Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.
Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte
2017-02-02
In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.
Measurement of Valley Kondo Effect in a Si/SiGe Quantum Dot
NASA Astrophysics Data System (ADS)
Yuan, Mingyun; Yang, Zhen; Tang, Chunyang; Rimberg, A. J.; Joynt, R.; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.
2013-03-01
The Kondo effect in Si/SiGe QDs can be enriched by the valley degree of freedom in Si. We have observed resonances showing temperature dependence characteristic of the Kondo effect in two consecutive Coulomb diamonds. These resonances exhibit unusual magnetic field dependence that we interpret as arising from Kondo screening of the valley degree of freedom. In one diamond two Kondo peaks due to screening of the valley index exist at zero magnetic field, revealing a zero-field valley splitting of Δ ~ 0.28 meV. In a non-zero magnetic field the peaks broaden and coalesce due to Zeeman splitting. In the other diamond, a single resonance at zero bias persists without Zeeman splitting for non-zero magnetic field, a phenomenon characteristic of valley non-conservation in tunneling. This research is supported by the NSA and ARO.
Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4
NASA Astrophysics Data System (ADS)
Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael
We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Žilić, Dijana; Pajić, Damir; Jurić, Marijana; Perić, Berislav; Zadro, Krešo; Rakvin, Boris; Planinić, Pavica
2008-10-01
Magnetic properties of single crystals of the heterometallic complex [Cu(bpy) 3] 2[Cr(C 2O 4) 3]NO 3·9H 2O (bpy = 2,2'-bipyridine) have been investigated. From the recorded EPR spectra, the spin-Hamiltonian parameters have been determined. The magnetization measurements have shown magnetic anisotropy at low temperatures, which has been analysed as a result of the zero-field splitting of the Cr III ion. By fitting the exactly derived magnetization expression to the measured magnetization data, the axial zero-field splitting parameter, D, has been calculated. Comparing to the EPR measurements, it has been confirmed that D can be determined from the measurements of the macroscopic magnetization on the single crystals.
Magnon-induced superconductivity in field-cooled spin-1/2 antiferromagnets
NASA Astrophysics Data System (ADS)
Karchev, Naoum
2017-12-01
If, during the preparation, an external magnetic field is applied upon cooling we say it has been field cooled. A novel mechanism for insulator-metal transition and superconductivity in field-cooled spin-1 /2 antiferromagnets on bcc lattice is discussed. Applying a magnetic field along the sublattice B magnetization, we change the magnetic and transport properties of the material. There is a critical value Hcr1. When the magnetic field is below the critical one H
Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields
NASA Astrophysics Data System (ADS)
Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-05-01
We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite signs. The magnetophotoluminescence data indicate that the electron transition from the T12 states to the 1A ground state defines the zero-phonon emission at 1.674 eV, while the T12→1E transition is responsible for the zero-phonon line at 1.666 eV. The T12 (1E ) states are characterized by an orbital Zeeman splitting with gL=0.071 (0.128).
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor
2017-06-01
Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.
Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Briggs, C.L.
1973-01-01
Magnetic susceptibility measurements have been made on four glass spherules and fragments from the Luna 20 fines; two at 300??K and two from 300??K to 4??K. From these data the magnetic susceptibility extrapolated to infinite field, the magnetization at low fields and also the saturation magnetization at high fields, the Curie constant, the Weiss temperature, and the temperature-independent susceptibility were determined. Using a model previously proposed for the Apollo specimens, the Curie constant of the antiferromagnetic inclusions and a zero field splitting parameter were calculated for the same specimens. The data show the relatively low concentration of iron in all forms in these specimens. In addition, the Weiss temperature is lower than that measured for the Apollo specimens, and can be attributed almost entirely to the ligand field distortion about the Fe2+ ions in the glassy phase. The data further suggest that the Luna 20 specimens cooled more slowly than those of the Apollo missions, and that some of the antiferromagnetic inclusions in the glass may have crystallized from the glass during cooling. ?? 1973.
Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M
2016-06-14
We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A
2001-05-28
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.
Magnetic relaxation of 1D coordination polymers (X)₂[Mn(acacen)Fe(CN)₆], X = Ph₄P⁺, Et₄N⁺.
Rams, Michał; Peresypkina, Eugenia V; Mironov, Vladimir S; Wernsdorfer, Wolfgang; Vostrikova, Kira E
2014-10-06
Substitution of the organic cation X in the 1D polymer, (X)2[Mn(acacen)Fe(CN)6], leads to an essential change in magnetic behavior. Due to the presence of more voluminous Ph4P(+) cations, the polyanion has a more geometrically distorted chain skeleton and, as a consequence, enhanced single chain magnet (SCM) characteristics compared to those for Et4N(+). The Arrhenius relaxation energy barriers, the exchange interaction constant and the zero-field splitting anisotropy of Mn(III) are determined from the analysis of magnetic measurements. The discussion is supported with ligand field calculations for [Fe(CN)6](3-) that unveils the significant anisotropy of Fe magnetic moments.
Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A
2017-11-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Elastic gauge fields and Hall viscosity of Dirac magnons
NASA Astrophysics Data System (ADS)
Ferreiros, Yago; Vozmediano, María A. H.
2018-02-01
We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.
NASA Astrophysics Data System (ADS)
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
A state interaction spin-orbit coupling density matrix renormalization group method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less
Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers
NASA Astrophysics Data System (ADS)
Smedarchina, Zorka; Fernández-Ramos, Antonio; Siebrand, Willem
2005-04-01
Direct dynamics calculations based on instanton techniques are reported of tunneling splittings due to double proton transfer in formic and benzoic acid dimers. The results are used to assign the observed splittings to levels for which the authors of the high-resolution spectra could not provide a definitive assignment. In both cases the splitting is shown to be due mainly to the zero-point level rather than to the vibrationally or electronically excited level whose spectrum was investigated. This leads to zero-point splittings of 375MHz for (DCOOH)2 and 1107MHz for the benzoic acid dimer. Thus, contrary to earlier calculations, it is found that the splitting is considerably larger in the benzoic than in the formic acid dimer. The calculations are extended to solid benzoic acid where the asymmetry of the proton-transfer potential induced by the crystal can be overcome by suitable doping. This has allowed direct measurement of the interactions responsible for double proton transfer, which were found to be much larger than those in the isolated dimer. To account for this observation both static and dynamic effects of the crystal forces on the intradimer hydrogen bonds are included in the calculations. The same methodology, extended to higher temperatures, is used to calculate rate constants for HH, HD, and DD transfers in neat benzoic acid crystals. The results are in good agreement with reported experimental rate constants measured by NMR relaxometry and, if allowance is made for small structural changes induced by doping, with the transfer matrix elements observed in doped crystals. Hence the method used allows a unified description of tunneling splittings in the gas phase and in doped crystals as well as of transfer rates in neat crystals.
Exponential protection of zero modes in Majorana islands.
Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M
2016-03-10
Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
Lu, Jian; Ozel, I. Ozge; Belvin, Carina A.; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K.; Dincă, Mircea; Gedik, Nuh
2017-01-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science. PMID:29163882
Gómez-Coca, Silvia; Ruiz, Eliseo
2012-03-07
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
NASA Astrophysics Data System (ADS)
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
Unravelling the zero-field-splitting parameters in Pt-rich polymers with tuned spin-orbit coupling
NASA Astrophysics Data System (ADS)
Peroncik, Peter; McLaughlin, Ryan; Sun, Dali; Vardeny, Z. Valy
2014-03-01
Recently pi-conjugated polymers that contain heavy metal Platinum (Pt-polymers, Scientific Reports 3, 2653, 2013) have attracted substantial interest due to their strong and tunable spin-orbit coupling (SOC). The magnetic field effect (MFE), such as magneto-photoluminescence (MPL) is considered to be a viable approach to address the SOC strength in the organics. Alas conventional MFE up to several hundred Gauss is unable to overcome the relative large spin splitting energies in Pt-polymers due to their strong SOC. To overcome this difficulty we study the MPL response in two Pt-polymers at high magnetic field (up to several Telsa). We found that the MPL response is dominated by triplet excitons that are generated in record time, and from the MPL(B) response width we could obtained the triplet zero-field splitting (ZFS) parameters. We found that the ZFS parameters in the Pt-polymers are proportional to the intrachain Pt atom concentration. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
Angular-momentum-dependent splitting of light through metal nanohole
NASA Astrophysics Data System (ADS)
Hu, Dejiao; Liu, Yu; Zhang, ZhiYou; Xiao, Xiao; Du, JingLei
2014-11-01
We numerically study the splitting of light beam which carries orbital angular momentum (OAM) through single metal nano-scale hole. A light beam carrying with OAM has a helical phase distribution in the transverse plane, where the electric field has the form: E(r,θ)=E0exp(lθ), and l is the topological charge which denotes the value of OAM. The circular polarization state is corresponding to the spin angular momentum (SAM), where s=+1 represents the left-handed polarization and s=-1 the right-handed polarization. Simulation results show l dependent splitting of beam through nano metal hole. When l is odd, the transmitted far field splits while no splitting happens when l is even. This phenomenon is attributed to the interaction between OAM beam and plasmonic mode of metal nano-hole. It is revealed that different OAM beam can excite different transverse mode in the metal cavity, which means the interaction should obey an OAM section rule. We show that even l can excite transverse mode with zero total AM and odd l can excite transverse mode with non-zero total AM within the hole. Orbital-spin conversion is also revealed in the free wave/plasmon interaction.
Ortmann, Frank; Roche, Stephan
2013-02-22
We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.
Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Živković, I.; Pajić, D.; Ivek, T.; Berger, H.
2012-06-01
We report a detailed single-crystal investigation of a magnetoelectric ferrimagnet Cu2OSeO3 using dc magnetization and ac susceptibility along the three principal directions [100], [110], and [111]. We have observed that in small magnetic fields two magnetic transitions occur, one at Tc=57 K and the second one at TN=58 K. At Tc the nonlinear susceptibility reveals the emergence of the ferromagnetic component and below Tc the magnetization measurements show the splitting between field-cooled and zero-field-cooled regimes. Above 1000 Oe the magnetization saturates and the system is in a single domain state. The temperature dependence of the saturation below Tc can be well described by μ(T)=μ(0)[1-(T/Tc)2]β, with μ(0)=0.56μB/Cu, corresponding to the 3-up-1-down configuration. The dielectric constant measured on a thin single crystal shows a systematic deviation below the transition, indicating an intrinsic magnetoelectric effect.
The Kondo effect in the presence of ferromagnetism.
Pasupathy, Abhay N; Bialczak, Radoslaw C; Martinek, Jan; Grose, Jacob E; Donev, Luke A K; McEuen, Paul L; Ralph, Daniel C
2004-10-01
We measured Kondo-assisted tunneling via C60 molecules in contact with ferromagnetic nickel electrodes. Kondo correlations persisted despite the presence of ferromagnetism, but the Kondo peak in the differential conductance was split by an amount that decreased (even to zero) as the moments in the two electrodes were turned from parallel to antiparallel alignment. The splitting is too large to be explained by a local magnetic field. However, the voltage, temperature, and magnetic field dependence of the signals agree with predictions for an exchange splitting of the Kondo resonance. The Kondo effect leads to negative values of magnetoresistance, with magnitudes much larger than the Julliere estimate.
Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-10-16
We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
The GEM Theory of the Unification of Gravitation and Electro-Magnetism
NASA Astrophysics Data System (ADS)
Brandenburg, J. E.
2012-01-01
The GEM (Gravity Electro-Magnetism), theory is presented as an alloy of Sakharov and Kaluza-Klein approaches to field unification. GEM uses the concept of gravity fields as Poynting fields to postulate that the non-metric portion of the EM stress tensor becomes the metric tensor in strong fields leading to "self-censorship". Covariant formulation of the GEM theory is accomplished through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: gab = 4(FcaFcb )/(FabFab), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential f=1/2 E2/B2 =GM/r , where E, B and F are part of the vacuum Zero Point Fluctuation (ZPF) and M and r are the mass and distance from the center of a gravitating body and G is the Newton gravitation constant. It is found that a Lorentz flat-space metric is recovered in the limit of a vacuum full spectrum ZPF. The vacuum ZPF energy and vacuum quantities G, h, c, gives birth to particles quantities mp, me, e,-e in a process triggered by the appearance of the Kaluza-Klein fifth dimension, where also the EM and gravity forces split from each other in a process correlated to the splitting apart of protons and electrons. The separate appearance of the proton and electron occurs as the splitting of a light-like spacetime interval of zero-length into a finite space-like portion containing three subdimensions identified with the quarks and a time-like portion identified with the electron. The separation of mass with charge for the electron and proton pair comes about from a U(1) symmetry with a rotation in imaginary angle. A logarithmic variation of charge with mass for the proton-electron pair results and leads to the formula ln(ro/rp) = s, where s = (mp/me)1/2 , where mp and me are the electron and proton masses respectively and where ro =e2/moc2 , and where mo = (mpme)1/2 and where rp is the Planck length . This leads to the formula G=e2/mo2aexp(-2s)=6.6684x10-11 dynes-cm2/g2 , without free parameters, which is within 1 part per thousand of the measured value. We also have from the mass model, where q'/e = a-1/2 is the normalized Planck charge, and where MP is the Planck mass, a formula for the proton mass : mp=MP sq'/e = 1.71 x10-24g and thus is accurate to 2.5% , also without free parameters. GEM theory is now validated through the the Standard Model of physics. Derivation of the value of the Gravitation constant based on the observed variation of a with energy: results in the formula G @ hc/Mhc2 exp ( -1/(1.61a)), where a is the fine structure constant, h, is Plancks constant, c, is the speed of light, and Mhc is the mass of the hcc Charmonium meson and is shown to be identical to that derived from GEM postulates. GEM is thus consistent with quantum renormalization with an ultraviolet cutoff at the Planck length. More accurate values of G me and mp are found by perturbation theory.
Photon-assisted tunneling through a topological superconductor with Majorana bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Han-Zhao; Zhang, Ying-Tao, E-mail: zhangyt@mail.hebtu.edu.cn; Liu, Jian-Jun, E-mail: liujj@mail.hebtu.edu.cn
Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that themore » photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.« less
Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H
2005-06-01
EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.
NASA Astrophysics Data System (ADS)
Dmytruk, Olesia; Klinovaja, Jelena
2018-04-01
We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.
Cosmological singularities in Bakry-Émery spacetimes
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Woolgar, Eric
2014-12-01
We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.
NASA Astrophysics Data System (ADS)
Kisiel, Z.; Pszczólkowski, L.; Fowler, P. W.; Legon, A. C.
1997-09-01
Rotational spectra of the most abundant isotopic species of the weakly bound dimer formed between dinitrogen and hydrogen chloride were investigated. Spectroscopic constants for 14N 2 · H 37Cl were determined for the first time and those for 14N 2 · H 35Cl improved. Analysis of observed nuclear quadrupole spliting patterns within the framework of coupling of three nonequivalent nuclear spins allowed determination of splitting constants for both nuclei in the complexed dinitrogen molecule. Electric field gradient calculations at the SCF supermolecule level for the dimer are presented and account for the observed values of the nitrogen splitting constants.
Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis
2015-10-14
The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.
NASA Astrophysics Data System (ADS)
Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.
2018-03-01
The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.
The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance
NASA Technical Reports Server (NTRS)
Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.
1994-01-01
The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
Larrabee, James A; Schenk, Gerhard; Mitić, Nataša; Riley, Mark J
2015-09-01
Magnetic circular dichroism (MCD) is a convenient technique for providing structural and mechanistic insight into enzymatic systems in solution. The focus of this review is on aspects of geometric and electronic structure that can be determined by MCD, and how this method can further our understanding of enzymatic mechanisms. Dinuclear Co(II) systems that catalyse hydrolytic reactions were selected to illustrate the approach. These systems all contain active sites with similar structures consisting of two Co(II) ions bridged by one or two carboxylates and a water or hydroxide. In most of these active sites one Co(II) is five-coordinate and one is six-coordinate, with differing binding affinities. It is shown how MCD can be used to determine which binding site--five or six-coordinate--has the greater affinity. Importantly, zero-field-splitting data and magnetic exchange coupling constants may be determined from the temperature and field dependence of MCD data. The relevance of these data to the function of the enzymatic systems is discussed.
Strain and electric-field tunable valley states in 2D van der Waals MoTe2/WTe2 heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Zhida; Wang, Xiaocha; Mi, Wenbo
2016-12-01
The strain and electric-field effects on the electronic structure of MoTe2/WTe2 van der Waals heterostructures are investigated by first-principles calculations. The MoTe2/WTe2 heterostructures are indirect band gap semiconductors under different strains except for 2%. At a strain from -6% to 6% under a zero electric field, the band gap is 0.56, 0.62, 0.69, 0.62, 0.46, 0.37 and 0.29 eV, respectively. Meanwhile, spin splitting at the conduction band minimum (CBM) decreases monotonically from 76-1 meV, and that at the valance band maximum (VBM) is 232, 266, 292, 307, 319, 302 and 283 meV. At an electric field from -0.3 to 0.3 V Å-1 under a 2% strain, VBM splitting decreases from 499-77 meV, but CBM splitting almost remains at 33 meV. A semiconductor-metal transition appears at an electric field of -0.3 V Å-1. At different electric fields under a -4% strain, CBM splitting monotonically increases from 37-154 meV, but VBM splitting is 437, 438, 378, 273, 150, 78 and 134 meV, respectively. Our results can provide a more significant basis for spintronic and valleytronic devices.
NASA Astrophysics Data System (ADS)
Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak
2018-02-01
The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.
Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire
Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; ...
2016-02-25
Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi 1.33Sb 0.67)Se 3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. As a result, we characterize the zero-bias peaks andmore » discuss their origin.« less
Energy flow along the medium-induced parton cascade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaizot, J.-P., E-mail: jean-paul.blaizot@cea.fr; Mehtar-Tani, Y., E-mail: ymehtar@uw.edu
2016-05-15
We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs.more » The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.« less
Symmetry breaking in the zero-energy Landau level in bilayer graphene.
Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P
2010-02-12
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.
EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.
Kripal, Ram; Singh, Manju
2015-01-25
Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.
Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters
NASA Astrophysics Data System (ADS)
Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.
2001-05-01
Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).
Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.
Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S
2009-08-21
Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S < 4). Analysis of the temperature dependence of the intensities of these transitions enables determination of the isotropic Heisenberg exchange constant, J = -6.0 cm(-1), which couples the four spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S < 4) spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hen, Itay; Karliner, Marek
We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half Skyrmions is observed.
NASA Astrophysics Data System (ADS)
Biktagirov, Timur; Schmidt, Wolf Gero; Gerstmann, Uwe
2018-03-01
For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008), 10.1103/PhysRevB.77.035119], and complete it by adding a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in agreement with the common assumption, we show that in general it significantly improves the calculated ZFS towards the all-electron results.
Superposition model analysis of zero field splitting for Mn2+ in some host single crystals
NASA Astrophysics Data System (ADS)
Bansal, R. S.; Ahlawat, P.; Bharti, M.; Hooda, S. S.
2013-07-01
The Newman superposition model has been used to investigate the substitution of Mn2+ for Zn2+ site in ammonium tetra flurozincate dihydrate and for Co2+ site in cobalt ammonium phosphate hexahydrate and cobalt potassium phosphate hexahydrate single crystals. The calculated values of zero field splitting parameter b 2 0 at room temperature fit the experimental data with average intrinsic parameters overline{b}2 (F) = -0.0531 cm-1 for fluorine and overline{b}2 (O) = -0.0280 cm-1 for oxygen, taken t 2 = 7 for Mn2+ doped in ammonium tetra fluorozincate dihydrate single crystals. The values of overline{b}2 determined for Mn2+ doped in cobalt ammonium phosphate hexahydrate are -0.049 cm-1 for site I and -0.045 cm-1 for site II and in cobalt pottasium phosphate hexahydrate single crystals it is found to be overline{b}2 = -0.086 cm-1. We find close agreement between theoretical and experimental values of b 2 0.
Effects of laser-induced heating on nitrogen-vacancy centers and single-nitrogen defects in diamond
NASA Astrophysics Data System (ADS)
Szczuka, Conrad; Drake, Melanie; Reimer, Jeffrey A.
2017-10-01
We investigate the effects of laser-induced heating of NV- and P1 defects in diamonds by X-band CW EPR spectroscopy, with particular attention to temperature effects on the zero field splitting and electron polarization. A 532 nm laser with intensities of 7-36 mW mm-2 is sufficient to heat diamond samples from room temperature to 313-372 K in our experimental setup. The temperature effects on the determined NV- zero-field splittings are consistent with previously observed non-optical heating experiments. Electron spin polarization of the NV- defects were observed to increase, then saturate, with increasing laser light intensities up to 36 mW mm-2 after accounting for heating effects. We observe that EPR signal intensities from P1 centers do not follow a Boltzmann trend with laser-induced sample heating. These findings have bearing on the design of diamond-based polarization devices and magnetometry applications.
Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.
Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J
2015-11-02
The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.
Artificial magnetic-field quenches in synthetic dimensions
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2018-02-01
Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.
Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex.
Pearson, Tyler J; Fataftah, Majed S; Freedman, Danna E
2016-09-15
A novel Mn 2+ Bi 3+ heterobimetallic complex, featuring the closest MnBi interaction for a paramagnetic molecular species, exhibits unusually large axial zero-field splitting. We attribute this enhancement to the proximity of Mn 2+ to a heavy main group element, namely, bismuth.
Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B
2015-06-15
Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.
Evolution of frozen magnetic state in co-precipitated ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanopowders
NASA Astrophysics Data System (ADS)
Kubisztal, M.; Kubisztal, J.; Karolus, M.; Prusik, K.; Haneczok, G.
2018-05-01
The evolution of frozen magnetic state of ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanoparticles was studied by applying vibrating sample magnetometer measurements in temperature range 5-350 K and magnetic fields up to 7 T. It was shown that gradual conversion from the inverse spinel (δ = 0) to the normal one (δ = 1.0) is correlated with a drop of freezing temperature Tf (corresponding to blocking of mean magnetic moment of the system) from 238 K (δ = 0) to 9 K (δ = 1.0) and with a decrease of magnetic anisotropy constant K1 from about 8 · 105 J/m3 to about 3 · 105 J/m3. The percolation threshold predicted for bulk ferrites at 1 - δ ≈ 0.33 was observed as a significant weakness of ferrimagnetic coupling. In this case magnetization curves, determined according to the zero field cooling protocol, reveal two distinct maxima indicating that the system splits into two assemblies with specific ions distribution between A and B sites.
Local structures of the tetragonal Gd3 -VM and Gd3 -Li centers in perovskite fluorides
NASA Astrophysics Data System (ADS)
Zheng, W. C.
The zero-field splittings b20 of the tetragonal Gd3+-VM and Gd3+-Li+ centers for Gd3+ ions in fluoroperovskite crystals have been studied on the basis of the superposition model in which the value of t2
Qu, Chen; Bowman, Joel M
2016-09-14
We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.
Stable static structures in models with higher-order derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB; Lobão, A.S.
2015-09-15
We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that themore » zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.« less
Photon merging and splitting in electromagnetic field inhomogeneities
NASA Astrophysics Data System (ADS)
Gies, Holger; Karbstein, Felix; Seegert, Nico
2016-04-01
We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.
Glaser, Thorsten; Heidemeier, Maik; Theil, Hubert; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen
2010-01-07
The reaction of the tert-butyl-substituted triplesalen ligand H(6)talen(t-Bu(2)) with 2.8 equivalents of Mn(OAc)(2) x 4 H(2)O in MeOH in the presence of NaBPh(4) results in the formation of the one-dimensional (1D) coordination polymer {[{(talen(t-Bu(2)))Mn(3)(MeOH)}(2)(mu(2)-OAc)(3)](mu(2)-OAc)}(n)(BPh(4))(2n) ({[Mn(III)(6)](OAc)}(n)(BPh(4))(2n)) which has been characterized by FTIR, elemental analysis, ESI-MS, single-crystal X-ray diffraction and magnetic measurements. The triplesalen ligand (talen(t-Bu(2)))(6-) provides three salen-like coordination compartments bridged in a meta-phenylene arrangement by a phloroglucinol backbone resulting in the trinuclear Mn(III) base unit {(talen(t-Bu(2)))Mn(3)}(3+). Two of these base units are bridged by three inner acetate ligands giving rise to the hexanuclear complex [{(talen(t-Bu(2)))Mn(3)(MeOH)}(2)(mu(2)-OAc)(3)](3+) ([Mn(III)(6)](3+)). These complexes are bridged by a single external acetate to form a 1D chain as pearls in a pearl necklace. Variable temperature-variable field and mu(eff)vs. T magnetic data have been analyzed in detail by full-matrix diagonalization of the appropriate spin-Hamiltonian consisting of isotropic exchange, zero-field splitting, and Zeeman interaction taking into account the relative orientation of the D-tensors. Satisfactory reproduction of the experimental data have been obtained for parameters sets J(1) = -(0.60 +/- 0.15) cm(-1), J(2) = -(1.05 +/- 0.15) cm(-1), and D(Mn) = -(3.0 +/- 0.7) cm(-1) with J(1) describing the exchange through the phloroglucinol backbone and J(2) describing the exchange through the inner acetates. The non-necessity to incorporate the bridging outer acetates correlates with the longer Mn-O bonds. The experimental data can neither be analyzed without incorporating zero-field splitting nor by the application of a single effective spin ground state.
Quantized Majorana conductance
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-04-01
Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Quantized Majorana conductance.
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P
2018-04-05
Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Shepherd, Ben L.; Winstanley, Elizabeth
2016-03-01
We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.
Magnetic field tunability of spin polarized excitations in a high temperature magnet
NASA Astrophysics Data System (ADS)
Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice
Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.
Spin structure of electron subbands in (110)-grown quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.
NASA Astrophysics Data System (ADS)
Umeshkumar, Dubey Suhmita; Kumar, Manish
2018-04-01
This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.
Quasi-Classical Asymptotics for the Pauli Operator
NASA Astrophysics Data System (ADS)
Sobolev, Alexander V.
We study the behaviour of the sums of the eigenvalues of the Pauli operator in , in a magnetic field and electric field V(x) as the Planck constant ħ tends to zero and the magnetic field strength μ tends to infinity. We show that for the sum obeys the natural Weyl type formula
NASA Astrophysics Data System (ADS)
Kruk, D.; Kowalewski, J.; Tipikin, D. S.; Freed, J. H.; Mościcki, M.; Mielczarek, A.; Port, M.
2011-01-01
The "Swedish slow motion theory" [Nilsson and Kowalewski, J. Magn. Reson. 146, 345 (2000)] applied so far to Nuclear Magnetic Relaxation Dispersion (NMRD) profiles for solutions of transition metal ion complexes has been extended to ESR spectral analysis, including in addition g-tensor anisotropy effects. The extended theory has been applied to interpret in a consistent way (within one set of parameters) NMRD profiles and ESR spectra at 95 and 237 GHz for two Gd(III) complexes denoted as P760 and P792 (hydrophilic derivatives of DOTA-Gd, with molecular masses of 5.6 and 6.5 kDa, respectively). The goal is to verify the applicability of the commonly used pseudorotational model of the transient zero field splitting (ZFS). According to this model the transient ZFS is described by a tensor of a constant amplitude, defined in its own principal axes system, which changes its orientation with respect to the laboratory frame according to the isotropic diffusion equation with a characteristic time constant (correlation time) reflecting the time scale of the distortional motion. This unified interpretation of the ESR and NMRD leads to reasonable agreement with the experimental data, indicating that the pseudorotational model indeed captures the essential features of the electron spin dynamics.
Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR.
Kiyama, Takashi; Itoh, Masayuki
2003-10-17
47,49Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/square root of 3(d(xy)+d(yz)+d(zx)) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.
On standardization of low symmetry crystal fields
NASA Astrophysics Data System (ADS)
Gajek, Zbigniew
2015-07-01
Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Pollet, Rodolphe; Vuilleumier, Rodolphe; Kowalewski, Jozef; Odelius, Michael
2017-12-01
In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(iii)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field—CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.
Schinabeck, Alexander; Leitl, Markus J; Yersin, Hartmut
2018-05-11
The three-fold bridged di-nuclear Cu(I) complex Cu 2 (µ-I) 2 (1N-n-butyl-5-diphenyl-phosphino-1,2,4-triazole) 3 , Cu 2 I 2 (P^N) 3 , shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85 % at an emission decay time of 7 μs. The singlet(S 1 )-triplet(T 1 ) energy gap is as small as only 430 cm -1 (54 meV). Spin-orbit-coupling induces a short-lived phosphorescence with a decay time of 52 μs (T = 77 K) and a distinct zero-field splitting (ZFS) of T 1 into substates by ≈ 2.5 cm -1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ≈ 13 % as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs exploiting both the singlet and triplet harvesting mechanisms.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2011-04-21
Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.
NASA Astrophysics Data System (ADS)
Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan
2004-05-01
The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.
EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid
NASA Astrophysics Data System (ADS)
Kripal, Ram; Singh, Manju
2015-12-01
Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.
Wang, Han; Nakamura, Haruki; Fukuda, Ikuo
2016-03-21
We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.
NASA Astrophysics Data System (ADS)
Kwak, Yongsu; Song, Jonghyun; Kim, Jihwan; Kim, Jinhee
2018-04-01
A top gate field effect transistor was fabricated using polymethyl methacrylate (PMMA) as a gate insulator on a LaAlO3 (LAO)/SrTiO3 (STO) hetero-interface. It showed n-type behavior, and a depletion mode was observed at low temperature. The electronic properties of the 2-dimensional electron gas at the LAO/STO hetero-interface were not changed by covering LAO with PMMA following the Au top gate electrode. A split gate device was also fabricated to construct depletion mode by using a narrow constriction between the LAO/STO conduction interface. The depletion mode, as well as superconducting critical current, could be controlled by applying a split gate voltage. Noticeably, the superconducting critical current tended to decrease with decreasing the split gate voltage and finally became zero. These results indicate that a weak-linked Josephson junction can be constructed and destroyed by split gating. This observation opens the possibility of gate-voltage-adjustable quantum devices.
Dynamical approach to the cosmological constant.
Mukohyama, Shinji; Randall, Lisa
2004-05-28
We consider a dynamical approach to the cosmological constant. There is a scalar field with a potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved. Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling possible cosmological constants and implementing the anthropic principle.
Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; ...
2015-10-02
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H 2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm –1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm –1, E = 0.1(2) cm –1 and D = 13.4(6) cm –1, E = 0.3(6) cm –1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm –1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series.more » The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A 1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d 5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX 6 3- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e λ X (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.
Graviton fluctuations erase the cosmological constant
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
N-VSi-related center in non-irradiated 6H SiC nanostructure
NASA Astrophysics Data System (ADS)
Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii; Kalabukhova, Ekaterina; Klyachkin, Leonid; Malyarenko, Anna; Savchenko, Dariya; Shanina, Bella
2014-02-01
We present the first findings of the vacancy-related centers identified by the electron spin resonance (ESR) and electrically-detected (ED) ESR method in the non-irradiated 6H-SiC nanostructure. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC (0001) wafer. The EDESR method by measuring the only magnetoresistance of the 6H SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the silicon vacancy centers as well as the triplet center with spin state S=1. The same triplet center that is characterized by the larger value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (hf) lines in the ESR and EDESR spectra originating from the hf interaction with the 14N nucleus allow us to attribute this triplet center to the N-VSi defect.
Silicon vacancy-related centers in non-irradiated 6H-SiC nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: Impurity.Dipole@mail.ioffe.ru; Danilovskii, E. Yu.; Gets, D. S.
2015-05-15
We present the first findings of the silicon vacancy related centers identified in the non-irradiated 6H-SiC nanostructure using the electron spin resonance (ESR) and electrically-detected (ED) ESR technique. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC(0001) wafer. The new EDESR technique by measuring the only magnetoresistance of the 6H-SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the isolated silicon vacancy centers as well as the triplet center with spin state S = 1. The samemore » triplet center that is characterized by the large value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (HF) lines in the ESR and EDESR spectra originating from the HF interaction with the {sup 14}N nucleus seem to attribute this triplet center to the N-V{sub Si} defect.« less
Gans, Bérenger; Lamarre, Nicolas; Broquier, Michel; Liévin, Jacques; Boyé-Péronne, Séverine
2016-12-21
Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X + Π2←XΣ+1 and B + Π2←XΣ+1 transitions of the HC 3 14 N and HC 3 15 N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (E I /hc(HC 3 14 N)=93 909(2) cm -1 and E I /hc(HC 3 15 N)=93 912(2) cm -1 ), the vibrational frequencies of the ν 2 , ν 6 , and ν 7 vibrational modes, and the spin-orbit coupling constant (A SO = -44(2) cm -1 ) of the X + Π2 cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B + Π2←XΣ+1 transition is tentatively attributed to a conical intersection between the A + and B + electronic states of the cation.
Quantum Transport Properties in Two-Dimensional and Low Dimensional Systems
NASA Astrophysics Data System (ADS)
Fang, Hao
1991-02-01
The quantum transport properties in quasi two -dimensional and zero-dimensional systems have been studied at magnetic field of 0 - 8T and low temperatures down to 1.3K. In the (100) Si inversion layer, we investigated the effect of valley splitting on the value of the enhanced effective g factor by the tilted magnetic field measurement. The valley splitting is determined from the beat effect on samples with measurable valley splitting behavior due to misorientation effects. Experimental results illustrate that the effective g factor is enhanced by many body interactions and that the valley splitting has no obvious effect on the g-value. A simulation calculation with a Gaussian distribution of density of states has been carried out and the simulated results are in an excellent agreement with the experimental data. A new and very simple technique has been developed for fabricating two-dimensional periodic submicron structures with feature sizes down to about 300 A. The etching mask is made by coating the material surface with a monolayer of close-packed uniform latex particles. We have demonstrated the formation of a quasi zero-dimensional quantum dot array and performed capacitance measurements on GaAs/AlGaAs heterostructure samples with periodicities ranging from 3000 to 4000 A. A series of nearly equally spaced peaks in a curve of the derivative of capacitance with respect to gate voltage, which corresponds to the energy levels formed by the lateral electric confining potential, is observed. The energy spacings and effective dot widths estimated from a simple parabolic potential model are consistent with the experimental data. Novel magnetoresistance oscillations in a two -dimensional electron gas modulated by a two-dimensional triangular superlattice potential are observed in GaAs/AlGaAs heterostructures. The new oscillations appear at very low magnetic fields and the peak positions are directly determined by the magnetic field and the periodicity of the modulation structure. New oscillation results from the modulation-broadened Landau bandwidth and the induced density of states variation with magnetic field. Physical explanations and theoretical approaches for the commensurability problem in a two-dimensional triangular superlattice potential are presented. The differences in oscillation frequencies and phase factors for two kinds of samples correlate with structures differing in degree of depletion and the resulting geometry.
Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-.
Zadrozny, Joseph M; Long, Jeffrey R
2011-12-28
The Ph(4)P(+) salt of the tetrahedral complex [Co(SPh)(4)](2-), possessing an S = (3)/(2) ground state with an axial zero-field splitting of D = -70 cm(-1), displays single-molecule magnet behavior in the absence of an applied magnetic field. At very low temperatures, ac magnetic susceptibility data show the magnetic relaxation time, τ, to be temperature-independent, while above 2.5 K thermally activated Arrhenius behavior is apparent with U(eff) = 21(1) cm(-1) and τ(0) = 1.0(3) × 10(-7) s. Under an applied field of 1 kOe, τ more closely approximates Arrhenius behavior over the entire temperature range. Upon dilution of the complex within a matrix of the isomorphous compound (Ph(4)P)(2)[Zn(SPh)(4)], ac susceptibility data reveal the molecular nature of the slow magnetic relaxation and indicate that the quantum tunneling pathway observed at low temperatures is likely mediated by intermolecular dipolar interactions. © 2011 American Chemical Society
Landau level splitting due to graphene superlattices
NASA Astrophysics Data System (ADS)
Pal, G.; Apel, W.; Schweitzer, L.
2012-06-01
The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider noninteracting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zigzag or along the armchair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the armchair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well-separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.
EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.; Li, B.; Pascoe, D. J.
2015-02-01
We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wavemore » pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.« less
Simulations of Resonant Intraband and Interband Tunneling Spin Filters
NASA Technical Reports Server (NTRS)
Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.
2001-01-01
This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).
Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.
Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra
2006-03-16
The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, K.; Hirori, H., E-mail: hirori@icems.kyoto-u.ac.jp; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012
2015-11-30
By combining a tilted-pulse-intensity-front scheme using a LiNbO{sub 3} crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwidth of ∼50 GHz, and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region.more » This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.« less
An "intermediate spin" nickel hydride complex stemming from delocalized Ni2(μ-H)2 bonding.
Yao, Shu A; Corcos, Amanda R; Infante, Ivan; Hillard, Elizabeth A; Clérac, Rodolphe; Berry, John F
2014-10-01
The nickel hydride complex [Cp'Ni(μ-H)]2 (1, Cp' = 1,2,3,4-tetraisopropylcyclopentadienyl) is found to have a strikingly short Ni-Ni distance of 2.28638(3) Å. Variable temperature and field magnetic measurements indicate an unexpected triplet ground state for 1 with a large zero-field splitting of +90 K (63 cm(-1)). Electronic structure calculations (DFT and CASSCF/CASPT2) explain this ground state as arising from half occupation of two nearly degenerate Ni-Ni π* orbitals.
Stationary axisymmetric four dimensional space-time endowed with Einstein metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.
In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.
Precision ESR measurements of transverse anisotropy in the single-molecule magnet Ni4
NASA Astrophysics Data System (ADS)
Collett, Charles A.; Allão Cassaro, Rafael A.; Friedman, Jonathan R.
2016-12-01
We present a method for precisely measuring the tunnel splitting in single-molecule magnets (SMMs) using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting samples of the SMM Ni4 via cocrystallization in a diamagnetic isostructural analog we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
Gauge Field Localization on Deformed Branes
NASA Astrophysics Data System (ADS)
Tofighi, A.; Moazzen, M.; Farokhtabar, A.
2016-02-01
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.
Interlayer tunneling in double-layer quantum hall pseudoferromagnets.
Balents, L; Radzihovsky, L
2001-02-26
We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.
NASA Astrophysics Data System (ADS)
Venkateswarlu, R.; Sreenivas, K.
2014-06-01
The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.
Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method
NASA Astrophysics Data System (ADS)
Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep
2016-02-01
The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.
The upper critical field of filamentary Nb3Sn conductors
NASA Astrophysics Data System (ADS)
Godeke, A.; Jewell, M. C.; Fischer, C. M.; Squitieri, A. A.; Lee, P. J.; Larbalestier, D. C.
2005-05-01
We have examined the upper critical field of a large and representative set of present multifilamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero-field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90%-99% of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero-temperature critical field that is comparable to the ternary wires. The highest μ0Hc2 detected in the ternary wires are remarkably constant: The highest zero-temperature upper critical fields and zero-field critical temperatures fall within 29.5±0.3 and 17.8±0.3K, respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two-parameter fit, independent of composition, strain state, sample layout, or applied critical state criterion.
All-optical band engineering of gapped Dirac materials
NASA Astrophysics Data System (ADS)
Kibis, O. V.; Dini, K.; Iorsh, I. V.; Shelykh, I. A.
2017-03-01
We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.
Flux trapping in multi-loop SQUIDs and its impact on SQUID-based absolute magnetometry
NASA Astrophysics Data System (ADS)
Schönau, T.; Zakosarenko, V.; Schmelz, M.; Anders, S.; Meyer, H.-G.; Stolz, R.
2018-07-01
The effect of flux trapping on the flux-voltage characteristics of multi-loop SQUID magnetometers was investigated by means of repeated cool-down cycles in a stepwise increased magnetic background field. For a SQUID with N parallel loops, N different flux offsets, each separated by {{{Φ }}}0/N, were observed even in zero magnetic field. These flux offsets further split into a so called fine structure, which can be explained by minor asymmetries in the SQUID design. The observed results are discussed with particular regard to their impact on the previously presented absolute SQUID cascade vector magnetometer.
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
Low-valent low-coordinated manganese(I) ion dimer: a temperature dependent W-band EPR study.
Sorace, Lorenzo; Golze, Christian; Gatteschi, Dante; Bencini, Alessandro; Roesky, Herbert W; Chai, Jianfang; Stückl, A Claudia
2006-01-09
W-Band EPR spectra of [[HC(CMeNAr)(2)]Mn](2) (Ar = 2,6-(i)Pr(2)C(6)H(3)) have been measured at different temperatures. The spectra show a behavior which is typical for an antiferromagnetically coupled dimer with excited states populating upon increasing temperature. By following the intensity variation of the different features of the spectra with temperature, we attributed different groups of resonances to the S = 1, 2, and 3 states of the dimer. Their corresponding spin Hamiltonian parameters were derived from simulations. The zero-field-splitting parameters measured in this way were D(S=1) = 1.57 cm(-1) and E(S=1) = 0.064 cm(-1), D(S=2) = 0.266 cm(-1) and E(S=2) = 0.0045 cm(-1), and D(S=3) = 0.075 cm(-1) and E(S=3) = 0. On the basis of the molecular structure of the system, we could estimate that zero-field splitting (ZFS) is the result of anisotropic exchange and single-ion anisotropic contributions of similar magnitude (|D| approximately 0.2 cm(-1)). These results allow a deeper insight into the electronic structure of the Mn(I) centers in low-coordination environments, further supporting the electronic structure of Mn(I) to be 4s(1)3d(5), as previously indicated by DFT calculations.
Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krainov, V. P., E-mail: vpkrainov@mail.ru
2012-07-15
We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeemanmore » splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.« less
2018-01-01
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field. PMID:29676566
Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang
2018-05-23
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.
NASA Astrophysics Data System (ADS)
Zhai, Li-Xue; Wang, Yan; An, Zhong
2018-05-01
Spin-dependent transport in one-dimensional (1D) three-terminal Rashba rings is investigated under a weak magnetic field, and we focus on the Zeeman splitting (ZS) effect. For this purpose, the interaction between the electron spin and the weak magnetic field has been treated by perturbation theory. ZS removes the spin degeneracy, and breaks both the time reversal symmetry and the spin reversal symmetry of the ring system. Consequently, all conductance zeros are lifted and turned into conductance dips. Aharonov-Bohm (AB) oscillations can be found in both branch conductances and the total conductance as a function of the magnetic field. In a relatively high magnetic field, the decoherence caused by ZS decreases the amplitude of the branch conductance and increases that of the total conductance. The results have been compared with those reported in the published literature, and a reasonable agreement is obtained. The conductance as a function of the Rashba spin-orbit coupling (RSOC) strength has also been investigated. As the RSOC strength increases, the role of ZS becomes weaker and weaker; ZS can even be neglected when B ≤ 0.1 T.
Spectral properties of Pauli operators on the Poincaré upper-half plane
NASA Astrophysics Data System (ADS)
Inahama, Yuzuru; Shirai, Shin-ichi
2003-06-01
We investigate the essential spectrum of the Pauli operators (and the Dirac and the Schrödinger operators) with magnetic fields on the Poincaré upper-half plane. The magnetic fields under consideration are asymptotically constant (which may be equal to zero), or diverge at infinity. Moreover, the Aharonov-Casher type result is also considered.
NASA Astrophysics Data System (ADS)
Zolotaryuk, A. V.
2017-06-01
Several families of one-point interactions are derived from the system consisting of two and three δ-potentials which are regularized by piecewise constant functions. In physical terms such an approximating system represents two or three extremely thin layers separated by some distance. The two-scale squeezing of this heterostructure to one point as both the width of δ-approximating functions and the distance between these functions simultaneously tend to zero is studied using the power parameterization through a squeezing parameter \\varepsilon \\to 0 , so that the intensity of each δ-potential is cj =aj \\varepsilon1-μ , aj \\in {R} , j = 1, 2, 3, the width of each layer l =\\varepsilon and the distance between the layers r = c\\varepsilon^τ , c > 0. It is shown that at some values of the intensities a 1, a 2 and a 3, the transmission across the limit point potentials is non-zero, whereas outside these (resonance) values the one-point interactions are opaque splitting the system at the point of singularity into two independent subsystems. Within the interval 1 < μ < 2 , the resonance sets consist of two curves on the (a_1, a_2) -plane and three surfaces in the (a_1, a_2, a_3) -space. As the parameter μ approaches the value μ =2 , three types of splitting the one-point interactions into countable families are observed.
Scaling laws of Rydberg excitons
NASA Astrophysics Data System (ADS)
Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.
2017-09-01
Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to assess the susceptibility of Rydberg excitons to the external fields: The crossover field strength in magnetic field from a hydrogenlike exciton to a magnetoexciton dominated by electron and hole Landau level quantization scales as n-3. In electric field, on the other hand, we observe the exciton polarizability to scale as n7. At higher fields, the exciton ionization can be studied with ionization voltages that demonstrate an n-4 scaling law. Particularly interesting is the field dependence of the width of the absorption lines which remains constant before dissociation for high enough n , while for small n ≲12 an exponential increase is found. These results are in excellent agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Debernardi, Alberto; Fanciulli, Marco
Within the framework of the envelope function approximation we have computed - without adjustable parameters and with a reduced computational effort due to analytical expression of relevant Hamiltonian terms - the energy levels of the shallow P impurity in silicon and the hyperfine and superhyperfine splitting of the ground state. We have studied the dependence of these quantities on the applied external electric field along the [001] direction. Our results reproduce correctly the experimental splitting of the impurity ground states detected at zero electric field and provide reliable predictions for values of the field where experimental data are lacking. Further, we have studied the effect of confinement of a shallow state of a P atom at the center of a spherical Si-nanocrystal embedded in a SiO2 matrix. In our simulations the valley-orbit interaction of a realistically screened Coulomb potential and of the core potential are included exactly, within the numerical accuracy due to the use of a finite basis set, while band-anisotropy effects are taken into account within the effective-mass approximation.
Studies of the g factors of the ground 4A2 and the first excited 2E state of Cr 3+ ions in emerald
NASA Astrophysics Data System (ADS)
Wei, Qun; Guo, Li-Xin; Yang, Zi-Yuan; Wei, Bing
2011-09-01
By using complete diagonalization method, the zero-field splitting and g factors of the ground 4A2 and the first excited 2E states of Cr 3+ ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including Dq, v, and v', have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.
Resonant x-ray scattering from a skyrmion lattice
NASA Astrophysics Data System (ADS)
Roy, S.; Langner, M. C.; Mishra, S. K.; Lee, J. C. T.; Shi, X. W.; Hossain, M. A.; Chuang, Y.-D.; Kevan, S. D.; Schoenlein, R. W.; Seki, S.; Tokura, Y.
2014-03-01
Topologically protected novel phases in condensed matter systems are a current research topic of tremendous interest due to both the unique physics and their potential in device applications. Skyrmions are a topological phase that in magnetic systems manifest as a hexagonal lattice of spin-swirls. We report the first observation of the skyrmion lattice using resonant soft x-ray diffraction in Cu2OSeO3, a cubic insulator that exhibits degenerate helical magnetic structures along <100> axes in zero magnetic field. Within a narrow window of temperature and applied magnetic field we observed the six fold symmetric satellite peaks due to the skyrmion lattice around the (001) lattice Bragg peak. As a function of incident photon energy a rotational splitting of the skyrmion satellite peaks was observed that we ascribe to the two Cu sublattices of Cu2OSeO3, with different magnetically active orbitals. The splitting implies a long wavelength modulation of the skyrmion lattice. Work supported by U.S. DOE.
Soft switching resonant converter with duty-cycle control in DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-01-01
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.
Fracture behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.
Localization enhanced and degraded topological order in interacting p -wave wires
NASA Astrophysics Data System (ADS)
Kells, G.; Moran, N.; Meidan, D.
2018-02-01
We numerically study the effect of disorder on the stability of the many-body zero mode in a Kitaev chain with local interactions. Our numerical procedure allows us to resolve the position space and multiparticle structure of the zero modes, as well as providing estimates for the mean energy splitting between pairs of states of opposite fermion parity, over the full many-body spectrum. We find that the parameter space of a clean system can be divided into regions where interaction induced decay transitions are suppressed (region I) and where they are not (region II). In region I we observe that disorder has an adverse effect on the zero mode, which extends further into the bulk and is accompanied by an increased energy splitting between pairs of states of opposite parity. Conversely region II sees a more intricate effect of disorder, showing an enhancement of localization at the system's end accompanied by a reduction in the mean pairwise energy splitting. We discuss our results in the context of the many-body localization (MBL). We show that while the mechanism that drives the MBL transition also contributes to the fock-space localization of the many-body zero modes, measures that characterize the degree of MBL do not necessarily correlate with an enhancement of the zero mode or an improved stability of the topological region.
Static solutions in Einstein-Chern-Simons gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisóstomo, J.; Gomez, F.; Mella, P.
In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfiesmore » μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.« less
Antonov, Ivan O; Barker, Beau J; Heaven, Michael C
2011-01-28
The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.
Observational constraints on holographic tachyonic dark energy in interaction with dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheletti, Sandro M. R., E-mail: smrm@fma.if.usp.br
2010-05-01
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
NASA Astrophysics Data System (ADS)
Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.
2018-02-01
Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavanello, Michele; Tung Weicheng; Adamowicz, Ludwik
2010-04-15
We have carried out an accurate determination of the quadrupole moment of the deuteron nucleus. The evaluation of the constant is achieved by combining high accuracy Born-Oppenheimer calculations of the electric field gradient at the nucleus in the H{sub 2} molecule with spectroscopic measurements of the quadrupolar splitting in D{sub 2} and HD. The derived value is Q=0.285783(30) fm{sup 2}.
Nonlinear conductivity of a holographic superconductor under constant electric field
NASA Astrophysics Data System (ADS)
Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei
2017-02-01
The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.
Magnetically modified bioсells in constant magnetic field
NASA Astrophysics Data System (ADS)
Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.
2017-02-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.
Dielectric evidence for possible type-II multiferroicity in α-RuCl3
NASA Astrophysics Data System (ADS)
Zheng, JiaCheng; Cui, Yi; Li, TianRun; Ran, KeJing; Wen, JinSheng; Yu, WeiQiang
2018-05-01
$\\alpha$-RuCl$_3$ is a Mott insulator with a honeycomb lattice with strong spin-orbit coupling. We report dielectric measurements on $\\alpha$-RuCl$_3$ single crystals under field. At zero field, the dielectric constant, $\\epsilon$, drops rapidly when cooled through the magnetic transition temperature T$_N$. With increasing field, the onset of the drop in $\\epsilon$ tracks the T$_N$. Such behavior is absent with field above a critical value H$_c$ ~ 7.5 T, indicating the onset of a quantum phase transition. Our data suggest that the dielectric constant can be used as a probe of magnetic ordering in $\\alpha$-RuCl$_3$, and $\\alpha$-RuCl$_3$ is a possible type-II multiferroics.
Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe
2007-01-14
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes.The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductlessmore » mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.« less
Xu, Jin-Peng; Wang, Mei-Xiao; Liu, Zhi Long; Ge, Jian-Feng; Yang, Xiaojun; Liu, Canhua; Xu, Zhu An; Guan, Dandan; Gao, Chun Lei; Qian, Dong; Liu, Ying; Wang, Qiang-Hua; Zhang, Fu-Chun; Xue, Qi-Kun; Jia, Jin-Feng
2015-01-09
Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing. They are predicted to exist in a vortex core of superconducting topological insulators. However, it is extremely difficult to distinguish them experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we circumvent the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi(2)Te(3) films grown on a superconductor NbSe(2). While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ∼20 nm away from the vortex center in Bi(2)Te(3). This unusual splitting behavior has never been observed before and could be possibly due to the Majorana fermion zero mode. While the Majorana mode is destroyed by the interaction between vortices, the zero bias peak splits as a conventional superconductor again. This work provides self-consistent evidences of Majorana fermions and also suggests a possible route to manipulating them.
Numerical solution of periodic vortical flows about a thin airfoil
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1989-01-01
A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.
Resonant spin Hall effect in two dimensional electron gas
NASA Astrophysics Data System (ADS)
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
NASA Astrophysics Data System (ADS)
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.
Chiral solitons in spinor polariton rings
NASA Astrophysics Data System (ADS)
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
The contrasting roles of Planck's constant in classical and quantum theories
NASA Astrophysics Data System (ADS)
Boyer, Timothy H.
2018-04-01
We trace the historical appearance of Planck's constant in physics, and we note that initially the constant did not appear in connection with quanta. Furthermore, we emphasize that Planck's constant can appear in both classical and quantum theories. In both theories, Planck's constant sets the scale of atomic phenomena. However, the roles played in the foundations of the theories are sharply different. In quantum theory, Planck's constant is crucial to the structure of the theory. On the other hand, in classical electrodynamics, Planck's constant is optional, since it appears only as the scale factor for the (homogeneous) source-free contribution to the general solution of Maxwell's equations. Since classical electrodynamics can be solved while taking the homogenous source-free contribution in the solution as zero or non-zero, there are naturally two different theories of classical electrodynamics, one in which Planck's constant is taken as zero and one where it is taken as non-zero. The textbooks of classical electromagnetism present only the version in which Planck's constant is taken to vanish.
Zero Dimensional Field Theory of Tachyon Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, D. D.; Djordjevic, G. S.
2007-04-23
The first issue about the object (now) called tachyons was published almost one century ago. Even though there is no experimental evidence of tachyons there are several reasons why tachyons are still of interest today, in fact interest in tachyons is increasing. Many string theories have tachyons occurring as some of the particles in the theory. In this paper we consider the zero dimensional version of the field theory of tachyon matter proposed by A. Sen. Using perturbation theory and ideas of S. Kar, we demonstrate how this tachyon field theory can be connected with a classical mechanical system, suchmore » as a massive particle moving in a constant field with quadratic friction. The corresponding Feynman path integral form is proposed using a perturbative method. A few promising lines for further applications and investigations are noted.« less
Wigner functions for fermions in strong magnetic fields
NASA Astrophysics Data System (ADS)
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Gibeling, H. J.
1979-01-01
A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.
Magnetic dynamo activity in mechanically driven compressible magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Montgomery, David
1989-01-01
Magnetic dynamo activity in a homogeneous, dissipative, polytropic, two-dimensional, turbulent magneto-fluid is simulated numerically. The magneto-fluid is simulated numerically. The magneto-fluid is, in a number of cases, mechanically forced so that energy input balances dissipation, thereby maintaining constant energy. In the presence of a mean magnetic field, a magneto-fluid whose initial turbulent magnetic energy is zero quickly arrives at a state of non-zero turbulent magnetic energy. If the mean magnetic field energy density is small, the turbulent magnetic field can achieve a local energy density more than four hundred times larger; if the mean magnetic field energy density is large, then equipartition between the turbulent magnetic and kinetic energy is achieved. Compared to the presence of a mean magnetic field, compressibility appears to have only a marginal effect in mediating the transfer of turbulent kinetic energy into magnetic energy.
Electromagnetic fluctuations during guide field reconnection in a laboratory plasma
NASA Astrophysics Data System (ADS)
Stechow, A. v.; Fox, W.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.
2018-05-01
Electromagnetic fluctuations are studied during magnetic reconnection in a laboratory plasma for a range of guide magnetic fields from nearly zero up to normalized guide fields B g / B u p = 1.2 . The predominant fluctuations are identified as right-hand polarized whistler modes, which become increasingly organized and less intermittent, and obtain larger amplitude with the increasing guide field. The fluctuation amplitude also increases with the reconnecting magnetic field, implying a relatively constant conversion of upstream magnetic energy to turbulent fluctuations of ≲ 1% across guide field strengths.
NASA Astrophysics Data System (ADS)
Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.
2014-11-01
Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.
Newman-Penrose constants of the Kerr-Newman metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Xuefei; Shang Yu; Bai Shan
The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.
Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.
Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander
2017-07-01
We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.
Relaxation of the environment of Gd3+ and Eu2+ impurity ions in the Y3Al5O12 garnet
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Artyomov, M. Yu.; Potapov, A. P.; Chernyshev, V. A.; Fokin, A. V.; Serdtsev, A. V.
2017-05-01
The second-rank spin Hamiltonian parameters of Gd3+ and Eu2+ orthorhombic centers in crystals of the yttrium aluminum garnet Y3Al5O12 have been analyzed within the framework of the superposition model for the zero-field splitting of the ground state. It has been shown that the description of the experimental data in this model is possible only under the assumption of relaxation of the ligand environment of the paramagnetic impurity.
NASA Astrophysics Data System (ADS)
Vaknin, D.; Garlea, V. O.; Demmel, F.; Mamontov, E.; Nojiri, H.; Martin, C.; Chiorescu, I.; Qiu, Y.; Kögerler, P.; Fielden, J.; Engelhardt, L.; Rainey, C.; Luban, M.
2010-11-01
Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, D.; Garlea, Vasile O; Demmel, F.
Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It ismore » noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.« less
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
NASA Astrophysics Data System (ADS)
Zhao, Zuyu
1990-06-01
Two nonconventional superfluids, superfluid ^3He-B and the heavy fermion superconductor UPt_3 have been studied using different techniques: (1) A study of ^3He -B was performed in an acoustic sound cell with a path length of 381mum using the single-ended, c.w., acoustic impedance technique. The fundamental frequency of the x-cut quartz transducer employed in the experiments was 12.80 MHz. The following studies were performed: (a) A systematic measurement was made on the pair-breaking edge in zero magnetic field with ultrasonic frequencies of 64.3 MHz, 90.1 MHz, 141.6 MHz and 167.4 MHz, in the pressure range from 3 bar to 28 bar. The results of our measurements indirectly support the temperature scale of Greywall and the weak coupling plus (WCP) model of Rainer and Serene for the gap function. The pair-breaking edge was also measured in magnetic fields up to 1.36 kG perpendicular to the sound propagation direction and the predicted shift of the effective pair-breaking threshold (from 2 Delta(T) in zero field) by Omega = {gamma Hover 1+{1 over3}F_sp{o}{a}(2+Y) }(the renormalized Larmor frequency) has been observed. (b) The (imaginary) squashing mode was excited with sound frequencies of 141.6 MHz and 115.8 MHz. A doublet splitting (of about 0.3 MHz) of this mode was observed. This doublet splitting was found to be strongly pressure and frequency dependent, but independent of the magnetic field (at the low fields studied). Possible causes of this splitting include superfluid flow induced texture effects and finite wavevector (dispersion) effects. (c) Structure was observed with a sound frequency of 64.3 MHz in the vicinity of 2Delta(T) in a magnetic field of about 580 Gauss which is thought to be J_{z} = -1 component of the J = 1^- collective mode. (2) A surface impedance study of heavy Fermion superconductor UPt_3 was performed with an X-band microwave spectrometer (f ~eq 11.42 GHz) integrated with an Oxford 400 TLE dilution refrigerator so as to have top-loading capability. (3) Using a top loading magnetometer, measurements of the H_{cl} on UPt_3 were performed and kinks were observed along the c axis and in the basal plane. The results support a model of unconventional superconductivity by Hess, Tokuyasu and Sauls.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
π0 pole mass calculation in a strong magnetic field and lattice constraints
NASA Astrophysics Data System (ADS)
Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.
2017-04-01
The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN
2017-12-01
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
Optics of tunneling from adiabatic nanotapers
NASA Astrophysics Data System (ADS)
Sumetsky, M.
2006-12-01
A theory of light propagation along adiabatic photonic nanowire tapers (nanotapers) having diameters significantly less than the radiation wavelength λ˜1 μm is developed. The fundamental mode of a nanotaper primarily consists of an evanescent field, which propagates in the ambient medium and is very sensitive to the nanotaper shape. General analytical expressions for the evanescent field and the radiation loss of adiabatic nanotapers are obtained and applied to the investigation of the optics of tunneling from a nanotaper of a characteristic shape. The radiation loss of this nanotaper occurs locally near a focal circumference of the evanescent field, representing an intersection of a complex caustic surface with real space, where the fundamental mode splits into the radiating and guiding components. The interference of these components gives rise to a sequence of circumferences with zero electromagnetic field.
Dynamics of nonlinear Schrödinger breathers in a potential trap
NASA Astrophysics Data System (ADS)
Malomed, B. A.; Rosanov, N. N.; Fedorov, S. V.
2018-05-01
We consider the evolution of the 2-soliton (breather) of the nonlinear Schrödinger equation on a semi-infinite line with the zero boundary condition and a linear potential, which corresponds to the gravity field in the presence of a hard floor. This setting can be implemented in atomic Bose-Einstein condensates, and in a nonlinear planar waveguide in optics. In the absence of the gravity, repulsion of the breather from the floor leads to its splitting into constituent fundamental solitons, if the initial distance from the floor is smaller than a critical value; otherwise, the moving breather persists. In the presence of gravity, the breather always splits into a pair of "co-hopping" fundamental solitons, which may be frequency locked in the form of a quasi-breather, or unlocked, forming an incoherent pseudo-breather. Some essential results are obtained in an analytical form, in addition to the systematic numerical investigation.
Majorana splitting from critical currents in Josephson junctions
NASA Astrophysics Data System (ADS)
Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa
2017-11-01
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.
Magnetic edge states in Aharonov-Bohm graphene quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.
2013-12-07
The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less
Norouzpour, Mana; Rakhsha, Ramtin; Herring, Rodney
2017-06-01
A characteristic of the majority of semiconductors is the presence of lattice strain varying with the nanometer scale. Strain originates from the lattice mismatch between layers of different composition deposited during epitaxial growth. Strain can increase the mobility of the charge carriers by the band gap reduction. So, measuring atomic displacement inside crystals is an important field of interest in semiconductor industry. Among all available transmission electron microscopy techniques offering nano-scale resolution measurements, convergent beam electron diffraction (CBED) patterns show the highest sensitivity to the atomic displacement. Higher Order Laue Zone (HOLZ) lines split by small non-uniform variations of lattice constant allowing to measure the atomic displacement through the crystal. However, it could only reveal the atomic displacement in two dimensions, i.e., within the x-y plane of the thin film of TEM specimen. The z-axis atomic displacement which is along the path of the electron beam has been missing. This information can be obtained by recovering the phase information across the split HOLZ line using the self-interference of the split HOLZ line (SIS-HOLZ). In this work, we report the analytical approach used to attain the phase profile across the split HOLZ line. The phase profile is studied for three different atomic displacement fields in the Si substrate at 80nm away from its interface with Si/Si 0.8 Ge 0.2 superlattices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2014-05-21
The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
NMR evidence of charge fluctuations in multiferroic CuBr2
NASA Astrophysics Data System (ADS)
Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang
2018-03-01
We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
Belfiore, Laurence A; Floren, Michael L; Belfiore, Carol J
2012-02-01
This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liao, Bi-Tao; Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen
2017-07-01
The optical bands and EPR (or spin-Hamiltonian) parameters (g factors g//, g⊥ and zero-field splitting D) for Mn4+ ions at the trigonal octahedral Ti4+ site of MgTiO3 crystal are uniformly computed by virtue of the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model, where besides the effects of spin-orbit parameter of central dn ion on the spectral data (in the classical crystal field theory), those of ligands are also contained. The computed eight optical and EPR spectral data with four suitable adjustable parameters (note: differing from those in the previous work within cubic symmetry approximation where the used Racah parameters violate the nephelauxetic effect, the present Racah parameters obey the effect and hence are suitable) are rationally coincident with the experimental values. In particular, the calculated ground state splitting 2D, the first excited splitting ΔE(2E) and g-anisotropy Δg (=g//-g⊥) (they depend strongly on the angular distortion of d3 centers) are in excellent agreement with the observed values, suggesting that the angular distortions caused by the impurity-induced local lattice relaxation obtained from the above calculation for the trigonal Mn4+ impurity center in MgTiO3: Mn4+ crystal seem to be acceptable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur
Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less
Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur; ...
2016-01-14
Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less
Hints of hybridizing Majorana fermions in a nanowire coupled to superconducting leads
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; van Harlingen, D. J.; Mohseni, P. K.; Jung, K.; Li, X.
2013-03-01
It has been proposed that a nanowire with strong spin-orbit coupling that is contacted with a conventional superconductor and subjected to a large magnetic field can be driven through a topological phase transition. In this regime, the two ends of the nanowire together host a pair of quasi-particles known as Majorana fermions (MFs). A key feature of MFs is that they are pinned to zero energy when the topological nanowire is long enough such that the wave functions of the two MFs do not overlap significantly, resulting in a zero bias anomaly (ZBA). It has been recently predicted that changes in external parameters can vary the wave function overlap and cause the MFs to hybridize in an oscillatory fashion. This would lead to a non-monotonic splitting or broadening of the ZBA and help distinguish MF transport signatures from a Kondo effect. Here, we present transport studies of an InAs nanowire contacted with niobium nitride leads in high magnetic fields. We observe a number of robust ZBAs that can persist for a wide range of back gate bias and magnetic field strength. Under certain conditions, we find that the height and width of the ZBA can oscillate with back gate bias or magnetic field. This work was supported by Microsoft Project Q.
Schwinger mechanism in electromagnetic field in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Bavarsad, Ehsan; Pyo Kim, Sang; Stahl, Clément; Xue, She-Sheng
2018-01-01
We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Synthesis of low-moment CrVTiAl: A potential room temperature spin filter
NASA Astrophysics Data System (ADS)
Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.
2016-12-01
The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do
2015-06-08
Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at muchmore » lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.« less
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
NASA Astrophysics Data System (ADS)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
NASA Astrophysics Data System (ADS)
Panwar, Sunil; Kumar, Vijay; Singh, Ishwar
2017-10-01
An anomalous Hall constant RH has been observed in various rare earth manganites doped with alkaline earths namely Re1-xAxMnO3 (where Re = La, Pr, Nd etc., and A = Ca, Sr, Ba etc.) which exhibit colossal magnetoresistance (CMR), metal- insulator transition and many other poorly understood phenomena. We show that this phenomenon of anomalous Hall constant can be understood using two band (ℓ-b) Anderson lattice model Hamiltonian alongwith (ℓ-b) hybridization recently studied by us for manganites in the strong electron-lattice Jahn-Teller (JT) coupling regime an approach similar to the two - fluid models. We use a variational method in this work to study the temperature variation of Hall constant RH (T) in these compounds. We have already used this variational method to study the zero field electrical resistivity ρ (T) and magnetic susceptibility of doped CMR manganites. In the present study, we find that the Hall constant RH (T) reduces with increasing magnetic field parameters h&m and the metal-insulator transition temperature (Tρ) shifts towards higher temperature region. We have also observed the role of the model parameters e.g. local Coulomb repulsion U, Hund's rule coupling JH between eg spins and t2g spins, ferromagnetic nearest neighbor exchange coupling JF between t2g core spins and hybridization Vk between ℓ-polarons and d-electrons on Hall constant RH (T) of these materials at different magnetic fields. Here we find that RH (T) for a particular value of h and m shows a rapid initial increase, followed by a sharp peak at low temperature say 50 K in our case and a slow decrease at high temperatures, resembling with the key feature of many CMR compounds like La0.8Ba0.2 MnO3.The magnitude of RH (T) reduces and the anomaly (sharp peak) in RH becomes broader and shifts towards higher temperature region on increasing Vk or JH or doping x and even vanishes on further increasing these parameters. Our results of anomalous Hall constant (RH) have same qualitative behavior as the zero-field electrical resistivity. Moreover Hall Constant (RH) shows positive values indicating that the carriers in these manganites are holes.
Gardiner, Stuart K; Demirel, Shaban; De Moraes, Carlos Gustavo; Liebmann, Jeffrey M; Cioffi, George A; Ritch, Robert; Gordon, Mae O; Kass, Michael A
2013-02-15
Trend analysis techniques to detect glaucomatous progression typically assume a constant rate of change. This study uses data from the Ocular Hypertension Treatment Study to assess whether this assumption decreases sensitivity to changes in progression rate, by including earlier periods of stability. Series of visual fields (mean 24 per eye) completed at 6-month intervals from participants randomized initially to observation were split into subseries before and after the initiation of treatment (the "split-point"). The mean deviation rate of change (MDR) was derived using these entire subseries, and using only the window length (W) tests nearest the split-point, for different window lengths of W tests. A generalized estimating equation model was used to detect changes in MDR occurring at the split-point. Using shortened subseries with W = 7 tests, the MDR slowed by 0.142 dB/y upon initiation of treatment (P < 0.001), and the proportion of eyes showing "rapid deterioration" (MDR <-0.5 dB/y with P < 5%) decreased from 11.8% to 6.5% (P < 0.001). Using the entire sequence, no significant change in MDR was detected (P = 0.796), and there was no change in the proportion of eyes progressing (P = 0.084). Window lengths 6 ≤ W ≤ 9 produced similar benefits. Event analysis revealed a beneficial treatment effect in this dataset. This effect was not detected by linear trend analysis applied to entire series, but was detected when using shorter subseries of length between six and nine fields. Using linear trend analysis on the entire field sequence may not be optimal for detecting and monitoring progression. Nonlinear analyses may be needed for long series of fields. (ClinicalTrials.gov number, NCT00000125.).
Ladrón De Guevara Hernández, D; Ham, H; Franken, P; Piepsz, A; Lobo Sotomayor, G
2002-01-01
The aim of the study was to evaluate three different methods for calculating the split renal function in patients with only one functioning kidney, keeping in mind that the split function should be zero on the side of the non-functioning kidney. We retrospectively selected 28 99mTc MAG3 renograms performed in children, 12 with unilateral nephrectomy, 4 with unilateral agenesis and 12 with a non-functioning kidney. A renal and perirenal region of interest (ROI) were delineated around the functioning kidney. The ROIs around the empty kidney were drawn symmetrically to the contralateral side. The split renal function was calculated using three different methods, the integral method, the slope method and the Patlak-Rutland algorithm. For the whole group of 28 kidneys as well as for the three categories of patients, the three methods provided a split function on the side of the non-functioning kidney close to the zero value, regardless of whether the empty kidney was the left or the right one. We recommend the use of the integral method for the whole range of split renal function with 99mTc MAG3. No significant improvement was obtained by means of the more sophisticated Patlak-Rutland method.
Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.
2013-01-01
Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857
Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peres, M. L.; Monteiro, H. S.; Castro, S. de
2014-03-07
The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Guseva, V. B.; Fokin, A. V.; Potapov, A. P.; Artyomov, M. Yu.
2011-04-01
Abrupt changes in resonance positions, hysteretic temperature behavior, and coexistence of phases, which indicate a first-order phase transition, have been revealed from measurements of temperature dependences of the EPR spectra of Gd3+ and Mn4+ centers in the vicinity of the structural transition of lanthanum gallate. The transformation of monoclinic Gd3+ centers into trigonal Gd3+ centers upon the phase transition has been used to estimate the adequacy of two approximations of the superposition model for parameters of the zero-field splitting of the ground state.
Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes
NASA Astrophysics Data System (ADS)
Jiang, Y.; Dun, Z. L.; Zhou, H. D.; Lu, Z.; Chen, K.-W.; Moon, S.; Besara, T.; Siegrist, T. M.; Baumbach, R. E.; Smirnov, D.; Jiang, Z.
2017-07-01
We report infrared magnetospectroscopy studies on thin crystals of an emerging Dirac material ZrTe5 near the intrinsic limit. The observed structure of the Landau-level transitions and zero-field infrared absorption indicate a two-dimensional Dirac-like electronic structure, similar to that in graphene but with a small relativistic mass corresponding to a 9.4-meV energy gap. Measurements with circularly polarized light reveal a significant electron-hole asymmetry, which leads to splitting of the Landau-level transitions at high magnetic fields. Our model, based on the Bernevig-Hughes-Zhang effective Hamiltonian, quantitatively explains all observed transitions, determining the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g factors.
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory
NASA Astrophysics Data System (ADS)
Higa, R.
2013-08-01
Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.
Correcting GOES-R Magnetometer Data for Stray Fields
NASA Technical Reports Server (NTRS)
Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald
2016-01-01
Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.
Kolin, Alexander; Steele, James R.; Imai, James S.; Macalpin, Rex N.
1974-01-01
A combination of deformable flow probes of negligible lateral dimensions with an electronic circuit capable of providing a prolonged plateau of dB/dt = 0 and of sampling the flow signal at the end of this interval permits electromagnetic measurement of blood flow with a reliable zero base line secured by switching off the magnet. An extracorporeal magnet provides the magnetic field. The flow transducer is introduced into the vascular system percutaneously through a standard angiographic catheter by conventional technique. The idea of the current generator can be described as “principle of interrupted resonance.” The current wave form can be described as a sequence of disconnected bisected sine waves joined at the apices by horizontal current plateaus where di/dt is strictly zero. Images PMID:4275395
Synthesis and magnetic properties of nickel nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer, E-mail: jaiveer24singh@gmail.com, E-mail: netramkaurav@yahoo.co.uk; Patel, Tarachand; Okram, Gunadhor S.
2016-05-23
Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×10{sup 5} erg/cm{sup 3} and coercive field was 168 Oe at 3 K.
Mössbauer spectroscopic studies on the iron forms of deep-sea sediments
NASA Astrophysics Data System (ADS)
Drodt, M.; Trautwein, A. X.; König, I.; Suess, E.; Koch, C. Bender
Mössbauer spectroscopy was applied to characterize the valence states Fe(II) and Fe(III) in sedimentary minerals from a core of the Peru Basin. The procedure in unraveling this information includes temperature-dependent measurements from 275 K to very low temperature (300 mK) in zero-field and also at 4.2 K in an applied field (up to 6.2 T) and by mathematical procedures (least-squares fits and spectral simulations) in order to resolve individual spectral components. The depth distribution of the amount of Fe(II) is about 11% of the total Fe to a depth of 19 cm with a subsequent steep increase (within 3 cm) to about 37%, after which it remains constant to the lower end of the sediment core (at about 40 cm). The steep increase of the amount of Fe(II) defines a redox boundary which coincides with the position where the tan/green color transition of the sediment occurs. The isomer shifts and quadrupole splittings of Fe(II) and Fe(III) in the sediment are consistent with hexacoordination by oxygen or hydroxide ligands as in oxide and silicate minerals. Goethite and traces of hematite are observed only above the redox boundary, with a linear gradient extending from about 20% of the total Fe close to the sediment surface to about zero at the redox boundary. The superparamagnetic relaxation behavior allows to estimate the order of magnitude for the size of the largest goethite and hematite particles within the particle-site distribution, e.g. 170 Å and 50 Å, respectively. The composition of the sediment spectra recorded at 300 mK in zero-field, apart from the contributions due to goethite and hematite, resembles that of the sheet silicates smectite, illite and chlorite, which have been identified as major constituents of the sediment in the <2 μm fraction by X-ray diffraction. The specific ``ferromagnetic'' type of magnetic ordering in the sediment, as detected at 4.2 K in an applied field, also resembles that observed in sheet silicates and indicates that both Fe(II) and Fe(III) are involved in magnetic ordering. This ``ferromagnetic'' behavior is probably due to the double-exchange mechanism known from other mixed-valence Fe(II)-Fe(III) systems. A significant part of the clay-mineral iron is redox sensitive. It is proposed that the color change of the sediment at the redox boundary from tan to green is related to the increase of Fe(II)-Fe(III) pairs in the layer silicates, because of the intervalence electron transfer bands which are caused by such pairs.
Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong
2011-08-03
Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.
NASA Astrophysics Data System (ADS)
Baxter, J. Erik; Winstanley, Elizabeth
2016-02-01
We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N - 1 magnetic gauge field functions ωj. We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ωj have no zeros and satisfy a set of N - 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded 𝔰𝔲(2) solutions, provided the magnitude of the cosmological constant |" separators=" Λ | is sufficiently large.
Periodic Inclusion—Matrix Microstructures with Constant Field Inclusions
NASA Astrophysics Data System (ADS)
Liu, Liping; James, Richard D.; Leo, Perry H.
2007-04-01
We find a class of special microstructures consisting of a periodic array of inclusions, with the special property that constant magnetization (or eigenstrain) of the inclusion implies constant magnetic field (or strain) in the inclusion. The resulting inclusions, which we term E-inclusions, have the same property in a finite periodic domain as ellipsoids have in infinite space. The E-inclusions are found by mapping the magnetostatic or elasticity equations to a constrained minimization problem known as a free-boundary obstacle problem. By solving this minimization problem, we can construct families of E-inclusions with any prescribed volume fraction between zero and one. In two dimensions, our results coincide with the microstructures first introduced by Vigdergauz,[1,2] while in three dimensions, we introduce a numerical method to calculate E-inclusions. E-inclusions extend the important role of ellipsoids in calculations concerning phase transformations and composite materials.
Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo I.; Nishino, Hitoshi; Rajpoot, Subhash
2017-04-01
In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars \\varphi _a by Φ =\\varepsilon ^{μ ν ρ σ } \\varepsilon _{abcd} (partial _{μ }\\varphi _a)(partial _{ν }\\varphi _b) (partial _{ρ }\\varphi _c) (partial _{σ }\\varphi _d). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density {√{-g}} φ ( R_{μ ν ρ σ }^2 - 4 R_{μ ν }^2 + R^2 ) we obtain a theory that is scale invariant up to a total divergence. Integration of the \\varphi _a field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the `TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy.
Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems
NASA Astrophysics Data System (ADS)
Pavlyukh, Y.; Rentschler, E.; Elmers, H. J.; Hübner, W.; Lefkidis, G.
2018-06-01
Electronic and magnetic properties of molecular nanomagnets are determined by competing energy scales due to the crystal field splitting, the exchange interactions between transition metal atoms, and relativistic effects. We present a comprehensive theory embracing all these phenomena based on first-principles calculations. In order to achieve this goal, we start from the FeNi4 cluster as a paradigm. The system can be accurately described on the ab initio level yielding all expected electronic states in a range of multiplicities from 1 to 9, with a ferromagnetic ground state. By adding the spin-orbit coupling between them we obtain the zero-field splitting. This allows to introduce a spin Hamiltonian of a giant spin model, which operates on a smaller energy scale. We compare the computed parameters of this Hamiltonian with the experimental and theoretical magnetic anisotropy energies of the monolayer Ni/Cu(001). In line with them, we find that the anisotropy almost entirely originates from the second-order spin-orbit coupling, the spin-spin coupling constitutes only a small fraction. Finally, we include the ligand atoms in our consideration. This component has a decisive role for the stabilization of molecules in experimental synthesis and characterization, and also substantially complicates the theory by bringing the superexchange mechanisms into play. Since they are higher-order effects involving two hopping matrix elements, not every theory can describe them. Our generalization of the corresponding perturbation theory substantiates the use of complete active space methods for the description of superexchange. At the same time, our numerical results for the {CuFe4} system demonstrate that the Goodenough-Kanamori rules, which are often used to determine the sign of these exchange interactions, cannot deliver quantitative predictions due to the interplay of other mechanisms, e. g., involving multicenter Coulomb integrals. We conclude by comparing ab initio values of the exchange interaction constants for the {CuCu4} and {CuFe4} metallacrown magnetic molecules with experimental values determined by fitting of the magnetic susceptibility curves χMT (T ) , and attribute the remaining discrepancy between them to the role of virtual electron excitations into and out of the active space (dynamical correlations).
Construction of Solar-Wind-Like Magnetic Fields
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron
2012-01-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.
Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2008-08-18
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.
Pressure dependence of zero-field splittings in organic triplets. II. Carbonyls
NASA Astrophysics Data System (ADS)
Chan, I. Y.; Qian, X. Q.
1990-01-01
We have conducted optically detected magnetic resonance (ODMR) experiments at pressure up to 40 kbar for neat biactyl (BA), neat benzil (BZ), and acetophenone (AP) doped in dibromobenzene (DBB). The pressure dependences of their zero-field splitting (ZFS) parameters D and E are reported. For BA and BZ systems, the ‖D‖ value decreases greatly with increasing pressure. This behavior is in contrast with that of benzophenone (BP), whose ‖D‖ value increases sigmoidally 13% over the same pressure range. These results may be rationalized in a qualitative theory based on pressure modulation of the spin-orbit coupling (SOC) contribution to the ZFS. ln aromatic ketones, lattice compression modifies the twist angle of the phenyl ring(s) relative to the carbonyl frame, thus changing the energy of the 3ππ* state relative to that of the 3nπ* state. This variation of the energy denominator in a second order perturbation enhances the SOC contribution to the ZFS. In comparison, the increase of spin-spin (SS) dipolar interaction by isotropic compression is relatively unimportant. Consistent with this picture, the very small 3ππ*-3nπ* energy gap produces an enormous pressure sensitivity of D and E in AP/DBB. The behavior of the ZFS in this case may be interpreted as a consequence of pressure tuning of the 3ππ* state through an anticrossing region. In addition, a new set of high frequency ODMR signals appears under pressure. This is attributed to a new site of AP having the 3nπ* as the phosphorescent triplet state. The pressure dependence of ZFS for benzil shows complicated fine structure. This is a testimony to the flexible nature of benzil in both the dihedral angle of the dicarbonyl fragment and the phenyl twist angle.
A comparison of zero-order, first-order, and monod biotransformation models
Bekins, B.A.; Warren, E.; Godsy, E.M.
1998-01-01
Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate concentration and KS is the half-saturation constant. The problems that arise when the first-order approximation is used outside the range for which it is valid are examined. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than KS, it may be better to model degradation using a zero-order rate expression.
Local existence of N=1 supersymmetric gauge theory in four Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.
2015-04-16
In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.
Precision aligned split V-block
George, Irwin S.
1984-01-01
A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Salewski, M.; Kalitukha, I. V.; Poltavtsev, S. V.; Debus, J.; Kudlacik, D.; Sapega, V. F.; Kopteva, N. E.; Kirstein, E.; Zhukov, E. A.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Korenev, V. L.; Kusrayev, Yu. G.; Bayer, M.
2017-11-01
The exchange interaction between magnetic ions and charge carriers in semiconductors is considered to be a prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range p -d exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10-nm-thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10 nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift ΔS on the external magnetic field B . We show that in a strong magnetic field, ΔS is a linear function of B with an offset of Δp d=50 -100 μ eV at zero field from the FM induced effective exchange field. On the other hand, the s -d exchange interaction between conduction band electrons and FM, as well as the p -d contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.
Electric dipole moments of light nuclei from {chi}EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higa, Renato
I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.
Electric dipole moments of light nuclei from χEFT
NASA Astrophysics Data System (ADS)
Higa, Renato
2013-03-01
I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.
Balseiro, C A; Usaj, G; Sánchez, M J
2010-10-27
We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing on the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G(2)(T, V) in order to test several scaling laws. We find that G(2)(T, V)/G(2)(T, 0) is a universal function of both eV/T(K) and T/T(K), T(K) being the Kondo temperature. The effect of an in-plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting Δ, the computed differential conductance peak splitting depends only on Δ/T(K), and for large fields approaches the value of 2Δ. Besides studying the traditional two leads setup, we also consider other configurations that mimic recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as ln(eV/T(K)). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.
Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian
2016-01-01
We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844
Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias
NASA Astrophysics Data System (ADS)
Buendía, Gloria M.; Rikvold, Per Arne
2017-10-01
We present a numerical and theoretical study that supports and explains recent experimental results on anomalous magnetization fluctuations of a uniaxial ferromagnetic film in its low-temperature phase, which is forced by an oscillating field above the critical period of the associated dynamic phase transition (DPT) [P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118, 117202 (2017), 10.1103/PhysRevLett.118.117202]. For this purpose, we perform kinetic Monte Carlo simulations of a two-dimensional Ising model with nearest-neighbor ferromagnetic interactions in the presence of a sinusoidally oscillating field, to which is added a constant bias field. We study a large range of system sizes and supercritical periods and analyze the data using a droplet-theoretical description of magnetization switching. We find that the period-averaged magnetization, which plays the role of the order parameter for the DPT, presents large fluctuations that give rise to well-defined peaks in its scaled variance and its susceptibility with respect to the bias field. The peaks are symmetric with respect to zero bias and located at values of the bias field that increase toward the field amplitude as an inverse logarithm of the field oscillation period. Our results indicate that this effect is independent of the system size for large systems, ruling out critical behavior associated with a phase transition. Rather, it is a stochastic-resonance phenomenon that has no counterpart in the corresponding thermodynamic phase transition, providing a reminder that the equivalence of the DPT to an equilibrium phase transition is limited to the critical region near the critical period and zero bias.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.
Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G
2013-01-01
Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.
Random isotropic one-dimensional XY-model
NASA Astrophysics Data System (ADS)
Gonçalves, L. L.; Vieira, A. P.
1998-01-01
The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .
Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
Scarani, Valerio; Acín, Antonio; Ribordy, Grégoire; Gisin, Nicolas
2004-02-06
We introduce a new class of quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the original protocol by Bennett and Brassard (BB84) only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.
Generalized field-splitting algorithms for optimal IMRT delivery efficiency.
Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Ranka, Sanjay; Palta, Jatinder
2007-09-21
Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm.
Analytical Method to Estimate the Complex Permittivity of Oil Samples.
Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Fernández-Prieto, Armando; Martín, Ferran
2018-03-26
In this paper, an analytical method to estimate the complex dielectric constant of liquids is presented. The method is based on the measurement of the transmission coefficient in an embedded microstrip line loaded with a complementary split ring resonator (CSRR), which is etched in the ground plane. From this response, the dielectric constant and loss tangent of the liquid under test (LUT) can be extracted, provided that the CSRR is surrounded by such LUT, and the liquid level extends beyond the region where the electromagnetic fields generated by the CSRR are present. For that purpose, a liquid container acting as a pool is added to the structure. The main advantage of this method, which is validated from the measurement of the complex dielectric constant of olive and castor oil, is that reference samples for calibration are not required.
NASA Astrophysics Data System (ADS)
Ding, Ch.-Ch.; Wu, Sh.-Y.; Xu, Y.-Q.; Zhang, L.-J.; He, J.-J.
2018-03-01
The spin Hamiltonian parameters (SHPs), i.e., g factors and hyperfine structure constants, and local structures are theoretically studied by analyzing tetragonally elongated 3d9 clusters for Cu2+ in xK2SO4-(50 - x)Na2SO4-50ZnSO4 glasses with various K2SO4 concentrations x. The concentration dependences of the SHPs are attributed to the parabolic decreases of the cubic field parameter Dq, orbital reduction factor k, relative tetragonal elongation ratio τ, and core polarization constant κ with x. The [CuO6]10- clusters are found to undergo significant elongations of about 17% due to the Jahn-Teller effect. The calculated cubic field splittings and the SHPs at various concentrations agree well with the experimental data.
Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar
2012-08-14
Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.
Tuning Metamaterials by using Amorphous Magnetic Microwires
NASA Astrophysics Data System (ADS)
Lopez-Dominguez, Victor; Garcia, Miguel Angel; Marin, Pilar; Hernando, Antonio
Tuning the electromagnetic properties of metamaterials using external stimulus result appealing for both, fundamental and applied reasons. Little work has been developed in the tuning of the properties of a metamaterial by magnetic fields. The main reason relies on the fact that most magnetic materials tale off their response at the microwave band, or they are moderately active only at their Ferromagnetic Resonance, as it is the case of ferrites. These limitations can be overcome using Co-based Magnetic microwires with a quasi-zero magnetostriction that leads to a high permeability at microwave frequencies. The inclusion of magnetic microwires in a metamaterial type Split Ring Resonator array (SRR) allows tuning their electromagnetic properties with low magnetic fields. The results clearly show an effective tune of the S-coefficients up-to 8 dB using 100 microwires per SRR for DC fields between 0 and 20 Oe.
Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.
Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan
2017-09-28
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Expanding space-time and variable vacuum energy
NASA Astrophysics Data System (ADS)
Parmeggiani, Claudio
2017-08-01
The paper describes a cosmological model which contemplates the presence of a vacuum energy varying, very slightly (now), with time. The constant part of the vacuum energy generated, some 6 Gyr ago, a deceleration/acceleration transition of the metric expansion; so now, in an aged Universe, the expansion is inexorably accelerating. The vacuum energy varying part is instead assumed to be eventually responsible of an acceleration/deceleration transition, which occurred about 14 Gyr ago; this transition has a dynamic origin: it is a consequence of the general relativistic Einstein-Friedmann equations. Moreover, the vacuum energy (constant and variable) is here related to the zero-point energy of some quantum fields (scalar, vector, or spinor); these fields are necessarily described in a general relativistic way: their structure depends on the space-time metric, typically non-flat. More precisely, the commutators of the (quantum field) creation/annihilation operators are here assumed to depend on the local value of the space-time metric tensor (and eventually of its curvature); furthermore, these commutators rapidly decrease for high momentum values and they reduce to the standard ones for a flat metric. In this way, the theory is ”gravitationally” regularized; in particular, the zero-point (vacuum) energy density has a well defined value and, for a non static metric, depends on the (cosmic) time. Note that this varying vacuum energy can be negative (Fermi fields) and that a change of its sign typically leads to a minimum for the metric expansion factor (a ”bounce”).
Color-magnitude Diagrams for the Stellar Open Cluster M 67 in theVilnius Photometric System
NASA Astrophysics Data System (ADS)
Boyle, Richard P.; Janusz, Robert
2015-01-01
Stellar photometry in the Vilnius Photometric System requires one percent quality for deriving luminosity class and spectral type subclass. We use such existing photometry of the open cluster M 67 to calibrate new CCD observations at the Vatican Advanced Technology Telescope (VATT) for correcting the flat-fielding zero-point and deriving the color-transformation in this intermediate-band, seven filter system (Boyle et al., BAAS 37 #4, 2005).Recently we have developed a "tie-in" observational practice to apply the zero-point and color transformation of the M 67 observations to neighboring starfields of interest that have no existing photometry. Sky transparency must remain constant to better than one percent during a round of short exposures in a filter between the field having calibrated photometry and the new field having no photometry as if the new field was exposed simultaneously with the master field.Proof of success for this "tie-in" method is shown with the master field being M 67 and the "tie-in" field being the nearby extended "corona" area. The distinctive color-magnitude diagrams of the old open clusterM 67 reveal the sensitivity to having constant sky transparency during the round of short exposures on M 67 and its extended area. For the extended area has the same form in its color-magnitude diagram as M 67. So variation in sky transparency shows displacement on the color-magnitude diagrams at the one percent quality.We will attempt new analysis concerning evolution of this very old open cluster (2.56 Gyr, WEBDA, http://www.univie.ac.at/webda/) and the surrounding "coronal" extent with reference to previous work by Chupina and Vereshchagin (Astron. Astrophys, 334, 552, 1998).
The quantum N-body problem in the mean-field and semiclassical regime
NASA Astrophysics Data System (ADS)
Golse, François
2018-04-01
The present work discusses the mean-field limit for the quantum N-body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti. This article is part of the themed issue `Hilbert's sixth problem'.
Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.
Yu, Hongling; Ho, Tak-San; Rabitz, Herschel
2018-05-09
Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.
Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field
NASA Astrophysics Data System (ADS)
Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.
2018-04-01
In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Order and anarchy hand in hand in 5D SO(10)
NASA Astrophysics Data System (ADS)
Vicino, D.
2015-07-01
A mechanism to generate flavour hierarchy via 5D wave-function localization is revisited in the context of SO(10) grand unified theory. In an extra-dimension compactified on an orbifold, fermions (living in the same 16 representation of SO(10)) result having exponential zero-modes profiles, localized around one of the brane. The breaking of SO(10) down to SU(5) × U(1)x provides the key parameter that distinguishes the profiles of the different SU(5) components inside the same 16 representation. Utilizing a suitable set of scalar fields, a predictive model for fermion masses and mixing is constructed and shown to be viable with the current data through a detailed numerical analysis. The scalar field content of the model is also suitable to solve the doublet-triplet splitting problem through the missing partner mechanism. All the Yukawa couplings in the model are anarchical and of order unity, while the hierarchies among different fermions result only from zero-mode profiles. The naturalness of Anarchical Yukawa couplings is studied, showing a preference for a normal ordered neutrino spectrum; predictions for various observables in the lepton sector are also derived.
Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.
Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong
2016-08-31
Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013
2016-01-28
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less
Wang, Yimin; Bowman, Joel M; Huang, Xinchuan
2010-09-21
We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila
2017-06-01
FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).
Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster
NASA Astrophysics Data System (ADS)
Gramann, Mirt; Einasto, Maret; Heinämäki, Pekka; Teerikorpi, Pekka; Saar, Enn; Nurmi, Pasi; Einasto, Jaan
2015-09-01
Context. The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). Aims: We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. Methods: We analysed the density contrasts for the turnaround, future collapse, and zero gravity in different ΛCDM models and applied them to study the dynamical state of the supercluster A2142 with an almost spherical main body, making it a suitable test object to apply a model that assumes sphericity. Results: We present characteristic density contrasts in the spherical collapse model for different cosmological parameters. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution, the supercluster may split into several collapsing systems. Conclusions: The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. H.; Liu, G. D.; Ma, X. Q.; Cheng, Z. X.
2018-03-01
Compensated ferrimagnets, due to their zero net magnetization and potential for large spin-polarization, have been attracting more and more attention in the field of spintronics. We demonstrate potential candidate materials among the inverse Heusler compounds Ti2VZ (Z = P, As, Sb, Bi) by first principles calculations. It is found that these compounds with 18 valence electrons per unit cell have zero net magnetic moment with compensated sublattice magnetization, as anticipated by a variant of Slater-Pauling rule of Mt = NV - 18, where Mt is the total spin magnetic moment per formula unit and NV is the number of valence electrons per formula unit, and show semiconducting behavior in both spin channels with a moderate exchange splitting, as with ordinary ferromagnetic semiconductors. Furthermore, the fully compensated ferrimagnetism and semiconductivity are rather robust over a wide range of lattice contraction and expansion. Due to the above distinct advantages, these compounds will be promising candidates for spintronic applications.
Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Patrick J.; Kribs, Graham D.; Martin, Adam
2014-10-07
Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses ofmore » $$\\sim 10^{8-11}$$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $$\\gtrsim 10^{17}$$ GeV. The $$\\mu$$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.« less
Ageing dynamics of a superspin glass
NASA Astrophysics Data System (ADS)
Svante Andersson, Mikael; De Toro, Jose Angel; Lee, Su Seong; Mathieu, Roland; Nordblad, Per
2014-10-01
Magnetization dynamics of a model superspin glass system consisting of nearly monodispersed close-packed maghemite particles of diameter 8 nm is investigated. The observed non-equilibrium features of the dynamics are qualitatively similar to those of atomic spin glass systems. The intrinsic relaxation function, as observed in zero-field-cooled magnetization relaxation experiments, depends on the time the sample has been kept at constant temperature (ageing). Accompanying low-field experiments show that the archetypal spin glass characteristics —ageing, memory and rejuvenation— are reproduced in this dense system of dipolar-dipolar interacting superspins.
NASA Astrophysics Data System (ADS)
Jochemsen, R.; Morrow, M.; Berlinsky, A. J.; Hardy, W. N.
1982-07-01
Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T < 1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T = 0.06 K. The atom density nH (10 9 < nH < 10 13) measured by the strength of the free induction decay signal, follows a second-order rate equation {dn H}/{dt} = -Kn H2. At the lowest temperatures recombination is dominated by the process H + H+ wall → H 2 + wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid 4He and 3He, and also the cross section for recombination on the surface.
A single-solenoid pulsed-magnet system for single-crystal scattering studies
NASA Astrophysics Data System (ADS)
Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.
2012-03-01
We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.
Magnetic field dependent electronic transport of Mn4 single-molecule magnet.
NASA Astrophysics Data System (ADS)
Haque, F.; Langhirt, M.; Henderson, J. J.; Del Barco, E.; Taguchi, T.; Christou, G.
2010-03-01
We have performed single-electron transport measurements on a Mn4 single-molecule magnet (SMM) in where amino groups were added to electrically protect the magnetic core and to increase the stability of the molecule when deposited on the single-electron transistor (SET) chip. A three-terminal SET with nano-gap electro-migrated gold electrodes and a naturally oxidized Aluminum back gate. Experiments were conducted at temperatures down to 230mK in the presence of high magnetic fields generated by a superconducting vector magnet. Mn4 molecules were deposited from solution to form a mono-layer. The optimum deposition time was determined by AFM analysis on atomically flat gold surfaces. We have observed Coulomb blockade an electronic excitations that curve with the magnetic field and present zero-field splitting, which represents evidence of magnetic anisotropy. Level anticrossings and large excitations slopes are associated with the behavior of molecular states with high spin values (S ˜ 9), as expected from Mn4.
Functional split brain in a driving/listening paradigm
Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-01-01
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects’ ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a “functional split brain” similar to what is observed in patients with an anatomical split. PMID:27911805
Functional split brain in a driving/listening paradigm.
Sasai, Shuntaro; Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-12-13
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects' ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a "functional split brain" similar to what is observed in patients with an anatomical split.
Spin-dependent Otto quantum heat engine based on a molecular substance
NASA Astrophysics Data System (ADS)
Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.
2014-07-01
We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-01-01
We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.
NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.
Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S
2014-10-01
Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the topologically trivial phase. Measuring such correlations is the clearest and most straightforward test of topological MZMs in SM-SC heterostructures that can be done in a currently accessible experimental setup.
Abundant stable gauge field hair for black holes in anti-de Sitter space.
Baxter, J E; Helbling, Marc; Winstanley, Elizabeth
2008-01-11
We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed.
Fernández-García, María Paz; Gorria, Pedro; Sevilla, Marta; Fuertes, Antonio B; Boada, Roberto; Chaboy, Jesús; Aquilanti, Giuliana; Blanco, Jesús A
2011-01-21
We report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (∼3-4 nm) and the ferromagnetic Co-cores (∼4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs. temperature curves agree quite well with those of the bulk fcc-Co.
Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition
Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng
2013-01-01
A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options. PMID:24086256
AdS and Lifshitz black hole solutions in conformal gravity sourced with a scalar field
NASA Astrophysics Data System (ADS)
Herrera, Felipe; Vásquez, Yerko
2018-07-01
In this paper we obtain exact asymptotically anti-de Sitter black hole solutions and asymptotically Lifshitz black hole solutions with dynamical exponents z = 0 and z = 4 of four-dimensional conformal gravity coupled with a self-interacting conformally invariant scalar field. Then, we compute their thermodynamical quantities, such as the mass, the Wald entropy and the Hawking temperature. The mass expression is obtained by using the generalized off-shell Noether potential formulation. It is found that the anti-de Sitter black holes as well as the Lifshitz black holes with z = 0 have zero mass and zero entropy, although they have non-zero temperature. A similar behavior has been observed in previous works, where the integration constant is not associated with a conserved charge, and it can be interpreted as a kind of gravitational hair. On the other hand, the Lifshitz black holes with dynamical exponent z = 4 have non-zero conserved charges, and the first law of black hole thermodynamics holds. Also, we analyze the horizon thermodynamics for the Lifshitz black holes with z = 4, and we show that the first law of black hole thermodynamics arises from the field equations evaluated on the horizon. Furthermore, we study the propagation of a conformally coupled scalar field on these backgrounds and we find the quasinormal modes analytically in several cases. We find that for anti-de Sitter black holes and Lifshitz black holes with z = 4, there is a continuous spectrum of frequencies for Dirichlet boundary condition; however, we show that discrete sets of well defined quasinormal frequencies can be obtained by considering Neumann boundary conditions.
Chnafa, C; Brina, O; Pereira, V M; Steinman, D A
2018-02-01
Computational fluid dynamics simulations of neurovascular diseases are impacted by various modeling assumptions and uncertainties, including outlet boundary conditions. Many studies of intracranial aneurysms, for example, assume zero pressure at all outlets, often the default ("do-nothing") strategy, with no physiological basis. Others divide outflow according to the outlet diameters cubed, nominally based on the more physiological Murray's law but still susceptible to subjective choices about the segmented model extent. Here we demonstrate the limitations and impact of these outflow strategies, against a novel "splitting" method introduced here. With our method, the segmented lumen is split into its constituent bifurcations, where flow divisions are estimated locally using a power law. Together these provide the global outflow rate boundary conditions. The impact of outflow strategy on flow rates was tested for 70 cases of MCA aneurysm with 0D simulations. The impact on hemodynamic indices used for rupture status assessment was tested for 10 cases with 3D simulations. Differences in flow rates among the various strategies were up to 70%, with a non-negligible impact on average and oscillatory wall shear stresses in some cases. Murray-law and splitting methods gave flow rates closest to physiological values reported in the literature; however, only the splitting method was insensitive to arbitrary truncation of the model extent. Cerebrovascular simulations can depend strongly on the outflow strategy. The default zero-pressure method should be avoided in favor of Murray-law or splitting methods, the latter being released as an open-source tool to encourage the standardization of outflow strategies. © 2018 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Tarasenko, S. A.; Durnev, M. V.; Nestoklon, M. O.; Ivchenko, E. L.; Luo, Jun-Wei; Zunger, Alex
2015-02-01
HgTe is a band-inverted compound which forms a two-dimensional topological insulator if sandwiched between CdTe barriers for a HgTe layer thickness above the critical value. We describe the fine structure of Dirac states in the HgTe/CdTe quantum wells of critical and close-to-critical thicknesses and show that the necessary creation of interfaces brings in another important physical effect: the opening of a significant anticrossing gap between the tips of the Dirac cones. The level repulsion driven by the natural interface inversion asymmetry of zinc-blende heterostructures considerably modifies the electron states and dispersion but preserves the topological transition at the critical thickness. By combining symmetry analysis, atomistic calculations, and extended k .p theory with interface terms, we obtain a quantitative description of the energy spectrum and extract the interface mixing coefficient. We discuss how the fingerprints of the predicted zero-magnetic-field splitting of the Dirac cones could be detected experimentally by studying magnetotransport phenomena, cyclotron resonance, Raman scattering, and THz radiation absorption.
Chuntonov, Lev; Pazos, Ileana M; Ma, Jianqiang; Gai, Feng
2015-03-26
It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.
On static solutions of the Einstein-Scalar Field equations
NASA Astrophysics Data System (ADS)
Reiris, Martín
2017-03-01
In this article we study self-gravitating static solutions of the Einstein-Scalar Field system in arbitrary dimensions. We discuss the existence of geodesically complete solutions depending on the form of the scalar field potential V(φ ), and provide full global geometric estimates when the solutions exist. The most complete results are obtained for the physically important Klein-Gordon field and are summarised as follows. When V(φ )=m2|φ |2, it is proved that geodesically complete solutions have Ricci-flat spatial metric, have constant lapse and are vacuum, (that is φ is constant and equal to zero if m≠ 0). In particular, when the spatial dimension is three, the only such solutions are either Minkowski or a quotient thereof (no nontrivial solutions exist). When V(φ )=m2|φ |2+2Λ , that is, when a vacuum energy or a cosmological constant is included, it is proved that no geodesically complete solution exists when Λ >0, whereas when Λ <0 it is proved that no non-vacuum geodesically complete solution exists unless m2<-2Λ /(n-1), ( n is the spatial dimension) and the spatial manifold is non-compact. The proofs are based on novel techniques in comparison geometry á la Bakry-Émery that have their own interest.
NASA Astrophysics Data System (ADS)
Shi, C.; Gebert, F.; Gorges, C.; Kaufmann, S.; Nörtershäuser, W.; Sahoo, B. K.; Surzhykov, A.; Yerokhin, V. A.; Berengut, J. C.; Wolf, F.; Heip, J. C.; Schmidt, P. O.
2017-01-01
We measured the isotope shift in the ^2{S}_{{1}/{2}} → ^2{P}_{{3}/{2}} (D2) transition in singly ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to compare the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the ^2{S}_{{1}/{2}} → ^2{P}_{{1}/{2}} (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data, we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.
Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leveque, T.; Gauguet, A.; Michaud, F.
2009-08-21
In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(Planck constant/2pi)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(Planck constant/2pi)k momentum transfer by a multipulse sequence and is implemented on a 8(Planck constant/2pi)k interferometer. We demonstrate the area enhancement by measuring inertial forces.
Phosphorescence/microwave double-resonance spectra of tryptophan perturbed by methylmercury(II).
Davis, J M; Maki, A H
1982-01-01
Amplitude-modulated phosphorescence/microwave double-resonance (AM-PMDR) spectra are reported for complexes of methylmercury(II) cation, designated CH3Hg(II), with tryptophan and glyceraldehyde-3-phosphate dehydrogenase (GPDHase; from rabbit muscle). Wavelength shifts are observed in the AM-PMDR spectra of CH3Hg(II)-tryptophan, which are obtained by microwave pumping in distinct zero-field D + E magnetic resonance transitions, demonstrating that AM-PMDR can be used to display selectively the phosphorescence spectra of structurally distinct complexes with different zero-field splittings. The AM-PMDR spectra accurately represent the phosphorescence of CH3Hg(II)-tryptophan. Binding of CH3Hg(II) to a cysteine site of GDPHase perturbs the luminescence of one of the two optically resolved tryptophan. The AM-PMDR spectrum of the perturbed tryptophan is obtained by microwave pumping of the D + E magnetic resonance signal, which can be observed optically only in the presence of a heavy atom perturbation. The resulting spectrum is broadened and shifted to the blue relative to the corresponding tryptophan phosphorescence spectrum of the uncomplexed enzyme. Comparison of the AM-PMDR spectra of CH3Hg(II)-tryptophan and CH3Hg(II)-GPDHase suggests that there are differences in the mechanisms of heavy atom perturbation in these complexes. PMID:6956860
Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.
2017-01-01
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.
Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...
2017-01-15
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less
NASA Astrophysics Data System (ADS)
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; Alam, Aftab
2017-09-01
Gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au1 -xFex alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x =0.19 , which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x =0.19 , suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; ...
2017-09-20
Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.
Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less
Effects of axial magnetic field on the electronic and optical properties of boron nitride nanotube
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2011-07-01
The splitting of band structure and absorption spectrum, for boron nitride nanotubes (BNNTs) under axial magnetic field, is studied using the tight binding approximation. It is found that the band splitting ( ΔE) at the Γ point is linearly proportional to the magnetic field ( Φ/Φ0). Our results indicate that the splitting rate νii, of the two first bands nearest to the Fermi level, is a linear function of n -2 for all (n,0) zigzag BNNTs. By investigation of the dependence of band structure and absorption spectrum to the magnetic field, we found that absorption splitting is equal to band splitting and the splitting rate of band structure can be used to determine the splitting rate of the absorption spectrum.
Normal forms for Hopf-Zero singularities with nonconservative nonlinear part
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh; Sanders, Jan A.
In this paper we are concerned with the simplest normal form computation of the systems x˙=2xf(x,y2+z2), y˙=z+yf(x,y2+z2), z˙=-y+zf(x,y2+z2), where f is a formal function with real coefficients and without any constant term. These are the classical normal forms of a larger family of systems with Hopf-Zero singularity. Indeed, these are defined such that this family would be a Lie subalgebra for the space of all classical normal form vector fields with Hopf-Zero singularity. The simplest normal forms and simplest orbital normal forms of this family with nonzero quadratic part are computed. We also obtain the simplest parametric normal form of any non-degenerate perturbation of this family within the Lie subalgebra. The symmetry group of the simplest normal forms is also discussed. This is a part of our results in decomposing the normal forms of Hopf-Zero singular systems into systems with a first integral and nonconservative systems.
Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy
NASA Astrophysics Data System (ADS)
Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.
2017-11-01
Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.
NASA Astrophysics Data System (ADS)
Rudowicz, C.
2000-06-01
Electron magnetic resonance (EMR) studies of paramagnetic species with the spin S ≥ 1 at orthorhombic symmetry sites require an axial zero-field splitting (ZFS) parameter and a rhombic one of the second order (k = 2), whereas at triclinic sites all five ZFS (k = 2) parameters are expressed in the crystallographic axis system. For the spin S ≥ 2 also the higher-order ZFS terms must be considered. In the principal axis system, instead of the five ZFS (k = 2) parameters, the two principal ZFS values can be used, as for orthorhombic symmetry; however, then the orientation of the principal axes with respect to the crystallographic axis system must be provided. Recently three serious cases of incorrect relations between the extended Stevens ZFS parameters and the conventional ones have been identified in the literature. The first case concerns a controversy concerning the second-order rhombic ZFS parameters and was found to have lead to misinterpretation, in a review article, of several values of either E or b22 published earlier. The second case concerns the set of five relations between the extended Stevens ZFS parameters bkq and the conventional ones Dij for triclinic symmetry, four of which turn out to be incorrect. The third case concerns the omission of the scaling factors fk for the extended Stevens ZFS parameters bkq. In all cases the incorrect relations in question have been published in spite of the earlier existence of the correct relations in the literature. The incorrect relations are likely to lead to further misinterpretation of the published values of the ZFS parameters for orthorhombic and lower symmetry. The purpose of this paper is to make the spectroscopists working in the area of EMR (including EPR and ESR) and related spectroscopies aware of the problem and to reduce proliferation of the incorrect relations.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2017-11-15
Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.
Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.
Volotka, Andrey V; Plunien, Günter
2014-07-11
A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.
NASA Astrophysics Data System (ADS)
Osherovich, V. A.; Fainberg, J.
2018-01-01
We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.
NASA Astrophysics Data System (ADS)
Le, A. T.; Gross, Eisen C.; Hall, Gregory E.; Sears, Trevor J.
2018-07-01
We report the observation and analysis of spectra in part of the near-infrared spectrum of C2H, originating in rotational levels in the ground and lowest two excited bending vibrational levels of the ground X ˜ 2Σ+ state. In the analysis, we have combined present and previously reported high resolution spectroscopic data for the lower levels involved in the transitions to determine significantly improved molecular constants to describe the fine and hyperfine split rotational levels of the radical in the zero point, v2 = 1 and the 2Σ+ component of v2 = 2 . Two of the upper state vibronic levels involved had not been observed previously. The data and analysis indicate the electronic wavefunction character changes with bending vibrational excitation in the ground state and provide avenues for future measurements of reactivity of the radical as a function of vibrational excitation.
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
NASA Astrophysics Data System (ADS)
Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.
2013-02-01
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, A T.; Gross, Eisen C.; Hall, Gregory E.
Here, we report the observation and analysis of spectra in part of the near-infrared spectrum of C 2H, originating in rotational levels in the ground and lowest two excited bending vibrational levels of the groundmore » $$\\tilde{X}$$ 2Σ+ state. In the analysis, we have combined present and previously reported high resolution spectroscopic data for the lower levels involved in the transitions to determine significantly improved molecular constants to describe the fine and hyperfine split rotational levels of the radical in the zero point, v 2 = 1 and the 2Σ+ component of v 2 = 2. Two of the upper state vibronic levels involved had not been observed previously. The data and analysis indicate the electronic wavefunction character changes with bending vibrational excitation in the ground state and provide avenues for future measurements of reactivity of the radical as a function of vibrational excitation.« less
Le, A T.; Gross, Eisen C.; Hall, Gregory E.; ...
2018-05-15
Here, we report the observation and analysis of spectra in part of the near-infrared spectrum of C 2H, originating in rotational levels in the ground and lowest two excited bending vibrational levels of the groundmore » $$\\tilde{X}$$ 2Σ+ state. In the analysis, we have combined present and previously reported high resolution spectroscopic data for the lower levels involved in the transitions to determine significantly improved molecular constants to describe the fine and hyperfine split rotational levels of the radical in the zero point, v 2 = 1 and the 2Σ+ component of v 2 = 2. Two of the upper state vibronic levels involved had not been observed previously. The data and analysis indicate the electronic wavefunction character changes with bending vibrational excitation in the ground state and provide avenues for future measurements of reactivity of the radical as a function of vibrational excitation.« less
Eddy diffusivity of quasi-neutrally-buoyant inertial particles
NASA Astrophysics Data System (ADS)
Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea
2018-04-01
We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.
Rotationally Vibrating Electric-Field Mill
NASA Technical Reports Server (NTRS)
Kirkham, Harold
2008-01-01
A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.
Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant
NASA Astrophysics Data System (ADS)
Garattini, Remo
2012-07-01
Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.
NASA Astrophysics Data System (ADS)
Choi, Jung Bum
Far infrared (FIR) magneto-transmission studies of n-type Hg_{1-x}Cd _{x}Te (x = 0.198, 0.204, 0.224, 0.237, 0.270) for temperatures down to 1.5K and magnetic fields up to 9T in Voigt and Faraday geometries have been performed. Magneto-optical transitions of donor bound electrons are observed; including the (000) --> (001) and (010) --> (01k_{z}) in the Voigt geometry, and the (000) --> (110) in the Faraday geometry. These identifications are confirmed by their resonance positions, selection rules, and temperature dependence. The experimental observations are consistent with calculations of resonance positions and lineshapes based on the hydrogenic donor model including central cell effects. This work confirms the donor bound electronic ground state for Hg_{1-x}Cd_{x} Te. The magneto-transport and FIR spectroscopy have been combined to probe the nature of the impurity band in the vicinity of the magnetic field induced metal-insulator transition. The results obtained in Hg_ {1-x}Cd_{x}Te and InSb show the persistance of the (000) --> (110) impurity transition through the metal-insulator critical field. This observation demonstrates the existence of the metallic impurity band which is split off from the conduction band. In the studies of the critical behavior of InSb, the conductivity measured for temperatures down to 0.45K shows a dominant linear dependence on temperature near the transition field. Furthermore, the zero-temperature extrapolated conductivity was found to drop continuously to zero at the transition field with a critical exponent of nu = 1.07 +/- 0.07.
Dynamical transition for a particle in a squared Gaussian potential
NASA Astrophysics Data System (ADS)
Touya, C.; Dean, D. S.
2007-02-01
We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.
Pushing particles in extreme fields
NASA Astrophysics Data System (ADS)
Gordon, Daniel F.; Hafizi, Bahman; Palastro, John
2017-03-01
The update of the particle momentum in an electromagnetic simulation typically employs the Boris scheme, which has the advantage that the magnetic field strictly performs no work on the particle. In an extreme field, however, it is found that onerously small time steps are required to maintain accuracy. One reason for this is that the operator splitting scheme fails. In particular, even if the electric field impulse and magnetic field rotation are computed exactly, a large error remains. The problem can be analyzed for the case of constant, but arbitrarily polarized and independent electric and magnetic fields. The error can be expressed in terms of exponentials of nested commutators of the generators of boosts and rotations. To second order in the field, the Boris scheme causes the error to vanish, but to third order in the field, there is an error that has to be controlled by decreasing the time step. This paper introduces a scheme that avoids this problem entirely, while respecting the property that magnetic fields cannot change the particle energy.
Geometric frustration and compatibility conditions for two-dimensional director fields.
Niv, Idan; Efrati, Efi
2018-01-17
Bent core (or banana shaped) liquid-crystal-forming-molecules locally favor an ordered state of zero splay and constant bend. Such a state, however, cannot be realized in the plane and the resulting liquid-crystalline phase is frustrated and must exhibit some compromise of these two mutually contradicting local intrinsic tendencies. This constitutes one of the most well-studied examples in which the intrinsic geometry of the constituents of a material gives rise to a geometrically frustrated assembly. Such geometric frustration is not only natural and ubiquitous but also leads to a striking variety of morphologies of ground states and exotic response properties. In this work we establish the necessary and sufficient conditions for two scalar functions, s and b to describe the splay and bend of a director field in the plane. We generalize these compatibility conditions for geometries with non-vanishing constant Gaussian curvature, and provide a reconstruction formula for the director field depending only on the splay and bend fields and their derivatives. Finally, we discuss optimal compromises for simple incompatible cases where the locally preferred values of the splay and bend cannot be simultaneously achieved.
Two-dimensional Topology of the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III; Blanton, Michael; Tegmark, Max; Weinberg, David H.; Bahcall, N.; Brinkmann, J.; York, D.
2002-12-01
We present the topology of a volume-limited sample of 11,884 galaxies, selected from an apparent magnitude limited sample of over 100,000 galaxies observed as part of the Sloan Digital Sky Survey (SDSS). The data currently cover three main regions on the sky: one in the Galactic north and one in the south, both at zero degrees declination, and one area in the north at higher declination. Each of these areas covers a wide range of survey longitude but a narrow range of survey latitude, allowing the two-dimensional genus to be measured. The genus curves of the SDSS subsamples are similar, after appropriately normalizing these measurements for the different areas. We sum the genus curves from the three areas to obtain the total genus curve of the SDSS. The total curve has a shape similar to the genus curve derived from mock catalogs drawn from the Hubble volume ΛCDM simulation and is similar to that of a Gaussian random field. Likewise, comparison with the genus of the Two-Degree Field Galaxy Redshift Survey, after normalization for the difference in area, reveals remarkable similarity in the topology of these samples. We test for the effects of galaxy-type segregation by splitting the SDSS data into thirds, based on the u*-r* colors of the galaxies, and measure the genus of the reddest and bluest subsamples. This red/blue split in u*-r* is essentially a split by morphology, as explained by Strateva and coworkers. We find that the genus curve for the reddest galaxies exhibits a ``meatball'' shift of the topology-reflecting the concentration of red galaxies in high-density regions-compared to the bluest galaxies and the full sample, in agreement with predictions from simulations.
An inverse problem for Gibbs fields with hard core potential
NASA Astrophysics Data System (ADS)
Koralov, Leonid
2007-05-01
It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in Rd). In this paper we consider a converse problem. Namely, we show that for a sufficiently small constant ρ¯1 and a sufficiently small function ρ¯2(x), x ∈Rd, that is equal to zero in a neighborhood of the origin, there exist a hard core pair potential and a value of activity such that ρ¯1 is the density and ρ¯2 is the pair correlation function of the corresponding Gibbs field.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Vanleer, Bram
1991-01-01
The accuracy of various numerical flux functions for the inviscid fluxes when used for Navier-Stokes computations is studied. The flux functions are benchmarked for solutions of the viscous, hypersonic flow past a 10 degree cone at zero angle of attack using first order, upwind spatial differencing. The Harten-Lax/Roe flux is found to give a good boundary layer representation, although its robustness is an issue. Some hybrid flux formulas, where the concepts of flux-vector and flux-difference splitting are combined, are shown to give unsatisfactory pressure distributions; there is still room for improvement. Investigations of low diffusion, pure flux-vector splittings indicate that a pure flux-vector splitting can be developed that eliminates spurious diffusion across the boundary layer. The resulting first-order scheme is marginally stable and not monotone.
Observation of the hyperfine spectrum of antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-08-02
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Observation of the hyperfine spectrum of antihydrogen
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-08-01
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
NASA Astrophysics Data System (ADS)
Hemdan, A.
2016-07-01
Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.
Hemdan, A
2016-07-05
Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238nm or from their first order spectra at 253nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240nm and 238nm, respectively, or from their first order spectra at 214nm and 253nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsoi, S.; Cardona, M.; Lauck, R.; Alawadhi, H.; Lu, X.; Grimsditch, M.; Ramdas, A. K.
2005-03-01
Optical properties of ZnO, a wide gap semiconductor with wurtzite structure, have generated renewed interest in the material in the context of opto-electronic phenomena and applications. The A, B, and C excitons of ZnO, arising from the combined effects of crystal field and spin-orbit splittings of the valence band, are investigated in the temperature range 5- 400 K, exploiting electro-, photo-, and wavelength-modulated reflectivity. The specimens studied have natural isotopic composition. The temperature dependence of the A, B, and C excitonic band gaps, fitted with a two harmonic oscillator modelootnotetextM. Cardona, Phys. Status. Solidi b 220, 5 (2000); R. Pä'ssler, J. Appl. Phys. 89, 6235 (2001) following Manj'on et al.ootnotetextF. J. Manj'on et al., Solid State Commun. 128, 35 (2003), yields the magnitudes of the zero-point renormalizations 262 meV (A), 227 meV (B), and 249 meV (C), respectively. Isotopically controlled ZnO is currently being investigated to determine the isotopic mass dependence of the zero-point renormalizations.
NASA Astrophysics Data System (ADS)
Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia
2017-12-01
The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.
NASA Astrophysics Data System (ADS)
Biktagirov, T. B.; Smirnov, A. N.; Davydov, V. Yu.; Doherty, M. W.; Alkauskas, A.; Gibson, B. C.; Soltamov, V. A.
2017-08-01
The negatively charged nitrogen-vacancy (NV-) center in diamond is a promising candidate for many quantum applications. Here, we examine the splitting and broadening of the center's infrared (IR) zero-phonon line (ZPL). We develop a model for these effects that accounts for the strain induced by photodependent microscopic distributions of defects. We apply this model to interpret observed variations of the IR ZPL shape with temperature and photoexcitation conditions. We identify an anomalous temperature-dependent broadening mechanism and that defects other than the substitutional nitrogen center significantly contribute to strain broadening. The former conclusion suggests the presence of a strong Jahn-Teller effect in the center's singlet levels and the latter indicates that major sources of broadening are yet to be identified. These conclusions have important implications for the understanding of the center and the engineering of diamond quantum devices. Finally, we propose that, once the major sources of broadening are identified, the IR ZPL has the potential to be a sensitive spectroscopic tool for probing microscopic strain fields and performing defect tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.R.; Budil, D.E.; Gast, P.
The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative tomore » monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, L. G.; Lawson, M.; Onyszczak, M.
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
Steele, L. G.; Lawson, M.; Onyszczak, M.; ...
2017-11-28
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
Hadron mass and decays constant predictions of the valence approximation to lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingarten, D.
1993-05-01
A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less
Isbister, Geoffrey K; Ang, Karyn; Gorman, Kieron; Cooper, Joyce; Mostafa, Ahmed; Roberts, Michael S
2016-11-01
Acute beta-blocker overdose can cause severe cardiac dysfunction. Chronic toxicity is rare but potentially severe. We report therapeutic dosing of metoprolol resulting in unusual pharmacokinetics and toxicity, given high-dose insulin therapy for treatment. A 90-year-old female presented with hypotension, tachycardia and severe cardiac dysfunction after commencing a rapidly increasing metoprolol dose of 250 mg split daily. She was admitted to intensive care and given high-dose insulin therapy (10 U/kg/h), noradrenaline, adrenaline and dobutamine for severe cardiac dysfunction (cardiac index, 0.76 L/min/m 2 ). She developed acute renal failure, ischaemic hepatitis and disseminated intravascular coagulopathy. Inotropes and high-dose insulin were weaned over four days with complete recovery. Metoprolol was quantified with liquid chromatography-tandem mass spectrometry and concentration-time data were analysed using MONOLIX ® vs 4.3 ( www.lixoft.com ). Admission metoprolol concentration was 2.39 μg/mL (therapeutic reference range: 0.035-0.5 μg/mL). Data best fitted a one compartmental model with Michaelis-Menten kinetics and zero order elimination at high concentrations. Final parameter estimates were V, 63.4 L, maximum rate [V m ], 9.57 mg h -1 , Michaelis constant [K m ], 1.97 mg L -1 . Predicted elimination half-life decreased from 20 h over time until there was first order elimination with a half-life 9 h. The time course of cardiac dysfunction was longer than acute overdose but consistent with prolonged zero order elimination of metoprolol, suggesting the patient was a poor CYP2D6 metaboliser. High-dose insulin euglycaemia appeared to be effective in combination with vasoconstrictors/inotropes.
Surface Plasmon Waves on Thin Metal Films.
NASA Astrophysics Data System (ADS)
Craig, Alan Ellsworth
Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.
Can compactifications solve the cosmological constant problem?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertzberg, Mark P.; Center for Theoretical Physics, Department of Physics,Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139; Masoumi, Ali
2016-06-30
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain whymore » Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.« less
NASA Astrophysics Data System (ADS)
Nguyen, Minh D.; Houwman, Evert; Dekkers, Matthijn; Schlom, Darrell; Rijnders, Guus
2017-07-01
All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly.
Preferential emission into epsilon-near-zero metamaterial [Invited
Galfsky, Tal; Sun, Zheng; Jacob, Zubin; ...
2015-11-23
We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnOmore » on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser.« less
NASA Astrophysics Data System (ADS)
Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence
2015-09-01
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115-121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958-1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251-317 (1996); and F. Mottez, Phys. Plasmas 10, 1541-1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139-8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.
Zero energy states at a normal-metal/cuprate-superconductor interface probed by shot noise
NASA Astrophysics Data System (ADS)
Negri, O.; Zaberchik, M.; Drachuck, G.; Keren, A.; Reznikov, M.
2018-06-01
We report measurements of the current noise generated in the optimally doped, x =0.15 , Au-La2-xSrxCuO4 junctions. For high transmission junctions on a (110) surface, we observed a split zero-bias conductance peak (ZBCP), accompanied by enhanced shot noise. We observed no enhanced noise neither in low-transmission junctions on a (110) surface nor in any junction on a (100) surface. We attribute the enhanced noise to Cooper pair transport through the junctions.
Transient establishment of the wavefronts for negative, zero, and positive refraction.
Zhao, Wenjuan; Wu, Qiang; Wang, Ride; Gao, Jianshun; Lu, Yao; Zhang, Qi; Qi, Jiwei; Zhang, Chunling; Pan, Chongpei; Rupp, Romano; Xu, Jingjun
2018-01-22
We quantitatively demonstrate transient establishment of wavefronts for negative, zero, and positive refraction through a wedge-shaped metamaterial consisting of periodically arranged split-ring resonators and metallic wires. The wavefronts for the three types of refractions propagate through the second interface of the wedge along positive refraction angles at first, then reorganize, and finally propagate along the effective refraction angles after a period of establishment time respectively. The establishment time of the wavefronts prevents violating causality or superluminal propagation for negative and zero refraction. The establishment time for negative or zero refraction is longer than that for positive refraction. For all three refraction processes, transient establishment processes precede the establishment of steady propagation. Moreover, some detailed characters are proven in our research, including infinite wavelength, uniform phase inside the zero-index material, and the phase velocity being antiparallel to the group velocity in the negative-index material.
Effect of chiral symmetry on chaotic scattering from Majorana zero modes.
Schomerus, H; Marciani, M; Beenakker, C W J
2015-04-24
In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry exists that protects overlapping zero modes from splitting up. This symmetry is operative in a superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero mode. These properties are quantified by the Wigner-Smith time-delay matrix Q=-iℏS^{†}dS/dE, the Hermitian energy derivative of the scattering matrix, related to the density of states by ρ=(2πℏ)^{-1}TrQ. We compute the probability distribution of Q and ρ, dependent on the number ν of Majorana zero modes, in the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.
NASA Astrophysics Data System (ADS)
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
NASA Astrophysics Data System (ADS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-04-01
The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.
Field-dependence of AC susceptibility in titanomagnetites
Jackson, M.; Moskowitz, B.; Rosenbaum, J.; Kissel, Catherie
1998-01-01
AC susceptibility measurements as a function of field amplitude Hac and of frequency show a strong field dependence for a set of synthetic titanomagnetites (Fe3-xTixO4) and for certain basalts from the SOH-1 Hawaiian drill hole and from Iceland. In-phase susceptibility is constant below fields of about 10-100 A/m, and then increases by as much as a factor of two as Hsc is increased to 2000 A/m. Both the initial field-independent susceptibilities and field-dependence of susceptibility are systematically related to composition: initial susceptibility is 3 SI for a single-crystal sphere of TMO (x = 0) and decreases with increasing titanium content; field-dependence is nearly zero for TM0 and increases systematically to a maximum near TM60 (x = 0.6). This field dependence can in some cases be mistaken for frequency dependence, and leaf to incorrect interpretations of magnetic grain size and composition when titanomagnetite is present.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Sato, Hikaru
2018-04-01
Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.
Two-photon exchange correction to the hyperfine splitting in muonic hydrogen
NASA Astrophysics Data System (ADS)
Tomalak, Oleksandr
2017-12-01
We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.
Field by field hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1993-01-01
A new and general approach to upwind splitting is presented. The design principle combines the robustness of flux vector splitting schemes in the capture of nonlinear waves and the accuracy of some flux difference splitting schemes in the resolution of linear waves. The new schemes are derived following a general hybridization technique performed directly at the basic level of the field by field decomposition involved in FDS methods. The scheme does not use a spatial switch to be tuned up according to the local smoothness of the approximate solution.
Hidden symmetries of the Kerr metric and Goldstone’s theorem
NASA Astrophysics Data System (ADS)
Penna, Robert F.
2011-12-01
Perturbations of the Kerr metric admit a spectrum of massless excitations, which we interpret as Goldstone modes coming from the metric’s broken spherical symmetry. The zero-frequency mode is related to the conformal Yano-Killing tensor which encodes Carter’s constant and the Killing vectors of the spacetime. The modes are described by a conformal field theory, which becomes two-dimensional Liouville theory in the near-horizon limit. Directly counting the quantum microstates of this theory reproduces the Bekenstein-Hawking area law.
Lifted worm algorithm for the Ising model
NASA Astrophysics Data System (ADS)
Elçi, Eren Metin; Grimm, Jens; Ding, Lijie; Nasrawi, Abrahim; Garoni, Timothy M.; Deng, Youjin
2018-04-01
We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energylike observable on both the complete graph and toroidal grids, and compare our findings with reversible algorithms such as the Prokof'ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves the dynamic exponent of the energylike observable on the complete graph and leads to a significant constant improvement on toroidal grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, M.; Onishi, H.; Okutani, A.
Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less
Matsuda, M.; Onishi, H.; Okutani, A.; ...
2017-07-25
Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less
NASA Astrophysics Data System (ADS)
Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.
2017-07-01
BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands,more » the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.« less
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
NASA Astrophysics Data System (ADS)
Ahlawat, Anju; Satapathy, S.; Deshmukh, Pratik; Shirolkar, M. M.; Sinha, A. K.; Karnal, A. K.
2017-12-01
In this letter, studies on structural transitions and the effect of electric field poling on magnetoelectric (ME) properties in 0.65Pb (Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT)/NiFe2O4 (NFO) nanocomposites are reported. The composite illustrates dramatic changes in the NFO crystal structure across ferroelectric transition temperature [Curie temperature (Tc) ˜ 450 K] of PMN-PT, while pure NFO does not exhibit any structural change in the temperature range (300 K-650 K). Synchrotron based X-ray diffraction analysis revealed the splitting of NFO peaks across the Tc of PMN-PT in the PMN-PT/NFO composite. Consequently, the anomalies are observed in temperature dependent magnetization of the NFO phase at the Tc of PMN-PT, establishing ME coupling in the PMN-PT/NFO composite. Furthermore, the composite exhibits drastic modification in ME coupling under electrically poled and unpoled conditions. A large self-biased ME effect characterized by non-zero ME response at zero Hbias was observed in electrically poled composites, which was not observed in unpoled PMN-PT/NFO. These results propose an alternative mechanism for intrinsic converse ME effects. The maximum magnetoelectric output was doubled after electrical poling. The observed self-biased converse magnetoelectric effect at room temperature provides potential applications in electrically controlled memory devices and magnetic flux control devices.
Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio
2014-11-07
Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.
Unusual Magnetic Response of an S = 1 Antiferromagetic Linear-Chain Material
NASA Astrophysics Data System (ADS)
Xia, Jian-Sheng; Ozarowski, Andrzej; Spurgeon, Peter M.; Graham, Adora G.; Manson, Jamie L.; Meisel, Mark W.
2018-03-01
An S = 1 antiferromagnetic polymeric chain, [Ni(HF2)(3-Clpy)4]BF4 (py = pyridine), also referred to as NBCT, has previously been identified to have intrachain, nearest-neighbor antiferromagnetic interaction strength J/k B = 4.86 K and single-ion anisotropy (zero-field splitting) D/k B = 4.3 K, so the ratio D/J = 0.88 places this system close to the D/J ≈ 1 gapless critical point between the topologically distinct Haldane and Large-D phases. The magnetization was studied over a range of temperatures, 50 mK ≤ T ≤ 1 K, and magnetic fields, B ≤ 10 T, in an attempt to identify a critical field, B c, associated with the closing of a gap, and the present work places an upper bound of B c ≤ (35 ± 10) mT. At higher fields, the observed magnetic response is qualitatively similar to the “excess” signal observed by other workers at 0.5 K and below 3 T. The high-field (up to 14.5 T), multi-frequency (nominally 200 GHz to 425 GHz) ESR spectra at 3 K reveal several features associated with the sample.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
NASA Astrophysics Data System (ADS)
Fábián, G.; Makk, P.; Madsen, M. H.; Nygârd, J.; Schönenberger, C.; Baumgartner, A.
2016-11-01
We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find two sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transitions between singlet and triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin based Bell inequalities.
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
One‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts
Li, Jun
2016-01-01
Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth‐abundant materials and cost‐effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one‐dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth‐abundant materials including metal‐based and metal‐free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:28331791
Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates
NASA Astrophysics Data System (ADS)
Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.
2016-03-01
The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.
NASA Astrophysics Data System (ADS)
Becker, D.; Reuter, M.
2014-11-01
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a 'bi-metric' ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein-Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the non-invariant functional RG equation. As an application, we compute the scale dependent spectral dimension which governs the fractal properties of the effective QEG spacetimes at the bi-metric level. Earlier tests of the Asymptotic Safety conjecture almost exclusively employed 'single-metric truncations' which are blind towards the difference between quantum and background fields. We explore in detail under which conditions they can be reliable, and we discuss how the single-metric based picture of Asymptotic Safety needs to be revised in the light of the new results. We shall conclude that the next generation of truncations for quantitatively precise predictions (of critical exponents, for instance) is bound to be of the bi-metric type.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Affandi, Y.; Absor, M. A. U.; Abraha, K.
2018-04-01
Tungsten dichalcogenides WX 2 (X=S, Se) monolayer (ML) attracted much attention due their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX 2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS2 and WSe2 ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting – indirect semiconducting – metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX 2 ML, which has very important implications in designing future spintronic devices.
Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force
NASA Astrophysics Data System (ADS)
Goswami, Partha
2016-05-01
We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic quantity, it has the distinct advantage of the many-body effect inclusion seamlessly. We find the result that for the nontrivial susceptibility and polarizability values of the sheet and micro-particle, respectively, there is crossover between attractive and repulsive behavior. The transition depends only on these response functions apart from the ratio of the film thickness and the micro-particle separation (D/d) and temperature. Furthermore, there is a longitudinal electric field induced topological insulator (TI) to spin-valley-polarized metal (SVPM) transition in silicene, which is also referred to as the topological phase transition (TPT). The low-energy SVP carriers at TPT possess gapless (massless) and gapped (massive) energy spectra close to the two nodal points in the Brillouin zone with maximum spin-polarization. We find that the magnitude of the CPF at a given ratio of the film thickness and the separation between the micro-particle and the film are greater at TPT than at the TI and trivial insulator phases.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-07-01
The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.
NASA Astrophysics Data System (ADS)
Kozyrev, S. P.
2018-04-01
Specific features of the properties of Ga-P lattice vibrations have been investigated using the percolation model of a mixed Ga1 - x Al x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga1 - x Al x P a percolation splitting of δ 13 cm-1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm-1 in the Ga1 - x Al x P ( x < 0.4) alloy.
Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system
NASA Astrophysics Data System (ADS)
Wang, Cheng-Zhen; Xu, Hong-Ya; Huang, Liang; Lai, Ying-Cheng
2017-09-01
Recently, solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal of attention. In these materials, the energy band contains a pair of Dirac cones and a flatband through the connecting point of the cones. As the "caging" of carriers with a zero group velocity, the flatband itself has zero conductivity. However, in a nonequilibrium situation where a constant electric field is suddenly switched on, the flatband can enhance the resulting current in both the linear and nonlinear response regimes through distinct physical mechanisms. Using the (2 +1 )-dimensional pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in the weak field regime, the interband current is about twice larger than that for pseudospin-1/2 system due to the interplay between the flatband and the negative band, with the scaling behavior determined by the Kubo formula. In the strong field regime, the intraband current is √{2 } times larger than that in the pseudospin-1/2 system, due to the additional contribution from particles residing in the flatband. In this case, the current and field follow the scaling law associated with Landau-Zener tunneling. These results provide a better understanding of the role of the flatband in nonequilibrium transport and are experimentally testable using electronic or photonic systems.
Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator
NASA Astrophysics Data System (ADS)
Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.
2015-03-01
Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.
Novel High Cooperativity Photon-Magnon Cavity QED
NASA Astrophysics Data System (ADS)
Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel
Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.
Temperature-Induced Topological Phase Transition in HgTe Quantum Wells
NASA Astrophysics Data System (ADS)
Kadykov, A. M.; Krishtopenko, S. S.; Jouault, B.; Desrat, W.; Knap, W.; Ruffenach, S.; Consejo, C.; Torres, J.; Morozov, S. V.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.
2018-02-01
We report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field Bc is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of Bc, we directly extract the critical temperature Tc at which the bulk band gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.
Estimating reaction rate coefficients within a travel-time modeling framework.
Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J
2011-01-01
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
BAROCLINIC INSTABILITY IN THE SOLAR TACHOCLINE. II. THE EADY PROBLEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, Peter A., E-mail: gilman@ucar.edu
2016-02-20
We solve the nongeostrophic baroclinic instability problem for the tachocline for a continuous model with a constant vertical rotation gradient (the Eady problem), using power series generated by the Frobenius method. The results confirm and greatly extend those from a previous two-layer model. For effective gravity G independent of height, growth rates and ranges of unstable longitudinal wavenumbers m and latitudes increase with decreasing G. As with the two-layer model, the overshoot tachocline is much more unstable than the radiative tachocline. The e-folding growth times range from as short as 10 days to as long as several years, depending on latitude,more » G, and wavenumber. For a more realistic effective gravity that decreases linearly from the radiative interior to near zero at the top of the tachocline, we find that only m = 1, 2 modes are unstable, with growth rates somewhat larger than for constant G, with the same value as at the bottom of the tachocline. All results are the same whether we assume that the vertical velocity or the perturbation pressure is zero at the top of the layer; this is a direct consquence of not employing the geostrophic assumption for perturbations. We explain most of the properties of the instability in terms of the Rossby deformation radius. We discuss further improvements in the realism of the model, particularly adding toroidal fields that vary in height, and including latitudinal gradients of both rotation and toroidal fields.« less
Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, R; Lu, C; Luo, Jian
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
17O NMR Investigation of Water Structure and Dynamics
Keeler, Eric G.; Michaelis, Vladimir K.; Griffin, Robert G.
2017-01-01
The structure and dynamics of the bound water in barium chlorate monohydrate were studied with 17O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. 17O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the 17O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of 1H decoupling, we observe a well-resolved 1H–17O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two 1H–17O dipoles and the 1H–1H dipole. PMID:27454747
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA
Gibson, G.; Jordan, W.C.; Lauer, E.J.
1963-04-01
The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)
Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites
NASA Astrophysics Data System (ADS)
Odenthal, Patrick; Talmadge, William; Gundlach, Nathan; Wang, Ruizhi; Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Valy Vardeny, Z.; Li, Yan S.
2017-09-01
Hybrid organic-inorganic perovskites have emerged as a new class of semiconductors that exhibit excellent performance as active layers in photovoltaic solar cells. These compounds are also highly promising materials for the field of spintronics due to their large and tunable spin-orbit coupling, spin-dependent optical selection rules, and their predicted electrically tunable Rashba spin splitting. Here we demonstrate the optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3-x. Time-resolved Faraday rotation measurement in zero magnetic field reveals unexpectedly long spin lifetimes exceeding 1 ns at 4 K, despite the large spin-orbit couplings of the heavy lead and iodine atoms. The quantum beating of exciton states in transverse magnetic fields shows two distinct frequencies, corresponding to two g-factors of 2.63 and -0.33, which we assign to electrons and holes, respectively. These results provide a basic picture of the exciton states in hybrid perovskites, and suggest they hold potential for spintronic applications.
Giddings, J C
1989-10-20
A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.
A NEW PRINCIPLE FOR ELECTROMAGNETIC CATHETER FLOW METERS*
Kolin, Alexander
1969-01-01
An electromagnetic catheter flow meter is described in which the magnetic field is generated by two parallel bundles of wire carrying equal currents in opposite directions. The electrodes are fixed centrally to the insulated wire bundles that generate the magnetic field. The flow sensor is flexible, resembling a split catheter. The flow transducer is designed to constrict as it is introduced through a branch artery and to expand in the main artery over the span of its diameter. The principle is suitable for branch flow measurement as well as for measurement of flow in a major artery or vein by the same transducer. A special method of guiding the electrode wires results in a zero base line at zero flow for the entire range of diameters accommodating the field generating coil. The electrodes could be used in this configuration with a magnetic field generated by coils external to the patient for blood flow measurements with a catheter of reduced gauge. The transducer can be made smaller in circumference than those employed in other electromagnetic flow measuring catheter devices. This feature is of special value for envisaged clinical uses (percutaneous introduction) to minimize surgical intervention. The velocity sensitivity of the flow transducer is a logarithmic function of the tube diameter. The flow throughout the entire tube cross section contributes to the flow signal. It is sufficient to calibrate the transducer by one measurement in a dielectric conduit of less than maximum diameter. The sensitivity at other diameters follows from a logarithmic plot. The diameter of the blood vessel is outlined by the transducer in radiograms, thus obviating the need for radiopaque materials. The principle was demonstrated by measurements in vitro. Experiments in vivo, derivation of equations, and construction details will be published elsewhere. Images PMID:5257127
Magnetic contributions in Bekenstein type models
NASA Astrophysics Data System (ADS)
Kraiselburd, Lucila; Castillo, Florencia L.; Mosquera, Mercedes E.; Vucetich, Héctor
2018-02-01
In this work, we analyze the spatial and time variation of the fine structure constant (α ) upon the theoretical framework developed by Bekenstein (Phys. Rev. D 66, 123514 (2002), 10.1103/PhysRevD.66.123514). We have computed the field ψ related to α at first order of the weak-field approximation and have also improved the estimation of the nuclear magnetic energy and, therefore, their contributions to the source term in the equation of motion of ψ . We obtained that the results are similar to the ones published in L. Kraiselburd and H. Vucetich, Int. J. Mod. Phys. E 20, 101 (2011) which were computed using the zero order of the approximation, showing that one can neglect the first order contribution to the variation of the fine structure constant. Through the comparison between our theoretical results and the observational data of the Eötvös-type experiments or the time variation of α over the cosmological time scale, we set constraints on the free parameter of the Bekenstein model, namely the Bekenstein length.
Analysis of Plasma Detachment through Magnetic Nozzle via Canonical Field Theory
NASA Astrophysics Data System (ADS)
Takagaki, Yu
In this paper, I have investigated the mechanism of plasma detachment through magnetic nozzle via canonical field theory, especially by considering canonical vorticity flux Psisigma contour and dissipative force vector Rsigma. As one of the most recent experimental proofs of plasma detachment, Olsen et al., observed and investigated three key indications of plasma detachment. However, after solving for numerical fits with their experimental data, I found that constant ion flux lines did not actually separate from constant magnetic flux lines. Thus, their first key indication becomes incorrect now. Whereas, my analytical results are consistent with the other two key indications. At the beginning, plasma detached from canonical vorticity flux contours due to non-zero dissipative force and attached on magnetic flux lines instead. However, vector Rsigma [is asymptotically equal to] 0 force makes plasma re-attach on canonical vorticity flux contours around the plume edge region. As the most significant and notable result through my analysis, I confirmed the existence of returning plasma flow around the plume edge region.
On Finsler spacetimes with a timelike Killing vector field
NASA Astrophysics Data System (ADS)
Caponio, Erasmo; Stancarone, Giuseppe
2018-04-01
We study Finsler spacetimes and Killing vector fields taking care of the fact that the generalised metric tensor associated to the Lorentz–Finsler function L is in general well defined only on a subset of the slit tangent bundle. We then introduce a new class of Finsler spacetimes endowed with a timelike Killing vector field that we call stationary splitting Finsler spacetimes. We characterize when a Finsler spacetime with a timelike Killing vector field is locally a stationary splitting. Finally, we show that the causal structure of a stationary splitting is the same of one of two Finslerian static spacetimes naturally associated to the stationary splitting.
NASA Astrophysics Data System (ADS)
Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min
2018-02-01
We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Tunneling interstitial impurity in iron-chalcogenide-based superconductors
NASA Astrophysics Data System (ADS)
Huang, Huaixiang; Zhang, Degang; Gao, Yi; Ren, Wei; Ting, C. S.
2016-02-01
A pronounced local in-gap zero-energy bound state (ZBS) has been observed by recent scanning tunneling microscopy experiments on the interstitial Fe impurity (IFI) and its nearest-neighboring sites in an FeTe0.5Se0.5 superconducting (SC) compound. By introducing an impurity mechanism, the so-called tunneling impurity, and based on the Bogoliubov-de Gennes equations, we investigate the low-lying energy states of the IFI and the underlying Fe plane. The calculations are performed in the presence as well as in the absence of a magnetic field. We find the IFI-induced ZBS does not shift or split in a magnetic field as long as the tunneling parameter between the IFI and the Fe plane is sufficiently small and the Fe plane is deep in the SC state. Our results are in good agreement with experiments. We also show that in the underdoped cases, modulation of the spin density wave or charge density wave will suppress the intensity of the ZBS on the Fe plane in a vortex state.
Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X.
2017-10-01
The intricate interplay between optically dark and bright excitons governs the light-matter interaction in transition metal dichalcogenide monolayers. We have performed a detailed investigation of the "spin-forbidden" dark excitons in WSe2 monolayers by optical spectroscopy in an out-of-plane magnetic field Bz. In agreement with the theoretical predictions deduced from group theory analysis, magnetophotoluminescence experiments reveal a zero-field splitting δ =0.6 ±0.1 meV between two dark exciton states. The low-energy state is strictly dipole forbidden (perfectly dark) at Bz=0 , while the upper state is partially coupled to light with z polarization ("gray" exciton). The first determination of the dark neutral exciton lifetime τD in a transition metal dichalcogenide monolayer is obtained by time-resolved photoluminescence. We measure τD˜110 ±10 ps for the gray exciton state, i.e., two orders of magnitude longer than the radiative lifetime of the bright neutral exciton at T =12 K .
Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; ...
2014-12-09
In this research, high-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and novel particles. In pursuit of this possibility, we fabricated high critical-temperature (T c ~ 85 K) superconductor/topological insulator (Bi₂Sr₂CaCu₂O₈₊ δ/Bi₂Te₂Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can stillmore » be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP.« less
NASA Astrophysics Data System (ADS)
Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.
2014-06-01
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
Low-temperature elastic properties of YbSbPt probed by ultrasound measurements
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.
2018-03-01
The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.
Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.
Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin
2018-03-26
Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking the first quantification of a k=8 term in a spin cluster. The unique and exact mapping MSH→GSH should be of general importance for weakly-coupled systems; it represents a mandatory ultimate step for comparing theoretical predictions (e.g. from quantum-chemical calculations) to ZFS, hyperfine or g-tensors from spectral fittings. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dalaloyan, Arina; Qi, Mian; Ruthstein, Sharon; Vega, Shimon; Godt, Adelheid; Feintuch, Akiva; Goldfarb, Daniella
2015-07-28
Gd(III) complexes have emerged as spin labels for distance determination in biomolecules through double-electron-electron resonance (DEER) measurements at high fields. For data analysis, the standard approach developed for a pair of weakly coupled spins with S = 1/2 was applied, ignoring the actual properties of Gd(III) ions, i.e. S = 7/2 and ZFS (zero field splitting) ≠ 0. The present study reports on a careful investigation on the consequences of this approach, together with the range of distances accessible by DEER with Gd(III) complexes as spin labels. The experiments were performed on a series of specifically designed and synthesized Gd-rulers (Gd-PyMTA-spacer-Gd-PyMTA) covering Gd-Gd distances of 2-8 nm. These were dissolved in D2O-glycerol-d8 (0.03-0.10 mM solutions) which is the solvent used for the corresponding experiments on biomolecules. Q- and W-band DEER measurements, followed by data analysis using the standard data analysis approach, used for S = 1/2 pairs gave the distance-distribution curves, of which the absolute maxima agreed very well with the expected distances. However, in the case of the short distances of 2.1 and 2.9 nm, the distance distributions revealed additional peaks. These are a consequence of neglecting the pseudo-secular term in the dipolar Hamiltonian during the data analysis, as is outlined in a theoretical treatment. At distances of 3.4 nm and above, disregarding the pseudo-secular term leads to a broadening of a maximum of 0.4 nm of the distance-distribution curves at half height. Overall, the distances of up to 8.3 nm were determined, and the long evolution time of 16 μs at 10 K indicates that a distance of up to 9.4 nm can be accessed. A large distribution of the ZFS parameter, D, as is found for most Gd(III) complexes in a frozen solution, is crucial for the application of Gd(III) complexes as spin labels for distance determination via Gd(III)-Gd(III) DEER, especially for short distances. The larger ZFS of Gd-PyMTA, in comparison to that of Gd-DOTA, makes Gd-PyMTA a better label for short distances.
Global Well-Posedness of the Incompressible Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Cai, Yuan; Lei, Zhen
2018-06-01
This paper studies the Cauchy problem of the incompressible magnetohydro dynamic systems with or without viscosity ν. Under the assumption that the initial velocity field and the displacement of the initialmagnetic field froma non-zero constant are sufficiently small in certain weighted Sobolev spaces, the Cauchy problem is shown to be globally well-posed for all ν ≧ 0 and all spaces with dimension n ≧ 2. Such a result holds true uniformly in nonnegative viscosity parameters. The proof is based on the inherent strong null structure of the systems introduced by Lei (Commun Pure Appl Math 69(11):2072-2106, 2016) and the ghost weight technique introduced by Alinhac (Invent Math 145(3):597-618, 2001).
NASA Technical Reports Server (NTRS)
Sivells, James C; Spooner, Stanley H
1949-01-01
Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.
Chloride Transport in Porous Lipid Bilayer Membranes
Andreoli, Thomas E.; Watkins, Mary L.
1973-01-01
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408
NASA Astrophysics Data System (ADS)
Mazzoleni, Paolo; Matta, Fabio; Zappa, Emanuele; Sutton, Michael A.; Cigada, Alfredo
2015-03-01
This paper discusses the effect of pre-processing image blurring on the uncertainty of two-dimensional digital image correlation (DIC) measurements for the specific case of numerically-designed speckle patterns having particles with well-defined and consistent shape, size and spacing. Such patterns are more suitable for large measurement surfaces on large-scale specimens than traditional spray-painted random patterns without well-defined particles. The methodology consists of numerical simulations where Gaussian digital filters with varying standard deviation are applied to a reference speckle pattern. To simplify the pattern application process for large areas and increase contrast to reduce measurement uncertainty, the speckle shape, mean size and on-center spacing were selected to be representative of numerically-designed patterns that can be applied on large surfaces through different techniques (e.g., spray-painting through stencils). Such 'designer patterns' are characterized by well-defined regions of non-zero frequency content and non-zero peaks, and are fundamentally different from typical spray-painted patterns whose frequency content exhibits near-zero peaks. The effect of blurring filters is examined for constant, linear, quadratic and cubic displacement fields. Maximum strains between ±250 and ±20,000 με are simulated, thus covering a relevant range for structural materials subjected to service and ultimate stresses. The robustness of the simulation procedure is verified experimentally using a physical speckle pattern subjected to constant displacements. The stability of the relation between standard deviation of the Gaussian filter and measurement uncertainty is assessed for linear displacement fields at varying image noise levels, subset size, and frequency content of the speckle pattern. It is shown that bias error as well as measurement uncertainty are minimized through Gaussian pre-filtering. This finding does not apply to typical spray-painted patterns without well-defined particles, for which image blurring is only beneficial in reducing bias errors.
NASA Astrophysics Data System (ADS)
Rudowicz, Czeslaw
1982-01-01
The present work reports the theoretical considerations of the magnetocrystalline anisotropy of ferrous ions induced by tetravalent dopants in yttrium iron garnet. Using the spin Hamiltonian developed earlier by us and the molecular field (h) approximation we derive the cubic anisotropy constants K1 and K2 at zero temperature. We adopt the Alben's et al. model of twelve inequivalent Fe2+ sites in silicon-substituted yttrium iron garnet. Results are given for h = 400, 300, 200 and the spin Hamiltonian parameters with the trigonal Δ = 300, 400, 500, 600, 700 and the nontrigonal crystal field parameter Γ = 200, 300 cm-1. The agreement with the experimental K1 and K2 is quite good. The discussion reveals that the properties of the far and near sites in the two-center model can now be theoretically explained. The theoretical ratios of K1(far) to K1(near) agree well with experiment. Thus our results speak in favor of the orbital singlet rather than the doublet model assumed previously for Fe2+ in silicon- or germanium-substituted yttrium iron garnets.
Theory of charge density wave depinning by electromechanical effect
NASA Astrophysics Data System (ADS)
Quémerais, P.
2017-03-01
We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.
Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature
NASA Astrophysics Data System (ADS)
Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.
2015-11-01
The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.
NASA Astrophysics Data System (ADS)
Carvalho, M. H.; Lima, R. J. S.; Meneses, C. T.; Folly, W. S. D.; Sarmento, V. H. V.; Coelho, A. A.; Duque, J. G. S.
2016-03-01
We present a systematic study of the coercive field of CoFe2O4-SiO2 nanocomposites. The samples were prepared via the sol-gel method by using the Tetraethyl Orthosilicate as starting reagent. Results of X-ray diffraction, transmission electron microscopy, and X-ray fluorescence confirm the dispersion of the magnetic nanoparticles inside the silica matrix. In addition, the shift in the maximum of Zero-Field-Cooled curves observed by varying the weight ratio of CoFe2O4 nanoparticles to the precursor of silica is consistent with the increasing of average interparticle distances. Because our samples present a particle size distribution, we have used a generalized model which takes account such parameter to fit the experimental data of coercive field extracted from the magnetization curves as a function of applied field. Unlike most of the coercive field results reported in the literature for this material, the use of this model provided a successful description of the temperature dependence of the coercive field of CoFe2O4 nanoparticles in a wide temperature range. Surprisingly, we have observed the decreasing of the nanoparticles anisotropy constant in comparison to the bulk value expected for the material. We believe that this can be interpreted as due to both the migration of the Co2+ from octahedral to tetrahedral sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorville, Nicolas, E-mail: nicolas.dorville@lpp.polytechnique.fr; Belmont, Gérard; Aunai, Nicolas
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115–121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard methodmore » for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958–1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251–317 (1996); and F. Mottez, Phys. Plasmas 10, 1541–1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139–8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.« less
An instability of hyperbolic space under the Yang-Mills flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gegenberg, Jack; Day, Andrew C.; Liu, Haitao
2014-04-15
We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less
Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2016-03-21
The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.
Latanowicz, L
2008-01-01
Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schrödinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the temperature T(tun) only. This temperature is directly determined by the equation C(p)T=E(H) (thermal energy=activation energy), where C(p) is the molar heat capacity. Probably the cessation of the third motion is a result of the de Broglie wavelength related to this motion becoming too short. As shown recently, the potential barrier can be an obstacle for the de Broglie wave. The theoretical equations derived in this paper are compared to those known in the literature.
The variation of the fine-structure constant from disformal couplings
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.
2015-12-01
We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.
The variation of the fine-structure constant from disformal couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt
2015-12-01
We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with themore » current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.« less
NASA Astrophysics Data System (ADS)
Zad, Hamid Arian; Movahhedian, Hossein
2016-08-01
Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.
Optical properties of iron oxides
NASA Astrophysics Data System (ADS)
Musfeldt, Janice
2012-02-01
Magnetoelectric coupling in materials like multiferroics, dilute magnetic semiconductors, and topological insulators has attracted a great deal of attention, although most work has been done in the static limit. Optical spectroscopy offers a way to investigate the dynamics of charge-spin coupling, an area where there has been much less effort. Using these techniques, we discovered that charge fluctuation in LuFe2O4, the prototypical charge ordered multiferroic, has an onset well below the charge ordering transition, supporting the ``order by fluctuation'' mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field. At the same time, dramatic splitting of the LuO2 layer phonon mode is attributed to charge-rich/poor proximity effects, and its temperature dependence reveals the antipolar nature of the W layer pattern. Using optical techniques, we also discovered that α-Fe2O3, a chemically-similar parent compound and one of the world's oldest and most iconic antiferromagnetic materials, appears more red in applied magnetic field than in zero field conditions. This effect is driven by a field-induced reorientation of magnetic order. The oscillator strength lost in the color band is partially transferred to the magnon side band, a process that also reveals a new exciton pattern induced by the modified exchange coupling. Analysis of the exciton pattern exposes C2/c monoclinic symmetry in the high field phase of hematite. Taken together, these findings advance our understanding of iron-based materials under extreme conditions. [4pt] Collaborators include: X. S. Xu, P. Chen, Q. -C. Sun, T. V. Brinzari (Tennessee); S. McGill (NHMFL); J. De Groot, M. Angst, R. P. Hermann (Julich); A. D. Christianson, B. C. Sales, D. Mandrus (ORNL); A. P. Litvinchuk (Houston); J. -W. Kim (Ames); Z. Islam (Argonne); N. Lee, S. -W. Cheong (Rutgers).
Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pock, J. F. von; Salloch, D.; Qiao, G.
2016-04-07
Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e{sup 2}/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e{sup 2}/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e{sup 2}/h), resembling the '0.7 anomaly' in GaAs/AlGaAsmore » QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e{sup 2}/h) and 0.2(4e{sup 2}/h) known as '0.85 anomaly' and '0.25 anomaly' in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e{sup 2}/h, the 0.2(4e{sup 2}/h) plateau is insensitive to dc bias voltage up to at least V{sub DS} = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.« less
Yamamoto, Naomi; Oshima, Masamitsu; Tanaka, Chie; Ogawa, Miho; Nakajima, Kei; Ishida, Kentaro; Moriyama, Keiji; Tsuji, Takashi
2015-01-01
The tooth is an ectodermal organ that arises from a tooth germ under the regulation of reciprocal epithelial-mesenchymal interactions. Tooth morphogenesis occurs in the tooth-forming field as a result of reaction-diffusion waves of specific gene expression patterns. Here, we developed a novel mechanical ligation method for splitting tooth germs to artificially regulate the molecules that control tooth morphology. The split tooth germs successfully developed into multiple correct teeth through the re-regionalisation of the tooth-forming field, which is regulated by reaction-diffusion waves in response to mechanical force. Furthermore, split teeth erupted into the oral cavity and restored physiological tooth function, including mastication, periodontal ligament function and responsiveness to noxious stimuli. Thus, this study presents a novel tooth regenerative technology based on split tooth germs and the re-regionalisation of the tooth-forming field by artificial mechanical force. PMID:26673152
Detection of Quadrupole Interactions by Muon Level Crossing Resonance
NASA Astrophysics Data System (ADS)
Cox, S. F. J.
1992-02-01
The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and this relatively young field is now wide open for quadrupole interaction studies in other materials, using a variety of nuclei.
Theoretical study of triplet state properties of free-base porphin
NASA Astrophysics Data System (ADS)
Loboda, Oleksandr; Tunell, Ingvar; Minaev, Boris; Ågren, Hans
2005-06-01
This paper presents results and analysis of various properties of the triplet state of free-base porphin (FBP) as calculated by density-functional theory. The radiative lifetime of phosphorescence lines and microwave signals in optical detection of magnetic resonance (ODMR) spectra are obtained using the B3LYP hybrid density-functional and the quadratic response method. The zero-field splitting (ZFS) in the lowest triplet state, a3 B2u, of FBP is calculated as an expectation value of spin-spin coupling operator using the self-consistent field wavefunction. The second-order contribution to ZFS from the spin-orbit coupling operator is found to be almost negligible. The interpretation of the ODMR spectrum is completed by computing the hyperfine tensors of the 14N, 13C and hydrogen atoms in the lowest triplet state. The most intense phosphorescence emission corresponds to the Tz-spin-sublevel of the a3 B2u state, where the z-axis lies in the N-H direction of the FBP molecule in a qualitative agreement with ODMR data. The results indicate that the observed decay of the lowest triplet state of FBP molecule is determined by non-radiative deactivation. The calculated radiative rate constant for the Tz-spin-sublevel kz = 2.65 × 10-3 s-1 is in agreement with the value kz ≃ 2 × 10-3 s-1, estimated by van Dorp et al. [W. van Dorp, W. Schoemaker, M. Soma, J. van der Waals, Mol. Phys. 30 (1975) 1701] from kinetic analysis of microwave-induced fluorescent signals. The correct prediction of the spin quantization axis of the most active spin sublevel and of its radiative lifetime in the lowest triplet state of the FBP molecule is taken as a proof of capability of the quadratic response time-dependent density-functional theory.
Strain induced novel quantum magnetotransport properties of topological insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ning, E-mail: maning@stu.xjtu.edu.cn; Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049; Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electricmore » modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.« less
Schuder, Michael D.; Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David J.
2017-01-01
The sub-Doppler CH-symmetric stretch (ν3) infrared absorption spectrum of a hydroxymethyl (CH2OH) radical is observed and analyzed with the radical formed in a slit-jet supersonic discharge expansion (Trot = 18 K) via Cl atom mediated H atom abstraction from methanol. The high sensitivity of the spectrometer and reduced spectral congestion associated with the cooled expansion enable first infrared spectroscopic observation of hydroxymethyl transitions from both ± symmetry tunneling states resulting from large amplitude COH torsional motion. Nuclear spin statistics due to exchange of the two methyl H-atoms aid in unambiguous rovibrational assignment of two A-type Ka = 0 ← 0 and Ka = 1 ← 1 bands out of each ± tunneling state, with additional spectral information obtained from spin-rotation splittings in P, Q, and R branch Ka = 1 ← 1 transitions that become resolved at low N. A high level ab initio potential surface (CCSD(T)-f12b/cc-pvnzf12 (n = 2,3)/CBS) is calculated in the large amplitude COH torsional and CH2 wag coordinates, which in the adiabatic approximation and with zero point correction predicts ground state tunneling splittings in good qualitative agreement with experiment. Of particular astrochemical interest, a combined fit of the present infrared ground state combination differences with recently reported millimeter-wave frequencies permits the determination of improved accuracy rotational constants for the ground vibrational state, which will facilitate ongoing millimeter/microwave searches for a hydroxymethyl radical in the interstellar medium. PMID:28527463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph
2015-09-02
The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.
NASA Astrophysics Data System (ADS)
Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N. P.; Chaddah, P.
2016-10-01
A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ˜0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.
Do `negative' temperatures exist?
NASA Astrophysics Data System (ADS)
Lavenda, B. H.
1999-06-01
A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.
Active Transport of Potassium by the Giant Neuron of the Aplysia Abdominal Ganglion
Russell, J. M.; Brown, A. M.
1972-01-01
We measured the internal potassium activity, ai K, and membrane potential, Em, simultaneously in 111 R2 giant neurons of Aplysia californica. ai K was 165.3 ± 3.4 mM, Em was -47.8 ± 0.9 mv, and E K calculated using the Nernst equation was -76.9 ± 0.05 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated cells, ai K fell exponentially after the following treatments: cooling to 0.5°–4°C, ouabain, zero external potassium, 2,4-dinitrophenol, and cyanide. The effects of cooling and zero potassium were reversible. Potassium permeability was calculated from net potassium flux using the constant field equation and ranged from 2.6 to 18.5 x 10-8 cm/sec. We conclude that potassium is actively transported into this neuron against a 30–40 mv electrochemical gradient. PMID:4644326
NASA Astrophysics Data System (ADS)
Giacometti, José A.
2018-05-01
This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.
NASA Astrophysics Data System (ADS)
Zhan, Di; Xu, Qing; Huang, Duan-Ping; Liu, Han-Xing; Chen, Wen; Zhang, Feng
2018-03-01
Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics were prepared at different sintering temperatures by citrate precursor and solid-state reaction methods, respectively. The crystal structure and microstructure of the specimens were characterized. In view of energy storage capacitor utilizations, the dielectric properties of the specimens were investigated at room temperature as a function of frequency and applied electric field. Moreover, the nature of mobile charge carriers in the specimens was diagnosed by complex impedance spectroscopy at elevated temperatures. While the dielectric constants of the specimens prepared by different methods are quite different (4.4 × 103-2.2 × 104 at 10 kHz) at zero electric field, the energy storage densities at an identical strong electric field are similar (e.g. 0.32-0.41 J/cm3 at 120 kV/cm). The dielectric constants under bias electric field were fitted to a multipolarization mechanism model to resolve the contributions of intrinsic and extrinsic polarization mechanisms. It turned out that the extrinsic contributions fade out within low electric field range (<20 kV/cm) and thereby the intrinsic lattice polarization governs the overall dielectric responses at higher fields. Based on the fitting result, the energy storage properties of the specimens were interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhin, A. N., E-mail: truhins@cfi.lu.lv; Smits, K., E-mail: truhins@cfi.lu.lv; Jansons, J., E-mail: truhins@cfi.lu.lv
2014-10-21
Luminescence of phosphate glasses such as CaO⋅P{sub 2}O{sub 5} and SrO⋅P{sub 2}O{sub 5} is compared with that of phosphorus doped crystalline α-quartz and phosphosilicate glass with content 3P{sub 2}O{sub 5}⋅7SiO{sub 2}. Water and OH groups are found by IR spectra in these materials. The spectrum of luminescence contains many bands in the range 1.5 - 5.5 eV. The luminescence bands in UV range at 4.5-5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in μs range was detected. PL band of μs component is shifted to lowmore » energy with respect to that of ∼37 ns component. This shift is about 0.6 eV. It is explained as singlet-triplet splitting of excited state. Below 14 K increase of luminescence kinetics duration in μs range was observed and it was ascribed to zero magnetic field splitting of triplet excited state of the center. Yellow-red luminescence was induced by irradiation in phosphorus doped crystalline α-quartz, phosphosilicate glasses. The yellowl uminescence contains two bands at 600 and 740 nm. Their decay is similar under 193 nm laser and may be fitted with the first order fractal kinetics or stretched exponent. Thermally stimulated luminescence contains only band at 600 nm. The 248 nm laser excites luminescence at 740 nm according to intra center process with decay time constant about 4 ms at 9 K. Both type of luminescence UV and yellow were ascribed to different defects containing phosphorus. P-doped α-quartz sample heated to 550 co become opalescent. Ir spectra related to water and OH groups are changed. Photoluminescence intensity of all three bands, UV (250 nm), yellow (600 nm) and red (740 nm) strongly diminished and disappeared after heating to 660 C°. Radiation induced red luminescence of non-bridging oxygen luminescence center (NBO) appeared in crystal after heat treatment. We had observed a crystalline version of this center (l. Skuja et al, Nuclear Instruments and Methods in Physics Research B 286,159-168 (2012)). Effect of heat treatment explained as sedimentation of phosphorus in some state. Keeping of treated sample at 450-500 C° leads to partial revival of ability to create yellow luminescence center under irradiation.« less
The artificial-free technique along the objective direction for the simplex algorithm
NASA Astrophysics Data System (ADS)
Boonperm, Aua-aree; Sinapiromsaran, Krung
2014-03-01
The simplex algorithm is a popular algorithm for solving linear programming problems. If the origin point satisfies all constraints then the simplex can be started. Otherwise, artificial variables will be introduced to start the simplex algorithm. If we can start the simplex algorithm without using artificial variables then the simplex iterate will require less time. In this paper, we present the artificial-free technique for the simplex algorithm by mapping the problem into the objective plane and splitting constraints into three groups. In the objective plane, one of variables which has a nonzero coefficient of the objective function is fixed in terms of another variable. Then it can split constraints into three groups: the positive coefficient group, the negative coefficient group and the zero coefficient group. Along the objective direction, some constraints from the positive coefficient group will form the optimal solution. If the positive coefficient group is nonempty, the algorithm starts with relaxing constraints from the negative coefficient group and the zero coefficient group. We guarantee the feasible region obtained from the positive coefficient group to be nonempty. The transformed problem is solved using the simplex algorithm. Additional constraints from the negative coefficient group and the zero coefficient group will be added to the solved problem and use the dual simplex method to determine the new optimal solution. An example shows the effectiveness of our algorithm.
NASA Astrophysics Data System (ADS)
Korotey, E. V.; Sinyavskii, N. Ya.
2007-07-01
A new method for determination of rheological parameters of liquid crystals with zero anisotropy of diamagnetic susceptibility is proposed, which is based on the measurement of the quadrupole splitting line of the NMR 2H spectrum. The method provides higher information content of the experiments, with the shear flow discarded from consideration, compared to that obtained by the classical Leslie-Ericksen theory. A comparison with the experiment is performed, the coefficients of anisotropic viscosity of lecithin/D2O/cyclohexane are determined, and a conclusion is drawn as concerns the domain shapes.
Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Nan; Cheng, Qiang, E-mail: qiangcheng@emfield.org; Zhao, Jie
2014-02-03
We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.
DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-11-01
This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
Termination of the spin-resolved integer quantum Hall effect
NASA Astrophysics Data System (ADS)
Wong, L. W.; Jiang, H. W.; Palm, E.; Schaff, W. J.
1997-03-01
We report a magnetotransport study of the termination of the spin-resolved integer quantum Hall effect by controlled disorder in a gated GaAs/AlxGa1-xAs heterostructure. We have found that, for a given Nth Landau level, the difference in filling factors of a pair of spin-split resistivity peaks δνN=\\|νN↑-νN↓\\| changes rapidly from one to zero near a critical density nc. Scaling analysis shows that δνN collapses onto a single curve independent of N when plotted against the parameter (n-nc)/nc for five Landau levels. The effect of increasing the Zeeman energy is also examined by tilting the direction of magnetic field relative to the plane of the two-dimensional electron gas. Our experiment suggests the termination of the spin-resolved quantum Hall effect is a phase transition.
The origin of phosphorescence in Iridium (III) complexes. The role of relativistic effects
NASA Astrophysics Data System (ADS)
Cantero-López, Plinio; Páez-Hernández, Dayan; Arratia-Pérez, Ramiro
2017-10-01
A series of luminescent Ir(III) complexes of the type [Ir(F2ppy)2L] (where L = Lpytz , LOMe , Lbut) have been studied using relativistic two-component density functional theory considering the spin-orbit coupling. The absorption spectra of the three complexes were determined. The most important transition appears in the region between 250 and 350 nm, which is in good agreement with the experimental reports. The three complexes show phosphorescent properties due to a metal-ligand charge transfer (MLCT) process, where the spin-orbit coupling (SOC) plays a key role due to the introduction of a zero field splitting (ZFS) and the mixing of states with different spins which contributes to modify the emission selection rule. The lifetimes of the emission processes were calculated, and the values are in the same order of the experimental reports.
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Zarenia, M.; Peeters, F. M.
2018-02-01
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
Influence of pitting defects on quality of high power laser light field
NASA Astrophysics Data System (ADS)
Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong
2018-01-01
With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, D., E-mail: BeckerD@thep.physik.uni-mainz.ded; Reuter, M., E-mail: reuter@thep.physik.uni-mainz.de
2014-11-15
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Averagemore » Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the non-invariant functional RG equation. As an application, we compute the scale dependent spectral dimension which governs the fractal properties of the effective QEG spacetimes at the bi-metric level. Earlier tests of the Asymptotic Safety conjecture almost exclusively employed ‘single-metric truncations’ which are blind towards the difference between quantum and background fields. We explore in detail under which conditions they can be reliable, and we discuss how the single-metric based picture of Asymptotic Safety needs to be revised in the light of the new results. We shall conclude that the next generation of truncations for quantitatively precise predictions (of critical exponents, for instance) is bound to be of the bi-metric type. - Highlights: • The Asymptotic Safety scenario in quantum gravity is explored. • A bi-metric generalization of the Einstein–Hilbert truncation is investigated. • We find that Background Independence can coexist with Asymptotic Safety. • RG trajectories restoring (background-quantum) split-symmetry are constructed. • The degree of validity of single-metric truncations is critically assessed.« less
Exactly solvable field theories of closed strings
NASA Astrophysics Data System (ADS)
Brézin, E.; Kazakov, V. A.
1990-02-01
Field theories of closed strings are shown to be exactly solvable for a central charge of matter fields c=1-6/m(m+1),m=1,2, 3, .... The two-point function χ(λ,N), in which λ is the cosmological constant and N-1 is the string coupling constant, obeys a scaling law χ(λ,N=N-(m+1/2)C((λc-λ)Nm/(m+1/2)) in the limit in which N-1 goes to zero and λ goes to a critical value λc we have determined the universal non-linear differential equation satisfied by the function C. From this equation it is found that a phase transition takes place for some finite value of the scaling parameter (λc-λ)Nm/(m+1/2); this transition is a ``condensation of handles'' on the world sheet, characterized by a divergence of the averaged genus of the world sheets. The cases m=2,3 are elaborated in more details, and the case m=1, which corresponds to the embedding of a bosonic string in -2 dimensions, is reduced to explicit quadratures. Permanent address: Cybernetics Council and Academy of Sciences, ul. Vavilova 40, SU-117 333 Moscow, USSR.
NASA Astrophysics Data System (ADS)
Hmiel, Abraham L.
TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the materials science innovation pipeline because they can interpret the results of experiments and investigate properties at the nanoscale that traditional methods cannot reach. In this work, spin-polarized DFT calculations within the generalized gradient approximation and with the recent self-consistent opt-B88 van der Waals functional have been applied to investigate the problem of molecularly adsorbed water on the rutile (110) TiO2 surface under the influence of an applied electric field. The effective screening medium theory is used to break the symmetry of the simulation in the slab normal direction and implement a metal-like boundary condition at the edges of the simulation cell to model the charged capacitor in a real electrochemical device. This study begins with an investigation of bulk and surface properties of TiO2 to obtain a sound theoretical baseline. Following that, an attempt to obtain simple and meaningful structure-property relationships of rectangular TiO 2 nanowires with (110) facets resulting from quantum confinement. Finally, a systematic study of energetics, geometrical configuration, charge partitioning, and electronic structure of water in monomer coverage up to monolayer coverage provides insight into the usefulness of the inclusion of self-consistent van der Waals correlation effects and the effect of an external electric field in this model of adsorption on a prototypical metal oxide surface. Nontrivial differences between the two functionals' description of adsorption of water, electrostatic characteristics, and electronic structure of the model surface are reported in the zero-field limit as well as with an applied field.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
NASA Astrophysics Data System (ADS)
Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey
2016-06-01
We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.
Determination of the accuracy and operating constants in a digitally biased ring core magnetometer
Green, A.W.
1990-01-01
By using a very stable voltage reference and a high precision digital-to-analog converter to set bias in digital increments, the inherently high stability and accuracy of a ring core magnetometer can be significantly enhanced. In this case it becomes possible to measure not only variations about the bias level, but to measure the entire value of the field along each magnetometer sensing axis in a nearly absolute sense. To accomplish this, one must accurately determine the value of the digital bias increment for each axis, the zero field offset value for each axis, the scale values, and the transfer coefficients (or nonorthogonality angles) for pairs of axes. This determination can be carried out very simply, using only the Earth's field, a proton magnetometer, and a tripod-mounted fixture which is capable of rotations about two axes that are mutually perpendicular to the Earth's magnetic field vector. ?? 1990.
Carrier mobility in organic field-effect transistors
NASA Astrophysics Data System (ADS)
Xu, Yong; Benwadih, Mohamed; Gwoziecki, Romain; Coppard, Romain; Minari, Takeo; Liu, Chuan; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard
2011-11-01
A study of carrier transport in top-gate and bottom-contact TIPS-pentacene organic field-effect transistors (OFETs) based on mobility is presented. Among three mobilities extracted by different methods, the low-field mobility obtained by the Y function exhibits the best reliability and ease for use, whereas the widely applied field-effect mobility is not reliable, particularly in short-channel transistors and at low temperatures. A detailed study of contact transport reveals its strong impact on short-channel transistors, suggesting that a more intrinsic transport analysis is better implemented in relatively longer-channel devices. The observed temperature dependences of mobility are well explained by a transport model with Gaussian-like diffusivity band tails, different from diffusion in localized states band tails. This model explicitly interprets the non-zero constant mobility at low temperatures and clearly demonstrates the effects of disorder and hopping transport on temperature and carrier density dependences of mobility in organic transistors.
Effect of zero magnetic field on cardiovascular system and microcirculation
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
Zero field reversal probability in thermally assisted magnetization reversal
NASA Astrophysics Data System (ADS)
Prasetya, E. B.; Utari; Purnama, B.
2017-11-01
This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.
NASA Astrophysics Data System (ADS)
Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal
2017-04-01
Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.
Nikolo, Martin; Zapf, Vivien S.; Singleton, John; ...
2016-07-22
Vortex dynamics and nonlinear ac response are studied in a Ba(Fe 0.94Ni 0.06) 2As 2( T c= 18.5 K) bulk superconductor in magnetic fields up to 12 T via ac susceptibility measurements of the first ten harmonics. A comprehensive study of the ac magnetic susceptibility and its first ten harmonics finds shifts to higher temperatures with increasing ac measurement frequencies (10 to 10,000 Hz) for a wide range of ac (1, 5, and 10 Oe) and dc fields (0 to 12 T). The characteristic measurement time constant t1 is extracted from the exponential fit of the data and linked tomore » vortex relaxation. The Anderson-Kim Arrhenius law is applied to determine flux activation energy E a/k as a function dc magnetic field. The de-pinning, or irreversibility lines, were determined by a variety of methods and extensively mapped. The ac response shows surprisingly weak higher harmonic components, suggesting weak nonlinear behavior. Lastly, our data does not support the Fisher model; we do not see an abrupt vortex glass to vortex liquid transition and the resistivity does not drop to zero, although it appears to approach zero exponentially.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E. I.; Kaganovich, A. B.
2007-04-15
The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t{yields}{infinity}) approaches -1 from below; {rho} approaches a constant, the smallness of which does not require fine-tuning of dimensionful parameters.« less
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anastasia
IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside themore » ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.« less
Low temperature specific heat of frustrated antiferromagnet HoInCu4
NASA Astrophysics Data System (ADS)
Weickert, Franziska; Fritsch, Veronika; Bambaugh, Ryan; Sarrao, John; Thompson, Joe D.; Movshovich, Roman
2014-03-01
We present low temperature specific heat measurements of single crystal HoInCu4, down to 35 mK and in magnetic field up to 12 Tesla. Ho atoms are arranged in an FCC lattice of the edge-sharing tetrahedra, and undergo an antiferromagnetic ordering at TN = 0.76 K, with the frustration parameter f = -ΘCW /TN of 14.3. Magnetic AF order is suppressed in field H0 ~ 4 T. The low temperature Schottky anomaly due to Ho evolves smoothly as a function of field through H0 and TN. The peak value of the anomaly remains roughly constant from 0 T to 12 T. The temperature of the anomaly's peak remains constant at TSch ~ 170 mK for H
Sequential Metabolic Phases as a Means to Optimize Cellular Output in a Constant Environment
Bockmayr, Alexander; Holzhütter, Hermann-Georg
2015-01-01
Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities. In order to substantiate this hypothesis, we used a flux-balance model of the cellular metabolism. The total time span spent on the production of a given set of target metabolites was split into a series of shorter time intervals (metabolic phases) during which only selected groups of metabolic genes are active. The related flux distributions were calculated under the constraint that genes can be either active or inactive whereby the amount of protein related to an active gene is only controlled by the number of active genes: the lower the number of active genes the more protein can be allocated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-limited efficiency of gene expression clearly differs from other concepts resting on the assumption of an optimal gene regulation capable of allocating to all enzymes and transporters just that fraction of protein necessary to prevent rate limitation. Applying this concept to a simplified metabolic network of the central carbon metabolism with glucose or lactate as alternative substrates, we demonstrate that switching between optimally chosen stationary flux modes comprising different sets of active genes allows producing a demanded amount of target metabolites in a significantly shorter time than by a single optimal flux mode at fixed gene activities. Our model-based findings suggest that temporal expression of metabolic genes can be advantageous even under conditions of constant external substrate supply. PMID:25786979
Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths
NASA Astrophysics Data System (ADS)
Cho, Jaehun; Fujii, Yuya; Konioshi, Katsunori; Yoon, Jungbum; Kim, Nam-Hui; Jung, Jinyong; Miwa, Shinji; Jung, Myung-Hwa; Suzuki, Yoshishige; You, Chun-Yeol
2016-07-01
We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, Nz (Ny) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while Nx is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case.
Characterization of Forest Opacity Using Multi-Angular Emission and Backscatter Data
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; O'Neill, Peggy; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.
2010-01-01
This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are employed to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide "effective" vegetation optical depth. Second, a ratio between radar backscatter measurements with the corner reflector under trees and in an open area is calculated to obtain "measured" tree propagation characteristics. Finally, the "theoretical" propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that "effective" values underestimate attenuation values compared to both "theoretical" and "measured" values.
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.
2013-04-01
To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less
Roll splitting for field processing of biomass
Dennis T. Curtin; Donald L. Sirois; John A. Sturos
1987-01-01
The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...
Fabrication and Test of an Optical Magnetic Mirror
NASA Technical Reports Server (NTRS)
Hagopian, John G.; Roman, Patrick A.; Shiri, Shahram; Wollack, Edward J.; Roy, Madhumita
2011-01-01
Traditional mirrors at optical wavelengths use thin metalized or dielectric layers of uniform thickness to approximate a perfect electric field boundary condition. The electron gas in such a mirror configuration oscillates in response to the incident photons and subsequently re-emits fields where the propagation and electric field vectors have been inverted and the phase of the incident magnetic field is preserved. We proposed fabrication of sub-wavelength-scale conductive structures that could be used to interact with light at a nano-scale and enable synthesis of the desired perfect magnetic-field boundary condition. In a magnetic mirror, the interaction of light with the nanowires, dielectric layer and ground plate, inverts the magnetic field vector resulting in a zero degree phase shift upon reflection. Geometries such as split ring resonators and sinusoidal conductive strips were shown to demonstrate magnetic mirror behavior in the microwave and then in the visible. Work to design, fabricate and test a magnetic mirror began in 2007 at the NASA Goddard Space Flight Center (GSFC) under an Internal Research and Development (IRAD) award Our initial nanowire geometry was sinusoidal but orthogonally asymmetric in spatial frequency, which allowed clear indications of its behavior by polarization. We report on the fabrication steps and testing of magnetic mirrors using a phase shifting interferometer and the first far-field imaging of an optical magnetic mirror.
NASA Astrophysics Data System (ADS)
Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.
2018-04-01
The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.
Equivalent formulations of the Riemann hypothesis based on lines of constant phase
NASA Astrophysics Data System (ADS)
Schleich, W. P.; Bezděková, I.; Kim, M. B.; Abbott, P. C.; Maier, H.; Montgomery, H. L.; Neuberger, J. W.
2018-06-01
We prove the equivalence of three formulations of the Riemann hypothesis for functions f defined by the four assumptions: (a 1) f satisfies the functional equation f(1 ‑ s) = f(s) for the complex argument s ≡ σ + iτ, (a2) f is free of any pole, (a3) for large positive values of σ the phase θ of f increases in a monotonic way without a bound as τ increases, and (a4) the zeros of f as well as of the first derivative f ‧ of f are simple zeros. The three equivalent formulations are: (R1) All zeros of f are located on the critical line σ = 1/2, (R2) All lines of constant phase of f corresponding to +/- π ,+/- 2π ,+/- 3π , ... merge with the critical line, and (R3) All points where f ‧ vanishes are located on the critical line, and the phases of f at two consecutive zeros of f ‧ differ by π. Our proof relies on the topology of the lines of constant phase of f dictated by complex analysis and the assumptions (a1)–(a4). Moreover, we show that (R2) implies (R1) even in the absence of (a4). In this case (a4) is a consequence of (R2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Chen, Josephine; Leary, Celeste I.
Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less
Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment
NASA Astrophysics Data System (ADS)
Molina, Daniel
2017-09-01
The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.
Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Saxena, Nitin
Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less
A new titration system of a novel split-type superconducting magnet NMR spectrometer.
Kitagawa, Isao; Tanaka, Hideki; Okada, Michiya; Kitaguchi, Hitoshi; Kohzuma, Takamitsu
2008-12-01
A new titration system for studying protein-ligand interactions has been developed. In this system, the sample solution is circulated in the route formed by an access path in a split superconducting magnet to maintain a constant protein concentration during the titration experiments. A concentration-control procedure for the ligand/protein ratio is devised, and the ligand/protein ratio is well controlled by this apparatus.
Conical refraction of elastic waves in absorbing crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Lyubimov, V. N.
2011-10-15
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after 'switching on' absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincare index n = {+-}1/2, transforms to a planar distribution of ellipses with two singularities n = {+-}1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied.more » The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by {pi}/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.« less
Ren, Xin-Yao; Wu, Yong; Wang, Li; Zhao, Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min
2014-06-01
A density functional theory/time-depended density functional theory was used to investigate the synthesized guanidinate-based iridium(III) complex [(ppy)2Ir{(N(i)Pr)2C(NPh2)}] (1) and two designed derivatives (2 and 3) to determine the influences of different cyclometalated ligands on photophysical properties. Except the conventional discussions on geometric relaxations, absorption and emission properties, many relevant parameters, including spin-orbital coupling (SOC) matrix elements, zero-field-splitting parameters, radiative rate constants (kr) and so on were quantitatively evaluated. The results reveal that the replacement of the pyridine ring in the 2-phenylpyridine ligand with different diazole rings cannot only enlarge the frontier molecular orbital energy gaps, resulting in a blue-shift of the absorption spectra for 2 and 3, but also enhance the absorption intensity of 3 in the lower-energy region. Furthermore, it is intriguing to note that the photoluminescence quantum efficiency (ΦPL) of 3 is significantly higher than that of 1. This can be explained by its large SOC value
Real-time method and apparatus for measuring the decay-time constant of a fluorescing phosphor
Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.
1999-01-01
A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
Artificial multiferroic structures using soft magnetostrictive bilayers on Pb(Mg1/3Nb2/3)-PbTiO3
NASA Astrophysics Data System (ADS)
Miskevich, E.; Alshammari, F. K.; Yang, W.-G.; Sharp, J.; Baco, S.; Leong, Z.; Abbas, Q. A.; Morley, N. A.
2018-02-01
Artificial multiferroic structures are of great interest as they combine two or more functionalities together. One example of these structures is magnetostrictive films grown on top of piezoelectric substrates; allowing the magnetisation hysteresis loop of the magnetostrictive film to be manipulated using an electric field across the structure rather than a magnetic field. In this paper, we have studied the multiferroic structure NiFe/FeCo/Ti/Pb(Mg1/3Nb2/3)-PbTiO3 (PMN-PT) as a function of the electric and magnetic field. Soft magnetostrictive bilayer films (NiFe/FeCo) are studied, as often applications require soft magnetic properties (small coercive and anisotropy fields) combined with larger magnetostrictive constants. Unfortunately, FeCo films can have coercive fields that are too large, while NiFe films’ magnetostriction constants are almost zero; thus, combining the two together should produce the ‘ideal’ soft magnetostrictive film. It was found that the addition of a thin NiFe film onto the FeCo film reduced the coercive field and remnant magnetisation on the application of an applied voltage in comparison to just the FeCo film. It was also determined that for the NiFe/FeCo bilayer the magnetisation switchability was ~100% on the application of 8 kV cm-m, which was higher than the monolayer FeCo films at the same applied field, demonstrating improvement of the multiferroic behaviour by the soft magnetic/magnetostrictive bilayer.
Sutherland, J. C.
2016-07-20
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. C.
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
NASA Astrophysics Data System (ADS)
Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid
2017-10-01
We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.
Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J
2015-05-01
This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the beam axis and those fired from a point source. This is indicative of the 3D spatially variant nature of the MRI fringe field. For the first time, accurate magnetic and Monte Carlo modeling have been used to assess the transport of generic proton beams toward a 1 T split-bore MRI. Significant rotation is observed in the inline orientation, while more complex deflection and distortion are seen in the perpendicular orientation. The results of this study suggest that due to the complexity and energy-dependent nature of the magnetic deflection and distortion, the pencil beam scanning method will be the only choice for delivering a therapeutic proton beam inside a potential MRI-guided proton therapy system in either the inline or perpendicular orientation. Further to this, significant correction strategies will be required to account for the MRI fringe fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less
Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing
Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...
2016-11-22
Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less
Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing
2016-01-01
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527
Polarizability tensor retrieval for magnetic and plasmonic antenna design
NASA Astrophysics Data System (ADS)
Bernal Arango, Felipe; Femius Koenderink, A.
2013-07-01
A key quantity in the design of plasmonic antennas and metasurfaces, as well as metamaterials, is the electrodynamic polarizability of a single scattering building block. In particular, in the current merging of plasmonics and metamaterials, subwavelength scatterers are judged by their ability to present a large, generally anisotropic electric and magnetic polarizability, as well as a bi-anisotropic magnetoelectric polarizability. This bi-anisotropic response, whereby a magnetic dipole is induced through electric driving, and vice versa, is strongly linked to the optical activity and chiral response of plasmonic metamolecules. We present two distinct methods to retrieve the polarizibility tensor from electrodynamic simulations. As a basis for both, we use the surface integral equation (SIE) method to solve for the scattering response of arbitrary objects exactly. In the first retrieval method, we project scattered fields onto vector spherical harmonics with the aid of an exact discrete spherical harmonic Fourier transform on the unit sphere. In the second, we take the effective current distributions generated by SIE as a basis to calculate dipole moments. We verify that the first approach holds for scatterers of any size, while the second is only approximately correct for small scatterers. We present benchmark calculations, revisiting the zero-forward scattering paradox of Kerker et al (1983 J. Opt. Soc. Am. 73 765-7) and Alù and Engheta (2010 J. Nanophoton. 4 041590), relevant in dielectric scattering cancelation and sensor cloaking designs. Finally, we report the polarizability tensor of split rings, and show that split rings will strongly influence the emission of dipolar single emitters. In the context of plasmon-enhanced emission, split rings can imbue their large magnetic dipole moment on the emission of simple electric dipole emitters. We present a split ring antenna array design that is capable of converting the emission of a single linear dipole emitter in forward and backward beams of directional emission of opposite handedness. This design can, for instance, find application in the spin angular momentum encoding of quantum information.
NASA Technical Reports Server (NTRS)
Demarest, H. H., Jr.
1972-01-01
The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.
NASA Astrophysics Data System (ADS)
Sannikova, T. N.; Kholshevnikov, K. V.
2015-08-01
The motion of a point mass under the action of a gravitational force toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main gravitational acceleration due to the central body, and the direction of P to be constant in a standard astronomical coordinate system with its origin at the central body and axes directed along the radius vector, the transversal, and the binormal. Consideration of a constant vector perturbing acceleration simplifies averaging of the Euler equations for the motion in osculating elements, making it straightforward to obtain evolutionary differential equations of motion in the mean elements, as was done earlier in a first small-parameter approximation. This paper is devoted to integration of the mean equations. The system is integratable by quadratures if at least one component of the perturbing acceleration is zero, and also if the orbit is initially circular. Moreover, all the quadratures can be expressed in terms of elementary functions and elliptical integrals of the first kind in Jacobi form. If all three components of P are non-zero, this problem reduces to a system of two first-order differential equations, which are apparently not integrable. Possible applications include the motion of natural and artificial satellites taking into account light pressure, the motion of a spacecraft with low thrust, and the motion of an asteroid subject to a thrust from an engine mounted on it or to a gravitational tractor designed, for example, to avoid a collision with Earth.
NASA Astrophysics Data System (ADS)
Congiu, Francesco; Sanna, Carla; Maritato, Luigi; Orgiani, Pasquale; Geddo Lehmann, Alessandra
2016-12-01
We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La0.7Sr0.3MnO3 deposited by molecular beam epitaxy on ferroelastic LaAlO3(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La0.7Sr0.3MnO3. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization Ms = 3.2 μB/Mn, slightly reduced with respect to the fully polarized value of 3.7 μB/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled MFC(T) branch and a two peak structure in the zero field cooled MZFC(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike TC = 370 K, is separated by a twin boundary with lower Curie point TC = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.
Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared
NASA Technical Reports Server (NTRS)
Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.
1993-01-01
Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.
ERIC Educational Resources Information Center
Mongan, Philip; Walker, Robert
2012-01-01
With the passing of the Gun Free School Act of 1994, the 1990s bore witness to the birth of zero-tolerance policies. During the remainder of that decade, several school shootings occurred that solidified zero-tolerance in schools across the United States. With the possibility of threats constantly increasing, school personnel having a thorough…
On the Composition of Public-Coin Zero-Knowledge Protocols
2011-05-31
only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel...only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel repetitions...and Krawczyk [GK96b] show that only languages in BPP have constant-round public-coin (stand-alone) black-box ZK protocols with negligible soundness
Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng
2013-04-28
Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.
Iron oxide nanoparticles in NaA zeolite cages
NASA Astrophysics Data System (ADS)
Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.
2013-07-01
Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.
NASA Astrophysics Data System (ADS)
Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.
2008-06-01
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.
Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P
2008-06-14
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.
On the Henry constant and isosteric heat at zero loading in gas phase adsorption.
Do, D D; Nicholson, D; Do, H D
2008-08-01
The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.
D'Angelo, Giuseppe; Thibaudier, Yann; Telonio, Alessandro; Hurteau, Marie-France; Kuczynski, Victoria; Dambreville, Charline
2014-01-01
Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically. PMID:25031257
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
NASA Astrophysics Data System (ADS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.
2015-07-07
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less
Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-04-01
This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.
Ab initio calculation of hyperfine splitting constants of molecules
NASA Astrophysics Data System (ADS)
Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.
1980-08-01
Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.
NASA Technical Reports Server (NTRS)
Feagans, P. L.
1972-01-01
Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.
Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.
2017-02-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.
NASA Astrophysics Data System (ADS)
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
NASA Astrophysics Data System (ADS)
Motz, L. H.; Kalakan, C.
2013-12-01
Three problems regarding saltwater intrusion, namely the Henry constant dispersion and velocity-dependent dispersion problems and a larger, field-scale velocity-dependent dispersion problem, have been investigated to determine quantitatively how saltwater intrusion and the recirculation of seawater at a coastal boundary are related to the freshwater inflow and the density-driven buoyancy flux. Based on dimensional analysis, saltwater intrusion and the recirculation of seawater are dependent functions of the independent ratio of freshwater advective flux relative to the density-driven vertical buoyancy flux, defined as az (or a for an isotropic aquifer), and the aspect ratio of horizontal and vertical dimensions of the cross-section. For the Henry constant dispersion problem, in which the aquifer is isotropic, saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the constant dispersion coefficient treated as a scalar quantity, the porosity, and the freshwater advective flux, defined as b. For the Henry velocity-dependent dispersion problem, the ratio b is zero, and saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the vertical and horizontal dispersivities, or rα = αz/αx. For an anisotropic aquifer, saltwater intrusion and recirculation are also dependent on the ratio of vertical and horizontal hydraulic conductivities, or rK = Kz/Kx. For the field-scale velocity-dependent dispersion problem, saltwater intrusion and recirculation are dependent on the same independent ratios as the Henry velocity-dependent dispersion problem. In the two-dimensional cross-section for all three problems, freshwater inflow occurs at an upgradient boundary, and recirculated seawater outflow occurs at a downgradient coastal boundary. The upgradient boundary is a specified-flux boundary with zero freshwater concentration, and the downgradient boundary is a specified-head boundary with a specified concentration equal to seawater. Equivalent freshwater heads are specified at the downstream boundary to account for density differences between freshwater and saltwater at the downstream boundary. The three problems were solved using the numerical groundwater flow and transport code SEAWAT for two conditions, i.e., first for the uncoupled condition in which the fluid density is constant and thus the flow and transport equations are uncoupled in a constant-density flowfield, and then for the coupled condition in which the fluid density is a function of the total dissolved solids concentration and thus the flow and transport equations are coupled in a variable-density flowfield. A wide range of results for the landward extent of saltwater intrusion and the amount of recirculation of seawater at the coastal boundary was obtained by varying the independent dimensionless ratio az (or a in problem one) in all three problems. The dimensionless dispersion ratio b was also varied in problem one, and the dispersivity ratio rα and the hydraulic conductivity ratio rK were also varied in problems two and three.
Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R
2014-12-31
Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.
Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.
Kruber, S; Farrher, G D; Anoardo, E
2015-10-01
In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.
Ogiegło, Joanna M; Zych, Aleksander; Ivanovskikh, Konstantin V; Jüstel, Thomas; Ronda, Cees R; Meijerink, Andries
2012-08-23
Lu(3)Al(5)O(12) (LuAG) doped with Ce(3+) is a promising scintillator material with a high density and a fast response time. The light output under X-ray or γ-ray excitation is, however, well below the theoretical limit. In this paper the influence of codoping with Tb(3+) is investigated with the aim to increase the light output. High resolution spectra of singly doped LuAG (with Ce(3+) or Tb(3+)) are reported and provide insight into the energy level structure of the two ions in LuAG. For Ce(3+) zero-phonon lines and vibronic structure are observed for the two lowest energy 5d bands and the Stokes' shift (2 350 cm(-1)) and Huang-Rhys coupling parameter (S = 9) have been determined. Tb(3+) 4f-5d transitions to the high spin (HS) and low spin (LS) states are observed (including a zero-phonon line and vibrational structure for the high spin state). The HS-LS splitting of 5400 cm(-1) is smaller than usually observed and is explained by a reduction of the 5d-4f exchange coupling parameter J by covalency. Upon replacing the smaller Lu(3+) ion with the larger Tb(3+) ion, the crystal field splitting for the lowest 5d states increases, causing the lowest 5d state to shift below the (5)D(4) state of Tb(3+) and allowing for efficient energy transfer from Tb(3+) to Ce(3+) down to the lowest temperatures. Luminescence decay measurements confirm efficient energy transfer from Tb(3+) to Ce(3+) and provide a qualitative understanding of the energy transfer process. Co-doping with Tb(3+) does not result in the desired increase in light output, and an explanation based on electron trapping in defects is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García Daza, Fabián A.; Mackie, Allan D., E-mail: allan.mackie@urv.cat; Colville, Alexander J.
2015-03-21
Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determinedmore » from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.« less
NASA Astrophysics Data System (ADS)
García Daza, Fabián A.; Colville, Alexander J.; Mackie, Allan D.
2015-03-01
Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.
NASA Astrophysics Data System (ADS)
Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg
2017-06-01
We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.
Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
Ren, Yong; Liu, Xiaogang; Gao, Xiang
2016-01-01
The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.
Laser profile changes due to photon-axion induced beam splitting
NASA Astrophysics Data System (ADS)
Scarlett, Carol
2013-09-01
This paper looks at a potentially unique measurable due to photon-axion coupling in an external magnetic field. Traditionally, detection of such a coupling has focused on observation of an optical rotation of the beam's polarization due to either a birefringence or a path length difference (p.l.d.) between two polarization states. Such experiments, utilizing mirror cavities, have been significantly limited in sensitivity; approaching coupling strengths of ~ga=10-7 GeV-1. Here the bifurcation of a beam in a cavity is explored along with the possibility of measuring its influence on the photon density. Simulations indicate that coupling to levels ga~10-12 are, with an appropriate choice of cavity, within measurable limits. This is due to a rapid growth of a signal defined by the energy loss from the center accompanying an increase in the region beyond the beam waist. Finally, the influence of a non-zero axion mass is explored.
NASA Astrophysics Data System (ADS)
Zhang, Jinggui
2017-09-01
In this paper, we first derive a modified two-dimensional non-linear Schrödinger equation including high-order diffraction (HOD) suitable for the propagation of optical beam near the low-diffraction regime in Kerr non-linear media with spatial dispersion. Then, we apply our derived physical model to a designed two-dimensional configuration filled with alternate layers of a left-handed material (LHM) and a right-handed media by employing the mean-field theory. It is found that the periodic structure including LHM may experience diminished, cancelled, and even reversed diffraction behaviours through engineering the relative thickness between both media. In particular, the variational method analytically predicts that close to the zero-diffraction regime, such periodic structure can support stable diffraction-management solitons whose beamwidth and peak amplitude evolve periodically with the help of HOD effect. Numerical simulation based on the split-step Fourier method confirms the analytical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing
2016-01-01
The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E1 and M1. The lifetime of transition (2)0+-X10+ is evaluated at the level of millisecond, much smaller than that of the transition (2)0+-X21.
Numerical solutions of Navier-Stokes equations for a Butler wing
NASA Technical Reports Server (NTRS)
Abolhassani, J. S.; Tiwari, S. N.
1985-01-01
The flow field is simulated on the surface of a given delta wing (Butler wing) at zero incident in a uniform stream. The simulation is done by integrating a set of flow field equations. This set of equations governs the unsteady, viscous, compressible, heat conducting flow of an ideal gas. The equations are written in curvilinear coordinates so that the wing surface is represented accurately. These equations are solved by the finite difference method, and results obtained for high-speed freestream conditions are compared with theoretical and experimental results. In this study, the Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallel-piped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDC VPS 32 computer.
Magnetic blocking in a linear iron(I) complex.
Zadrozny, Joseph M; Xiao, Dianne J; Atanasov, Mihail; Long, Gary J; Grandjean, Fernande; Neese, Frank; Long, Jeffrey R
2013-07-01
Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S = complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
NASA Astrophysics Data System (ADS)
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-06-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
Physical properties of i-R-Cd quasicrystals(R = Y, Gd-Tm)
NASA Astrophysics Data System (ADS)
Kong, Tai; Bud'Ko, Sergey L.; Jesche, Anton; Goldman, Alan I.; Kreyssig, Andreas; Dennis, Kevin W.; Ramazanoglu, Mehmet; Canfield, Paul C.; McArthur, John
2014-03-01
Detailed characterization of recently discovered i-R-Cd (R = Y, Gd-Tm) binary quasicrystals by means of room-temperature powder x-ray diffraction, dc and ac magnetization, resistivity and specific heat measurements will be presented. i-Y-Cd is weakly diamagnetic. The dc magnetization of i-R-Cd (R = Gd, Ho-Tm) shows typical spin-glass type splitting between field-cooled (FC) and zero-field-cooled (ZFC) data. i-Tb-Cd and i-Dy-Cd do not show a clear cusp in their ZFC dc magnetization. ac magnetization measured on i-Gd-Cd indicates a clear frequency-dependence and the third-order non-linear magnetization, χ3, is consistent with a spin-glass transition. The resistivity for i-R-Cd is of order 100 μΩ cm and weakly temperature-dependent. No feature that can be associated with long-range magnetic order was observed in any of the measurements. Characteristic freezing temperatures for i-R-Cd (R = Gd-Tm) deviate from ideal de Gennes scaling. This work is supported by the US DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
Semiconducting-metallic transition of singlecrystalline ferromagnetic Hf-doped CuCr2Se4 spinels
NASA Astrophysics Data System (ADS)
Maciążek, E.; Malicka, E.; Gągor, A.; Stokłosa, Z.; Groń, T.; Sawicki, B.; Duda, H.; Gudwański, A.
2017-09-01
Chalcogenide spinels show a variety of physical properties and are very good candidates for electronic and high-frequency applications. We report the measurements of magnetic susceptibility, magnetic isotherm, electrical conductivity, thermoelectric power and calculations of the superexchange and double-exchange integrals made for singlecrystalline Cu[CrxHfy]Se4 spinels. The results showed a ferromagnetic order of magnetic moments below the Curie temperatures of 390 K and, an increase in the splitting of the zero-field cooled and field cooled susceptibilities with increasing Hf-content below the room temperature suggesting a slight spin-frustration and a rapid transition from semiconducting to metallic state at room temperature. A quantitative evaluation of the exchange Hamiltonian showed that the total hopping integral rapidly decreased and the bandwidth of the 3d t2g band due to Cr3+ and Cr4+ ions strongly narrowed from 0.76 eV for y = 0 to 0.28 eV for y = 0.14. The narrowing of this band appears to be responsible for semiconducting properties of the Hf-doped CuCr2Se4 spinels below the room temperature.
Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes
Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.
2011-01-01
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.
Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E
2017-06-12
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-01-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657
Martins, G B; Büsser, C A; Al-Hassanieh, K A; Anda, E V; Moreo, A; Dagotto, E
2006-02-17
Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.
Gong, Ming; Zhang, Weiwei; Guo, Guang-Can; He, Lixin
2011-06-03
We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.
Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.
Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao
2017-08-01
Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.
Influence of time, temperature and coagulation on the measurement of C3, C3 split products and C4.
Sinosich, M J; Teisner, B; Brandslund, I; Fisher, M; Grudzinskas, J G
1982-11-26
Quantitative and qualitative immunoelectrophoretic analyses of circulating C3, C3 split products and C4 were performed in matched EDTA plasma and serum obtained from 5 normal subjects and stored for up to 48 h at room temperature (18 degrees C-22 degrees C) and 4 degrees C. Fluctuations in apparent levels of C3 were greater in serum than plasma stored at room temperature, a fall in levels seen by 24 h being followed by a significant increase. By contrast, levels of C3 did not alter if stored at 4 degrees C. C4 levels in both EDTA plasma and serum remained unchanged for 24 h, a slight decrease being seen at 48 h. Levels of C4 remained constant if samples were stored at 4 degrees C. Crossed immunoelectrophoresis revealed a significant progressive decrease in C3 levels and a simultaneous increase in C3c occurring after 4 h in serum and 8 h in EDTA plasma, stored at room temperature. In studies conducted at 4 degrees C, similar but delayed fluctuations were seen. A progressive and significant increase in C3d levels was seen in both plasma and serum samples stored at room temperature, levels rising to 276% (plasma) and 308% (serum) of levels seen at zero time. At 4 degrees C marginal increases in C3d levels only were observed. These results suggest that in vitro degradation of C3 and C4 are readily facilitated by temperature, time and coagulation, and that conditions of collection and storage of samples must be optimized for the accurate definition of activation of the complement cascade.
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
Shear flow of one-component polarizable fluid in a strong electric field
NASA Astrophysics Data System (ADS)
Sun, J. M.; Tao, R.
1996-04-01
A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.
Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects
NASA Astrophysics Data System (ADS)
Beato-López, J. J.; Pérez-Landazábal, J. I.; Gómez-Polo, C.
2017-04-01
In this work, a sensitive tool to detect magnetic nanoparticles (Fe3O4) based on a non-linear Giant Magnetoimpedance (GMI) effect is presented. The GMI sensor is designed with four nearly zero magnetostrictive ribbons connected in series and was analysed as a function of a constant external magnetic field and exciting frequency. The influence of the magnetic nanoparticles deposited on the ribbon surface was characterized using the first (fundamental) and second (non-linear) harmonics of the magnetoinductive voltage. The results show a clear enhancement of the sensor response in the high magnetic field region (H = 1.5 kA/m) as a consequence of the stray field generated by the magnetic nanoparticles on the GMI ribbons' surface. The highest sensitivity ratios are obtained for the non-linear component in comparison with the fundamental response. The results open a new research strategy in magnetic nanoparticle detection.
Laser Doppler velocimeter system simulation for sensing aircraft wake vortices
NASA Technical Reports Server (NTRS)
Thomson, J. A. L.; Meng, J. C. S.
1974-01-01
A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.
Interaction of two-dimensional magnetoexcitons
NASA Astrophysics Data System (ADS)
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations
NASA Astrophysics Data System (ADS)
Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion
2017-12-01
Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.
NASA Astrophysics Data System (ADS)
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T.; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-01
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-18
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.
Serša, Igor; Bajd, Franci; Mohorič, Aleš
2016-09-01
Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.
Double Current Sheet Instabilities and the Transition to Turbulence.
NASA Astrophysics Data System (ADS)
Pucci, F.; Velli, M.; Biferale, L.; Sahoo, G.
2016-12-01
The double tearing instability has often been studied as a proxy for the m=1 kink mode in cylindrical plasma. In this paper we describe the results of 3D simulations of an initially periodic double current sheet described by Harris equilibria with a guide field in two cases: 1) zero net helicity and an average magnetic field and 2) a well defined helicity (force free but non constant alpha). We study and contrast the de-stabilization and transition to turbulence for these two cases: we describe spectra, cascades, and possible application to heliospheric phenomena, in particular CME evolution and relaxation. The research leading to these results has received fund- ing from the European Union's Seventh Framework Pro- gramme (FP7/2007-2013) under grant agreement No. 339032
Balk, Andrew; Kim, Kyoung-Whan; Pierce, Daniel T.; ...
2017-08-17
Magneto-optical Kerr effect (MOKE) microscopy measurements of magnetic bubble domains demonstrate that Ar + irradiation around 100 eV can tune the Dzyaloshinskii-Moriya interaction (DMI) in Pt/Co/Pt trilayers. Varying the irradiation energy and dose changes the DMI sign and magnitude separately from the magnetic anisotropy, allowing tuning of the DMI while holding the coercive field constant. This simultaneous control emphasizes the different physical origins of these effects. To accurately measure the DMI, we propose and apply a physical model for a poorly understood peak in domain wall velocity at zero in-plane field. Finally, the ability to tune the DMI with themore » spatial resolution of the Ar + irradiation enables new fundamental investigations and technological applications of chiral nanomagnetics.« less
Ferromagnetic resonance with long Josephson junction
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Emelyanova, O. V.; Golubov, A. A.; Ustinov, A. V.; Ryazanov, V. V.
2017-05-01
In this work we propose a hybrid device based on a long Josephson junction (JJ) coupled inductively to an external ferromagnetic (FM) layer. The long JJ in a zero-field operation mode induces a localized AC magnetic field in the FM layer and enables a synchronized magnetostatic standing wave. The magnetostatic wave induces additional dissipation for soliton propagation in the junction and also enables a phase locking (resonant soliton synchronization) at a frequency of natural ferromagnetic resonance. The later manifests itself as an additional constant voltage step on the current-voltage characteristics at the corresponding voltage. The proposed device allows to study magnetization dynamics of individual micro-scaled FM samples using just DC technique, and also it provides additional phase locking frequency in the junction, determined exclusively by characteristics of the ferromagnet.
Landau level splitting in Cd3As2 under high magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Cao, Junzhi; Liang, Sihang; Xia, Zhengcai; Li, Liang; Xiu, Faxian
2015-03-01
Three-dimensional (3D) topological Dirac semimetals (TDSs) are a new kind of Dirac materials that adopt nontrivial topology in band structure and possess degenerated massless Dirac fermions in the bulk. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport evidence of Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry (TRS). The observed Landau level splitting is originated from the joint contributions of orbit and Zeeman splitting in Cd3As2. In addition, the detected Berry phase is found to vary from nontrivial to trivial at different field directions, revealing a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results demonstrate a feasible path to generate a Weyl semimetal phase based on the TDSs by breaking TRS.
Rashba Interaction and Local Magnetic Moments in a Graphene-BN Heterostructure Intercalated with Au
NASA Astrophysics Data System (ADS)
O'Farrell, E. C. T.; Tan, J. Y.; Yeo, Y.; Koon, G. K. W.; Ã-zyilmaz, B.; Watanabe, K.; Taniguchi, T.
2016-08-01
We intercalate a van der Waals heterostructure of graphene and hexagonal boron nitride with Au, by encapsulation, and show that the Au at the interface is two dimensional. Charge transfer upon current annealing indicates the redistribution of the Au and induces splitting of the graphene band structure. The effect of an in-plane magnetic field confirms that the splitting is due to spin splitting and that the spin polarization is in the plane, characteristic of a Rashba interaction with a magnitude of approximately 25 meV. Consistent with the presence of an intrinsic interfacial electric field we show that the splitting can be enhanced by an applied displacement field in dual gated samples. A giant negative magnetoresistance, up to 75%, and a field induced anomalous Hall effect at magnetic fields <1 T are observed. These demonstrate that the hybridized Au has a magnetic moment and suggests the proximity to the formation of a collective magnetic phase. These effects persist close to room temperature.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Design and analysis of optical waveguide elements in planar geometry
NASA Astrophysics Data System (ADS)
Mirkov, Mirko Georgiev
1998-10-01
This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.
NASA Astrophysics Data System (ADS)
Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.
2015-12-01
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.
Prospects for an Improved Measurement of Experimental Limit on G-dot
NASA Technical Reports Server (NTRS)
Sanders, Alvin J.
2003-01-01
The orbital motion of an ultra-drag-free satellite, such as the large test body of the SEE (Satellite Energy Exchange) satellite, known as the "Shepherd," may possibly provide the best test for time variation of the gravitational constant G at the level of parts in 10(exp 14). Scarcely anything could be more significant scientifically than the incontestable discovery that a fundamental "constant" of Nature is not constant. A finding of non-zero (G-dot)/G would clearly mark the boundaries where general relativity is valid, and specify the onset of new physics. The requirements for measuring G-dot at the level proposed by SEE will require great care in treating perturbation forces. In the present paper we concentrate on the methods for dealing with the gravitational field due to possible large manufacturing defects in the SEE observatory. We find that, with adequate modeling of the perturbation forces and cancellation methods, the effective time-averaged acceleration on the SEE Shepherd will be approx. 10(exp -18) g (10(exp -17) m/sq s).
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka
2018-06-01
The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.
Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahal, R.; Pantha, B. N.; Li, J.
2014-04-07
InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias,more » setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.« less
Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting
NASA Astrophysics Data System (ADS)
Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao
2017-10-01
Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.
Bittner, Dror M; Walker, Nicholas R; Legon, Anthony C
2016-02-21
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ (e) or ΔJ (e), the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ (e) or ΔJ (e) for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ (0) or ΔJ (0) for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ∼ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
NASA Astrophysics Data System (ADS)
Bittner, Dror M.; Walker, Nicholas R.; Legon, Anthony C.
2016-02-01
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ e or ΔJ e , the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ e or ΔJ e for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ 0 or ΔJ 0 for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ˜ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
Precision sizing of moving large particles using diffraction splitting of Doppler lines
NASA Astrophysics Data System (ADS)
Kononenko, Vadim L.
1999-02-01
It is shown, that the Doppler line from a single large particle moving with a constant velocity through a finite- width laser beam, undergoes a doublet-type splitting under specific observation conditions. A general requirement is that particle size 2a is not negligibly small, compared with beam diameter 2w$0. Three optical mechanisms of line splitting are considered. The first one is based on nonsymmetric diffraction of a bounded laser beam by a moving particle. The second arises from the transient geometry of diffraction. The third mechanism, of photometric nature, originates from specific time variation of total illuminance of moving particles when 2a>Lambda, the interference fringe spacing in the measuring volume. The diffraction splitting is observed when a detector is placed near one of diffraction minima corresponding to either of probing beams, and 2a equals (n0.5)Lambda for n equals 1,2. The photometric splitting is observed with an image-forming optics, when 2a equals n(Lambda) . That gives the possibility of distant particles sizing based on the Doppler line splitting phenomenon. A general theory of line splitting is developed, and used to explain the experimental observations quantitatively. The influence of the scattering angels and observation angle on the line splitting characteristics is studied analytically and numerically.
Aphesteguy, Juan Carlos; Jacobo, Silvia E; Lezama, Luis; Kurlyandskaya, Galina V; Schegoleva, Nina N
2014-06-19
Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
NASA Astrophysics Data System (ADS)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less
Quantitative analysis on electric dipole energy in Rashba band splitting.
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-09-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.
Quantitative analysis on electric dipole energy in Rashba band splitting
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-01-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493