and a high limit of detection (0.5±1μg phosphorus mL(-1)). Furthermore this method cannot provide speciation information, which is critical for developing an understanding of the challenge of alkyl phosphates at a molecular level. An approach using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC×GC-NPD) and post-column Deans switching is presented. This method provides qualitative and quantitative profiles of alkyl phosphates in industrial petroleum samples with increased precision and at levels comparable to or below those achievable by ICP-OES. A recovery study in a fracturing fluid sample and a profiling study of alkyl phosphates in four recovered fracturing fluid/crude oil mixtures (flowback) are also presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A Neural Mechanism of Preference Shifting Under Zero Price Condition

    PubMed Central

    Votinov, Mikhail; Aso, Toshihiko; Fukuyama, Hidenao; Mima, Tatsuya

    2016-01-01

    In everyday life, free products have a strong appeal to us, even if we do not need them. Behavioral studies demonstrated that people have a tendency to switch their preference from preferred more expensive products to less preferable, cheaper alternatives, when the cheaper option becomes free. However, the neural representation of this behavioral anomaly called “Zero price” is still unclear. Using fMRI, we studied subjects while they performed binary preference choice task for items with different prices. We found that zero-related change of preference was associated with activation of the choice network, which includes inferior parietal lobule (IPL), posterior cingulate cortex and medial prefrontal cortex. Moreover, the amount of activation in medial prefrontal cortex was positively correlated with the subjective happiness score of getting free products. Our findings suggest that the Zero-price effect is driven by affective evaluations during decision-making. PMID:27148024

  7. The Zero Program

    ERIC Educational Resources Information Center

    Roland, Erling; Midthassel, Unni Vere

    2012-01-01

    Zero is a schoolwide antibullying program developed by the Centre for Behavioural Research at the University of Stavanger, Norway. It is based on three main principles: a zero vision of bullying, collective commitment among all employees at the school using the program, and continuing work. Based on these principles, the program aims to reduce…

  8. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  9. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero (1)H-(13)C HSQC (HSQC(0)).

    PubMed

    Hu, Kaifeng; Westler, William M; Markley, John L

    2011-02-16

    Quantitative one-dimensional (1D) (1)H NMR spectroscopy is a useful tool for determining metabolite concentrations because of the direct proportionality of signal intensity to the quantity of analyte. However, severe signal overlap in 1D (1)H NMR spectra of complex metabolite mixtures hinders accurate quantification. Extension of 1D (1)H to 2D (1)H-(13)C HSQC leads to the dispersion of peaks along the (13)C dimension and greatly alleviates peak overlapping. Although peaks are better resolved in 2D (1)H-(13)C HSQC than in 1D (1)H NMR spectra, the simple proportionality of cross peaks to the quantity of individual metabolites is lost by resonance-specific signal attenuation during the coherence transfer periods. As a result, peaks for individual metabolites usually are quantified by reference to calibration data collected from samples of known concentration. We show here that data from a series of HSQC spectra acquired with incremented repetition times (the time between the end of the first (1)H excitation pulse to the beginning of data acquisition) can be extrapolated back to zero time to yield a time-zero 2D (1)H-(13)C HSQC spectrum (HSQC(0)) in which signal intensities are proportional to concentrations of individual metabolites. Relative concentrations determined from cross peak intensities can be converted to absolute concentrations by reference to an internal standard of known concentration. Clustering of the HSQC(0) cross peaks by their normalized intensities identifies those corresponding to metabolites present at a given concentration, and this information can assist in assigning these peaks to specific compounds. The concentration measurement for an individual metabolite can be improved by averaging the intensities of multiple, nonoverlapping cross peaks assigned to that metabolite.

  10. Deformation of Fluid Column by Action of Axial Vibration and Some Aspects of High-Rate Thermocapillary Convection

    NASA Technical Reports Server (NTRS)

    Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.

    1996-01-01

    The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.

  11. One-dimensional evolution of the upper water column in the Atlantic sector of the Arctic Ocean in winter

    NASA Astrophysics Data System (ADS)

    Fer, Ilker; Peterson, Algot K.; Randelhoff, Achim; Meyer, Amelie

    2017-03-01

    A one-dimensional model is employed to reproduce the observed time evolution of hydrographic properties in the upper water column during winter, between 26 January and 11 March 2015, in a region north of Svalbard in the Nansen Basin of the Arctic Ocean. From an observed initial state, vertical diffusion equations for temperature and salinity give the hydrographic conditions at a later stage. Observations of microstructure are used to synthesize profiles of vertical diffusivity, K, representative of varying wind forcing conditions. The ice-ocean heat and salt fluxes at the ice-ocean interface are implemented as external source terms, estimated from the salt and enthalpy budgets, using friction velocity from the Rossby similarity drag relation, and the ice core temperature profiles. We are able to reproduce the temporal evolution of hydrography satisfactorily for two pairs of measured profiles, suggesting that the vertical processes dominated the observed changes. Sensitivity tests reveal a significant dependence on K. Variation in other variables, such as the temperature gradient of the sea ice, the fraction of heat going to ice melt, and the turbulent exchange coefficient for heat, are relatively less important. The increase in salinity as a result of freezing and brine release is approximately 10%, significantly less than that due to entrainment (90%) from beneath the mixed layer. Entrainment was elevated during episodic storm events, leading to melting. The results highlight the contribution of storms to mixing in the upper Arctic Ocean and its impact on ice melt and mixed-layer salt and nutrient budgets.

  12. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  13. Quantum melting of a two-dimensional Wigner crystal

    NASA Astrophysics Data System (ADS)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.

  14. The Principle of Stasis: Why drift is not a Zero-Cause Law.

    PubMed

    Luque, Victor J

    2016-06-01

    This paper analyses the structure of evolutionary theory as a quasi-Newtonian theory and the need to establish a Zero-Cause Law. Several authors have postulated that the special character of drift is because it is the default behaviour or Zero-Cause Law of evolutionary systems, where change and not stasis is the normal state of them. For these authors, drift would be a Zero-Cause Law, the default behaviour and therefore a constituent assumption impossible to change without changing the system. I defend that drift's causal and explanatory power prevents it from being considered as a Zero-Cause Law. Instead, I propose that the default behaviour of evolutionary systems is what I call the Principle of Stasis, which posits that an evolutionary system where there is no selection, drift, mutation, migration, etc., and therefore no difference-maker, will not undergo any change (it will remain in stasis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The "Down the PC" view - A new tool to assess screw positioning in the posterior column of the acetabulum.

    PubMed

    Osterhoff, G; Amiri, S; Unno, F; Dodd, A; Guy, P; O'Brien, P J; Lefaivre, K A

    2015-08-01

    Minimal-invasive placement of screws into the posterior column of the acetabulum (PC) is challenging. Due to the saddle-shaped curvature of the medial cortical border of the PC, the standard fluoroscopic views of the pelvis cannot provide the desired safety during screw insertion. The aim of this study was to define a view tangentially to the medial cortex of the PC and to evaluate its accuracy and inter-observer reproducibility. Radio-dense markers on the medial cortex of the PC along the axis of a PC screw were brought in line and landmarks of the new "Down the PC" view were determined. Kirschner wires were placed into the PC of a pelvis composite model and five pelvic cadaver specimens in a total of 34 different correct and incorrect positions. Based on either only the "Down the PC" view, only the standard views, or a combination of both, three fellowship-trained orthopaedic surgeons had to decide if the inserted wires were in bone in the posterior column or had exited cortex, and if they penetrated the acetabulum. Sensitivity, specificity, and the intra-class correlation coefficient were calculated. A view using three radiographic landmarks (pelvic brim, medial cortical wall of the body of the ischium, ischial spine) was found. Sensitivity and specificity to detect perforation out of the bone were 1.00 and 0.97 for the "Down the PC" view, 0.46 and 0.97 if only the standard views were used, and 1.00 and 0.95 for a combination of both. Sensitivity and specificity to detect intra-articular wire placement were 1.00 and 0.96 for the "Down the PC" view, 0.72 and 0.95 if only the standard views were used, and 0.94 and 0.99 for a combination of both. Inter-observer agreement using only the "Down the PC" view was excellent with an ICC of 0.92 for perforation and ICC of 0.82 for intra-articular wire placement. The "Down the PC" view is a useful addendum in the orthopaedic trauma surgeon's tool box. Using simple landmarks, it is easily to reproduce and thereby shows

  16. Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization

    NASA Astrophysics Data System (ADS)

    Dütsch, Michael; Fredenhagen, Klaus; Keller, Kai Johannes; Rejzner, Katarzyna

    2014-12-01

    We reformulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. This closed expression, which we call the Epstein-Glaser Forest Formula, is analogous to Zimmermann's Forest Formula for BPH renormalization. For scalar fields, the resulting renormalization method is always applicable, we compute several examples. We also analyze the Hopf algebraic aspects of the combinatorics. Our starting point is the Main Theorem of Renormalization of Stora and Popineau and the arising renormalization group as originally defined by Stückelberg and Petermann.

  17. Ergonomic assessment of the French and American position for laparoscopic cholecystectomy in the MIS Suite.

    PubMed

    Kramp, Kelvin H; van Det, Marc J; Totte, Eric R; Hoff, Christiaan; Pierie, Jean-Pierre E N

    2014-05-01

    Cholecystectomy was one of the first surgical procedures to be performed with laparoscopy in the 1980s. Currently, two operation setups generally are used to perform a laparoscopic cholecystectomy: the French and the American position. In the French position, the patient lies in the lithotomy position, whereas in the American position, the patient lies supine with the left arm in abduction. To find an ergonomic difference between the two operation setups the movements of the surgeon's vertebral column were analyzed in a crossover study. The posture of the surgeon's vertebral column was recorded intraoperatively using an electromagnetic motion-tracking system with three sensors attached to the head and to the trunk at the levels of Th1 and S1. A three-dimensional posture analysis of the cervical and thoracolumbar spine was performed to evaluate four surgeons removing a gallbladder in the French and American position. The body angles assessed were flexion/extension of the cervical and thoracolumbar spine, axial rotation of the cervical and thoracolumbar spine, lateroflexion of the cervical and thoracolumbar spine, and the orientation of the head in the sagittal plane. For each body angle, the mean, the percentage of operation time within an ergonomic acceptable range, and the relative frequencies were calculated and compared. No statistical difference was observed in the mean body angles or in the percentages of operation time within an acceptable range between the French and the American position. The relative frequencies of the body angles might indicate a trend toward slight thoracolumbar flexion in the French position. In a modern dedicated minimally invasive surgery suite, the body posture of the neck and trunk and the orientation of the head did not differ significantly between the French and American position.

  18. Tolerating Zero Tolerance?

    ERIC Educational Resources Information Center

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  19. Mynodbcsv: lightweight zero-config database solution for handling very large CSV files.

    PubMed

    Adaszewski, Stanisław

    2014-01-01

    Volumes of data used in science and industry are growing rapidly. When researchers face the challenge of analyzing them, their format is often the first obstacle. Lack of standardized ways of exploring different data layouts requires an effort each time to solve the problem from scratch. Possibility to access data in a rich, uniform manner, e.g. using Structured Query Language (SQL) would offer expressiveness and user-friendliness. Comma-separated values (CSV) are one of the most common data storage formats. Despite its simplicity, with growing file size handling it becomes non-trivial. Importing CSVs into existing databases is time-consuming and troublesome, or even impossible if its horizontal dimension reaches thousands of columns. Most databases are optimized for handling large number of rows rather than columns, therefore, performance for datasets with non-typical layouts is often unacceptable. Other challenges include schema creation, updates and repeated data imports. To address the above-mentioned problems, I present a system for accessing very large CSV-based datasets by means of SQL. It's characterized by: "no copy" approach--data stay mostly in the CSV files; "zero configuration"--no need to specify database schema; written in C++, with boost [1], SQLite [2] and Qt [3], doesn't require installation and has very small size; query rewriting, dynamic creation of indices for appropriate columns and static data retrieval directly from CSV files ensure efficient plan execution; effortless support for millions of columns; due to per-value typing, using mixed text/numbers data is easy; very simple network protocol provides efficient interface for MATLAB and reduces implementation time for other languages. The software is available as freeware along with educational videos on its website [4]. It doesn't need any prerequisites to run, as all of the libraries are included in the distribution package. I test it against existing database solutions using a battery of

  20. Mynodbcsv: Lightweight Zero-Config Database Solution for Handling Very Large CSV Files

    PubMed Central

    Adaszewski, Stanisław

    2014-01-01

    Volumes of data used in science and industry are growing rapidly. When researchers face the challenge of analyzing them, their format is often the first obstacle. Lack of standardized ways of exploring different data layouts requires an effort each time to solve the problem from scratch. Possibility to access data in a rich, uniform manner, e.g. using Structured Query Language (SQL) would offer expressiveness and user-friendliness. Comma-separated values (CSV) are one of the most common data storage formats. Despite its simplicity, with growing file size handling it becomes non-trivial. Importing CSVs into existing databases is time-consuming and troublesome, or even impossible if its horizontal dimension reaches thousands of columns. Most databases are optimized for handling large number of rows rather than columns, therefore, performance for datasets with non-typical layouts is often unacceptable. Other challenges include schema creation, updates and repeated data imports. To address the above-mentioned problems, I present a system for accessing very large CSV-based datasets by means of SQL. It's characterized by: “no copy” approach – data stay mostly in the CSV files; “zero configuration” – no need to specify database schema; written in C++, with boost [1], SQLite [2] and Qt [3], doesn't require installation and has very small size; query rewriting, dynamic creation of indices for appropriate columns and static data retrieval directly from CSV files ensure efficient plan execution; effortless support for millions of columns; due to per-value typing, using mixed text/numbers data is easy; very simple network protocol provides efficient interface for MATLAB and reduces implementation time for other languages. The software is available as freeware along with educational videos on its website [4]. It doesn't need any prerequisites to run, as all of the libraries are included in the distribution package. I test it against existing database solutions using

  1. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  2. Beyond Zero Based Budgeting.

    ERIC Educational Resources Information Center

    Ogden, Daniel M., Jr.

    1978-01-01

    Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)

  3. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow

  4. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.

    2007-03-01

    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  5. Compact electron beam focusing column

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  6. Combined influence of vergence and eye position on three-dimensional vestibulo-ocular reflex in the monkey.

    PubMed

    Misslisch, H; Hess, B J M

    2002-11-01

    This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts

  7. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  8. A method for determining the column curve from tests of columns with equal restraints against rotation on the ends

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Rossman, Carl A; Houbolt, John C

    1943-01-01

    The results are presented of a theoretical study for the determination of the column curve from tests of column specimens having ends equally restrained against rotation. The theory of this problem is studied and a curve is shown relating the fixity coefficient c to the critical load, the length of the column, and the magnitude of the elastic restraint. A method of using this curve for the determination of the column curve for columns with pin ends from tests of columns with elastically restrained ends is presented. The results of the method as applied to a series of tests on thin-strip columns of stainless steel are also given.

  9. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  10. NASA Net Zero Energy Buildings Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Scheib, J.; Torcellini, P.

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less

  11. Three-Dimensional Implant Positioning with a Piezosurgery Implant Site Preparation Technique and an Intraoral Surgical Navigation System: Case Report.

    PubMed

    Pellegrino, Gerardo; Taraschi, Valerio; Vercellotti, Tomaso; Ben-Nissan, Besim; Marchetti, Claudio

    This case report describes new implant site preparation techniques joining the benefits of using an intraoral navigation system to optimize three-dimensional implant site positioning in combination with an ultrasonic osteotomy. A report of five patients is presented, and the implant positions as planned in the navigation software with the postoperative scan image were compared. The preliminary results are useful, although further clinical studies with larger populations are needed to confirm these findings.

  12. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    NASA Astrophysics Data System (ADS)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  13. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  14. Numerical analysis of nonminimum phase zero for nonuniform link design

    NASA Technical Reports Server (NTRS)

    Girvin, Douglas L.; Book, Wayne J.

    1991-01-01

    As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.

  15. Numerical analysis of nonminimum phase zero for nonuniform link design

    NASA Astrophysics Data System (ADS)

    Girvin, Douglas L.; Book, Wayne J.

    1991-11-01

    As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.

  16. What is Wrong with the Boundary Conditions in Column Tracer Tests

    NASA Astrophysics Data System (ADS)

    Zhan, H.

    2007-12-01

    Solute transport in a column is probably one of the most fundamental problems investigated in contaminant hydrology and soil physics because it serves as a benchmark for testing transport theories, for measuring dispersivities, etc. Despite its importance, there are still dispute and inconsistency on how to deal with the boundary conditions involved in such problems. The boundary condition could impose great influence upon transport in a column, particularly when the length of the column is relatively short, or the so-called Peclet number is not large. There are three types of boundary conditions to choose for transport in a column. Among these three types of boundary conditions, only the third-type boundary satisfies the mass balance requirement rigorously. The first type boundary, despite its frequent use in previous studies, could lead to serious mass balance problems. The most serious problem is on how to deal with the outlet boundary. Some studies have used a zero concentration gradient at the outlet (the so-called Danckwerts' boundary condition). This is named the model A. Another idea is to treat the finite length column as a part of an infinitely long column and to calculate the concentration at the outlet based on a formula developed for an infinitely long column. This is named the model B. The model A satisfies the mass balance requirement but was found to fit with the experimental data poorly. The model B does not satisfy the mass balance requirement, but usually agree well with the experimental data. So, the dilemma is: which model to choose? At present, most investigators prefer to choose the model B because of its close agreement with the experimental data, despite of its violation of the mass balance requirement. But the question is: why the model A, which satisfies the mass balance requirement, does not fit with the experimental data? It turns out that the advection-dispersion equation (ADE) that uses the Fick's first law to describe the

  17. Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Baumbick, R. J.

    1973-01-01

    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.

  18. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  19. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    PubMed

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  20. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE PAGES

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    2017-05-17

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  1. One-Dimensional Modelling of Internal Ballistics

    NASA Astrophysics Data System (ADS)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  2. Persistently Auxetic Materials: Engineering the Poisson Ratio of 2D Self-Avoiding Membranes under Conditions of Non-Zero Anisotropic Strain.

    PubMed

    Ulissi, Zachary W; Govind Rajan, Ananth; Strano, Michael S

    2016-08-23

    Entropic surfaces represented by fluctuating two-dimensional (2D) membranes are predicted to have desirable mechanical properties when unstressed, including a negative Poisson's ratio ("auxetic" behavior). Herein, we present calculations of the strain-dependent Poisson ratio of self-avoiding 2D membranes demonstrating desirable auxetic properties over a range of mechanical strain. Finite-size membranes with unclamped boundary conditions have positive Poisson's ratio due to spontaneous non-zero mean curvature, which can be suppressed with an explicit bending rigidity in agreement with prior findings. Applying longitudinal strain along a singular axis to this system suppresses this mean curvature and the entropic out-of-plane fluctuations, resulting in a molecular-scale mechanism for realizing a negative Poisson's ratio above a critical strain, with values significantly more negative than the previously observed zero-strain limit for infinite sheets. We find that auxetic behavior persists over surprisingly high strains of more than 20% for the smallest surfaces, with desirable finite-size scaling producing surfaces with negative Poisson's ratio over a wide range of strains. These results promise the design of surfaces and composite materials with tunable Poisson's ratio by prestressing platelet inclusions or controlling the surface rigidity of a matrix of 2D materials.

  3. Modern cosmology and the origin of our three dimensionality.

    PubMed

    Woodbury, M A; Woodbury, M F

    1998-01-01

    We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.

  4. Adjustable bias column end joint assembly

    NASA Technical Reports Server (NTRS)

    Wallsom, Richard E. (Inventor); Bush, Harold G. (Inventor)

    1994-01-01

    An adjustable mechanical end joint system for connecting structural column elements and eliminating the possibility of free movement between joint halves during loading or vibration has a node joint body having a cylindrical engaging end and a column end body having a cylindrical engaging end. The column end joint body has a compressible preload mechanism and plunger means housed therein. The compressible preload mechanism may be adjusted from the exterior of the column end joint body through a port.

  5. Spin zero Hawking radiation for non-zero-angular momentum mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngampitipan, Tritos; Bonserm, Petarpa; Visser, Matt

    2015-05-15

    Black hole greybody factors carry some quantum black hole information. Studying greybody factors may lead to understanding the quantum nature of black holes. However, solving for exact greybody factors in many black hole systems is impossible. One way to deal with this problem is to place some rigorous analytic bounds on the greybody factors. In this paper, we calculate rigorous bounds on the greybody factors for spin zero hawking radiation for non-zero-angular momentum mode from the Kerr-Newman black holes.

  6. Sparse Zero-Sum Games as Stable Functional Feature Selection

    PubMed Central

    Sokolovska, Nataliya; Teytaud, Olivier; Rizkalla, Salwa; Clément, Karine; Zucker, Jean-Daniel

    2015-01-01

    In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints. PMID:26325268

  7. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel

    2004-08-15

    Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet

  8. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2014-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are co-activated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. PMID:21401670

  9. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  10. Modeling zero-modified count and semicontinuous data in health services research Part 1: background and overview.

    PubMed

    Neelon, Brian; O'Malley, A James; Smith, Valerie A

    2016-11-30

    Health services data often contain a high proportion of zeros. In studies examining patient hospitalization rates, for instance, many patients will have no hospitalizations, resulting in a count of zero. When the number of zeros is greater or less than expected under a standard count model, the data are said to be zero modified relative to the standard model. A similar phenomenon arises with semicontinuous data, which are characterized by a spike at zero followed by a continuous distribution with positive support. When analyzing zero-modified count and semicontinuous data, flexible mixture distributions are often needed to accommodate both the excess zeros and the typically skewed distribution of nonzero values. Various models have been introduced over the past three decades to accommodate such data, including hurdle models, zero-inflated models, and two-part semicontinuous models. This tutorial describes recent modeling strategies for zero-modified count and semicontinuous data and highlights their role in health services research studies. Part 1 of the tutorial, presented here, provides a general overview of the topic. Part 2, appearing as a companion piece in this issue of Statistics in Medicine, discusses three case studies illustrating applications of the methods to health services research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    PubMed

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  12. λ-Repressor Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides

    PubMed Central

    Samiee, K. T.; Foquet, M.; Guo, L.; Cox, E. C.; Craighead, H. G.

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) has demonstrated its utility for measuring transport properties and kinetics at low fluorophore concentrations. In this article, we demonstrate that simple optical nanostructures, known as zero-mode waveguides, can be used to significantly reduce the FCS observation volume. This, in turn, allows FCS to be applied to solutions with significantly higher fluorophore concentrations. We derive an empirical FCS model accounting for one-dimensional diffusion in a finite tube with a simple exponential observation profile. This technique is used to measure the oligomerization of the bacteriophage λ repressor protein at micromolar concentrations. The results agree with previous studies utilizing conventional techniques. Additionally, we demonstrate that the zero-mode waveguides can be used to assay biological activity by measuring changes in diffusion constant as a result of ligand binding. PMID:15613638

  13. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Students and their sponsors gather for a commemorative photo in the Center for Space Education at NASA’s Kennedy Space Center in Florida after participating in the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  14. Modeling continuous covariates with a "spike" at zero: Bivariate approaches.

    PubMed

    Jenkner, Carolin; Lorenz, Eva; Becher, Heiko; Sauerbrei, Willi

    2016-07-01

    In epidemiology and clinical research, predictors often take value zero for a large amount of observations while the distribution of the remaining observations is continuous. These predictors are called variables with a spike at zero. Examples include smoking or alcohol consumption. Recently, an extension of the fractional polynomial (FP) procedure, a technique for modeling nonlinear relationships, was proposed to deal with such situations. To indicate whether or not a value is zero, a binary variable is added to the model. In a two stage procedure, called FP-spike, the necessity of the binary variable and/or the continuous FP function for the positive part are assessed for a suitable fit. In univariate analyses, the FP-spike procedure usually leads to functional relationships that are easy to interpret. This paper introduces four approaches for dealing with two variables with a spike at zero (SAZ). The methods depend on the bivariate distribution of zero and nonzero values. Bi-Sep is the simplest of the four bivariate approaches. It uses the univariate FP-spike procedure separately for the two SAZ variables. In Bi-D3, Bi-D1, and Bi-Sub, proportions of zeros in both variables are considered simultaneously in the binary indicators. Therefore, these strategies can account for correlated variables. The methods can be used for arbitrary distributions of the covariates. For illustration and comparison of results, data from a case-control study on laryngeal cancer, with smoking and alcohol intake as two SAZ variables, is considered. In addition, a possible extension to three or more SAZ variables is outlined. A combination of log-linear models for the analysis of the correlation in combination with the bivariate approaches is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Which Basic Rules Underlie Social Judgments? Agency Follows a Zero-Sum Principle and Communion Follows a Non-Zero-Sum Principle.

    PubMed

    Dufner, Michael; Leising, Daniel; Gebauer, Jochen E

    2016-05-01

    How are people who generally see others positively evaluated themselves? We propose that the answer to this question crucially hinges on the content domain: We hypothesize that Agency follows a "zero-sum principle" and therefore people who see others ashighin Agency are perceived aslowin Agency themselves. In contrast, we hypothesize that Communion follows a "non-zero-sum principle" and therefore people who see others ashighin Communion are perceived ashighin Communion themselves. We tested these hypotheses in a round-robin and a half-block study. Perceiving others as agentic was indeed linked to being perceived as low in Agency. To the contrary, perceiving others as communal was linked to being perceived as high in Communion, but only when people directly interacted with each other. These results help to clarify the nature of Agency and Communion and offer explanations for divergent findings in the literature. © 2016 by the Society for Personality and Social Psychology, Inc.

  16. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  17. Zero Energy Use School.

    ERIC Educational Resources Information Center

    Nelson, Brian, Ed.; And Others

    The economic and physical realities of an energy shortage have caused many educators to consider alternative sources of energy when constructing their schools. This book contains studies and designs by fifth-year architecture students concerning the proposed construction of a zero energy-use elementary school in Albany, Oregon. "Zero energy…

  18. A Developmental Study of Three-Dimensional Perception in Israeli Children.

    ERIC Educational Resources Information Center

    Sohlberg, Shaul C.; Porat, Dov

    1979-01-01

    One hundred thirty-six 5-to-10-year-old Israeli children were given three black and white photographs of a highway, a column of identical tanks, and a row of elephants, and were asked some questions on each one of the photographs in order to elicit responses of three-dimensional perception. (CM)

  19. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases.

    PubMed

    Borges, Endler M

    2014-01-07

    Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen bonding, shape/steric selectivity, and ion exchange capacity of stationary phases. The chromatographic parameters of each test were shown to be uncorrelated. Despite this, the three protocols were equally successful in identifying similar and/or dissimilar stationary phases. The veracity of the results has been supported by some real life pharmaceutical separations. The use of Principal Component Analysis to identify similar/dissimilar phases appears to have some limitations in terms of loss of information. In contrast, the use of Euclidian distances is a much more convenient and reliable approach. The use of auto scaled data is favoured over the use of weighted factors as the former data transformation is less affected by the addition or removal of columns from the database. The use of these free databases and their corresponding software tools shown to be valid for identifying similar columns with equivalent chromatographic selectivity and retention as a "backup column". In addition, dissimilar columns with complimentary chromatographic selectivity can be identified for method development screening strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Design procedures for fiber composite structural components: Rods, columns and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  1. Foam-assisted delivery of nanoscale zero valent iron in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through themore » unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.« less

  2. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    PubMed

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-12

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  3. The handedness of historiated spiral columns.

    PubMed

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  4. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  5. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  6. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    NASA Astrophysics Data System (ADS)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  7. Transition to spatiotemporal chaos in a two-dimensional hydrodynamic system.

    PubMed

    Pirat, Christophe; Naso, Aurore; Meunier, Jean-Louis; Maïssa, Philippe; Mathis, Christian

    2005-04-08

    We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.

  8. The venetian-blind effect: a preference for zero disparity or zero slant?

    PubMed Central

    Vlaskamp, Björn N. S.; Guan, Phillip; Banks, Martin S.

    2013-01-01

    When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes—Venetian blinds—when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths. PMID:24273523

  9. The venetian-blind effect: a preference for zero disparity or zero slant?

    PubMed

    Vlaskamp, Björn N S; Guan, Phillip; Banks, Martin S

    2013-01-01

    When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes-Venetian blinds-when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths.

  10. Meta-Analysis of Zero or Near-Zero Fluoroscopy Use During Ablation of Cardiac Arrhythmias.

    PubMed

    Yang, Li; Sun, Ge; Chen, Xiaomei; Chen, Guangzhi; Yang, Shanshan; Guo, Ping; Wang, Yan; Wang, Dao Wen

    2016-11-15

    Data regarding the efficacy and safety of zero or near-zero fluoroscopic ablation of cardiac arrhythmias are limited. A literature search was conducted using PubMed and Embase for relevant studies through January 2016. Ten studies involving 2,261 patients were identified. Compared with conventional radiofrequency ablation method, zero or near-zero fluoroscopy ablation significantly showed reduced fluoroscopic time (standard mean difference [SMD] -1.62, 95% CI -2.20 to -1.05; p <0.00001), ablation time (SMD -0.16, 95% CI -0.29 to -0.04; p = 0.01), and radiation dose (SMD -1.94, 95% CI -3.37 to -0.51; p = 0.008). In contrast, procedure duration was not significantly different from that of conventional radiofrequency ablation (SMD -0.03, 95% CI -0.16 to 0.09; p = 0.58). There were no significant differences between both groups in immediate success rate (odds ratio [OR] 0.99, 95% CI 0.49 to 2.01; p = 0.99), long-term success rate (OR 1.13, 95% CI 0.42 to 3.02; p = 0.81), complication rates (OR 0.98, 95% CI 0.49 to 1.96; p = 0.95), and recurrence rates (OR 1.29, 95% CI 0.74 to 2.24; p = 0.37). In conclusion, radiation was significantly reduced in the zero or near-zero fluoroscopy ablation groups without compromising efficacy and safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dynamo transition in low-dimensional models.

    PubMed

    Verma, Mahendra K; Lessinnes, Thomas; Carati, Daniele; Sarris, Ioannis; Kumar, Krishna; Singh, Meenakshi

    2008-09-01

    Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes are described. One of them (nonhelical model) has zero kinetic and current helicity, while the other model (helical) has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo transition is shown to bear similarities with recent numerical and experimental results.

  12. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Titze, Michael; Li, Bo; Zhang, Xiang; Ajayan, Pulickel M.; Li, Hebin

    2018-05-01

    Quantum coherence and its dynamics in monolayer transition metal dichalcogenides (TMDs) are essential information to fully control valley pseudospin for valleytronics applications. Experimental understanding of coherence dephasing dynamics has been limited for excitons and largely unexplored for trions in monolayer TMDs. Here we use optical two-dimensional coherent spectroscopy to measure the trion coherence dephasing time in monolayer MoSe2 by analyzing the homogeneous linewidth. An intrinsic coherence time of 182 fs is extrapolated from the excitation density and temperature dependence measurement. The results show that trion-trion and trion-phonon interactions strongly affect the coherence dephasing time, while the intrinsic coherence time at zero excitation and zero temperature is primarily limited by the pure dephasing due to defect states. Our experiment also confirms optical two-dimensional coherent spectroscopy as a reliable technique for studying valley quantum dynamics in two-dimensional layered materials.

  13. Flare cue symbology and EVS for zero-zero weather landing

    NASA Astrophysics Data System (ADS)

    French, Guy A.; Murphy, David M.; Ercoline, William R.

    2006-05-01

    When flying an airplane, landing is arguably the most difficult task a pilot can do. This applies to pilots of all skill levels particularly as the level of complexity in both the aircraft and environment increase. Current navigational aids, such as an instrument landing system (ILS), do a good job of providing safe guidance for an approach to an airfield. These aids provide data to primary flight reference (PFR) displays on-board the aircraft depicting through symbology what the pilot's eyes should be seeing. Piloting an approach under visual meteorological conditions (VMC) is relatively easy compared to the various complex instrument approaches under instrument meteorological conditions (IMC) which may include flying in zero-zero weather. Perhaps the most critical point in the approach is the transition to landing where the rate of closure between the wheels and the runway is critical to a smooth, accurate landing. Very few PFR's provide this flare cue information. In this study we will evaluate examples of flare cueing symbology for use in landing an aircraft in the most difficult conditions. This research is a part of a larger demonstration effort using sensor technology to land in zero-zero weather at airfields that offer no or unreliable approach guidance. Several problems exist when landing without visual reference to the outside world. One is landing with a force greater than desired at touchdown and another is landing on a point of the runway other than desired. We compare different flare cueing systems to one another and against a baseline for completing this complex approach task.

  14. Use of a three-layer distributed RC network to produce two pairs of complex conjugate zeros

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.

    1972-01-01

    The properties of a three layer distributed RC network consisting of two layers of resistive material separated by a dielectric are described. When the three layer network is used as a three terminal element by connecting conducting terminal strips across the ends of one of the resistive layers and the center of the other resistive layer, the network may be used to produce pairs of complex conjugate transmission zeros. The location of these zeros are determined by the parameters of the network. Design charts for determining the zero positions are included as part of the report.

  15. Zero-G Workstation Design

    NASA Technical Reports Server (NTRS)

    Gundersen, R. T.; Bond, R. L.

    1976-01-01

    Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.

  16. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  17. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  18. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  19. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  20. 38 CFR 4.31 - Zero percent evaluations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Zero percent evaluations... FOR RATING DISABILITIES General Policy in Rating § 4.31 Zero percent evaluations. In every instance where the schedule does not provide a zero percent evaluation for a diagnostic code, a zero percent...

  1. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  2. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    NASA Astrophysics Data System (ADS)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  3. Method and structure for skewed block-cyclic distribution of lower-dimensional data arrays in higher-dimensional processor grids

    DOEpatents

    Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY

    2011-11-08

    A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.

  4. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.

    PubMed

    Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.

  5. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach

    PubMed Central

    Mohammadi, Tayeb; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models. PMID:27703493

  6. 40 CFR 180.5 - Zero tolerances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...

  7. 40 CFR 180.5 - Zero tolerances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...

  8. 40 CFR 180.5 - Zero tolerances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...

  9. Avoid problems during distillation column startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloley, A.W.

    1996-07-01

    The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less

  10. Observation and explanation of two-dimensional interconversion of oximes with multiple heart-cutting using comprehensive multidimensional gas chromatography.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Wong, Yong Foo; Glouzman, Melissa I; Marriott, Philip J

    2018-04-20

    Real-time interconversion processes produce unconventional peak broadening in gas chromatography (GC), and can be used to generate kinetic and thermodynamic data. In this study, an unusual separation situation in comprehensive two dimensional GC where two dimensional interconversion (i.e. a raised plateau in both first and second dimension, 1 D and 2 D) was observed in analysis of oxime isomers. This resulted in a characteristic and unusual rectangular peak shape in the two dimensional result. A related theoretical approach was introduced to explain the peak shape supported by simulation results which can be varied depending on concentration profiles and kinetics of the process. The simulated results were supported by experimental results obtained by a comprehensive heart-cut multidimensional GC (H/C MDGC) approach which was developed to clearly investigate isomerisation of E/Z oxime molecules in both 1 D and 2 D separations under different isothermal conditions. The carrier gas flow and oven temperature were selected according to initial results for 1D interconversion on a poly(ethyleneglycol) stationary phase, which was further used in both 1 D and 2 D separations to result in broad zones of oxime interconversion in both dimensions. The method involved repetitive injections of oxime sample, then sampling contiguous fractions of sample into a long 2 D column which is intended to promote considerable interconversion. Comprehensiveness arises from the fact that the whole sample is sampled from the 1 D to the 2 D column, with the long 2 D column replacing the short 2 D column used in classical comprehensive two-dimensional gas chromatography, where the latter will not promote sufficient interconversion. Data processing and presentation permits a 'rectangular' distribution corresponding to the separated compounds, characteristic of this experiment. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  12. Three-dimensional charge density wave order in YBa 2Cu 3O 6.67 at high magnetic fields

    DOE PAGES

    Gerber, S.; Jang, H.; Nojiri, H.; ...

    2015-11-20

    In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less

  13. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright

  14. "Dilute & shoot" approach for rapid determination of trace amounts of nicotine in zero-level e-liquids by reversed phase liquid chromatography and hydrophilic interactions liquid chromatography coupled with tandem mass spectrometry-electrospray ionization.

    PubMed

    Kubica, Paweł; Kot-Wasik, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2013-05-10

    Two analytical procedures are proposed where HILIC and RPLC techniques are coupled with tandem mass spectrometry detection for rapid determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Samples are prepared on the basis of the approach "dilute & shoot" which makes this important step quick and not complicated. The chromatographic separation was carried out on a Zorbax XDB column (RPLC method) and Ascentis Si column (HILIC mode). Within-run precisions (CVs) measured at three concentration levels were as follows: 0.73%, 0.98% and 1.44% for RPLC method and 1.39%, 1.44% and 0.57% (HILIC mode). Between-run CVs were as follows: 1.94%, 1.02% and 1.22% for RPLC mode and 1.49%, 1.20% and 1.22% for HILIC mode. The detection limits of RPLC and HILIC modes were 4.08 and 3.90 ng/mL respectively. The proposed procedures are rapid, not complicated, sensitive and are suitable for fast determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Ding, Ya-qiong; Ren, Jie; Sun, Yong; Li, Yunhui; Jiang, Haitao; Chen, Hong

    2018-05-01

    The Zak phase, which refers to Berry's phase picked up by a particle moving across the Brillouin zone, characterizes the topological properties of Bloch bands in a one-dimensional periodic system. Here the Zak phase in dimerized one-dimensional locally resonant metamaterials is investigated. It is found that there are some singular points in the bulk band across which the Bloch states contribute π to the Zak phase, whereas in the rest of the band the contribution is nearly zero. These singular points associated with zero reflection are caused by two different mechanisms: the dimerization-independent antiresonance of each branch and the dimerization-dependent destructive interference in multiple backscattering. The structure undergoes a topological phase-transition point in the band structure where the band inverts, and the Zak phase, which is determined by the numbers of singular points in the bulk band, changes following a shift in dimerization parameter. Finally, the interface state between two dimerized metamaterial structures with different topological properties in the first band gap is demonstrated experimentally. The quasi-one-dimensional configuration of the system allows one to explore topology-inspired new methods and applications on the subwavelength scale.

  16. Stability of a Plasma Column. Free-Particle Model; STABILITE D'UNE COLONNE DE PLASMA. MODELE DES PARTICULES LIBRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyon, F.

    1963-12-01

    The stability of a field-free homogeneous column of plasma confined to an axial static field and the sum of an alternating and static B/sub tt/ field is considered in the freeparticle model. Conditions for the existence of a positive average restoring force are derived, and it is shown that for small deformations the column is stable for sufficientiy high frequency. (auth)

  17. A comparison of zero-order, first-order, and monod biotransformation models

    USGS Publications Warehouse

    Bekins, B.A.; Warren, E.; Godsy, E.M.

    1998-01-01

    Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate

  18. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column

  19. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  20. Two-dimensional gas chromatographic analysis of ambient light hydrocarbons.

    PubMed

    Liao, Wei-Chen; Ou-Yang, Cheng-Feng; Wang, Chieh-Heng; Chang, Chih-Chung; Wang, Jia-Lin

    2013-06-14

    Ambient level hydrocarbons lighter than C6 were analyzed by the Deans switch-modulated comprehensive two-dimensional gas chromatography (GC×GC) method with flame ionization detection (FID). A thermal desorption (TD) device built in-house connects the GC×GC system to pre-concentrate the target compounds at ambient levels prior to GC analysis. Because the conventional orthogonality based on polarity difference for normal GC×GC separation does not provide sufficient retention for the target compounds of extremely high volatility, the orthogonality of non-polar vs. adsorptive force was adopted instead. The system employed a 100% polydimethyl siloxane column serving as the first-dimension column to provide separation based on dispersive interaction, with a short PLOT column serving as the second-dimension column to provide the needed retention based on gas-solid adsorption interactions. The shortest possible length of the PLOT column was tested to minimize the modulation period (PM) and wraparound and, at the same time, to maintain the desired resolution. The tests led to the final optimal parameters of 1.1m for the PLOT column length, 9s for the PM, 0.013 for the modulation duty cycle (DC) and a modulation ratio (MR) of 3.7 with minimal wraparound. Important criteria for quality assurance of precision and linearity are reported. The low cost and ease of construction and operation make the in-house Deans switch TD-GC×GC-FID system practical and useful for the analysis of light hydrocarbons in urban or industrial environments. Copyright © 2013 Elsevier B.V. All rights reserved.