Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications
NASA Astrophysics Data System (ADS)
Caimi, F. M.; Kocak, D. M.; Justak, J. F.
2006-04-01
Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.
An experiment in vision based autonomous grasping within a reduced gravity environment
NASA Technical Reports Server (NTRS)
Grimm, K. A.; Erickson, J. D.; Anderson, G.; Chien, C. H.; Hewgill, L.; Littlefield, M.; Norsworthy, R.
1992-01-01
The National Aeronautics and Space Administration's Reduced Gravity Program (RGP) offers opportunities for experimentation in gravities of less than one-g. The Extravehicular Activity Helper/Retriever (EVAHR) robot project of the Automation and Robotics Division at the Lyndon B. Johnson Space Center in Houston, Texas, is undertaking a task that will culminate in a series of tests in simulated zero-g using this facility. A subset of the final robot hardware consisting of a three-dimensional laser mapper, a Robotics Research 807 arm, a Jameson JH-5 hand, and the appropriate interconnect hardware/software will be used. This equipment will be flown on the RGP's KC-135 aircraft. This aircraft will fly a series of parabolas creating the effect of zero-g. During the periods of zero-g, a number of objects will be released in front of the fixed base robot hardware in both static and dynamic configurations. The system will then inspect the object, determine the objects pose, plan a grasp strategy, and execute the grasp. This must all be accomplished in the approximately 27 seconds of zero-g.
Grasping rigid objects in zero-g
NASA Astrophysics Data System (ADS)
Anderson, Greg D.
1993-12-01
The extra vehicular activity helper/retriever (EVAHR) is a prototype for an autonomous free- flying robotic astronaut helper. The ability to grasp a moving object is a fundamental skill required for any autonomous free-flyer. This paper discusses an algorithm that couples resolved acceleration control with potential field based obstacle avoidance to enable a manipulator to track and capture a rigid object in (imperfect) zero-g while avoiding joint limits, singular configurations, and unintentional impacts between the manipulator and the environment.
NASA Technical Reports Server (NTRS)
Sanchez, Merri J.
2000-01-01
This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.
The environmental zero-point problem in evolutionary reaction norm modeling.
Ergon, Rolf
2018-04-01
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.
Techniques for determination of impact forces during walking and running in a zero-G environment
NASA Technical Reports Server (NTRS)
Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William
1992-01-01
One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.
The Phoretic Motion Experiment (PME) definition phase
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Neste, S. L. (Editor)
1982-01-01
The aerosol generator and the charge flow devices (CFD) chamber which were designed for zero-gravity operation was analyzed. Characteristics of the CFD chamber and aerosol generator which would be useful for cloud physics experimentation in a one-g as well as a zero-g environment are documented. The Collision type of aerosol generator is addressed. Relationships among the various input and output parameters are derived and subsequently used to determine the requirements on the controls of the input parameters to assure a given error budget of an output parameter. The CFD chamber operation in a zero-g environment is assessed utilizing a computer simulation program. Low nuclei critical supersaturation and high experiment accuracies are emphasized which lead to droplet growth times extending into hundreds of seconds. The analysis was extended to assess the performance constraints of the CFD chamber in a one-g environment operating in the horizontal mode.
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
NASA Technical Reports Server (NTRS)
Strehlow, R. A.; Reuss, D. L.
1980-01-01
Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.
NASA Astrophysics Data System (ADS)
Neri, Gianluca; Zolesi, Valfredo
2000-01-01
Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .
NASA Technical Reports Server (NTRS)
Yates, I. C.; Yost, V. H.
1973-01-01
The results of the first two of a series of research rocket flights are presented. The objectives of these flights were (1) to learn about the capabilities of these rockets, (2) to learn how to interface the payloads and rockets, and (3) to process some of the composite casting demonstration capsules intended originally for Apollo 15. The capsules contained experiments for investigating the stability of gas bubbles in plain and fiber-reinforced metal melted and solidified in a near-zero-g (0.0119g) environment. The characteristics of the two research rockets, an Aerobee 170A and a Black Brant VC, used to obtain the periods of near-zero-g and the temperature control unit used for processing the contents of the two experiment capsules are discussed.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
1979-03-01
Astronaut -Candidate (ASCAN) Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero- gravity flight. They are aboard a KC-135 Aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Astronauts Bluford and Hayes are being assisted by C. P. Stanley of the Photography Branch of the Photographic Technology Division (PTD) at Johnson Space Center (JSC). Some medical studies and a Motion Sickness Experiment were conducted on this particular flight. Astronaut Bluford is one of 20 Scientist/ASCAN's who began training at JSC, 07/1978. 1. Dr. Jeffrey A. Hoffman - Zero-G 2. ASCAN Shannon Lucid - Zero-G 3. ASCAN Guion Bluford - Zero-G
The behavior of surface tension on steady-state rotating fluids in the low gravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Leslie, Fred W.
1987-01-01
The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.
Pilot investigation - Nominal crew induced forces in zero-g
NASA Technical Reports Server (NTRS)
Klute, Glenn K.
1992-01-01
This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation. Three orthogonal force axes were measured in the NASA KC-135 research aircraft's 'zero-g' environment. The largest forces were induced during vertical foot push-offs, including one of 534 newtons (120 lbs). The mean vertical foot push-off was 311 newtons (70 lbs). The vertical hand push-off forces were also relatively large, including one of 267 newtons (60 lbs) with a mean of 151 newtons (34 lbs). These force magnitudes of these forces would result in a Shuttle gravity environment of about 1 x exp 10 -4 g's.
Prevalence, Predictors, and Prevention of Motion Sickness in Zero-G Parabolic Flights.
Golding, John F; Paillard, Aurore C; Normand, Hervé; Besnard, Stéphane; Denise, Pierre
2017-01-01
Zero-G parabolic flight reproduces the weightlessness of space for short periods. However, motion sickness may affect some fliers. The aim was to assess the extent of this problem and to find possible predictors and modifying factors. Airbus zero-G flights consist of 31 parabolas performed in blocks. Each parabola consisted of 20 s of 0 g sandwiched by 20 s of hypergravity of 1.5-1.8 g. The survey covered N = 246 person-flights (193 men, 53 women), ages (M ± SD) 36.0 ± 11.3 yr. An anonymous questionnaire included motion sickness rating (1 = OK to 6 = vomiting), Motion Sickness Susceptibility Questionnaire (MSSQ), antimotion sickness medication, prior zero-G experience, anxiety level, and other characteristics. Participants had lower MSSQ percentile scores (27.4 ± 28.0) than the population norm of 50. Motion sickness was experienced by 33% and 12% vomited. Less motion sickness was predicted by older age, greater prior zero-G flight experience, medication with scopolamine, lower MSSQ scores, but not gender or anxiety. Sickness ratings in fliers pretreated with scopolamine (1.81 ± 1.58) were lower than for nonmedicated fliers (2.93 ± 2.16), and incidence of vomiting in fliers using scopolamine treatment was reduced by half to a third. Possible confounding factors including age, sex, flight experience, and MSSQ could not account for this. Motion sickness affected one-third of zero-G fliers despite being intrinsically less motion sickness susceptible compared to the general population. Susceptible individuals probably try to avoid such a provocative environment. Risk factors for motion sickness included younger age and higher MSSQ scores. Protective factors included prior zero-G flight experience (habituation) and antimotion sickness medication.Golding JF, Paillard AC, Normand H, Besnard S, Denise P. Prevalence, predictors, and prevention of motion sickness in zero-G parabolic flights. Aerosp Med Hum Perform. 2017; 88(1):3-9.
Man-machine analysis of translation and work tasks of Skylab films
NASA Technical Reports Server (NTRS)
Morrow, J. R.; Boelter, J.
1978-01-01
Selected film segments were digitized. An efficiency of translation scale was developed, and each of 200 segments of film were rated with regard to the astronauts translation characteristics. Results indicated that in general the astronauts were able to acclimate themselves to the zero g environment quite well. Results also indicated that astronauts tended to translate in 1 g orientations when in the experimental compartment and the wardroom which were architecturally 1 g. However, when the astronauts were in the forward compartment, which was zero g oriented, they began to translate more frequently in a zero g manner. There appeared to be improvements in translation across time. These improvements appeared more so in the forward compartment than in the wardroom or the experimental compartment. Possible changes in the architecture of the wardroom and the experimental compartment were suggested in order to improve translation within these compartments.
Comments on SEE: Comparative Advantages and and Experimental Consequences
NASA Technical Reports Server (NTRS)
Smalley, Larry L.
1996-01-01
The Satellite Energy Exchange experiment measures the periodic, near-miss encounters between a sheppard satellite and a small test body (satellite) in approximately the same orbit about a primary. Several important experimental requirements have been chosen to enhance capabilities: (a) The satellite be flown in a sun-synchronous orbit at an altitude of about 1350 Km, (b) Passive temperature system stabilized by spacecraft axial rotation with sunshade baffles at the end of the spacecraft, (c) Test bodies with different material composition be available for experiments, (d) The containment spacecraft fly about the sheppard mass in a zero-g environment whereas the test bodies, experience average zero-g environment over an orbital period, (e) Primary attitude and station-keeping uses magnetic field alignment plus micro-Newton thrusters such as Field Emission Electric Propulsion, and (f) Very low power (nW) laser tracking systems minimize impulse delivered to test bodies. With the above conditions, SEE has the capabilities: (1) Long duration (several years life-time) flight experiment (2) Long-term, active (with historical time record), self-calibration of satellite mass distribution (capsule geodesy) over lifetime of the spacecraft. (3) Novel passive thermal stabilization systems designed to attain cryogenic temperatures around 78K. (4) Novel spacecraft stabilization systems. (5) Ability to measure G to 1 part in 10(exp 6-7) depending on ultimate duration of experiment. (6) Ability to place limits on both temporal and spacial variations on G. (7) Ability to set experimental limits on the Post Newtonian parameters (PPN) alpha(2) and zeta(2). (8) Ability to measure (or place limits on) the non Einsteinian eccentricity of the Earth-Sun system (and the parameter alpha(1)) for long duration flight. (9) Ability to measure Delta((dot)-G)/G to 1 part in 10(exp 12-13). The MiniSTEP, competes in a limited way with Project SEE. It is designed to improve the measurement of the equivalence principle by seven orders of magnitude using active, low temperature (1.8 K) cooling for SQUID based, differential superconducting circuits. The experiment consists of a small cylinder concentrically located within a larger cylinder at its null gravitational point. The satellite is operated in zero-g mode using four differential accelerometers consisting to two test bodies of different material composition. The SQUIDS are needed to measure test body motion to precisions of 10(exp -18) over a four orbit period. The entire satellite moves in a very precise zero-g mode since the accelerometers are rigidly attached to the satellite. This limits the experiment to an approximately six month due to limitations on helium storage used in cryogenic cooling and thrust control to maintain the zero-g operation.
Zero-G Condensing Heat Exchanger with Integral Disinfection
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2012-01-01
The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.
NASA Technical Reports Server (NTRS)
Gundersen, R. T.; Bond, R. L.
1976-01-01
Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.
Three-Dimensional Printing in Zero Gravity
NASA Technical Reports Server (NTRS)
Werkheiser, Niki
2015-01-01
The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.
NASA Technical Reports Server (NTRS)
Gonzalez, Richard R.
1994-01-01
The problems of heat exchange during rest and exercise during long term space operations are covered in this report. Particular attention is given to the modeling and description of the consequences of requirement to exercise in a zero-g atmosphere during Space Shuttle flights, especially long term ones. In space environments, there exists no free convection therefore only forced convection occurring by movement, such as pedalling on a cycle ergometer, augments required heat dissipation necessary to regulate body temperature. The requirement to exercise at discrete periods of the day is good practice in order to resist the deleterious consequences of zero-gravity problems and improve distribution of body fluids. However, during exercise (ca. 180 to 250W), in zero-g environments, the mass of eccrine sweating rests as sheets on the skin surface and the sweat cannot evaporate readily. The use of exercise suits with fabrics that have hydrophobic or outwicking properties somewhat distributes the mass of sweat to a larger surface from which to evaporate. However, with no free convection, increased skin wettedness throughout the body surface induces increasing thermal discomfort, particularly during continuous exercise. This report presents several alternatives to aid in this problem: use of intermittent exercise, methods to quantify local skin wettedness, and introduction of a new effective temperature that integrates thermal stress and heat exchange avenues in a zero-g atmosphere.
NASA Technical Reports Server (NTRS)
Nelson, T. E.; Peterson, J. R.
1982-01-01
The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.
Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee
2015-08-15
Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.
Zhenwei Miao; Xudong Jiang; Kim-Hui Yap
2016-01-01
The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.
NASA Technical Reports Server (NTRS)
Brown, N. E.
1973-01-01
Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.
Influence of zero-G on single-cell systems and zero-G fermenter design concepts
NASA Technical Reports Server (NTRS)
Mayeux, J. V.
1977-01-01
An analysis was made to identify potential gravity-sensitive mechanisms that may be present in the single-cell growth system. Natural convection (density gradients, induced sedimentation, and buoyancy) is important in microbial systems. The absence of natural convection in the space-flight environment could provide an opportunity for new approaches for developments in industrial fermentation and agriculture. Some of the potential influences of gravity (i.e., convection, sedimentation, etc.) on the cell were discussed to provide insight into what experimental areas may be pursued in future space-flight research programs.
Inertial waste separation system for zero G WMS
NASA Technical Reports Server (NTRS)
1971-01-01
The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.
Development of the Lens Antenna Deployment Demonstration (LADD) shuttle-attached flight experiment
NASA Technical Reports Server (NTRS)
Hill, H.; Johnston, D.; Frauenberger, H.
1986-01-01
The primary objective of the LADD Program is to develop a technology demonstration test article that can be used for both ground and flight tests to demonstrate the structural and mechanical feasibility and reliability of the single-axis roll-out space based radar (SBR) approach. As designed, the LADD will essentially be a generic strucutural experiment which incorporates all critical technology elements of the operational satellite and is applicable to a number of future antenna systems. However, to fully determine its design integrity for meeting the lens flatness and constant geometry requirements in a zero g environment under extreme thermal conditions, the LADD must be space flight tested. By accurately surveying the structure under varying conditions the membrane tolerance-holding capabilities of the structure will be demonstrated. The flight test will provide data to verify analytical tools used to predict thermal and structural behavior. Most important, the experiment will provide an initial indication of structural damping in a zero g vacuum environment. The recently completed Solar Array Flight Experiment (SAFE) showed orbital damping greater than that experienced during ground testing. From the experience and the information obtained from LADD it is hoped that designs can be confidently extrapolated to operational satellites with apertures in the 20 m by 60 m size range.
Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke
2016-07-19
The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.
NASA Technical Reports Server (NTRS)
Karr, G. R.; Hendricks, J. B.
1985-01-01
The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.
1979-04-03
Zero-gravity experiments in KC-135 conducted by John Young, Robert L. Crippen, Joseph Kerwin, and Margaret Seddon. 1. Kerwin, Joseph - Zero-G 2. Seddon, Margaret - Zero-G 3. Young, John - Zero-G 4. Aircraft - KC-135
Crew Training - STS-30/61B (Zero-G)
1985-08-21
KC-135 inflight training of the STS-30/61B Crew for suit donning doffing and Zero-G orientation for Rudolfo Neri, Astronaut Mary Cleave, and Ricardo Peralta, Backup Neri. 1. Astronaut Cleave, Mary - Zero-G 2. Neri, Rodolfo - Zero-G 3. Peralta, Ricard - Zero-G
Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin
NASA Technical Reports Server (NTRS)
Humphries, W. R.
1974-01-01
The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.
Perceptual disturbances predicted in zero-g through three-dimensional modeling.
Holly, Jan E
2003-01-01
Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g.
NASA Astrophysics Data System (ADS)
Osborne, Jeffrey R.; Alonsopérez Lanza, María Victoria; Desclaux, David Ferrer; Goswami, Nandu; González Alonso, Daniel Ventura; Moser, Maximilian; Grote, Vincent; Garcia-Cuadrado, Gloria; Perez-Poch, Antoni
2014-07-01
When an astronaut transitions from a low to high gravitational environment, fluid shifts from the head towards the feet resulting in orthostatic intolerance and syncope. Ground based experiments have shown that by stimulating the cardiovascular system via simple mental stressors, syncope can be delayed, potentially enabling astronauts to reach assistance before loss of consciousness. However, the effect of mental stressors on the stimulation of the cardiovascular system in gravitational environments different than that of Earth's is unknown. As such, this paper investigates the effects that mental stressors under various gravitational environments. To do this, a pilot study was performed in which two participants were flown on two separate parabolic flights that simulated hyper and hypogravity conditions. The plane used was an Aerobatic Single-Engine Cap-10B plane (twin seater), and each participant executed 11 parabolas. The participants were the winners of the Barcelona Zero-G Challenge 2011 organized by UPC Universitat Politècnica de Catalunya-BarcelonaTech and Aeroclub Barcelona-Sabadell. Measurements were made of the participants' hemodynamic and autonomic response throughout the parabolas, using a Chronocord: high precision HRV monitor. Comparisons of the baseline response without mental stressors, and the response with mental stressors during different gravitational loading conditions were made. It was observed that there is an increase in cardiovascular activity during hypo- and hyper-gravity when performing mental arithmetic. Our results show that the twin seater aerobatic single engine CAP-10B aicraft can provide changing gravitational loading conditions for enough periods to study changes in physiological systems.
Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B
2018-06-05
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Acceleration display system for aircraft zero-gravity research
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1987-01-01
The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.
Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul
2012-01-01
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396
Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul
2012-07-07
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Suborbital Applications in Astronomy and Astrophysics
NASA Technical Reports Server (NTRS)
Unwin, Steve; Werner, Mike; Goldsmith, Paul
2012-01-01
Suborbital flights providing access to zero-g in a space environment - Demonstrating new technologies in a relevant environment. - Flight testing of individual elements of a constellation. - Raising the TRL of critical technologies for subsystems on future large missions High-altitude balloons (up to 10 kg payload) -Access to near-space for wavelengths not observable from the ground. -Raising the TRL of critical technologies for subsystems on future large missions. -UV Detector testing.
Low-g simulation testing of propellant systems using neutral buoyancy
NASA Technical Reports Server (NTRS)
Balzer, D. L.; Lake, R. J., Jr.
1972-01-01
A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.
Preparatory studies of zero-g cloud drop coalescence experiment
NASA Technical Reports Server (NTRS)
Telford, J. W.; Keck, T. S.
1979-01-01
Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.
Quantification Of Fire Signatures For Practical Spacecraft Materials
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.
2003-01-01
The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.
Zero-gravity open-type urine receptacle
NASA Technical Reports Server (NTRS)
Girala, A. S.
1972-01-01
The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.
Reservoir-Based Drug Delivery Systems Utilizing Microtechnology
Stevenson, Cynthia L.; Santini, John T.; Langer, Robert
2012-01-01
This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783
Development of a Miniature, Two-Axis, Triple-Helmholtz-Driven Gimbal
NASA Technical Reports Server (NTRS)
Sharif, Boz; Joscelyn, Ed; Wilcox, Brian; Johnson, Michael R.
2000-01-01
This paper details the development of a Helmholtz-driven, 2-axis gimbal to position a flat mirror within 50 microradian (fine positioning) in a space environment. The gimbal is intended to travel on a deep space mission mounted on a miniature "rover" vehicle. The gimbal will perform both pointing and scanning functions. The goal for total mass of the gimbal was 25 grams. The primary challenge was to design and build a bearing system that would achieve the required accuracy in addition to supporting the relatively large mass of the mirror and the outer gimbal. The mechanism is subjected to 100-G loading without the aid of any additional caging mechanism. Additionally, it was desired to have the same level of accuracy during Earth-bound, 1-G testing. Due to the inherent lack of damping in a zero-G, vacuum environment; the ability of the gimbal to respond to very small amounts of input energy is paramount. Initial testing of the first prototype revealed exceedingly long damping times required even while exposed to the damping effects of air and 1-G friction. It is envisioned that fine positioning of the gimbal will be accomplished in very small steps to avoid large disturbances to the mirror. Various bearing designs, including materials, lubrication options and bearing geometry will be discussed. In addition various options for the Helmholtz coil design will be explored with specific test data given. Ground testing in the presence of 1-G was compounded by the local magnetic fields due to the "compass" effect on the gimbal. The test data will be presented and discussed. Additionally, rationale for estimating gimbal performance in a zero-G environment will be presented and discussed.
Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian
2013-01-01
Following the 1976 Toxic Substances Control Act ban on their manufacture, PCBs remain an environmental threat. PCBs are known to bio-accumulate and concentrate in fatty tissues. Further complications arise from the potential for contamination of commercial mixtures with other more toxic chlorinated compounds such as polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Until recently, only one option was available for the treatment of PCB-contaminated materials: incineration. This may prove to be more detrimental to the environment than the PCBs themselves due to the potential for formation of PCDDs. Metals have been used for the past ten years for the remediation of halogenated solvents and other contaminants in the environment; however, zero-valent metals alone do not possess the activity required to dehalogenate PCBs. Palladium has been shown to act as an excellent catalyst for the dechlorination of PCBs with active metals. This invention is a method for the production of a palladium/magnesium bimetal capable of dechlorinating PCBs using mechanical milling/mechanical alloying. Other base metals and catalysts may also be alloyed together (e.g., nickel or zinc) to create a similarly functioning catalyst system. Several bimetal catalyst systems currently can be used for processes such as hydrogen peroxide synthesis, oxidation of ethane, selective oxidation, hydrogenation, and production of syngas for further conversion to clean fuels. The processes for making these bimetal catalysts often involve vapor deposition. This technology provides an alternative to vapor deposition that may provide equally active catalysts. A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.
NASA Technical Reports Server (NTRS)
Allen, J.
1977-01-01
The feasibility of space colonization depends partly on the answer to the practical question whether construction workers can exist and work in zero-g for the time necessary to build the colony framework to the point just prior to spinning it into its artificial-g mode. Based on definitive Skylab experience, there seems to be every reason to believe that workers in zero-g can perform their construction tasks with the same skill as under 1-g conditions. Attention is also given to basic reasons and motivations for the conduction of space flights and the establishment of space colonies.
2004-04-15
The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.
Assessment of zero gravity effects on space worker health and safety
NASA Technical Reports Server (NTRS)
1980-01-01
One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the references Solar Power Satellites (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers either immediate or delayed due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiency in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five year career period. The proposed 90 day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five year career.
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram
2017-02-01
In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.
Waterless Clothes-Cleaning Machine
NASA Technical Reports Server (NTRS)
Johnson, Glenn; Ganske, Shane
2013-01-01
A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.
Optical Design Using Small Dedicated Computers
NASA Astrophysics Data System (ADS)
Sinclair, Douglas C.
1980-09-01
Since the time of the 1975 International Lens Design Conference, we have developed a series of optical design programs for Hewlett-Packard desktop computers. The latest programs in the series, OSLO-25G and OSLO-45G, have most of the capabilities of general-purpose optical design programs, including optimization based on exact ray-trace data. The computational techniques used in the programs are similar to ones used in other programs, but the creative environment experienced by a designer working directly with these small dedicated systems is typically much different from that obtained with shared-computer systems. Some of the differences are due to the psychological factors associated with using a system having zero running cost, while others are due to the design of the program, which emphasizes graphical output and ease of use, as opposed to computational speed.
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
Modular plant culture systems for life support functions
NASA Technical Reports Server (NTRS)
1985-01-01
The current state of knowledge with regard to culture of higher plants in the zero-G environment is assessed; and concepts for the empirical development of small plant growth chambers for the production of salad type vegetables on space shuttle or space station are evaluated. American and Soviet space flight experiences in gravitational biology are summarized.
Space Station Freedom pressurized element interior design process
NASA Technical Reports Server (NTRS)
Hopson, George D.; Aaron, John; Grant, Richard L.
1990-01-01
The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the reference Solar Power Satellite (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers - either immediate or delayed - due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence tomore » work efficiently in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five-year career period. The proposed 90-day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five-year career. (JGB)« less
Land Management Panel: Army’s Net Zero Installation Initiative
2012-05-24
same watershed so not to deplete the groundwater and surface water resources of that region in quantity or quality. A Net Zero WASTE Installation...0.15 0.2 0.25 Assistant Secretary of the Army (Installations, Energy & Environment) Net Zero Waste A Net Zero WASTE Installation reduces, reuses...Net Zero Waste Strategy 17 Assistant Secretary of the Army (Installations, Energy & Environment) Waste Roadmaps Material flow analysis
Zero-g tests of involving Hamilton standard personnel and others
NASA Technical Reports Server (NTRS)
1979-01-01
Zero-g tests of involving Hamilton standard personnel, Don Williams and Larry Magers. View includes Williams and Magers tumbling in zero-g as photographer takes picures. Williams is wearing a headset (30361); Williams floats among Hamilton standard technicians (30362).
Zhang, Qun; Hepburn, John W
2008-08-15
We propose a novel method that uses the oscillation of an atomic excited wave packet observed through a pump-probe technique to accurately determine the zero time delay between a pair of ultrashort laser pulses. This physically based approach provides an easy fix for the intractable problem of synchronizing two different femtosecond laser pulses in a practical experimental environment, especially where an in situ time zero measurement with high accuracy is required.
Development of a filter regeneration system for advanced spacecraft fluid systems
NASA Technical Reports Server (NTRS)
Behrend, A. F., Jr.; Descamp, V. A.
1974-01-01
The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.
NASA Astrophysics Data System (ADS)
Wu, Jia-Jia; Li, Lin
2018-04-01
In this paper, a compact low-pass filter (LPF) with wide stopband is proposed based on interdigital capacitor loaded hairpin resonator. The structure composed of an upper high-impedance transmission line, a middle interdigital capacitor, and a pair of inter-coupled symmetrical stepped-impedance stubs. Detailed investigation into this structure based on even-odd mode approach reveals that up to four transmission zeros can be generated and reallocated by choosing the proper circuit parameters. And owing to the aid of transmission zeros, the fabricated quasi-elliptic LPFs experimentally demonstrate a wide 20dB stopband from 1.4fc to 5.1fc using a compact size of only 0.005 λg2.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
Teacher-in-Space trainees on the KC-135 for Zero-G training. Sharon Christa McAuliffe experiences a few moments of weightlessness provided by the KC-135. She and Bob Mayfield, a JSC Aerospace Education Specialist, are previewing a Molecular Mixing Experiment which was designed to demonstrate differences of separation process in 1-G and Zero-G.
Mobile/android application for QRS detection using zero cross method
NASA Astrophysics Data System (ADS)
Rizqyawan, M. I.; Simbolon, A. I.; Suhendra, M. A.; Amri, M. F.; Kusumandari, D. E.
2018-03-01
In automatic ECG signal processing, one of the main topics of research is QRS complex detection. Detecting correct QRS complex or R peak is important since it is used to measure several other ECG metrics. One of the robust methods for QRS detection is Zero Cross method. This method uses an addition of high-frequency signal and zero crossing count to detect QRS complex which has a low-frequency oscillation. This paper presents an application of QRS detection using Zero Cross algorithm in the Android-based system. The performance of the algorithm in the mobile environment is measured. The result shows that this method is suitable for real-time QRS detection in a mobile application.
NASA Technical Reports Server (NTRS)
Spooner, Brian S.; Guikema, James A.; Barnes, Grady
1990-01-01
Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.
A Case for Hypogravity Studies Aboard ISS
NASA Technical Reports Server (NTRS)
Paloski, William H.
2014-01-01
Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent subjects for extended periods (weeks to months) at various hypogravity levels. Experiments aboard such a centrifuge could provide important insight into human exploration questions and simultaneously answer fundamental questions in gravitational physiology.
GAS-611 firefly in zero gravity
NASA Technical Reports Server (NTRS)
Williams, Tony
1988-01-01
The Get Away Special 611 (GAS-611) project will carry a small, self-contained biological experiment into a microgravity environment for a period of 120 hours. The payload will be a colony of Lampyridae (fireflies). The ability of this beetle to produce light with an efficiency of 98 pct will be evaluated in the micro-G environment. The chemical process that occurs could be assisted by the earth's gravitational pull and the very complex tracheae system found within this species of beetle. The effects of microgravity on mating and beetle larvae will also be studied.
12 CFR 702.302 - Net worth categories for new credit unions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... three and one-half percent (3.5%); (5) Minimally capitalized if it has a net worth ratio of zero percent... less than zero percent (0%) (e.g., a deficit in retained earnings). ER29NO02.071 (d) Reclassification based on supervisory criteria other than net worth. Subject to § 702.102(b) and (c), the NCUA Board may...
Miniaturized sensors to monitor simulated lunar locomotion.
Hanson, Andrea M; Gilkey, Kelly M; Perusek, Gail P; Thorndike, David A; Kutnick, Gilead A; Grodsinsky, Carlos M; Rice, Andrea J; Cavanagh, Peter R
2011-02-01
Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.
Morphology of Arabidopsis Grown under Chronic Centrifugation and on the Clinostat 123
Brown, Allan H.; Dahl, A. Orville; Chapman, David K.
1976-01-01
Morphological measurements were made on populations of Arabidopsis thaliana grown from seed for 21 days under essentially constant environmental conditions except for the influence of gravitational or centrifugal accelerations. Growth conditions were what had been proposed for experiments in an artificial satellite. Observations are reported for plants grown at normal 1-g upright or on horizontal clinostats and for plants grown on a centrifuge. Increased g-force, up to 15 times normal, was found to have significant but small effects on some morphological end points. The plants' sensitivity to the magnitude of the g-force was much less than to its vector direction. Data from centrifuge experiments (which determined the g-functions for particular characters) were extrapolated to zero-g to predict a set of morphological characteristics of a plant developing in the satellite environment. As an alternative means of predicting properties of a zero-g plant, characteristics of plants grown on horizontal clinostats were measured. The results of these two predictive methods were not in agreement. Clinostat grown plants were morphologically distinct from upright stationary controls. When plants were grown while rotating in the upright position on vertical clinostats they were similar to stationary plants also grown upright, but there were small differences some of which were statistically significant. PMID:16659483
Astronaut Guion S. Bluford and others participate in zero-g studies
1979-03-06
S79-28602 (2 March 1979) --- Astronaut candidate Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero gravity flight. They are aboard a KC-135 aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Bluford and Hayes are being assisted by C. P. Stanley of the photography branch of the photographic technology division at Johnson Space Center (JSC). Some medical studies and a motion sickness experiment were conducted on this particular flight. Bluford is one of 20 scientist-astronaut candidates who began training at JSC in July of 1978. Photo credit: NASA
Chemical Clarification Methods for Confined Dredged Material Disposal.
1983-07-01
foot second per metre cubic yards 0.7645549 cubic metres Farenheit degrees 5/9 Celsius degrees or Kelvins* feet 0.3048 metres feet per minute 0.3048...unknown in freshwater environments, use zero S.G. = specific gravity of solids; use 2.67 if unknown Wt. H20 [(weight of wet sample and dish, g...62.4 lb/ft v = average velocity, ft/sec Ps= absolute viscosity, 2.36 x 10-5 at 60F The duration t of the mixing is determined by t =L (6) v The net
Long-term exposure to zero-g and the gastro-intestinal tract function
NASA Technical Reports Server (NTRS)
Mccormack, Percial D.
1989-01-01
The gastrointestinal tract (GIT) function is described with emphasis placed on its important role to smooth, delay, and modify sudden fluid load stress applied to the fluid distribution control system in the body. Two basic components of the GIT are considered: stomach dynamics, which involves storage, mixing, and discharge of food into the intestine after addition of gastric juices; and absorption of water and electrolytes from the small intestine. A dynamic model of these components is described, along with performance characteristics computed consecutively for one g and zero g conditions. The main impact of the zero g condition appears to be through a change in osmotic driven transport across the gut wall. A dramatic change in transport characteristics is predicted with implication for many body systems (the immune system in particular) during long-term exposure to zero g. Experimental measurements in zero g are needed to evaluate these predictions.
Oxide double quantum dot - an answer to the qubit problem?
NASA Astrophysics Data System (ADS)
Yarlagadda, Sudhakar; Dey, Amit
We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.
Open Science- Space Coffee Cup
2016-10-11
In low-gravity environments like the space station, fluids tend to get ‘sticky.’ Surface tension and capillary effects, which are overwhelmed by gravity on Earth, rule the day in space. As a result, coffee tends to cling to the walls of the cup. The zero-G coffee cup solves these problems by 'going with the flow': putting the strange behavior of fluid in microgravity to work.
Fan, Longling; Yao, Jing; Yang, Chun; Xu, Di; Tang, Dalin
2018-01-01
Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin models were adjusted to match echo volume data. Effective Young’s moduli (YM) were calculated for easy comparison. For diastole phase, begin-filling (BF) mean YM value in the fiber direction (YMf) was 738% higher than its end-diastole (ED) value (645.39 kPa vs. 76.97 kPa, p=3.38E-06). For systole phase, end-systole (ES) YMf was 903% higher than its begin-ejection (BE) value (1025.10 kPa vs. 102.11 kPa, p=6.10E-05). Comparing systolic and diastolic material properties, ES YMf was 59% higher than its BF value (1025.10 kPa vs. 645.39 kPa. p=0.0002). BE mean stress value was 514% higher than its ED value (299.69 kPa vs. 48.81 kPa, p=3.39E-06), while BE mean strain value was 31.5% higher than its ED value (0.9417 vs. 0.7162, p=0.004). Similarly, ES mean stress value was 562% higher than its BF value (19.74 kPa vs. 2.98 kPa, p=6.22E-05), and ES mean strain value was 264% higher than its BF value (0.1985 vs. 0.0546, p=3.42E-06). 2G models improved over 1G model limitations and may provide better material parameter estimation and stress/strain calculations. PMID:29399004
Fan, Longling; Yao, Jing; Yang, Chun; Xu, Di; Tang, Dalin
2016-01-01
Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin models were adjusted to match echo volume data. Effective Young's moduli (YM) were calculated for easy comparison. For diastole phase, begin-filling (BF) mean YM value in the fiber direction (YM f ) was 738% higher than its end-diastole (ED) value (645.39 kPa vs. 76.97 kPa, p=3.38E-06). For systole phase, end-systole (ES) YM f was 903% higher than its begin-ejection (BE) value (1025.10 kPa vs. 102.11 kPa, p=6.10E-05). Comparing systolic and diastolic material properties, ES YM f was 59% higher than its BF value (1025.10 kPa vs. 645.39 kPa. p=0.0002). BE mean stress value was 514% higher than its ED value (299.69 kPa vs. 48.81 kPa, p=3.39E-06), while BE mean strain value was 31.5% higher than its ED value (0.9417 vs. 0.7162, p=0.004). Similarly, ES mean stress value was 562% higher than its BF value (19.74 kPa vs. 2.98 kPa, p=6.22E-05), and ES mean strain value was 264% higher than its BF value (0.1985 vs. 0.0546, p=3.42E-06). 2G models improved over 1G model limitations and may provide better material parameter estimation and stress/strain calculations.
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
Effect of STS space suit on astronaut dominant upper limb EVA work performance
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.
1987-01-01
The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.
Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Lipa, J.
2004-01-01
We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.
Convectionless electrophoretic separation of biological preparations
NASA Technical Reports Server (NTRS)
Griffin, R. N.; Mccreight, L. R.
1972-01-01
Free electrophoresis in a zero gravity environment was investigated on the Apollo 14, and 16 flights. The Apollo 16 electrophoresis equipment and experiment are described along with the required ground-based testing.
Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won
2011-01-01
To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.
The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2016-12-01
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The base pressure environment was investigated for the first and second stage mated vehicle in a supersonic flow field from Mach 1.55 through 2.20 with simulated rocket engine exhaust plumes. The pressure environment was investigated for the orbiter at various vent port locations at these same freestream conditions. The Mach number environment around the base of the model with rocket plumes simulated was examined. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of the tested configurations are shown.
Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters
NASA Astrophysics Data System (ADS)
Helz, G. R.
2014-12-01
Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.
Zero-G experiments in two-phase fluids flow regimes
NASA Technical Reports Server (NTRS)
Heppner, D. B.; King, C. D.; Littles, J. W.
1975-01-01
The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.
NASA Technical Reports Server (NTRS)
Rios, J.
1982-01-01
The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.
2007-04-26
KENNEDY SPACE CENTER, FLA. -- Peter Diamandis (left), founder of the Zero Gravity Corp., and noted physicist Stephen Hawking move away from Zero G's modified Boeing 727 on the runway at the Kennedy Space Center's Shuttle Landing Facility. Hawking enjoyed his first zero gravity flight provided by Zero G. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
Mars Surface Ionizing Radiation Environment: Need for Validation
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.
1999-01-01
Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from the Martian surface and especially prominent are energetic neutrons with energies up to a few hundred MeV. Testing of these computational results is first supported by ongoing experiments at the Brookhaven National Laboratory but equally important is the validation to the extent possible by measurements on the Martian surface. Such measurements are limited by power and weight requirements of the specific mission and simplified instrumentation by necessity lacks the full discernment of particle type and spectra as is possible with laboratory experimental equipment. Yet, the surface measurements are precise and a necessary requisite to validate our understanding of the surface environment. At the very minimum the surface measurements need to provide some spectral information on the neutron environment. Of absolute necessity is the precise knowledge of the detector response functions for absolute comparisons between the computational model of the surface environment and the detector measurements on the surface.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
Characterization of heat transfer in nutrient materials. [space flight feeding
NASA Technical Reports Server (NTRS)
Witte, L. C.
1985-01-01
The processing and storage of foodstuffs in zero-g environments such as in Skylab and the space shuttle were investigated. Particular attention was given to the efficient heating of foodstuffs. The thermophysical properties of various foods were cataloged and critiqued. The low temperature storage of biological samples as well as foodstuffs during shuttle flights was studied. Research and development requirements related to food preparation and storage on the space station are discussed.
1968-10-01
Dr. von Braun inside the KC-135 in flight. The KC-135 provide NASA's Reduced-Gravity Program the unique weightlessness or zero-g environment of space flight for testing and training of human and hardware reactions. The recent version, KC-135A, is a specially modified turbojet transport which flies parabolic arcs to produce weightlessness periods of 20 to 25 seconds and its cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high.
Centrifuge in Free Fall: Combustion at Partial Gravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul
2017-01-01
A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.
Amplification, Decoherence, and the Acquisition of Information by Spin Environments
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2016-01-01
Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond. PMID:27193389
Amplification, Decoherence, and the Acquisition of Information by Spin Environments
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2016-05-01
Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.
Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments
NASA Technical Reports Server (NTRS)
Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.
2006-01-01
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
NASA Technical Reports Server (NTRS)
Wood, C. A.
1974-01-01
For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.
2013-10-21
Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4 3.3 Principle of Gravity Offloading
Tang, Dalin; Del Nido, Pedro J; Yang, Chun; Zuo, Heng; Huang, Xueying; Rathod, Rahul H; Gooty, Vasu; Tang, Alexander; Wu, Zheyang; Billiar, Kristen L; Geva, Tal
2016-01-01
Accurate calculation of ventricular stress and strain is critical for cardiovascular investigations. Sarcomere shortening in active contraction leads to change of ventricular zero-stress configurations during the cardiac cycle. A new model using different zero-load diastole and systole geometries was introduced to provide more accurate cardiac stress/strain calculations with potential to predict post pulmonary valve replacement (PVR) surgical outcome. Cardiac magnetic resonance (CMR) data were obtained from 16 patients with repaired tetralogy of Fallot prior to and 6 months after pulmonary valve replacement (8 male, 8 female, mean age 34.5 years). Patients were divided into Group 1 (n = 8) with better post PVR outcome and Group 2 (n = 8) with worse post PVR outcome based on their change in RV ejection fraction (EF). CMR-based patient-specific computational RV/LV models using one zero-load geometry (1G model) and two zero-load geometries (diastole and systole, 2G model) were constructed and RV wall thickness, volume, circumferential and longitudinal curvatures, mechanical stress and strain were obtained for analysis. Pairwise T-test and Linear Mixed Effect (LME) model were used to determine if the differences from the 1G and 2G models were statistically significant, with the dependence of the pair-wise observations and the patient-slice clustering effects being taken into consideration. For group comparisons, continuous variables (RV volumes, WT, C- and L- curvatures, and stress and strain values) were summarized as mean ± SD and compared between the outcome groups by using an unpaired Student t-test. Logistic regression analysis was used to identify potential morphological and mechanical predictors for post PVR surgical outcome. Based on results from the 16 patients, mean begin-ejection stress and strain from the 2G model were 28% and 40% higher than that from the 1G model, respectively. Using the 2G model results, RV EF changes correlated negatively with stress (r = -0.609, P = 0.012) and with pre-PVR RV end-diastole volume (r = -0.60, P = 0.015), but did not correlate with WT, C-curvature, L-curvature, or strain. At begin-ejection, mean RV stress of Group 2 was 57.4% higher than that of Group 1 (130.1±60.7 vs. 82.7±38.8 kPa, P = 0.0042). Stress was the only parameter that showed significant differences between the two groups. The combination of circumferential curvature, RV volume and the difference between begin-ejection stress and end-ejection stress was the best predictor for post PVR outcome with an area under the ROC curve of 0.855. The begin-ejection stress was the best single predictor among the 8 individual parameters with an area under the ROC curve of 0.782. The new 2G model may be able to provide more accurate ventricular stress and strain calculations for potential clinical applications. Combining morphological and mechanical parameters may provide better predictions for post PVR outcome.
Zain-Ul-Abdin; Wang, Li; Yu, Haojie; Saleem, Muhammad; Akram, Muhammad; Khalid, Hamad; Abbasi, Nasir M; Yang, Xianpeng
2017-02-01
Ferrocene-based derivatives are widely used as ferrocene-based burning rate catalysts (BRCs) for ammonium perchlorate (AP)-based propellant. However, in long storage, small ferrocene-based derivatives migrate to the surface of the propellant, which results in changes in the designed burning parameters and finally causes unstable combustion. To retard the migration of ferrocene-based BRCs in the propellant and to increase the combustion of the solid propellant, zero to third generation ethylene diamine-based ferrocene terminated dendrimers (0G, 1G, 2G and 3G) were synthesized. The synthesis of these dendrimers was confirmed by 1 H NMR and FT-IR spectroscopy. The electrochemical behavior of 0G, 1G, 2G and 3G was investigated by cyclic voltammetry (CV) and the burning rate catalytic activity of 0G, 1G, 2G and 3G on thermal disintegration of AP was examined by thermogravimetry (TG) and differential thermogravimetry (DTG) techniques. Anti-migration studies show that 1G, 2G and 3G exhibit improved anti-migration behavior in the AP-based propellant. Copyright © 2016 Elsevier Inc. All rights reserved.
Semantic Concept Discovery for Large Scale Zero Shot Event Detection
2015-07-25
sources and can be shared among many different events, including unseen ones. Based on this idea, events can be detected by inspect- ing the individual...2013]. Partial success along this vein has also been achieved in the zero-shot setting, e.g. [Habibian et al., 2014; Wu et al., 2014], but the...candle”, “birthday cake” and “applaud- ing”. Since concepts are shared among many different classes (events) and each concept classifier can be trained
Processing of zero-derived words in English: an fMRI investigation.
Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C
2014-01-01
Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationality
Space Processing Applications Rocket project, SPAR 1
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Chassay, R. (Compiler)
1976-01-01
The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment.
NASA Technical Reports Server (NTRS)
Parang, Masood
1986-01-01
An experimental and analytical study of Thermoacoustic Convection heat transfer in gravity and zero-gravity environments is presented. The experimental apparatus consisted of a cylinder containing air as a fluid. The side wall of the cylinder was insulated while the bottom wall was allowed to remain at the ambient temperature. The enclosed air was rapidly heated by the top surface which consisted of a thin stainless steel foil connected to a battery pack as the power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder. The ouput of the thermocouples was displayed on digital thermometers and the temperature displays were recorded on film using a high-speed movie camera. Temperature measurements were obtained in the zero-gravity environment by dropping the apparatus in the 2-Seconds Zero-Gravity Drop Tower Facilities of NASA Lewis Research Center. In addition, experiments were also performed in the gravity environment and the results are compared in detail with those obtained under zero-gravity conditions.
SPACESUIT DONNING AND DOFFING - ZERO-G TRAINING - DON PETERSON - STS-6
1982-07-14
Spacesuit Donning and Doffing in Zero-G Training for Don Peterson of the STS-6 Crew with Astronaut Jerry Ross assisting; and, apparatus for testing the JSC Mechanically-Induced Settling Technology (MIST) Experiment. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the Extravehicular Mobility Unit (EMU) by an ILC Technician. 1. ASTRONAUT ROSS, JERRY L. - ZERO-G SUITING 2. SHUTTLE - EXPERIMENTS (MIST)
Microfluidic Devices for Chemical and Biochemical Analysis in Microgravity
NASA Technical Reports Server (NTRS)
Roman, Gregory T.; Culbertson, Christopher T.; Meyer, Amanda; Ramsey, J. Michael; Gonda, Steven R.
2004-01-01
One often touted benefit of "Lab-on-a-Chip" devices is their potential for use in remote environments. The ultimate remote environment is outer space, and NASA has multiple needs in the area of analytical sensing capability in such an environment. In particular, we are interested in integrating microfluidic devices with NASA bioreactor systems. In such an integrated system, the microfluidic device will serve as a biosensor and be used for both feedback control and for detecting various bioproducts produced by cells cultured in the NASA bioreactors. As a first step in demonstrating the ability of microfluidic devices to operate under the extreme environmental conditions found in outer space, we constructed a portable, battery operated platform for testing under reduced gravity conditions on a NASA KC-135 reduced gravity research aircraft, (AKA "the vomit comet"). The test platform consisted of a microchip, two 0-8kV high voltage power supplies, a high voltage switch, a solid-state diode-pumped green laser, a channel photomultiplier, and an inertial mass measurement unit, all under the control of a laptop computer and powered by 10 D-cell alkaline batteries. Over the course of 4 KC-135 flights, 1817 fast electrophoretic separations of 4 amino acids and/or proteins were performed in a variety of gravitational environments including zero-G, Martian-G, lunar-G, and 2-G. Results from these experiments will be presented and discussed.
Skylab medical technology utilization
NASA Technical Reports Server (NTRS)
Stonesifer, J. C.
1974-01-01
To perform the extensive medical experimentation on man in a long-term, zero-g environment, new medical measuring and monitoring equipment had to be developed, new techniques in training and operations were required, and new methods of collecting and analyzing the great amounts of medical data were developed. Examples of technology transfers to the public sector resulted from the development of new equipment, methods, techniques, and data. This paper describes several of the examples that stemmed directly from Skylab technology.
Design and test of a 100 ampere-hour nickel cadmium battery module
NASA Technical Reports Server (NTRS)
Gaston, S.; Wertheim, M.; Burgess, F. S.; Lehrfeld, D.; Winegard, A.
1973-01-01
A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module.
Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program
NASA Technical Reports Server (NTRS)
Nguyen, Han
1994-01-01
This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.
The efficacy of periodic +Gz exposure in the prevention of bedrest induced orthostatic intolerance
NASA Technical Reports Server (NTRS)
Ludwig, D. A.; Vernikos, J.; Duvoisin, M. R; Stinn, J. L.
1992-01-01
What is the most efficient dosage of periodic exposure to positive 1G(z) during microgravity to maintain a functional upright position after returning to a positive 1G(z) environment? The answer has implications for the type of countermeasures astronauts will be required to perform during long term space flight. Methods: Nine males were subjected to four different positive 1G exposure protocols plus a control protocol ('zero G(z)') during four days of continuous bedrest. The four positive 1G(z) exposures consisted of periodic standing or walking, each for a total period of two or four hours. Each subject was returned for bedrest on five different occasions over a period of approximately one year to obtain data on each of the nine subjects across all four positive 1G(z) treatments and the control. A 30 min tilt test was used to measure orthostatic response during pre and post bedrest. Results: In terms of survival rate (percentage of subjects who did not faint after 30 sec of tilt), four hours of intermittent standing was the only protocol that maintained a rate comparable to pre bedrest levels (87.5 percent). Although the other three positive 1G(z) protocols performed better than the 'zero G(z) control (22.2 percent), only the four hour standing returned post bedrest survival rates to pre bedrest levels. Conclusions: The results will need to be evaluated with regards to a variety of other physiological systems which are known to decondition during microgravitry.
NASA Technical Reports Server (NTRS)
Lackner, James R.; Graybiel, Ashton
1987-01-01
Astronauts report that head movements in flight tend to bring on symptoms of space motion sickness (SMS). The effects of head movements in pitch, yaw, and roll (made both with normal vision and with eyes occluded) on susceptibility to motion sickness in the zero G phase of parabolic flight maneuvers were evaluated. The findings are clear-cut: pitch head movements are most provocative, yaw least provocative, and roll intermediate. These experiments suggest that SMS is not a unique nosological entity, but is the consequence of exposure to nonterrestrial force levels. Head movements during departures in either direction from 1 G elicit symptoms.
Gravitational effects on electrochemical batteries
NASA Technical Reports Server (NTRS)
Meredith, R. E.; Juvinall, G. L.; Uchiyama, A. A.
1972-01-01
The existing work on gravitational effects on electrochemical batteries is summarized, certain conclusions are drawn, and recommendations are made for future activities in this field. The effects of sustained high-G environments on cycle silver-zinc and nickel-cadmium cells have been evaluated over four complete cycles in the region of 10 to 75 G. Although no effects on high current discharge performances or on ampere-hour capacity were noted, severe zinc migration and sloughing of active material from the zinc electrode were observed. This latter effect constitutes real damage, and over a long period of time would result in loss of capacity. It is recommended that a zero-G battery experiment be implemented. Both an orbiting satellite and a sounding rocket approach are being considered.
3D Printing in Zero-G ISS Technology Demonstration
NASA Technical Reports Server (NTRS)
Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael
2013-01-01
The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.
ERIC Educational Resources Information Center
Woodring, Kathleen Mills
2000-01-01
Introduces a project of constructing a rover that can maintain its upright position with minimal gravitation that is based on National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratories rover designs. Tests the project in NASA's "Vomit Comet" under zero-gravity environment. (YDS)
Behavior of the lean methane-air flame at zero-gravity
NASA Technical Reports Server (NTRS)
Noe, K. A.; Strehlow, R. A.
1985-01-01
A special rig was designed and constructed to be compatible with the NASA Lewis Research Center Airborne Research Laboratory to allow the study of the effect of gravity on the behavior of lean limit in a standard 50.4 mm (2 in.) internal diameter tube when the mixtures are ignited at the open end and propagate towards the closed end of the tube. The lean limit at zero gravity was found to be 5.10% methane and the flame was found to extenguish in a manner previously observed for downward propagating flames at one g. It was observed that g-jitter could be maintained at less than + or 0.04 g on most zero g trajectories. All of propagating lean limit flames were found to be sporadically cellularly unstable at zero g. There was no observable correlation between the occurrence of g-jitter and the lean limit, average propagation speed of the flame through the tube or the occurrence of cellular instability.
Entre le zero et l'infini...l'environnement (Between Zero and the Infinite...the Environment).
ERIC Educational Resources Information Center
Cortes, Jacques
1982-01-01
Envisages the environment as that which surrounds, conditions, opposes, and allows one to understand, identify, and attain a series of objectives. The relationship of this understanding of environment to second language learning is explored, with particular emphasis on recent methodologies that see language as a culture's mode of expression. (AMH)
Effective vortex mass from microscopic theory
NASA Astrophysics Data System (ADS)
Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping
2005-03-01
We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .
The effect of water regime and soil management on methane (CH4) emission of rice field
NASA Astrophysics Data System (ADS)
Naharia, O.; Setyanto, P.; Arsyad, M.; Burhan, H.; Aswad, M.
2018-05-01
Mitigation of CH4 emission of rice field is becoming a serious issue. The Agricultural Environment Preservation Research Station in Central Java conducted a field study to investigate the effect of water regime and soil tillage on CH4 emission from paddy fields. Treatments consisted of two factors. The first factor was water regime, e.g., 1) continuously flooded 5 cm, 2) intermittent irrigation and 3) saturated water condition at 0-1 cm water level. The second factor was soil management, e.g., 1) normal tillage, 2) zero tillage + 3 sulfosate ha-1 and 3) zero tillage + 3 L paraquat ha-1. Most of treatments gave a significant reduction of total CH4 emission between 34 – 85% during the wet season crop as compared to normal rice cropping practice, while in the dry season the CH4 reduction ranged between 16 – 92%. No-tillage with non-selective herbicides combined with intermittent/saturated irrigation system significantly reduced methane emission without significantly affecting rice productivity as compared to normal tillage with continuous flooding (farmers practice)
40 CFR 180.5 - Zero tolerances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...
40 CFR 180.5 - Zero tolerances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...
40 CFR 180.5 - Zero tolerances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zero tolerances. 180.5 Section 180.5... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw...
Army Net Zero Prove Out. Net Zero Waste Best Practices
2014-11-20
targeted efforts may be needed in barracks and other areas with significant occupant turn-over. Conventional media (e.g., posters and signage ) can be...significant occupant turn-over. Conventional media (e.g., posters and signage ) can be used, along with innovative ideas and interactive events (e.g
2007-01-01
cover: Image shows an artist’s rendition of the core-shell structure of metal- oxide -coated palladium- doped zero-valent iron nanoparticles for catalytic...demonstrated the creation of functionalized gold nanoparticles (see figure c) without the need for many of the toxic solvents (e.g., diborane...Size-selected nanoparticle chemistry: Kinetics of soot oxidation , J. Phys. Chem. A 106, 96–103 (2002). 6. H. J. Tobias, D. E. Beving, P. J. Ziemann, H
ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135
1978-12-15
S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA
Is place-value processing in four-digit numbers fully automatic? Yes, but not always.
García-Orza, Javier; Estudillo, Alejandro J; Calleja, Marina; Rodríguez, José Miguel
2017-12-01
Knowing the place-value of digits in multi-digit numbers allows us to identify, understand and distinguish between numbers with the same digits (e.g., 1492 vs. 1942). Research using the size congruency task has shown that the place-value in a string of three zeros and a non-zero digit (e.g., 0090) is processed automatically. In the present study, we explored whether place-value is also automatically activated when more complex numbers (e.g., 2795) are presented. Twenty-five participants were exposed to pairs of four-digit numbers that differed regarding the position of some digits and their physical size. Participants had to decide which of the two numbers was presented in a larger font size. In the congruent condition, the number shown in a bigger font size was numerically larger. In the incongruent condition, the number shown in a smaller font size was numerically larger. Two types of numbers were employed: numbers composed of three zeros and one non-zero digit (e.g., 0040-0400) and numbers composed of four non-zero digits (e.g., 2795-2759). Results showed larger congruency effects in more distant pairs in both type of numbers. Interestingly, this effect was considerably stronger in the strings composed of zeros. These results indicate that place-value coding is partially automatic, as it depends on the perceptual and numerical properties of the numbers to be processed.
Environmental monitoring: data trending using a frequency model.
Caputo, Ross A; Huffman, Anne
2004-01-01
Environmental monitoring programs for the oversight of classified environments have used traditional statistical control charts to monitor trends in microbial recovery for classified environments. These methodologies work well for environments that yield measurable microbial recoveries. However, today successful increased control of microbial content yields numerous instances where microbial recovery in a sample is generally zero. As a result, traditional control chart methods cannot be used appropriately. Two methods to monitor the performance of a classified environment where microbial recovery is zero are presented. Both methods use the frequency between non-zero microbial recovery as an event. Therefore, the frequency of events is monitored rather than the microbial recovery count. Both methods are shown to be appropriate for use in the described instances.
NASA Technical Reports Server (NTRS)
Gary, G. A. (Editor); Clifton, K. S. (Editor)
1976-01-01
The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.
Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review.
Pietzsch, Natália; Ribeiro, José Luis Duarte; de Medeiros, Janine Fleith
2017-09-01
Considering the growing concern with solid wastes problems and the pressing need for a holistic approach to their management, this study developed a literature review about the subject "Zero Waste". To that end, a systematic literature review was executed, through which 102 published articles were analyzed with the aim to, initially, comprehend the concept of Zero Waste, and, then, map its benefits, challenges, and critical success factors. The results show that scholars have not reached a consensus regarding the concept of ZW. While some studies fully address this philosophy, other studies are based on just one or on some of its topics. The benefits were grouped and organized into four dimensions: benefits to the community, financial-economic benefits, benefits to the environment and benefits to the industry and stakeholders. As to the challenges, barriers were identified both in the macro environment (mainly political and cultural) and in the meso and micro environments (stakeholders, industries, and municipalities). The analysis of the articles enabled listing critical success factors, supported by a set of activities that must be carried out. Regarding future studies, it is worth noting that more empirical studies about ZW implementation are necessary, particularly with regard to educational practices designed to promote changes in user behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.
1994-03-01
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.
Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D
1994-03-04
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.
Pekel, A Y; Horn, N L; Adeola, O
2017-01-01
A study was conducted to investigate the effects of dietary phytase (PHY) and xylanase (XYL) on growth performance, nutrient utilization, and intestinal characteristics in broilers fed corn-soybean meal-based diets with added expeller-extracted camelina meal (CM). The corn-soybean meal-based diets without or with CM was formulated to contain 2.9 or 2.7 g/kg non phytate phosphorus, respectively. A total of 384 male Ross 708 broilers were allocated to 8 dietary treatments in a randomized complete block design with 6 replicates per treatment, from 7 to 21 d post hatching. The experiment consisted of a 2 × 2 × 2 factorial arrangement of treatments with 2 dietary CM levels (zero or 100 g/kg), 2 dietary levels of XYL (zero or 800 unit/kg), and 2 dietary levels of PHY (zero or 4,000 unit/kg). Chromic oxide was included in the diets as an indigestible marker. Growth was measured throughout the experiment and excreta were collected on d 18 to 21 post hatching for measurement of nutrient and energy retention. On d 21 post hatching, broilers were euthanized by CO 2 asphyxiation, ileal digesta was collected for nutrient and energy digestibility measurements, and the left tibia was removed for bone ash measurement. Furthermore, duodenal digesta was collected and a segment of the mid jejunum was excised for viscosity and morphology measurement, respectively. Broilers fed 100 g/kg CM diets showed lower (P < 0.001) BW gain and G:F than those fed zero g/kg CM diets for 7 to 14 d and 7 to 21 d post hatching periods, respectively. Phytase supplementation improved (P < 0.05) all the growth parameters measured regardless of CM addition. Phytase supplementation resulted in an increase (P < 0.05) in jejunum villus height but there was no impact of CM or XYL. Additionally, duodenal digesta viscosity increased (P < 0.001) with added CM. Tibia ash and weight increased (P < 0.001) with PHY supplementation. There was a CM × PHY interaction (P < 0.05) on percentage tibia ash, with greater PHY effect in zero g/kg CM diets compared with 100 g/kg CM diets. Phytase supplementation increased (P < 0.05) ileal DM, N, energy, P, and neutral detergent fiber (NDF) digestibility. In diets with 100 g/kg CM, addition of PHY had a greater effect (CM × PHY; P < 0.05) on ileal P digestibility compared with diet without CM. There was a CM × PHY interaction (P < 0.05) for ileal digestible energy (IDE) in which PHY increased the IDE in birds fed CM supplemented diets. Both ileal digestibility and retentions of DM, N, energy, and IDE, AME, and AME n were decreased (P < 0.05) by CM supplementation. Retention of ether extract and NDF decreased (P < 0.05) with CM supplementation. Nitrogen retention, AME, and AME n decreased (CM × XYL; P < 0.05) with XYL supplementation in zero g/kg CM diets. There were CM × XYL interactions (P < 0.01) for P and Ca retentions in which XYL increased retentions in 100 g/kg CM diets. In conclusion, PHY was efficacious at improving P digestibility and retention of birds fed low P corn-soy based diets without or with CM. However, regardless of CM addition, XYL did not improve nutrient utilization and growth performance of broiler chickens. The present data also show that the mechanism underlying the detrimental effects of CM inclusion on nutrient utilization is not mediated through gut morphology and goblet cell density. The data also show that the villus height increase occurring with PHY addition might be a contributor to the improvements in ileal DM, N, and energy digestibility obtained with PHY supplementation. © 2016 Poultry Science Association Inc.
NASA Technical Reports Server (NTRS)
Swider, J. E., Jr.
1974-01-01
The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.
Wang, Qiuying; Guo, Zheng; Sun, Zhiguo; Cui, Xufei; Liu, Kaiyue
2018-01-01
Pedestrian-positioning technology based on the foot-mounted micro inertial measurement unit (MIMU) plays an important role in the field of indoor navigation and has received extensive attention in recent years. However, the positioning accuracy of the inertial-based pedestrian-positioning method is rapidly reduced because of the relatively low measurement accuracy of the measurement sensor. The zero-velocity update (ZUPT) is an error correction method which was proposed to solve the cumulative error because, on a regular basis, the foot is stationary during the ordinary gait; this is intended to reduce the position error growth of the system. However, the traditional ZUPT has poor performance because the time of foot touchdown is short when the pedestrians move faster, which decreases the positioning accuracy. Considering these problems, a forward and reverse calculation method based on the adaptive zero-velocity interval adjustment for the foot-mounted MIMU location method is proposed in this paper. To solve the inaccuracy of the zero-velocity interval detector during fast pedestrian movement where the contact time of the foot on the ground is short, an adaptive zero-velocity interval detection algorithm based on fuzzy logic reasoning is presented in this paper. In addition, to improve the effectiveness of the ZUPT algorithm, forward and reverse multiple solutions are presented. Finally, with the basic principles and derivation process of this method, the MTi-G710 produced by the XSENS company is used to complete the test. The experimental results verify the correctness and applicability of the proposed method. PMID:29883399
Left-invariant Einstein metrics on S3 ×S3
NASA Astrophysics Data System (ADS)
Belgun, Florin; Cortés, Vicente; Haupt, Alexander S.; Lindemann, David
2018-06-01
The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G = SU(2) × SU(2) =S3 ×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K ≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K ≅Z2 we present partial results.
Quantum memories with zero-energy Majorana modes and experimental constraints
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo
2016-06-01
In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42472 (16 Oct. 1985) --- Teacher-in-Space trainees on the KC-135 for zero-G training. Sharon Christa McAuliffe, right, and Barbara R. Morgan, play leap-frog in the temporary weightlessness of the KC-135. Photo credit: NASA
Wang, Kai-tuo; Tang, Qing; Cui, Xue-min; He, Yan; Liu, Le-ping
2016-01-01
The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology. PMID:27406467
Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping
2016-07-13
The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42473 (16 Oct. 1985) --- Sharon Christa McAuliffe, a teacher-citizen observer on STS-51L, smiles before participating in some zero-G rehearsals for her upcoming flight. She is seated near the controls of the KC-135 aircraft, flying for the Johnson Space Center from Ellington Air Field. Referred to as the ?zero-gravity? aircraft, the KC-135 provides brief moments of weightlessness for shuttle crew members in training. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim
2013-01-01
Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation phenomena. The design and fabrication of a micropost plate-lamina Hele-Shaw (HS) cell was performed which served as a computationally attainable geometric structure facilitating direct comparison between physical phenomena observed in our laboratory and the LB software predictions.
Plutonium partitioning in three-phase systems with water, granite grains, and different colloids.
Xie, Jinchuan; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei; Zhou, Guoqing
2014-01-01
Low-solubility contaminants with high affinity for colloid surfaces may form colloid-associated species. The mobile characteristics of this species are, however, ignored by the traditional sorption/distribution experiments in which colloidal species contributed to the immobile fraction of the contaminants retained on the solids as a result of centrifugation or ultrafiltration procedures. The mobility of the contaminants in subsurface environments might be underestimated accordingly. Our results show that colloidal species of (239)Pu in three-phase systems remained the highest percentages in comparison to both the dissolved species and the immobile species retained on the granite grains (solid phase), although the relative fraction of these three species depended on the colloid types. The real solid/liquid distribution coefficients (K s/d) experimentally determined were generally smaller than the traditional K s/d (i.e., the K s+c/d in this study) by ~1,000 mL/g for the three-phase systems with the mineral colloids (granite particle, soil colloid, or kaolinite colloid). For the humic acid system, the traditional K s/d was 140 mL/g, whereas the real K s/d was approximately zero. The deviations from the real solid/liquid K s/d were caused by the artificially increased immobile fraction of Pu. One has to be cautious in using K s/d-based transport models to predict the fate and transport of Pu in the environment.
User Interactive Software for Analysis of Human Physiological Data
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, William; Taylor, Bruce C.; Acharya, Soumydipta
2006-01-01
Ambulatory physiological monitoring has been used to study human health and performance in space and in a variety of Earth-based environments (e.g., military aircraft, armored vehicles, small groups in isolation, and patients). Large, multi-channel data files are typically recorded in these environments, and these files often require the removal of contaminated data prior to processing and analyses. Physiological data processing can now be performed with user-friendly, interactive software developed by the Ames Psychophysiology Research Laboratory. This software, which runs on a Windows platform, contains various signal-processing routines for both time- and frequency- domain data analyses (e.g., peak detection, differentiation and integration, digital filtering, adaptive thresholds, Fast Fourier Transform power spectrum, auto-correlation, etc.). Data acquired with any ambulatory monitoring system that provides text or binary file format are easily imported to the processing software. The application provides a graphical user interface where one can manually select and correct data artifacts utilizing linear and zero interpolation and adding trigger points for missed peaks. Block and moving average routines are also provided for data reduction. Processed data in numeric and graphic format can be exported to Excel. This software, PostProc (for post-processing) requires the Dadisp engineering spreadsheet (DSP Development Corp), or equivalent, for implementation. Specific processing routines were written for electrocardiography, electroencephalography, electromyography, blood pressure, skin conductance level, impedance cardiography (cardiac output, stroke volume, thoracic fluid volume), temperature, and respiration
Gravitropic responses of plants in the absence of a complicating G-force (6-IML-1)
NASA Technical Reports Server (NTRS)
Brown, Allan H.
1992-01-01
On the Earth it is patently impossible to measure any tropistic, physiologic, or morphogenic reactions to environmental stimuli without taking into account our planet's gravitational influence on the time course of the test subject's response. It follows that all published reports of quantitative measurements of such responses must have been contaminated by an additional gravity dependent component which probably was not trivial. Our research effort has as its principal scientific objective, the acquisition of experimental data from tests in a microgravity environment that will address a number of basic questions about plants' gravitropic responses to the perception of transversely applied g forces in the hypogravity range, from essentially zero to unit g. Comparable tests on Earth but in the same flight hardware, referred to as the Gravitational Plant Physiology Facility (GPPF), will provide 1 g data for various useful comparisons. Four specific scientific questions are addressed.
The numerical design of a spherical baroclinic experiment for Spacelab flights
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Roberts, G. O.
1982-01-01
The near-zero G environment of Spacelab is the basis of a true spherical experimental model of synoptic scale baroclinic atmospheric processes, using a radial dielectric body force analogous to gravity over a volume of liquid within two concentric spheres. The baroclinic motions are generated by corotating the spheres and imposing thermal boundary conditions, such that the liquid is subjected to a stable radial gradient and a latitudinal gradient. Owing to mathematical difficulties associated with the spherical geometry, quantitative design criteria can be acquired only by means of numerical models. The procedure adopted required the development of two computer codes based on the Navier-Stokes equations. The codes, of which the first calculates axisymmetric steady flow solutions and the second determines the growth or decay rates of linear wave perturbations with different wave numbers, are combined to generate marginal stability curves.
. . . . of course, they knew Ohm's Law, V=IR, for resistors and wires in a normal environment . . . . but ? Is it still V = IR? Online Resources - Find Out What Happened - Assessment Author: Ken Cecire based on a D-Zero Note by R. Dower (Roxbury Latin School) and Ulrich Heintz (Boston University) Web
Investigation into Model-Based Fuzzy Logic Control
1993-12-01
of the linearized plant as a function of r ................... 3-3 3.2. Model of Compensator G (s) with r externally defined .................... 3-4...and three zeros will be added to the compensator. 3-3 he Figure 3.2 Model of Compensator G (s) with r externally defined The form of the compensator...with disturbance rejection is: = (s2 + a + r )(8 + 45)f G (s) + + - (3.3) a(s + 4.5)(a + 200+ Notice that in order to achieve disturbance rejection yet
Variability in Hoffmann and tendon reflexes in healthy male subjects
NASA Technical Reports Server (NTRS)
Good, E.; Do, S.; Jaweed, M.
1992-01-01
There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.
STS 61-B crewmembers training on the KC-135 in zero-G
1985-08-21
STS 61-B crewmembers training on the KC-135 in zero-G. Views include Payload specialist Charles D. Walker attempting to down the lower torso of his extravehicular mobility unit (EMU) in zero-G in the KC-135. He is being assisted by other participants in the training (39135); Payload specialist Rodolfo Neri floating in midair during training in the KC-135 (39136,39138); Mission specialist Mary L. Cleave floating in midair during her training aboard the KC-135 (39137); Astronaut Bryan D. O'Connor assists Astronaut Sherwood C. Spring in completing his donning of the EMU in the KC-135 (39139); Technicians aid Spring with his EMU in the KC-135 (39140); O'Connor appears to be leaping up in zero-G aboard the KC-135 (39141); Astronaut Brewster Shaw is assisted by a technician to don his EMU (39142); Shaw is attempting to don the EMU gloves while O'Connor watches (39143); Shaw does jumping jacks while Neri attempts to travel down a rope guideline (39144).
Lack of beta-arrestin signaling in the absence of active G proteins.
Grundmann, Manuel; Merten, Nicole; Malfacini, Davide; Inoue, Asuka; Preis, Philip; Simon, Katharina; Rüttiger, Nelly; Ziegler, Nicole; Benkel, Tobias; Schmitt, Nina Katharina; Ishida, Satoru; Müller, Ines; Reher, Raphael; Kawakami, Kouki; Inoue, Ayumi; Rick, Ulrike; Kühl, Toni; Imhof, Diana; Aoki, Junken; König, Gabriele M; Hoffmann, Carsten; Gomeza, Jesus; Wess, Jürgen; Kostenis, Evi
2018-01-23
G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of "zero functional G" at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking β-arrestins ("zero arrestin"), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at "zero functional G": arrestin recruitment and internalization, but-unexpectedly-complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2.
47 CFR 65.300 - Calculations of the components and weights of the cost of capital.
Code of Federal Regulations, 2011 CFR
2011-10-01
... indexed revenue threshold as defined in § 32.9000. The calculations shall be based on data reported to the... treated as “zero cost” sources of financing in section 450 and subpart G of this part 65. Specifically...
47 CFR 65.300 - Calculations of the components and weights of the cost of capital.
Code of Federal Regulations, 2010 CFR
2010-10-01
... indexed revenue threshold as defined in § 32.9000. The calculations shall be based on data reported to the... treated as “zero cost” sources of financing in section 450 and subpart G of this part 65. Specifically...
Xu, Lejin; Wang, Jianlong
2013-01-01
Abstract Degradation of 4-chloro-3,5-dimethylphenol (PCMX) by a heterogeneous Fenton-like process using nanoparticulate zero-valent iron (nZVI) and hydrogen peroxide (H2O2) at pH 6.3 was investigated. Interactive effects of three factors—initial PCMX concentration, nZVI dosage, and H2O2 concentration—were investigated using the response surface method based on the Box–Behnken design. Experimental results showed that complete decomposition of PCMX and 65% of total organic carbon removal were observed after 30 min of reaction at neutral pH under recommended reaction conditions: nZVI, 1.0 g/L; H2O2, 18 mM; and initial PCMX concentration, 0.15 g/L. Based on the effects of scavengers n-butanol and KI, removal of PCMX was mainly attributed to the attack of •OH, especially the surface-bonded •OH. A possible degradation pathway of PCMX was proposed. PMID:23781127
Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation
NASA Technical Reports Server (NTRS)
Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.
2007-01-01
Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA
Application of Emulsified Zero-Valent Iron to Marine Environments
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.
2006-01-01
Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.
1966-12-01
26] /2 where equals b 2g Ap/y. Note that subscripts on W indicate dif- ferentiation. If one were to solve Eq [26] by finite differences , the re- sults...of f only requires about 0.5-minute machine time. Finite difference solutions are generated using dependent variables V and Q where: V - W Q = [29...of heat transfer rate and the migration of bubbles in the bulk liq- uid in low gravity. Assuming that the bubble might depart from the heating
Development testing of a shuttle urine collection system
NASA Technical Reports Server (NTRS)
1973-01-01
Flight tests conducted in December 1973 demonstrated the ability of an unisexual urine collection subsystem to function in a zero-g environment. The urinal, which could be adjusted with three degrees of freedom, accommodated 16 female test subjects with a wide range of stature, as well as five male test subjects. The urinal was in intimate contact with the female and was contoured to form an effective air seal at the periphery. When positioned 2-4 inches forward, the urinal could be used for male collection and contact was not required.
Laske, Sarah M.; Rosenberger, Amanda E.; Wipfli, Mark S.; Zimmerman, Christian E.
2018-01-01
Generalist feeding strategies are favoured in stressful or variable environments where flexibility in ecological traits is beneficial. Species that feed across multiple habitat types and trophic levels may impart stability on food webs through the use of readily available, alternative energy pools. In lakes, generalist fish species may take advantage of spatially and temporally variable prey by consuming both benthic and pelagic prey to meet their energy demands. Using stomach content and stable isotope analyses, we examined the feeding habits of fish species in Alaska's Arctic Coastal Plain (ACP) lakes to determine the prevalence of generalist feeding strategies as a mechanism for persistence in extreme environments (e.g. low productivity, extreme cold and short growing season). Generalist and flexible feeding strategies were evident in five common fish species. Fish fed on benthic and pelagic (or nektonic) prey and across trophic levels. Three species were clearly omnivorous, feeding on fish and their shared invertebrate prey. Dietary differences based on stomach content analysis often exceeded 70%, and overlap in dietary niches based on shared isotopic space varied from zero to 40%. Metrics of community‐wide trophic structure varied with the number and identity of species involved and on the dietary overlap and niche size of individual fishes. Accumulation of energy from shared carbon sources by Arctic fishes creates redundancy in food webs, increasing likely resistance to perturbations or stochastic events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish may maintain energy flow and food web stability in extreme environments.
NASA Technical Reports Server (NTRS)
Goldberg, Benjamin E.
1986-01-01
An initial investigation exploring the effects of gravity on the crystallization of macromolecular systems has been completed. Monodisperse poly(ethylene), molecular weight 48,000 was melted and recrystallized under gravitational conditions: 0, 1, and 2 g. No correlations to gravitational environment were noted for the 20 C/min melt, as monitored with a photodensitometer system. However, post-crystallization testing of the recrystallized samples revealed thicker samples with more regions of large, well defined spherulites for the zero gravity crystallization environment. The results of the post-crystallization analysis have been reviewed and the results related to nucleation concerns. Finally, birefringence data, consistent with, but not explained by, the nucleation scenarios is detailed, and further investigations are proposed.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
Abiotic Remediation of Nitro-Aromatic Groundwater Contaminants by Zero-Valent Iron
1994-03-18
Paul G. Tratnyek 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Environmental Science N/A...REMEDIATION OF NITRO-AROMATIC GROUNDWATER CONTAMINANTS BY ZERO-VALENT IRON Abinash Agrmwal and Paul G. Tratnyek Department of Environmental Science and
View of Zero-G training for astronauts and payload specialists
1984-08-27
S84-40538 (24 Aug 1984) --- Two 41-G payload specialists and a backup for one of them appear to be at home in zero gravity in this scene photographed aboard a KC-135 "Zero gravity" aircraft flying one of its weightlessness opportunity parabolas. Paul D. Scully-Power, a civilian oceanographer with the U.S. Navey, is flanked by Marc Garneau (left) and Robert Thirsk, both representing the National Research Council of Canada. Thirsk is back up payload specialist for Garneau.
Heat pipe design handbook, part 2. [digital computer code specifications
NASA Technical Reports Server (NTRS)
Skrabek, E. A.
1972-01-01
The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.
Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields
NASA Astrophysics Data System (ADS)
Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-05-01
We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite signs. The magnetophotoluminescence data indicate that the electron transition from the T12 states to the 1A ground state defines the zero-phonon emission at 1.674 eV, while the T12→1E transition is responsible for the zero-phonon line at 1.666 eV. The T12 (1E ) states are characterized by an orbital Zeeman splitting with gL=0.071 (0.128).
Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming
2017-07-01
The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.
ICS logging solution for network-based attacks using Gumistix technology
NASA Astrophysics Data System (ADS)
Otis, Jeremy R.; Berman, Dustin; Butts, Jonathan; Lopez, Juan
2013-05-01
Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., ShodanHQ search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already been carried out and the damage has been done. This research provides a method for introducing sensors into the ICS environment that collect information about network-based attacks. The sensors are developed using an inexpensive Gumstix platform that can be deployed and incorporated with production systems. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). Findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative.
Hypobaric decompression prebreathe requirements and breathing environment
NASA Technical Reports Server (NTRS)
Webb, James T.; Pilmanis, Andrew A.
1993-01-01
To reduce incidence of decompression sickness (DCS), prebreathing 100 percent oxygen to denitrogenate is required prior to hypobaric decompressions from a sea level pressure breathing environment to pressures lower than 350 mm Hg (20,000 ft; 6.8 psia). The tissue ratio (TR) of such exposures equals or exceeds 1.7; TR being the tissue nitrogen pressure prior to decompression divided by the total pressure after decompression (((0.781)(14.697))/6.758). Designing pressure suits capable of greater pressure differentials, lower TR's, and procedures which limit the potential for DCS occurrence would enhance operational efficiency. The current 10.2 psia stage decompression prior to extravehicular activity (EVA) from the Shuttle in the 100 percent oxygen, 4.3 psia suit, results in a TR of 1.65 and has proven to be relatively free of DCS. Our recent study of zero-prebreathe decompressions to 6.8 psia breathing 100 percent oxygen (TR = 1.66) also resulted in no DCS (N = 10). The level of severe, Spencer Grades 3 or 4, venous gas emboli (VGE) increased from 0 percent at 9.5 psia to 40 percent at 6.8 psia yielding a Probit curve of VGE risk for the 51 male subjects who participated in these recent studies. Earlier, analogous decompressions using a 50 percent oxygen, 50 percent nitrogen breathing mixture resulted in one case of DCS and significantly higher levels of severe VGE, e.g., at 7.8 psia, the mixed gas breathing environment resulted in a 56 percent incidence of severe VGE versus 10 percent with use of 100 percent oxygen. The report of this study recommended use of 100 percent oxygen during zero-prebreathe exposure to 6.8 psia if such a suit could be developed. For future, long-term missions, we suggest study of the effects of decompression over several days to a breathing environment of 150 mmHg O2 and approximately 52 mmHg He as a means of eliminating DCS and VGE hazards during subsequent excursions. Once physiologically adapted to a 4 psia vehicle, base, or space station segment, crew members could use greatly simplified EVA suits with greater mobility and no prebreathe requirement.
Utilization of Low Gravity Environment for Measuring Liquid Viscosity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin
1998-01-01
The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.
The Impact of Zero Tolerance Policy on Children with Disabilities
ERIC Educational Resources Information Center
Alnaim, Mariam
2018-01-01
The Zero Tolerance policy was intended to eliminate learners who are a danger to a learning institution (Henson, 2012). The development of this policy was to assist schools with better policing approaches of students conducts by employing tough disciplinary action and subsequently provide a safer learning environment. While the Zero Tolerance…
Li, Ming-Hui; Wang, Yong-Sheng; Cao, Jin-Xiu; Chen, Si-Han; Tang, Xian; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin
2015-10-15
We proposed a novel strategy which combines graphene oxide-based background reduction with RCDzyme-based enzyme strand recycling amplification for ultrahigh sensitive detection of uranyl. The RCDzyme is designed to contain a guanine (G)-rich sequence that replaces the partial sequence in an uranyl-specific DNAzyme. This multifunctional probe can act as the target recognition element, DNAzyme and the primer of signal amplification. The presence of UO2(2+) can induce the cleavage of the substrate strands in RCDzyme. Then, each released enzyme strand can hybridize with another substrate strands to trigger many cycles of the cleavage by binding uranyl, leading to the formation of more G-quadruplexes by split guanine-rich oligonucleotide fragments. The resulting G-quadruplexes could bind to N-methyl-mesoporphyrin IX (NMM), causing an amplified detection signal for the target uranyl. Next, graphene oxide-based background reduction strategy was further employed for adsorbing free ssDNA and NMM, thereby providing a proximalis zero-background signal. The combination of RCDzyme signal amplification and proximalis zero-background signal remarkably improves the sensitivity of this method, achieving a dynamic range of two orders of magnitude and giving a detection limit down to 86 pM, which is much lower than those of related literature reports. These achievements might be helpful in the design of highly sensitive analytical platform for wide applications in environmental and biomedical fields. Copyright © 2015 Elsevier B.V. All rights reserved.
Spacsuit donning and doffing in zero-g training for Don Peterson STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Spacsuit donning and doffing in zero-g training for Don Peterson of the STS-6 crew. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the extravehicular mobility unit (EMU) by an ILC technician.
Attached manipulator system design and concept verification for zero-g simulation
NASA Technical Reports Server (NTRS)
Booker, R.; Burkitt, W.; Corveleyn, P.; Cramer, P.; Duwaik, O.; Flatau, C.; Garber, P.; Grant, C.; Greeb, F.; Johnson, C.
1973-01-01
The attached manipulator system (AMS) is to simulate and demonstrate zero-g shuttle manipulator cargo handling operations. It is not the design or development of the shuttle attached manipulator system (SAMS); however, every effort is being made, to insure that the AMS will be functionally similar to the SAMS.
Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo
2015-06-01
Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga
2017-01-01
Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.
Environmental transformations and ecological effects of iron-based nanoparticles.
Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui
2018-01-01
The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre
Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance formore » the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)« less
NASA Astrophysics Data System (ADS)
Lamkin, T.; Whitney, Brian
1995-09-01
This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
Working towards a zero waste environment in Taiwan.
Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh
2010-03-01
It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.
NASA Technical Reports Server (NTRS)
Hunt, R. J.; Wu, S. T.
1976-01-01
The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.
40 CFR 60.63 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...
40 CFR 60.63 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...
A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
On spectral synthesis on zero-dimensional Abelian groups
NASA Astrophysics Data System (ADS)
Platonov, S. S.
2013-09-01
Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is said to be an invariant subspace if it is invariant with respect to the translations \\tau_y\\colon f(x)\\mapsto f(x+y), y\\in G. In the paper, it is proved that any invariant subspace \\mathscr H admits spectral synthesis, that is, \\mathscr H coincides with the closed linear span of the characters of G belonging to \\mathscr H. Bibliography: 25 titles.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
Nutation of Helianthus Annuus in a microgravity environment
NASA Technical Reports Server (NTRS)
Brown, A. H.
1981-01-01
An experiment to gather evidence to decide between the Darwinian concept of endogenously motivated nutation and the more mechanistic concept of gravity dependent nutation is described. If nutation persists in weightlessness, parameters describing the motion will be measured by recording in time lapse mode the video images of a population of seedlings that were grown at 1-g, but which will be observed at virtual zero gravity. Later, the plant images will be displayed on a video monitor in a laboratory, photographed on 16 millimeter film, and analyzed frame by frame to determine the kinetics of nutation for each specimen tested.
Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai
2017-10-01
In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.
Zero-G experimental validation of a robotics-based inertia identification algorithm
NASA Astrophysics Data System (ADS)
Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou
2010-04-01
The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.
Using an instrumented manikin for Space Station Freedom analysis
NASA Technical Reports Server (NTRS)
Orr, Linda; Hill, Richard
1989-01-01
One of the most intriguing and complex areas of current computer graphics research is animating human figures to behave in a realistic manner. Believable, accurate human models are desirable for many everyday uses including industrial and architectural design, medical applications, and human factors evaluations. For zero-gravity (0-g) spacecraft design and mission planning scenarios, they are particularly valuable since 0-g conditions are difficult to simulate in a one-gravity Earth environment. At NASA/JSC, an in-house human modeling package called PLAID is currently being used to produce animations for human factors evaluation of Space Station Freedom design issues. Presented here is an introductory background discussion of problems encountered in existing techniques for animating human models and how an instrumented manikin can help improve the realism of these models.
Estimating zero-g flow rates in open channels having capillary pumping vanes
NASA Astrophysics Data System (ADS)
Srinivasan, Radhakrishnan
2003-02-01
In vane-type surface tension propellant management devices (PMD) commonly used in satellite fuel tanks, the propellant is transported along guiding vanes from a reservoir at the inlet of the device to a sump at the outlet from where it is pumped to the satellite engine. The pressure gradient driving this free-surface flow under zero-gravity (zero-g) conditions is generated by surface tension and is related to the differential curvatures of the propellant-gas interface at the inlet and outlet of the PMD. A new semi-analytical procedure is prescribed for accurately calculating the extremely small fuel flow rates under reasonably idealized conditions. Convergence of the algorithm is demonstrated by detailed numerical calculations. Owing to the substantial cost and the technical hurdles involved in accurately estimating these minuscule flow rates by either direct numerical simulation or by experimental methods which simulate zero-g conditions in the lab, it is expected that the proposed method will be an indispensable tool in the design and operation of satellite fuel tanks.
Containment of a silicone fluid free surface in reduced gravity using barrier coatings
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Jacobson, Thomas P.
1988-01-01
In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.
NASA Technical Reports Server (NTRS)
Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Beshears, R. D.; Rolin, T. D.; Rabenberg, E. M.; Soohoo, H. A.; Ledbetter, F. E., III; Bell, S. C.
2017-01-01
Analysis of phase I specimens produced as part of the 3D printing in zero G technology demonstration mission exhibited some differences in structure and performance for specimens printed onboard the International Space Station (ISS) and specimens produced on the ground with the same printer prior to its launch. This study uses the engineering test unit for the printer, identical to the unit on ISS, to conduct a ground-based investigation of the impact of the distance between the extruder tip and the build tray on material outcomes. This standoff distance was not held constant for the phase I flight prints and is hypothesized to be a major source of the material variability observed in the phase I data set.
12 CFR 702.106 - Standard calculation of risk-based net worth requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Low-risk assets. Zero percent (0%) of the entire portfolio of low-risk assets; (e) Average-risk assets. Six percent (6%) of the entire portfolio of average-risk assets; (f) Loans sold with recourse. Six percent (6%) of the entire portfolio of loans sold with recourse; (g) Unused member business loan...
Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.
Singh, Ritu; Misra, Virendra; Singh, Rana Pratap
2012-02-01
The illegal disposal of tannery wastes at Rania, Kanpur has resulted in accumulation of hexavalent chromium [Cr(VI)], a toxic heavy metal in soil posing risk to human health and environment. 27 soil samples were collected at various depths from Rania for the assessment of Cr(VI) level in soil. Out of 27 samples, five samples had shown significant level of Cr(VI) with an average concentration of 15.84 mg Kg(-1). Varied doses of nanoscale zero-valent iron (nZVI) were applied on Cr(VI) containing soil samples for remediation of Cr(VI). Results showed that 0.10 g L(-1) nZVI completely reduces Cr(VI) within 120 min following pseudo first order kinetics. Further, to test the efficacy of nZVI in field, soil windrow experiments were performed at the contaminated site. nZVI showed significant Cr(VI) reduction at field also, indicating it an effective tool for managing sites contaminated with Cr(VI).
Selecting a distributional assumption for modelling relative densities of benthic macroinvertebrates
Gray, B.R.
2005-01-01
The selection of a distributional assumption suitable for modelling macroinvertebrate density data is typically challenging. Macroinvertebrate data often exhibit substantially larger variances than expected under a standard count assumption, that of the Poisson distribution. Such overdispersion may derive from multiple sources, including heterogeneity of habitat (historically and spatially), differing life histories for organisms collected within a single collection in space and time, and autocorrelation. Taken to extreme, heterogeneity of habitat may be argued to explain the frequent large proportions of zero observations in macroinvertebrate data. Sampling locations may consist of habitats defined qualitatively as either suitable or unsuitable. The former category may yield random or stochastic zeroes and the latter structural zeroes. Heterogeneity among counts may be accommodated by treating the count mean itself as a random variable, while extra zeroes may be accommodated using zero-modified count assumptions, including zero-inflated and two-stage (or hurdle) approaches. These and linear assumptions (following log- and square root-transformations) were evaluated using 9 years of mayfly density data from a 52 km, ninth-order reach of the Upper Mississippi River (n = 959). The data exhibited substantial overdispersion relative to that expected under a Poisson assumption (i.e. variance:mean ratio = 23 ??? 1), and 43% of the sampling locations yielded zero mayflies. Based on the Akaike Information Criterion (AIC), count models were improved most by treating the count mean as a random variable (via a Poisson-gamma distributional assumption) and secondarily by zero modification (i.e. improvements in AIC values = 9184 units and 47-48 units, respectively). Zeroes were underestimated by the Poisson, log-transform and square root-transform models, slightly by the standard negative binomial model but not by the zero-modified models (61%, 24%, 32%, 7%, and 0%, respectively). However, the zero-modified Poisson models underestimated small counts (1 ??? y ??? 4) and overestimated intermediate counts (7 ??? y ??? 23). Counts greater than zero were estimated well by zero-modified negative binomial models, while counts greater than one were also estimated well by the standard negative binomial model. Based on AIC and percent zero estimation criteria, the two-stage and zero-inflated models performed similarly. The above inferences were largely confirmed when the models were used to predict values from a separate, evaluation data set (n = 110). An exception was that, using the evaluation data set, the standard negative binomial model appeared superior to its zero-modified counterparts using the AIC (but not percent zero criteria). This and other evidence suggest that a negative binomial distributional assumption should be routinely considered when modelling benthic macroinvertebrate data from low flow environments. Whether negative binomial models should themselves be routinely examined for extra zeroes requires, from a statistical perspective, more investigation. However, this question may best be answered by ecological arguments that may be specific to the sampled species and locations. ?? 2004 Elsevier B.V. All rights reserved.
Net Zero Ft. Carson: making a greener Army base
The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...
NASA Astrophysics Data System (ADS)
Dintenfass, L.
The aim of this experiment was to study aggregation of red cells in the blood of patients with ischaemic heart disease, diabetes, hyperlipidaemia, and (silent) cancer, and in two normal donors. Reconstituted blood using IgG was also used. The instrument, the automated slit-capillary photo-viscometer (100 kg weight) was set on the middeck of the Space Shuttle. An analogous instrument was at the Kennedy Space Center. Blood was obtained from donors, anticoagulated, and adjusted to haematocrit of 30% using native plasma. Experiments took place at 25°C, during which blood was forced to flow in the slit formed by two parallel glass plates. Macro and microphotography was carried out at specific intervals controlled by a computer. During stasis, lasting 6 minutes, aggregates (or clumps) of the red cells were formed. Results indicated that red cell aggregates do form under zero-G; that such aggregates are smaller than the ones obtained at one-G; that morphology is different, the zero-G showing rouleaux while one-G showing usual sludge-like clumps of red cells in all severe disorders. Platelets appeared to remain monodisperse under zero-G. Assuming that these data can be confirmed, one could suggest that zero-G affects cell-cell interaction, and may consequently influence the internal microstructure of the cell membrane and of the receptors, as well as their activity. Gravitational studies may thus open a new door on immunology and haematology in general.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1975-01-01
The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.
Design and integrated operation of an innovative thermodynamic vent system concept
NASA Astrophysics Data System (ADS)
Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.
1993-06-01
A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.
40 CFR 1066.425 - Performing emission tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as described in paragraph (g)(5) of this section and zero and span all batch gas analyzers as soon as practical before any batch sample analysis. You may perform this batch analyzer zero and span before the end... value after stabilizing a zero gas to the analyzer. Stabilization may include time to purge the analyzer...
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu
2012-07-01
RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.
What Part of "No" Do Children Not Understand? A Usage-Based Account of Multiword Negation
ERIC Educational Resources Information Center
Cameron-Faulkner, Thea; Lieven, Elena; Theakston, Anna
2007-01-01
The study investigates the development of English multiword negation, in particular the negation of zero marked verbs (e.g. "no sleep", "not see", "can't reach") from a usage-based perspective. The data was taken from a dense database consisting of the speech of an English-speaking child (Brian) aged 2;3-3;4 (MLU 2.05-3.1) and his mother. The…
Zero-index structures as an alternative platform for quantum optics
Liberal, Iñigo
2017-01-01
Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light–matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed. PMID:28096367
Zero-index structures as an alternative platform for quantum optics.
Liberal, Iñigo; Engheta, Nader
2017-01-31
Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light-matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed.
Nothing to it: Precursors to a Zero Concept in Preschoolers
Merritt, Dustin J.; Brannon, Elizabeth M.
2013-01-01
Do young children understand the numerical value of empty sets prior to developing a concept of symbolic zero? Are empty sets represented as mental magnitudes? In order to investigate these questions, we tested 4-year old children and adults with a numerical ordering task in which the goal was to select two stimuli in ascending numerical order with occasional empty set stimuli. Both children and adults showed distance effects for empty sets.. Children who were unable to order the symbol zero (e.g., 0 < 1), but who successfully ordered countable integers (e.g., 2 < 4) nevertheless showed distance effects with empty sets. These results suggest that empty sets are represented on the same numerical continuum as non-empty sets and that children represent empty sets numerically prior to understanding symbolic zero. PMID:23219980
40 CFR 92.120 - NDIR analyzer calibration and checks.
Code of Federal Regulations, 2011 CFR
2011-07-01
....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...
40 CFR 92.120 - NDIR analyzer calibration and checks.
Code of Federal Regulations, 2014 CFR
2014-07-01
....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...
40 CFR 92.120 - NDIR analyzer calibration and checks.
Code of Federal Regulations, 2012 CFR
2012-07-01
....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...
40 CFR 92.120 - NDIR analyzer calibration and checks.
Code of Federal Regulations, 2013 CFR
2013-07-01
....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...
40 CFR 92.120 - NDIR analyzer calibration and checks.
Code of Federal Regulations, 2010 CFR
2010-07-01
....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...
Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry
Ma, Baoshun
2012-01-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
Ma, Baoshun; Darquenne, Chantal
2012-08-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.
CREW TRAINING (ZERO-G) - STS-41G - OUTER SPACE
1984-07-16
S84-37514 (18 July 1984) --- Marc Garneau, representing Canada's National Research Council as one of two 41-G payload specialists, gets the "feel" of zero gravity aboard a special NASA aircraft designed to create brief periods of weightlessness. Five astronauts and an oceanographer from the U.S. Dept. of the Navy will join Canada's first representative in space for the trip aboard Challenger later this year. This KC-135 aircraft is used extensively for evaluation of equipment and experiments scheduled for future missions.
Constant-Round Concurrent Zero Knowledge From Falsifiable Assumptions
2013-01-01
assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12, GJO+12]), or in alternative models (e.g., super -polynomial-time simulation [Pas03b, PV10]). In the...T (·)-time computations, where T (·) is some “nice” (slightly) super -polynomial function (e.g., T (n) = nlog log logn). We refer to such proof...put a cap on both using a (slightly) super -polynomial function, and thus to guarantee soundness of the concurrent zero-knowledge protocol, we need
Fast summation of divergent series and resurgent transseries from Meijer-G approximants
NASA Astrophysics Data System (ADS)
Mera, Héctor; Pedersen, Thomas G.; Nikolić, Branislav K.
2018-05-01
We develop a resummation approach based on Meijer-G functions and apply it to approximate the Borel sum of divergent series and the Borel-Écalle sum of resurgent transseries in quantum mechanics and quantum field theory (QFT). The proposed method is shown to vastly outperform the conventional Borel-Padé and Borel-Padé-Écalle summation methods. The resulting Meijer-G approximants are easily parametrized by means of a hypergeometric ansatz and can be thought of as a generalization to arbitrary order of the Borel-hypergeometric method [Mera et al., Phys. Rev. Lett. 115, 143001 (2015), 10.1103/PhysRevLett.115.143001]. Here we demonstrate the accuracy of this technique in various examples from quantum mechanics and QFT, traditionally employed as benchmark models for resummation, such as zero-dimensional ϕ4 theory; the quartic anharmonic oscillator; the calculation of critical exponents for the N -vector model; ϕ4 with degenerate minima; self-interacting QFT in zero dimensions; and the summation of one- and two-instanton contributions in the quantum-mechanical double-well problem.
Triboelectric Charging in Simulated Mars Environment
NASA Technical Reports Server (NTRS)
Lee, R.; Barile, R.
1999-01-01
Triboelectric charging of nonconducting materials followed by sudden electrostatic discharge (ESD) can damage electronic equipment and become ignition hazard to combustible materials. Mars atmosphere has near zero humidity and therefore natural charge bleeding to surroundings is anticipated to be limited. Potential mitigation of ESD problems has been conjectured based upon strong extraterrestrial radiation on Mars compared to earth. A hypothesis was formulated that ESD problem is less significant in simulated Mars condition since strong radiation and presence of argon will generate an ionized environment; this will be conducive to rapid bleeding of static charge into the surroundings.
Geometric somersaults of a polymer chain through cyclic twisting motions
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Hino, Taiko
2017-01-01
This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120∘, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120∘ may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1 -ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.
NASA Astrophysics Data System (ADS)
Ehricke, Krafft A.
This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic "drawing card", because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more "forgiving" in case of failures than is orbital space.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The primary test objective was to define the base pressure environment of the first and second stage mated vehicle in a supersonic flow field from Mach 2.60 through 3.50 with simulated rocket engine exhaust plumes. The secondary objective was to obtain the pressure environment of the Orbiter at various vent port locations at these same freestream conditions. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed Orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of test equipment and tested configurations are shown.
The study of single crystals for space processing and the effect of zero gravity
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.
NASA Technical Reports Server (NTRS)
Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily
1997-01-01
Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro- (near zero G: e.g., Cosmos 1887 & 2044; SLS-1 & SLS-2) and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.
Wu, Zhe; Bilgic, Berkin; He, Hongjian; Tong, Qiqi; Sun, Yi; Du, Yiping; Setsompop, Kawin; Zhong, Jianhui
2018-09-01
This study introduces a highly accelerated whole-brain direct visualization of short transverse relaxation time component (ViSTa) imaging using a wave controlled aliasing in parallel imaging (CAIPI) technique, for acquisition within a clinically acceptable scan time, with the preservation of high image quality and sufficient spatial resolution, and reduced residual point spread function artifacts. Double inversion RF pulses were applied to preserve the signal from short T 1 components for directly extracting myelin water signal in ViSTa imaging. A 2D simultaneous multislice and a 3D acquisition of ViSTa images incorporating wave-encoding were used for data acquisition. Improvements brought by a zero-padding method in wave-CAIPI reconstruction were also investigated. The zero-padding method in wave-CAIPI reconstruction reduced the root-mean-square errors between the wave-encoded and Cartesian gradient echoes for all wave gradient configurations in simulation, and reduced the side-main lobe intensity ratio from 34.5 to 16% in the thin-slab in vivo ViSTa images. In a 4 × acceleration simultaneous-multislice scenario, wave-CAIPI ViSTa achieved negligible g-factors (g mean /g max = 1.03/1.10), while retaining minimal interslice artifacts. An 8 × accelerated acquisition of 3D wave-CAIPI ViSTa imaging covering the whole brain with 1.1 × 1.1 × 3 mm 3 voxel size was achieved within 15 minutes, and only incurred a small g-factor penalty (g mean /g max = 1.05/1.16). Whole-brain ViSTa images were obtained within 15 minutes with negligible g-factor penalty by using wave-CAIPI acquisition and zero-padding reconstruction. The proposed zero-padding method was shown to be effective in reducing residual point spread function for wave-encoded images, particularly for ViSTa. © 2018 International Society for Magnetic Resonance in Medicine.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Non-Contact Temperature Requirements (NCTM) for drop and bubble physics
NASA Technical Reports Server (NTRS)
Hmelo, Anthony B.; Wang, Taylor G.
1989-01-01
Many of the materials research experiments to be conducted in the Space Processing program require a non-contaminating method of manipulating and controlling weightless molten materials. In these experiments, the melt is positioned and formed within a container without physically contacting the container's wall. An acoustic method, which was developed by Professor Taylor G. Wang before coming to Vanderbilt University from the Jet Propulsion Laboratory, has demonstrated the capability of positioning and manipulating room temperature samples. This was accomplished in an earth-based laboratory with a zero-gravity environment of short duration. However, many important facets of high temperature containerless processing technology have not been established yet, nor can they be established from the room temperature studies, because the details of the interaction between an acoustic field an a molten sample are largely unknown. Drop dynamics, bubble dynamics, coalescence behavior of drops and bubbles, electromagnetic and acoustic levitation methods applied to molten metals, and thermal streaming are among the topics discussed.
NASA Astrophysics Data System (ADS)
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different 'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition Frithjof B Anders Effects of low-frequency noise cross-correlations in coupled superconducting qubits A D'Arrigo, A Mastellone, E Paladino and G Falci From coherent motion to localization: dynamics of the spin-boson model at zero temperature Haobin Wang and Michael Thoss Phonon distributions of a single-bath mode coupled to a quantum dot F Cavaliere, G Piovano, E Paladino and M Sassetti
Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)
2001-01-01
Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag
Host computer software specifications for a zero-g payload manhandling simulator
NASA Technical Reports Server (NTRS)
Wilson, S. W.
1986-01-01
The HP PASCAL source code was developed for the Mission Planning and Analysis Division (MPAD) of NASA/JSC, and takes the place of detailed flow charts defining the host computer software specifications for MANHANDLE, a digital/graphical simulator that can be used to analyze the dynamics of onorbit (zero-g) payload manhandling operations. Input and output data for representative test cases are contained.
Electrical Aspects of Flames in Microgravity Combustion
NASA Technical Reports Server (NTRS)
Dunn-Rankin, D.; Strayer, B.; Weinberg, F.; Carleton, F.
1999-01-01
A principal characteristic of combustion in microgravity is the absence of buoyancy driven flows. In some cases, such as for spherically symmetrical droplet burning, the absence of buoyancy is desirable for matching analytical treatments with experiments. In other cases, however, it can be more valuable to arbitrarily control the flame's convective environment independent of the environmental gravitational condition. To accomplish this, we propose the use of ion generated winds driven by electric fields to control local convection of flames. Such control can produce reduced buoyancy (effectively zero buoyancy) conditions in the laboratory in 1-g facilitating a wide range of laser diagnostics that can probe the system without special packaging required for drop tower or flight tests. In addition, the electric field generated ionic winds allow varying gravitational convection equivalents even if the test occurs in reduced gravity environments.
Tension Stiffened and Tendon Actuated Manipulator
NASA Technical Reports Server (NTRS)
Dorsey, John T. (Inventor); Mercer, Charles D. (Inventor); Ganoe, George G. (Inventor); Doggett, William R. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Corbin, Cole K. (Inventor)
2015-01-01
A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.
Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A
2017-11-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Feature Selection Methods for Zero-Shot Learning of Neural Activity.
Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.
Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...
Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things.
Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido
2016-01-07
This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie-Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes.
Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things
Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido
2016-01-01
This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie–Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes. PMID:26751454
Application of Emulsified Zero-Valent Iron to Marine Environments
NASA Technical Reports Server (NTRS)
Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.
2005-01-01
Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the same oil/surfactant membrane used in EZVI. The removal of cadmium and lead from a seawater matrix is a unique challenge. It requires a system that is resistant to the corrosive nature of seawater while removing specific ions that are in a relatively low concentration compared to naturally occurring seawater salts. Laboratory studies conducted show greater than 99% removal of lead and 96% removal of cadmium from a seawater solution spiked at 5 mg/L that was treated with an Emulsified Zero-Valent Metal (EZVM). The cadmium and lead are removed from the solution as they transport across the emulsion membrane and plate out onto the zero-valent metal surface.
Cell partition in two phase polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.
Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe.
Mueller, Nicole C; Braun, Jürgen; Bruns, Johannes; Černík, Miroslav; Rissing, Peter; Rickerby, David; Nowack, Bernd
2012-02-01
Nanoscale zero valent iron (NZVI) is emerging as a new option for the treatment of contaminated soil and groundwater targeting mainly chlorinated organic contaminants (e.g., solvents, pesticides) and inorganic anions or metals. The purpose of this article is to give a short overview of the practical experience with NZVI applications in Europe and to present a comparison to the situation in the USA. Furthermore, the reasons for the difference in technology use are discussed. The results in this article are based on an extensive literature review and structured discussions in an expert workshop with experts from Europe and the USA. The evaluation of the experiences was based on a SWOT (strength, weakness, opportunity, threat) analysis. There are significant differences in the extent and type of technology used between NZVI applications in Europe and the USA. In Europe, only three full-scale remediations with NZVI have been carried out so far, while NZVI is an established treatment method in the USA. Bimetallic particles and emulsified NZVI, which are extensively used in the USA, have not yet been applied in Europe. Economic constraints and the precautionary attitude in Europe raise questions regarding whether NZVI is a cost-effective method for aquifer remediation. Challenges to the commercialization of NZVI include mainly non-technical aspects such as the possibility of a public backlash, the fact that the technology is largely unknown to consultants, governments and site owners as well as the lack of long-term experiences. Despite these concerns, the results of the current field applications with respect to contaminant reduction are promising, and no major adverse impacts on the environment have been reported so far. It is thus expected that these trials will contribute to promoting the technology in Europe.
USDA-ARS?s Scientific Manuscript database
The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...
NASA Technical Reports Server (NTRS)
Sobouti, Y.; Khajehpour, M. R. H.; Dixit, V. V.
1980-01-01
The neutral g-modes of a degenerate fluid at zero temperature are analyzed. The g-modes of a degenerate fluid at finite but small temperatures are then expanded in terms of those of the zero temperature fluid. For nonrelativistic degenerate fluids it is found that (1) the g-eigenvalues are proportional to T mu(6)sub e mu(-1)sub i, where T is the internal temperature of the fluid, mu sub e and mu sub i are the mean molecular weights of electrons and ions, respectively; (2) the ion pressure is solely responsible for driving the g-modes. For white dwarfs of about a solar mass, the periods of the g-oscillations are in the range of a few hundredths of seconds.
View of Payload specialist Paul Scully-Power during Zero-G training
1984-07-16
S84-37536 (18 July 1984) --- Astronaut Robert L. Crippen, left, 41-G crew commander watches as one of his fellow crewmembers gets an introduction to weightlessness aboard a KC-135, "zero-gravity" aircraft. Paul D. Scully-Power is the crew member literally floating here in the brief period of micro-gravity. Scully-Power, an oceanographer with the U.S. Navy, and Marc Garneau (partially visible in chair behind the floating Scully-Power)are payload specialists for 41-G. Garneau represents the National Research Council (Canada).
Initial experiments in thrusterless locomotion control of a free-flying robot
NASA Technical Reports Server (NTRS)
Jasper, W. J.; Cannon, R. H., Jr.
1990-01-01
A two-arm free-flying robot has been constructed to study thrusterless locomotion in space. This is accomplished by pushing off or landing on a large structure in a coordinated two-arm maneuver. A new control method, called system momentum control, allows the robot to follow desired momentum trajectories and thus leap or crawl from one structure to another. The robot floats on an air-cushion, simulating in two dimensions the drag-free zero-g environment of space. The control paradigm has been verified experimentally by commanding the robot to push off a bar with both arms, rotate 180 degrees, and catch itself on another bar.
Unsteady spot heating of a drop in a microgravity environment
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.; Wagner, Paul
1992-01-01
The unsteady localized spot heating of a liquid drop under zero-g conditions is examined theoretically. This pertains to space experiments to measure thermal properties of materials and the purpose here is to predict the thermal behavior of such systems. Spot heating can be achieved by a laser beam focused on a small region of the drop surface. The present theoretical model deals with situations of weak Marangoni flows, whereby the thermal transport is conduction dominated. The heat flow in the drop is treated as unsteady while the surrounding gaseous region is considered to be quasisteady. The ensuing thermally driven flow is analyzed in the Stokes regime.
Young stars of low mass in the Gum nebula
NASA Technical Reports Server (NTRS)
Graham, J. A.; Heyer, Mark H.
1989-01-01
Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.
Pilot Fullerton dons anti-g and ejection escape suit (EES) on middeck
1982-03-31
S82-28922 (30 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, floats upside down in the zero-gravity environment of the middeck area of the Earth-orbiting space shuttle Columbia as he dons a modified USAF high altitude pressure garment. The brownish ejection/escape suit is used by the astronauts at launch and entry. Most of the remainder of their mission time, they are attired in a blue constant-wear garment. Astronaut Jack R. Lousma, crew commander, took this picture with a 35mm camera. The crew spent eight full days in the reusable spacecraft, a shuttle record. Photo credit: NASA
Shuttle waste management system design improvements and flight evaluation
NASA Technical Reports Server (NTRS)
Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.
1986-01-01
The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.
NASA Astrophysics Data System (ADS)
Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.
2014-08-01
The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".
Decoupling the Role of Inertia and Gravity on Particle Dispersion
NASA Technical Reports Server (NTRS)
Rogers, Chris; Squires, Kyle
1996-01-01
Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.
Dust as a Working Fluid for Heat Transfer Project
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2015-01-01
The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.
Chen, Feng; Chen, Suren; Ma, Xiaoxiang
2016-01-01
Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306
NASA Technical Reports Server (NTRS)
Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.
Comparison of different building shells - life cycle assessment.
Rixrath, Doris; Wartha, Christian
2016-07-01
The Renewable Energy and Efficiency Action (REACT) project is a European Union-funded cross-border cooperative venture featuring the participation of companies and researchers from the Austrian state of Burgenland and western Slovakia that is developing zero-energy concepts for newly built single-family homes. A variety of building structures are defined for family houses, and the different impacts they have on the environment are evaluated over the entire life cycle. This paper aims to compare the environmental impacts of different building shells during both the construction and the demolition phases. However, the operation phase of the building is not evaluated. One of the findings of the project thus far is that the demolition and disposal of building materials should be included in any such evaluation. For some environmental impact assessment categories, both demolition and disposal are important. The environmental impacts of various end-of-life scenarios can differ greatly based on the disposal method (e.g., landfill, incineration, recycling) chosen and on the proportion of recycled content. Furthermore, the results show that manufacturing building materials from renewable resources can have strong environmental impacts, particularly when substantial amounts of fossil fuel are required in their production. Integr Environ Assess Manag 2016;12:437-444. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg
The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous sampling; (ii) technical characteristics of both devices, i.e. progress cycles of CHOMIK device in different materials and torque in the manipulator joints during sampling operations; (iii) confirmation of applicability of both devices to perform such type of tasks. The phases in operational scenario were prepared to meet mission and system requirements mainly connected with: (i) environment (near zero gravity, vacuum, dust), (ii) safety and (iii) to avoid common operation of both devices at the same time.
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen
2012-05-07
The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.
Development of a screening method for the determination of 49 priority pollutants in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiang, P.H.; Grob, R.L.
1986-01-01
A screening procedure was develop for the determination of 49 priority pollutants in soil. An extraction procedure followed by the capillary gas chromatographic technique was used. Dual pH solutions with methylene chloride were used as extraction solvent system; no sample clean-up procedure was applied. Both base/neutral and acid fractions were analyzed on the same capillary column (SPB-1). The relative standard deviation for 5.1 ppm (51 ..mu..g/ 10 g) concentration in zero soil was less than 25%.
40 CFR 1065.341 - CVS and batch sampler verification (propane check).
Code of Federal Regulations, 2012 CFR
2012-07-01
... may use the HC contamination procedure in § 1065.520(g) to verify HC contamination. Otherwise, zero... range that can measure the C3H8 concentration expected for the CVS and C3H8 flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas...
40 CFR 1065.341 - CVS and batch sampler verification (propane check).
Code of Federal Regulations, 2013 CFR
2013-07-01
... may use the HC contamination procedure in § 1065.520(g) to verify HC contamination. Otherwise, zero... range that can measure the C3H8 concentration expected for the CVS and C3H8 flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas...
NASA Technical Reports Server (NTRS)
Smalley, Larry L.
1998-01-01
Project Satellite Energy Exchange (SEE) is a free-flying, high altitude satellite that utilizes space to construct a passive, low-temperature, nano-g environment in order to accurately measure the poorly known gravitational constant G plus other gravitational parameters that are difficult to measure in an earth-based laboratory. Eventually data received from SEE must be analyzed using a model of the gravitational interaction including parameters that describe deviations from general relativity and experiment. One model that can be used to fit tile data is the Parametrized post- Newtonian (PPN) approximation of general relativity (GR) which introduces ten parameters which have specified values in (GR). It is the lowest-order, consistent approximation that contains non linear terms. General relativity predicts that the Robertson parameters, gamma (light deflection), and beta (advance of the perihelion), are both 1 in GR. Another eight parameters, alpha(sub k), k=1,2,3 and zeta(sub k), k=1,2,3,4 and Xi are all zero in GR. Non zero values for alpha(sub k) parameters predict preferred frame effects; for zeta(sub k) violations of globally conserved quantities such as mass, momentum and angular momentum; and for Xi a contribution from the Whitehead theory of gravitation, once thought to be equivalent to GR. In addition, there is the possibility that there may be a preferred frame for the universe. If such a frame exists, then all observers must measure the velocity omega of their motion with respect to this universal rest frame. Such a frame is somewhat reminiscent of the concept of the ether which was supposedly the frame in which the velocity of light took the value c predicted by special relativity. The SEE mission can also look for deviations from the r(exp -2) law of Newtonian gravity, adding parameters alpha and lamda for non Newtonian behavior that describe the magnitude and range of the r(exp -2) deviations respectively. The foundations of the GR supposedly agree with Newtonian gravity to first order so that the parameters alpha and lamda are zero in GR. More important, however, GR subsequently depends on this Newtonian approximation to build up the non linear higher-order terms which forms the basis of the PPN frame work.
Morphogenesis of a higher plant from cultured cells and embryos in space
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.
1982-01-01
Reference is made to the Cosmos 782 experiment, which showed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots but minimally developed shoots at near-zero g. The problem of whether the development of leafy shoots is sensitive to near-zero g conditions is considered. A test system that would allow this problem to be resolved in a future space flight is described.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-01-01
A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits.
NASA Technical Reports Server (NTRS)
Parker, D. E.
1977-01-01
This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.
Quantum Computing in Fock Space Systems
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
1997-04-01
Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).
NASA Astrophysics Data System (ADS)
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; Alam, Aftab
2017-09-01
Gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au1 -xFex alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x =0.19 , which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x =0.19 , suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; ...
2017-09-20
Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.
Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less
Mikhailov, D; Daragan, V A; Mayo, K H
1995-01-01
13CH2-multiplet nuclear magnetic resonance relaxation studies on proline (P)-containing glycine (G)-based peptides, GP, PG, GPG, PGG, and GPGG, provided numerous dipolar auto- and cross-correlation times for various motional model analyses of backbone and proline-ring bond rotations. Molecular dynamics simulations and bond rotation energy profiles were calculated to assess which motions could contribute most to observed relaxation phenomena. Results indicate that proline restricts backbone psi 1, psi 2, and phi 2 motions by 50% relative to those found for a polyglycine control peptide. psi 1 rotations are more restricted in the trans-proline isomer state than in the cis form. A two-state jump model best approximates proline ring puckering which in water could occur either by the C gamma endo-exo or by the C2 interconversion mechanism. The temperature dependence (5 degrees to 75 degrees C) of C beta, and C gamma, and C delta angular changes is rather flat, suggesting a near zero enthalpic contribution to the ring puckering process. In lower dielectric solvents, dimethylsulfoxide and methanol, which may mimic the hydrophobic environment within a protein, the endo-exo mechanism is preferred. PMID:7787039
Dynamics of Sheared Granular Materials
NASA Technical Reports Server (NTRS)
Kondic, Lou; Utter, Brian; Behringer, Robert P.
2002-01-01
This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.
Reducing Waste from Military Facility Programs...Shed Those Ugly Tons
2011-05-01
USACE guidance 5 BUILDING STRONG® Sustainability Drivers • Net Zero Waste – Assistant Secretary of the Army for Installations, Energy and Environment...Garrison Grafenwoehr, Germany. Fort Bliss and Carson (energy, water, waste) “A net zero waste installation is an installation that reduces
The response of single human cells to zero gravity
NASA Technical Reports Server (NTRS)
Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.
1975-01-01
Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.
Attimarad, Mahesh
2010-01-01
The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003
Computational study of Ca, Sr and Ba under pressure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2006-05-01
A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.
Twemlow, S W; Fonagy, P; Sacco, F C; Gies, M L; Evans, R; Ewbank, R
2001-05-01
The impact of a manual-based antiviolence program on the learning climate in an elementary school over 4 years was compared with the outcome in a control school. The two schools were matched for demographic characteristics. The intervention in the experimental school was based on zero tolerance for bullying; the control school received only regular psychiatric consultation. Disciplinary and academic achievement data were collected in both schools. The experimental school showed significant reductions in discipline referrals and increases in scores on standardized academic achievement measures. A low-cost antiviolence intervention that does not focus on individual pathology or interfere with the educational process may improve the learning environment in elementary schools.
Computational and Matrix Isolation Studies of (2- and 3-Furyl)methylene
1994-01-01
ynal, (Appendix 3) Simple HF calculations using the 6-31 G basis set + ZPE (zero point energy correction applied) predict 2.2 to be more stable in both...QCISD(T)/6-31 1 G** + ZPE predict the triplet to more stable by 2.9 Kcal/mol. However, calculations using MP4SDTQ/6-31 1 G + ZPE predict the singlet to...calculated frequencies were scaled by a factor of 0.9. 53 Table 2.30 Calculated ZPE for 2-Oxabicyclo(3.1.0]hexa-3,5-diene.a Zero Point Energy 49.9 (KcaVmol
Airborne bacterial assemblage in a zero carbon building: A case study.
Leung, M H Y; Tong, X; Tong, J C K; Lee, P K H
2018-01-01
Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day-to-day) and long-term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time-decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source-tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Need, utilization, and configuration of a large, multi-G centrifuge on the Space Station
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1987-01-01
A large, multi-g centrifuge is required on the Space Station (1) to provide valid 1-g controls for the study of zero-g effects on animals and plants and to study readaptation to 1 g; (2) to store animals at 1 g prior to short-term zero-g experimentation; (3) to permit g-level threshold studies of gravity effects. These requirements can be met by a 13-ft-diam., center-mounted centrifuge, on which up to 48 modular habitats with animals (squirrel monkey, rat, mouse) and plants are attached. The advantages of locating this centrifuge with the vivarium, a common environmental control and life support system, a general-purpose work station and storage of food, water, and supplies in an attached short module, are elaborated. Servicing and operation of the centrifuge, as well as minimizing its impact on other Space Station functions are also considered.
17 CFR 402.2a - Appendix A-Calculation of market risk haircut for purposes of § 402.2(g)(2).
Code of Federal Regulations, 2014 CFR
2014-04-01
... larger in absolute value of the two residual position interim haircuts being netted, and (ii) zero, in... category of the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in... the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in the...
17 CFR 402.2a - Appendix A-Calculation of market risk haircut for purposes of § 402.2(g)(2).
Code of Federal Regulations, 2011 CFR
2011-04-01
... larger in absolute value of the two residual position interim haircuts being netted, and (ii) zero, in... category of the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in... the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in the...
17 CFR 402.2a - Appendix A-Calculation of market risk haircut for purposes of § 402.2(g)(2).
Code of Federal Regulations, 2012 CFR
2012-04-01
... larger in absolute value of the two residual position interim haircuts being netted, and (ii) zero, in... category of the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in... the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in the...
17 CFR 402.2a - Appendix A-Calculation of market risk haircut for purposes of § 402.2(g)(2).
Code of Federal Regulations, 2010 CFR
2010-04-01
... larger in absolute value of the two residual position interim haircuts being netted, and (ii) zero, in... category of the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in... the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in the...
17 CFR 402.2a - Appendix A-Calculation of market risk haircut for purposes of § 402.2(g)(2).
Code of Federal Regulations, 2013 CFR
2013-04-01
... larger in absolute value of the two residual position interim haircuts being netted, and (ii) zero, in... category of the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in... the larger (in absolute value) of the two interim haircuts that were netted, and (2) a zero in the...
Calibration of the BASS acoustic current meter with carrageenan agar
Morrison, A.T.; Williams, A.J.; Martini, M.
1993-01-01
The BASS current meter can measure currents down to the millimeter per second range. Due to the dependence of zero offset on pressure, determining a sensor referenced velocity requires accurate in situ zeroing of the meter. Previously, flow was restricted during calibration by placing plastic bags around the acoustic volume. In this paper, bacterial grade and carrageenan agars are used in the laboratory to create a zero flow condition during calibration and are shown to be acoustically transparent. Additionally, the results of open ocean and dockside carrageenan and plastic bag comparisons are presented. Carrageenan is shown to reliably provide a low noise, zero mean flow environment that is largely independent of ambient conditions. The improved zeros make millimeter per second accuracy possible under field conditions.
NASA Astrophysics Data System (ADS)
Roszak, Katarzyna; Cywiński, Łukasz
2018-01-01
We find that when a qubit initialized in a pure state experiences pure dephasing due to interaction with an environment, separable qubit-environment states generated during the evolution also have zero quantum discord with respect to the environment. What follows is that the set of separable states which can be reached during the evolution has zero volume, and hence, such effects as sudden death of qubit-environment entanglement are very unlikely. In the case of the discord with respect to the qubit, a vast majority of qubit-environment separable states is discordant, but in specific situations zero-discord states are possible. This is conceptually important since there is a connection between the discordance with respect to a given subsystem and the possibility of describing the evolution of this subsystem using completely positive maps. Finally, we use the formalism to find an exemplary evolution of an entangled state of two qubits that is completely positive, and occurs solely due to interaction of only one of the qubits with its environment (so one could guess that it corresponds to a local operation, since it is local in a physical sense), but which nevertheless causes the enhancement of entanglement between the qubits. While this simply means that the considered evolution is completely positive, but does not belong to local operations and classical communication, it shows how much caution has to be exercised when identifying evolution channels that belong to that class.
Feature Selection Methods for Zero-Shot Learning of Neural Activity
Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513
Lu, Jian; Ozel, I. Ozge; Belvin, Carina A.; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K.; Dincă, Mircea; Gedik, Nuh
2017-01-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science. PMID:29163882
Nanosize zero-valent iron (nZVI) is used as a redox-active catalyst for in situ remediation of contaminated ground waters. In aqueous environments, nZVI oxidizes over time (i.e., “ages”) to magnetite and other oxides. For remediation, hi...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....521-90 Section 86.521-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... and basic operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the...
40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....1221-90 Section 86.1221-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... appropriate FID fuel and zero-grade air. (2) Optimize on the most common operating range. Introduce into the...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....521-90 Section 86.521-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... and basic operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the...
40 CFR 86.121-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sample bag with a known volume of zero grade air measured by a gas flow meter meeting the performance....121-90 Section 86.121-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the most common...
40 CFR 86.121-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample bag with a known volume of zero grade air measured by a gas flow meter meeting the performance....121-90 Section 86.121-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the most common...
40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....1221-90 Section 86.1221-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... appropriate FID fuel and zero-grade air. (2) Optimize on the most common operating range. Introduce into the...
Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks.
Chibotaru, Liviu F; Hendrickx, Marc F A; Clima, Sergiu; Larionova, Joulia; Ceulemans, Arnout
2005-08-18
Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block.
NASA Technical Reports Server (NTRS)
Greene, M. W.
1976-01-01
The results of analytical and experimental work performed in the design, fabrication, and test of a prototype nonintrusive gaging system for use in monitoring the consumption of earth-storable fuels and oxidants in either a one-g or a zero-g environment are explained. The design specifications were those applicable to the reaction control system and to the orbital maneuvering system (OMS) fuel and oxidant on the space shuttle while in orbit. The major requirement was for the measurement of flow pulses with sufficient accuracy to provide a continuous knowledge of the fuel and oxidant remaining in the OMS system to within 1% or better. An ultrasonic frequency chirp technique was used having a high inherent rejection for signals traversing stray paths, and for random noise generated by the flowing liquid. A detailed analysis of the frequency chirp approach for two modes of operation (period and phase changes), including an error analysis are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.
2011-12-01
We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1988-01-01
The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.
Concept design and alternate arrangements of orbiter mid-deck habitability features
NASA Technical Reports Server (NTRS)
Church, R. A.; Ciciora, J. A.; Porter, K. L.; Stevenson, G. E.
1976-01-01
The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed.
Game, Madhuri D.; Gabhane, K. B.; Sakarkar, D. M.
2010-01-01
A simple, accurate and precise spectrophotometric method has been developed for simultaneous estimation of clopidogrel bisulphate and aspirin by employing first order derivative zero crossing method. The first order derivative absorption at 232.5 nm (zero cross point of aspirin) was used for clopidogrel bisulphate and 211.3 nm (zero cross point of clopidogrel bisulphate) for aspirin.Both the drugs obeyed linearity in the concentration range of 5.0 μg/ml to 25.0 μg/ml (correlation coefficient r2<1). No interference was found between both determined constituents and those of matrix. The method was validated statistically and recovery studies were carried out to confirm the accuracy of the method. PMID:21969765
Killifish Hatching and Orientation experiment MA-161
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Boyd, J. F.; Bozarth, G. A.; Conner, J. A.; Eichler, V. B.; Fuller, P. M.; Hoffman, R. B.; Keefe, J. R.; Kuchnow, K. P.; Oppenheimer, J. M.
1976-01-01
The killifish Fundulus heteroclitus was used as a model system for study of embryonic development and vestibular adaptation in orbital flight. Juvenile fish in a zero gravity environment exhibited looping swimming activity similar to that observed during the Skylab 3 mission. Hatchings from a 336 hour egg stage were also observed to loop. At splashdown, both juveniles and hatchings exhibited a typical diving response suggesting relatively normal vestibular function. Juveniles exhibited swimming patterns suggestive of abnormal swim bladders. The embryos exhibited no abnormalities resulting from development in a zero gravity environment.
G2H--graphics-to-haptic virtual environment development tool for PC's.
Acosta, E; Temkin, B; Krummel, T M; Heinrichs, W L
2000-01-01
For surgical training and preparations, the existing surgical virtual environments have shown great improvement. However, these improvements are more in the visual aspect. The incorporation of haptics into virtual reality base surgical simulations would enhance the sense of realism greatly. To aid in the development of the haptic surgical virtual environment we have created a graphics to haptic, G2H, virtual environment developer tool. G2H transforms graphical virtual environments (created or imported) to haptic virtual environments without programming. The G2H capability has been demonstrated using the complex 3D pelvic model of Lucy 2.0, the Stanford Visible Female. The pelvis was made haptic using G2H without any further programming effort.
NASA Astrophysics Data System (ADS)
Wong, Kin-Yiu
We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.
Liquid Hydrogen Zero-Boiloff Testing and Analysis for Long-Term Orbital Storage
NASA Astrophysics Data System (ADS)
Hastings, L. J.; Hedayat, A.; Bryant, C. B.; Flachbart, R. H.
2004-06-01
Advancement of cryocooler and passive insulation technologies in recent years has improved the prospects for zero-boiloff (ZBO) storage of cryogenic fluids. The ZBO concept involves the use of a cryocooler/radiator system to balance storage system incoming and extracted energy such that zero boiloff (no venting) occurs. A large-scale demonstration of the ZBO concept was conducted using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB) along with a commercial cryocooler unit. The liquid hydrogen (LH2) was withdrawn from the tank, passed through the cryocooler heat exchanger, and then the chilled liquid was sprayed back into the tank through a spray bar. The spray bar recirculation system was designed to provide destratification independent of ullage and liquid positions in a zero-gravity environment. The insulated MHTB tank, combined with the vacuum chamber conditions, enabled orbital storage simulation. ZBO was demonstrated for fill levels of 95%, 50%, and 25%. At each fill level, a steady-state boiloff test was performed prior to operating the cryocooler to establish the baseline heat leak. Control system logic based on real-time thermal data and ullage pressure response was implemented to automatically provide a constant tank pressure. A comparison of test data and analytical results is presented in this paper.
Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success
NASA Technical Reports Server (NTRS)
Haddad Michael E.
2010-01-01
On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.
Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...
Young stars of low mass in the Gum nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, J.A.; Heyer, M.H.
1989-06-01
Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birthmore » of the sun. 53 refs.« less
NASA Technical Reports Server (NTRS)
Hudson, Hugh S.; Davis, J. M.
1990-01-01
Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.
ERIC Educational Resources Information Center
Ogden, Daniel M., Jr.
1978-01-01
Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)
Kaiyala, Karl J
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
Unifying distance-based goodness-of-fit indicators for hydrologic model assessment
NASA Astrophysics Data System (ADS)
Cheng, Qinbo; Reinhardt-Imjela, Christian; Chen, Xi; Schulte, Achim
2014-05-01
The goodness-of-fit indicator, i.e. efficiency criterion, is very important for model calibration. However, recently the knowledge about the goodness-of-fit indicators is all empirical and lacks a theoretical support. Based on the likelihood theory, a unified distance-based goodness-of-fit indicator termed BC-GED model is proposed, which uses the Box-Cox (BC) transformation to remove the heteroscedasticity of model errors and the generalized error distribution (GED) with zero-mean to fit the distribution of model errors after BC. The BC-GED model can unify all recent distance-based goodness-of-fit indicators, and reveals the mean square error (MSE) and the mean absolute error (MAE) that are widely used goodness-of-fit indicators imply statistic assumptions that the model errors follow the Gaussian distribution and the Laplace distribution with zero-mean, respectively. The empirical knowledge about goodness-of-fit indicators can be also easily interpreted by BC-GED model, e.g. the sensitivity to high flow of the goodness-of-fit indicators with large power of model errors results from the low probability of large model error in the assumed distribution of these indicators. In order to assess the effect of the parameters (i.e. the BC transformation parameter λ and the GED kurtosis coefficient β also termed the power of model errors) of BC-GED model on hydrologic model calibration, six cases of BC-GED model were applied in Baocun watershed (East China) with SWAT-WB-VSA model. Comparison of the inferred model parameters and model simulation results among the six indicators demonstrates these indicators can be clearly separated two classes by the GED kurtosis β: β >1 and β ≤ 1. SWAT-WB-VSA calibrated by the class β >1 of distance-based goodness-of-fit indicators captures high flow very well and mimics the baseflow very badly, but it calibrated by the class β ≤ 1 mimics the baseflow very well, because first the larger value of β, the greater emphasis is put on high flow and second the derivative of GED probability density function at zero is zero as β >1, but discontinuous as β ≤ 1, and even infinity as β < 1 with which the maximum likelihood estimation can guarantee the model errors approach zero as well as possible. The BC-GED that estimates the parameters (i.e. λ and β) of BC-GED model as well as hydrologic model parameters is the best distance-based goodness-of-fit indicator because not only the model validation using groundwater levels is very good, but also the model errors fulfill the statistic assumption best. However, in some cases of model calibration with a few observations e.g. calibration of single-event model, for avoiding estimation of the parameters of BC-GED model the MAE i.e. the boundary indicator (β = 1) of the two classes, can replace the BC-GED, because the model validation of MAE is best.
Weapons in Schools and Zero-Tolerance Policies
ERIC Educational Resources Information Center
Losinski, Mickey; Katsiyannis, Antonis; Ryan, Joseph; Baughan, Cynthia
2014-01-01
Horrific events such as the fatal shooting of three high school students in Chardon, Ohio, in the winter of 2012 places tremendous pressure on state and local agencies to ensure that schools provide a safe and conducive learning environment for all students. To help curb school violence, schools have adopted zero-tolerance policies, which often…
Vegetation-environment relationships in zero-order basins in coastal Oregon.
Chris D. Sheridan; Thomas A. Spies
2005-01-01
Zero-order basins, where hillslope topography converges to form drainages, are common in steep, forested landscapes but we know little about their ecological structure. We used indirect gradient analysis to characterize gradients in plant species composition and cluster analysis to characterize groups of plant species associated with specific geomorphic areas. We...
Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho
2017-04-01
A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H 2 O 2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L -1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L -1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L -1 of nano-Fe/Ca/CaO and 20 mM H 2 O 2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H 2 O 2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H 2 O 2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91-99% of heavy metals removal. The coupled coagulation-oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.
1985-10-01
written 3 as follows: m 4 cg ° + C + + - c =0n-1u-1 n C + c 2 g 1 +. . c 0 clg o Cngn-1 cn+ 1 (10a) cng° + Cn+11 + + C 2n-lgn_1 + C 2 n 0 or in...matrix form, C " I = 0 (10b) A non-zero solution is possible if the determinant of C is zero. From the theory of Prony’s method [133 g (k1 = % n + kn... g , ki + go = 0 II) hence the polynomial coefficient vector g is also orthogonal to the vector (1 X i ki 2 .Xik)T where %i’s are the
The effects of prolonged weightlessness and reduced gravity environments on human survival.
Taylor, R L
1993-03-01
The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.
2011-01-01
Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).
CapiBRIC- Capillary-Based Brine Residual In-Containment for Secondary Water Recovery
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam; Pensinger, S.; Callahan, M.
2015-01-01
One of the goals of the AES Life Support Systems Project is to achieve 98% water loop closure for long-duration human exploration missions. Brine water recovery is the primary technology gap that must be bridged to realize this goal. In response to an Agency call for technologies to compete in an October down-select, Capi-BRIC was chosen through a JSC down-select as the strongest candidate to go forward. This resulted in a period of intense development to increase its TRL in preparation for the Agency down-select. This was achieved through rapid prototype design, fabrication, and test at JSC and in a zero-g drop tower at Portland State University. INNOVATION CapiBRIC takes a novel approach of optimizing the containment geometry to support capillary flow and static phase separation to enable evaporation in a microgravity environment. OUTCOME TRL was advanced from 3 to 4, and was selected for continued funding through the AES program. CapiBRIC is poised for development into an ISS technology demonstration, proving its viability as an enabling technology for exploration.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
NASA Astrophysics Data System (ADS)
Marcus, P. M.; Jona, F.
2005-05-01
A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.
Absence of left ventricular concentric hypertrophy: a prerequisite for zero coronary calcium score.
Ehara, Shoichi; Shirai, Nobuyuki; Okuyama, Takuhiro; Matsumoto, Kenji; Matsumura, Yoshiki; Yoshiyama, Minoru
2011-09-01
The identification and intervention of factors associated with a coronary artery calcification (CAC) score of zero, suggesting the absence of significant coronary artery disease (CAD) with high probability, would be meaningful in the clinical setting. Thus far, the relationship between CAC and left ventricular (LV) hypertrophy has not been documented. We identified factors associated with a CAC score of zero and evaluated the relationship between this score and LV concentric hypertrophy in 309 consecutive patients with suspected CAD who were clinically indicated to undergo multislice computed tomography angiography for coronary artery evaluation. The quantitative CAC score was calculated according to Agatston's method. The total coronary calcium score (TCS) was defined as the sum of the scores for each lesion. Four absolute TCS categories were considered: zero, mild (0-100), moderate (100-400), and severe (>400). LV hypertrophy was classified into concentric (LV mass index >104 g/m(2) in women or >116 g/m(2) in men; LV end-diastolic volume index ≤109.2 mL/m(2)) and eccentric (LV end-diastolic volume index >109.2 mL/m(2)) patterns. In the zero-TCS group, the frequency of LV concentric hypertrophy was extremely low (zero 6%, mild 17%, moderate 26%, severe 19%). Multivariate analysis revealed that age, hypercholesterolemia, diabetes mellitus, LV concentric hypertrophy, and LV mass index, but not hypertension, were the independent factors associated with a CAC score of zero. The present study demonstrated that the absence of LV concentric hypertrophy was a prerequisite for a CAC score of zero. That is, the presence of LV concentric hypertrophy, which indicated more severe underlying hypertension, long duration, or poor control of blood pressure, implicates the presence of CAC.
NASA Technical Reports Server (NTRS)
Todd, P. W.
1985-01-01
Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.
System for the Management of Trauma and Emergency Surgery in Space
NASA Technical Reports Server (NTRS)
Houtchens, B.
1984-01-01
The need to develop a systems approach to the management of trauma and other major clinical medical events in space along with appropriate development and evaluation of surgical techniques and required hardware was investigated. A prototype zero gravity surgical module was constructed and tested aboard a KC-135 aircraft during parabolic arc zero G flight. To insure parity of quality care to that available on Earth, it was recommended that a clinical medical and bioengineering advisory committee define and help develop the necessary components of the clinical medical care system for the space station and lunar base. Key components of the system are aerospace surgical training, medical equipment development, including support hardware and software, rapid access to a network of specialty expertise, and continued research and development.
Epitaxial bain paths and metastable phases of tetragonal iron and manganese
NASA Astrophysics Data System (ADS)
Ma, Hong
2002-04-01
Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice
Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.
Lv, Xiaoshu; Xu, Jiang; Jiang, Guangming; Tang, Jie; Xu, Xinhua
2012-03-01
For the first time, nanoscale zero-valent iron (nZVI)-Fe(3)O(4) nanocomposites, prepared by an in situ reduction method, are employed for chromium(VI) removal in aqueous environment. 96.4% Cr(VI) could be removed by these novel materials within 2h under pH of 8.0 and initial Cr concentration of 20 mg L(-1), compared with 48.8% by bare nFe(3)O(4) and 18.8% by bare nZVI. Effects of several factors, including mass composition of nZVI-Fe(3)O(4) nanocomposites, initial pH and Cr(VI) concentration, were evaluated. The optimal ratio of nFe(3)O(4) to nZVI mass lies at 12:1 with a fixed nZVI concentration of 0.05 g L(-1). Low pH and initial Cr(VI) concentration could increase both the Cr(VI) removal efficiency and reaction rate. Corresponding reaction kinetics fitted well with the pseudo second-order adsorption model. Free energy change (ΔG) of this reaction was calculated to be -4.6 kJ mol(-1) by thermodynamic study, which confirmed its spontaneous and endothermic characteristic. The experimental data could be well described by the Langmuir and Freundlich model, and the maximum capacity (q(max)) obtained from the Langmuir model was 100 and 29.43 mg g(-1) at pH 3.0 and 8.0, respectively. The reaction mechanism was discussed in terms of the mutual benefit brought by the electron transfer from Fe(0) to Fe(3)O(4). Copyright © 2011 Elsevier Inc. All rights reserved.
Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan
2017-03-15
Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P < 0.05) in the quantities of tet (except tet(W)) and intI1 genes was observed at Fe 0 dosage of 5 g/L, whereas no significant differences (P > 0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium
NASA Astrophysics Data System (ADS)
Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi
2017-10-01
Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.
Hwang, Su-Lun; Guo, Su-Er; Chi, Miao-Ching; Chou, Chiang-Ting; Lin, Yu-Ching; Lin, Chieh-Mo; Chou, Yen-Li
2016-01-01
Objectives: This paper reports on the findings of a population-based study to evaluate the relationship between atmospheric fine particulate matter (PM2.5) levels and hospital admissions for chronic obstructive pulmonary disease (COPD) in southwestern Taiwan over a three-year period, 2008–2010. Methods: Data on hospital admissions for COPD and PM2.5 levels were obtained from the National Health Insurance Research database (NHIRD) and the Environmental Protection Administration from 2008 to 2010, respectively. The lag structure of relative risks (RRs) of hospital admissions for COPD was estimated using a Poisson regression model. Results: During the study period, the overall average hospitalization rate of COPD and mean 24-h average level of PM2.5 was 0.18% and 39.37 μg/m3, respectively. There were seasonal variations in PM2.5 concentrations in southwestern Taiwan, with higher PM2.5 concentrations in both spring (average: 48.54 μg/m3) and winter (49.96 μg/m3) than in summer (25.89 μg/m3) and autumn (33.37 μg/m3). Increased COPD admissions were significantly associated with PM2.5 in both spring (February–April) and winter (October–January), with the relative risks (RRs) for every 10 μg/m3 increase in PM2.5 being 1.25 (95% CI = 1.22–1.27) and 1.24 (95% CI = 1.23–1.26), respectively, at a lag zero days (i.e., no lag days). Lag effects on COPD admissions were observed for PM2.5, with the elevated RRs beginning at lag zero days and larger RRs estimates tending to occur at longer lags (up to six days, i.e., lag 0–5 days). Conclusions: In general, findings reveal an association between atmospheric fine particulate matter (PM2.5) and hospital admissions for COPD in southwestern Taiwan, especially during both spring and winter seasons. PMID:27023589
Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin
2017-11-01
The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.
Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers
NASA Technical Reports Server (NTRS)
Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.
1972-01-01
Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.
Spacecraft utensil/hand cleansing fixture
NASA Technical Reports Server (NTRS)
Jonkoniec, T. G.
1978-01-01
A fixture which provides a means for a crewman to perform, in zero gravity, laboratory utensil/tool cleansing and personal hygiene functions such as handwashing, shaving, body wash, and teeth brushing is described. A prototype unit developed incorporating design improvements resulting from breadboard tests in a one gravity and zero gravity environment demonstrated the capability of performing the different cleansing functions.
3D Printing In Zero-G ISS Technology Demonstration
NASA Technical Reports Server (NTRS)
Werkheiser, Niki; Cooper, Kenneth; Edmunson, Jennifer; Dunn, Jason; Snyder, Michael
2014-01-01
The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station (ISS) up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up multiple drill bits that would be required to machine parts from aerospace-grade materials such as titanium 6-4 alloy and Inconel. The technology to produce parts on demand, in space, offers unique design options that are not possible through traditional manufacturing methods while offering cost-effective, high-precision, low-unit on-demand manufacturing. Thus, Additive Manufacturing capabilities are the foundation of an advanced manufacturing in space roadmap. The 3D Printing In Zero-G experiment will demonstrate the capability of utilizing Additive Manufacturing technology in space. This will serve as the enabling first step to realizing an additive manufacturing, print-on-demand "machine shop" for long-duration missions and sustaining human exploration of other planets, where there is extremely limited ability and availability of Earth-based logistics support. Simply put, Additive Manufacturing in space is a critical enabling technology for NASA. It will provide the capability to produce hardware on-demand, directly lowering cost and decreasing risk by having the exact part or tool needed in the time it takes to print. This capability will also provide the much-needed solution to the cost, volume, and up-mass constraints that prohibit launching everything needed for long-duration or long-distance missions from Earth, including spare parts and replacement systems. A successful mission for the 3D Printing In Zero-G payload is the first step to demonstrate the capability of printing on orbit. The data gathered and lessons learned from this demonstration will be applied to the next generation of additive manufacturing technology on orbit. It is expected that Additive Manufacturing technology will quickly become a critical part of any mission's infrastructure.
Research and Development of High-Performance Axial-Flow Turbomachinery
1968-05-01
following conditions: 1. At any orientation of the turbocompressor in a zero to 0.18-g accelera- tion field; 2. At any angle between zero and 180...degrees shaft angle (where zero would correspond to a vertically oriented shaft with the compressor-end up and 180 degrees would be vertical with the...rpm. Hence, the absolute values of bearing forces in the vicinity of the rigid body criticals are approximate. Over the range of 40,000 to 60,000 rpm
Nuclear event zero-time calculation and uncertainty evaluation.
Pan, Pujing; Ungar, R Kurt
2012-04-01
It is important to know the initial time, or zero-time, of a nuclear event such as a nuclear weapon's test, a nuclear power plant accident or a nuclear terrorist attack (e.g. with an improvised nuclear device, IND). Together with relevant meteorological information, the calculated zero-time is used to help locate the origin of a nuclear event. The zero-time of a nuclear event can be derived from measured activity ratios of two nuclides. The calculated zero-time of a nuclear event would not be complete without an appropriately evaluated uncertainty term. In this paper, analytical equations for zero-time and the associated uncertainty calculations are derived using a measured activity ratio of two nuclides. Application of the derived equations is illustrated in a realistic example using data from the last Chinese thermonuclear test in 1980. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wichowski, Chester
1979-01-01
The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.
1986-01-01
The g-tuning maneuvers of a 3-mass, vertical tethered system are considered. In particular, the case of reaching a zero-g acceleration level on board the middle mass from a non-zero initial condition is analyzed. A control law that provides a satisfactory transient response is derived. The constellation dynamics in the case of the middle mass travelling from one tether tip to the other is also investigated. Instabilities that take place at the end of the maneuver are analyzed and accommodated by devising suitable damping algorithms.
Crew Training - STS-33/51L (Zero-G)
1985-10-16
S85-42470 (16 Oct. 1985) --- Sharon Christa McAuliffe, right, and Barbara R. Morgan, participating in the Teacher-in-Space Project, team up with Bob Mayfield, a JSC aerospace educations specialist, to preview some experiments in zero-G. A KC-135 aircraft flies a special pattern to provide series of brief periods of weightlessness. McAuliffe, prime crew member for STS-51L, injects a hydroponic solution into a cylinder to review one of the experiments planned for the flight. Morgan is backup for McAuliffe on that mission. Photo credit: NASA
2015-09-01
the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on
Cities of the future-bionic systems of new urban environment.
Krzemińska, Alicja Edyta; Zaręba, Anna Danuta; Dzikowska, Anna; Jarosz, Katarzyna Rozalia
2017-12-07
The concepts of the cities we know nowadays, and which we are accustomed to, change at a very rapid pace. The philosophy of their design is also changing. It will base on new standards, entering a completely different, futuristic dimension. This stage is related to changes in the perception of space, location and lack of belonging to definite, national or cultural structures. Cities of the future are cities primarily intelligent, zero-energetic, zero-waste, environmentally sustainable, self-sufficient in terms of both organic food production and symbiosis between the environment and industry. New cities will be able to have new organisational structures-either city states, or, apolitical, jigsaw-like structures that can change their position-like in the case of the city of Artisanopolis, designed as a floating city, close to the land, reminiscent of the legendary Atlantis. This paper is focused on the main issues connected with problems of the contemporary city planning. The purpose of the research was to identify existing technological solutions, whose aim is to use solar energy and urban greenery. The studies were based on literature related to future city development issues and futuristic projects of the architects and city planners. In the paper, the following issues have been verified: futuristic cities and districts, and original bionic buildings, both residential and industrial. The results of the analysis have been presented in a tabular form.
Jones, J A; Johnston, S; Campbell, M; Miles, B; Billica, R
1999-05-01
The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
NASA Technical Reports Server (NTRS)
Jones, J. A.; Johnston, S.; Campbell, M.; Miles, B.; Billica, R.
1999-01-01
OBJECTIVES: The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. METHODS: A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). RESULTS: The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. CONCLUSIONS: In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
Cassette bacteria detection system. [for monitoring the sterility of regenerated water in spacecraft
NASA Technical Reports Server (NTRS)
1974-01-01
The design, fabrication, and testing of an automatic bacteria detection system, with a zero-g capability, based on the filter-capable approach, and intended for monitoring the sterility of regenerated water in spacecraft is discussed. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. High signals for the incubated water sample indicate the presence of viable organisms.
Realization of High-Temperature Superconductivity in Nano-Carbon Materials and Its Power Application
2012-08-12
is very attractive issue for any societies and people. Various kinds of superconductors have been discovered so far; e.g., CuO2-based SC with high-Tc...Br × 2) is 0.2 B and the loop width at zero magnetic moment (coercivity Hc × 2) is 260 gauss. 6 attributed not to defects( disorder ), which...Publishers, Inc 2012) In printing 10. J.Haruyama, “Superconductivity in carbon nantoubes” in “Carbon-based new superconductors ; Toward high Tc” edited
Evaluation of the electromechanical properties of the cardiovascular system
NASA Technical Reports Server (NTRS)
Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.
1974-01-01
Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.
NASA Technical Reports Server (NTRS)
Todd, P. W.; Hjerten, S.
1985-01-01
Experiments were designed to replicate, as closely as possible in 1-G, the conditions of the STS-3 red blood cell (RBC) experiments. Free zone electrophoresis was the method of choice, since it minimizes the role of gravity in cell migration. The physical conditions of the STS-3 experiments were used, and human and rabbit RBC's fixed by the same method were the test particles. The effects of cell concentration, electroosmotic mobility, and sample composition were tested in order to seek explanations for the STS-3 results and to provide data on cell concentration effects for future zero-G separation on the continuous-flow zero-G electrophoretics separator.
On the Boundary Conditions at an Oscillating Contact Line: A Physical/Numerical Experimental Program
NASA Technical Reports Server (NTRS)
Perlin, Marc; Schultz, William W.
1996-01-01
We will pursue an improved physical understanding and mathematical model for the boundary condition at an oscillating contact line at high Reynolds number. We expect that the body force is locally unimportant for earth-based systems, and that the local behavior may dominate the mechanics of partially-filled reservoirs in the microgravity environment. One important space-based application for this contact-line study is for Faraday-waves. Oscillations in the direction of gravity (or acceleration) can dominate the fluid motion during take-off and reentry with large steady-state accelerations and in orbit, where fluctuations on the order of 10(exp -4)g occur about a zero mean. Our experience with Faraday waves has shown them to be 'cleaner' than those produced by vertical or horizontal oscillation of walls. They are easier to model analytically or computationally, and they do not have strong vortex formation at the bottom of the plate. Hence many, if not most, of the experiments will be performed in this manner. The importance of contact lines in the microgravity environment is well established. We will compare high resolution measurements of the velocity field (lO micro-m resolution) using particle-tracking and particle-image velocimetry as the fluid/fluid interface is approached from the lower fluid. The spatial gradients in the deviation provide additional means to determine an improved boundary condition and a measure of the slip region. Dissipation, the size of the eddy near the contact line, and hysteresis will be measured and compare to linear and nonlinear models of viscous and irrotational but dissipative models.
Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.
Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J
2015-11-02
The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.
Cargo systems manual: Heat Pipe Performance (HPP) STS-66
NASA Technical Reports Server (NTRS)
Napp, Robert
1994-01-01
The purpose of the cargo systems manual (CSM) is to provide a payload reference document for payload and shuttle flight operations personnel during shuttle mission planning, training, and flight operations. It includes orbiter-to-payload interface information and payload system information (including operationally pertinent payload safety data) that is directly applicable to the Mission Operations Directorate (MOD) role in the payload mission. The primary objectives of the heat pipe performance (HPP) are to obtain quantitative data on the thermal performance of heat pipes in a microgravity environment. This information will increase understanding of the behavior of heat pipes in space and be useful for application to design improvements in heat pipes and associated systems. The purpose of HPP-2 is to establish a complete one-g and zero-g data base for axial groove heat pipes. This data will be used to update and correlate data generated from a heat pipe design computer program called Grooved Analysis Program (GAP). The HPP-2 objectives are to: determine heat transport capacity and conductance for open/closed grooved heat pipes and different Freon volumes (nominal, under, and overcharged) using a uniform heat load; determine heat transport capacity and conductance for single/multiple evaporators using asymmetric heat loads; obtain precise static, spin, and rewicking data points for undercharged pipes; investigate heat flux limits (asymmetric heat loads); and determine effects of positive body force on thermal performance.
Investigation of Zero Knowledge Proof Approaches Based on Graph Theory
2011-02-01
that appears frequently in the literature is a metaheuristic algorithm called the Pilot Method. The Pilot Method improves upon another heuristic...Annual ACM-SIAM Symposium on Discrete Algorithms . Miami: ACM, 2006. 1-10. Voß, S., and C. Duin. "Look Ahead Features in Metaheuristics ." MIC2003...The Fifth Metaheuristics International Conference, 2003: 79-1 - 79-7. Woeginger, G.J. "Exact Algorithms for NP-Hard Problems: A Survey." Lecture
Motion sickness in cats - A symptom rating scale used in laboratory and flight tests
NASA Technical Reports Server (NTRS)
Suri, K. B.; Daunton, N. G.; Crampton, G. H.
1979-01-01
The cat is proposed as a model for the study of motion and space sickness. Development of a scale for rating the motion sickness severity in the cat is described. The scale is used to evaluate an antimotion sickness drug, d-amphetamine plus scopolamine, and to determine whether it is possible to predict sickness susceptibility during parabolic flight, including zero-G maneuvers, from scores obtained during ground based trials.
Shock Propagation In Crustal Rock
1991-04-29
liquid produced above the melting point during unloading. Figure 5 displays calculations of release adiabats in the mixed phase regime based on the...muscovite [Bridgman, 1949]. The zero-pressure densities at points 1, 2 and 3 correspond to mixtures of orthoclase + A1203+H20, of wadeite + kyanite ...shocked tantalum and the high pressure melting point , in Shock Waves in Condensed Matter-1983, edited by J. R. Asay, R. A. Graham and G. K. Straub, pp. 91
Influence of Zero-Shear on Yeast Development
NASA Technical Reports Server (NTRS)
McGinnis, Michael R.
1997-01-01
The objective of the research was to begin evaluating the effect of zero-shear on the development of the cell wall of Saccharomyces cerevisiae employing the High Aspect Rotating-Wall Vessel (HARV) NASA bioreactor. This particular yeast has enormous potential for research as a model eukaryotic system on the International Space Station, as well as the production of food stuffs' at the future lunar colony. Because the cell wall is the barrier between the cell and the environment, its form and function as influenced by microgravity is of great importance. Morphologic studies revealed that the circularity and total area of the individual yeast cells were essentially the same in both the control and test HARV's. The growth rates were also essentially the same. In zero-shear, the yeast grew in clumps consisting of rudimentary pseudohyphae in contrast to solitary budding cells in the control. Based upon mechanical and sonic shear applied to the yeast cells, those grown in zero-shear had stronger cell walls and septa. This suggests that there are structural differences, most likely related to the chitin skeleton of the cell wall. From this research further NASA support was obtained to continue the work. Investigations will deal with gene expression and ultrastructure. These will lead to a clearer assessment of the value of S. cerevisiae eukaryotic as a model for space station research.
NASA Astrophysics Data System (ADS)
How, Ho Kuok; Wan Zuhairi W., Y.
2015-09-01
In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwarz, Ray P.
1991-01-01
The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.
Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng
2015-06-01
The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.
Experiments with the Skylab fire detectors in zero gravity
NASA Technical Reports Server (NTRS)
Linford, R. M. F.
1972-01-01
The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.
Sustainability Base Construction Update
NASA Technical Reports Server (NTRS)
Mewhinney, Michael
2012-01-01
Construction of the new Sustainability Base Collaborative support facility, expected to become the highest performing building in the federal government continues at NASA's Ames Research Center, Moffet Field, Calif. The new building is designed to achieve a platinum rating under the leadership in Energy and Environment Design (LEED) new construction standards for environmentally sustainable construction developed by the U. S. Green Building Council, Washington, D. C. When completed by the end of 2011, the $20.6 million building will feature near zero net energy consumption, use 90 percent less potable water than conventionally build buildings of equivalent size, and will result in reduced building maintenance costs.
Zero adjusted models with applications to analysing helminths count data.
Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N
2014-11-27
It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2014-10-30
The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically the hyperpolarized and depolarized values of the membrane potential, as well as the possibility to obtain a bistability behavior, using simplified models for the ion channels that regulate this potential. The bistability regions, which are defined in the multidimensional state space determining the cell state, can be relevant for the understanding of the different model cell states and the transitions between them, which are triggered by changes in the external environment.
United States Air Force Academy get-away-special flexible beam experiment
NASA Technical Reports Server (NTRS)
Bubb, Keith W.; Lamberson, Steven E.; Lash, Thomas A.
1989-01-01
The Department of Astronautics at the United States Air Force Academy is currently planning to fly an experiment in a NASA Get-Away-Special (GAS) canister. The experiment was named the flex beam experiment. The primary technical objective of the flex beam experiment is to measure the damping of a thin beam in the vacuum and zero G environment of space. By measuring the damping in space, it is hoped to determine the amount of damping the beam normally experiences due to the gravitational forces present on Earth. This will allow validation of models which predict the dynamics of thin beams in the space environment. The experiment will also allow the Academy to develop and improve its ability to perform experiments within the confines of a NASA GAS canister. Several experiments, of limited technical difficulty, were flown by the Academy. More complex experiments are currently planned and it is hoped to learn techniques with each space shuttle flight.
Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.
1975-01-01
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.
Alumina Refinery Wastewater Management: When Zero Discharge Just Isn't Feasible….
NASA Astrophysics Data System (ADS)
Martin, Lucy; Howard, Steven
Management and treatment of liquid effluents are determinant considerations in the design of alumina refineries. Rainfall, evaporation rate, proximity to the coast, process design and layout, ore mineralogy, the local environment, and potential impact on contiguous communities are all integral to the development of an appropriate refinery water management strategy. The goal is to achieve zero discharge of liquid effluent to the environment. However this is not always the most feasible solution under the extreme rainfall conditions in tropical and subtropical locations. This paper will explore the following issues for both inland and coastal refineries: • Methods to reduce and control refinery discharges
Jumping in simulated and true microgravity: response to maximal efforts with three landing types
NASA Technical Reports Server (NTRS)
D'Andrea, Susan E.; Perusek, Gail P.; Rajulu, Sudhakar; Perry, Julie; Davis, Brian L.
2005-01-01
BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.
NASA Astrophysics Data System (ADS)
Rogotis, Savvas; Ioannidis, Dimosthenis; Tzovaras, Dimitrios; Likothanassis, Spiros
2015-04-01
The aim of this work is to present a novel approach for automatic recognition of suspicious activities in outdoor perimeter surveillance systems based on infrared video processing. Through the combination of size, speed and appearance based features, like the Center-Symmetric Local Binary Patterns, short-term actions are identified and serve as input, along with user location, for modeling target activities using the theory of Hidden Conditional Random Fields. HCRFs are used to directly link a set of observations to the most appropriate activity label and as such to discriminate high risk activities (e.g. trespassing) from zero risk activities (e.g loitering outside the perimeter). Experimental results demonstrate the effectiveness of our approach in identifying suspicious activities for video surveillance systems.
Analysis of spectra using correlation functions
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Norton, Robert H.
1988-01-01
A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.
NASA Astrophysics Data System (ADS)
Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva
2013-11-01
In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Peters, B.; Cohen, H.;
2015-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). The goal of this project was to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.
Zero Base Budgeting: A New Planning Tool for New Colleges.
ERIC Educational Resources Information Center
Adamson, Willie D.
Zero-base budgeting is presented as the functional alternative to the community college funding crisis which may be precipitated by passage in June 1978 of the Jarvis Amendment (Proposition 13) in California. Defined as the management of scarce resources on a cost/benefit basis to achieve pre-determined goals, zero-base budgeting emphasizes…
Parabolic flight experience is related to increased release of stress hormones.
Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K
2007-06-01
Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.
Research on metal solidification in zero-g state
NASA Technical Reports Server (NTRS)
Papazian, J. M.; Larson, D. J., Jr.
1975-01-01
The containerless solidification of several pure metals and metallic alloys was studied in a low gravity environment. The tests were performed in the MSFC 4.2 s drop tower using a rapid wire melting apparatus designed and built for this purpose. Pure iron and nickel, and alloys of iron-nickel, iron-carbon, nickel-aluminum and tungsten-rhenium were all melted and solidified at a gravity level of approximately 100.000/-4 g. Interpretation of the results has led to an appreciation of the factors controlling the successful execution of this drop test experiment and to a delineation of the limits of applicability of the apparatus. Preliminary metallurgical evaluations are presented of the overall shapes, lattice parameters, surface microstructure,, cross-sectional microstructures, solidification and transformation sequences, evaporative segregation, and localized solute redistribution observed in the low-gravity specimens. The effects of low gravity on metallic solidification are discussed with particular emphasis on observations of spontaneous undercooling and evaporative segregation in uncontained melts.
Impact of selected troposphere models on Precise Point Positioning convergence
NASA Astrophysics Data System (ADS)
Kalita, Jakub; Rzepecka, Zofia
2016-04-01
The Precise Point Positioning (PPP) absolute method is currently intensively investigated in order to reach fast convergence time. Among various sources that influence the convergence of the PPP, the tropospheric delay is one of the most important. Numerous models of tropospheric delay are developed and applied to PPP processing. However, with rare exceptions, the quality of those models does not allow fixing the zenith path delay tropospheric parameter, leaving difference between nominal and final value to the estimation process. Here we present comparison of several PPP result sets, each of which based on different troposphere model. The respective nominal values are adopted from models: VMF1, GPT2w, MOPS and ZERO-WET. The PPP solution admitted as reference is based on the final troposphere product from the International GNSS Service (IGS). The VMF1 mapping function was used for all processing variants in order to provide capability to compare impact of applied nominal values. The worst case initiates zenith wet delay with zero value (ZERO-WET). Impact from all possible models for tropospheric nominal values should fit inside both IGS and ZERO-WET border variants. The analysis is based on data from seven IGS stations located in mid-latitude European region from year 2014. For the purpose of this study several days with the most active troposphere were selected for each of the station. All the PPP solutions were determined using gLAB open-source software, with the Kalman filter implemented independently by the authors of this work. The processing was performed on 1 hour slices of observation data. In addition to the analysis of the output processing files, the presented study contains detailed analysis of the tropospheric conditions for the selected data. The overall results show that for the height component the VMF1 model outperforms GPT2w and MOPS by 35-40% and ZERO-WET variant by 150%. In most of the cases all solutions converge to the same values during first hour of processing. Finally, the results have been compared against results obtained during calm tropospheric conditions.
47 CFR 61.45 - Adjustments to the PCI for Local Exchange Carriers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... corresponding quarter of the previous year. For all other filings, the value is zero. X = For the CMT, traffic... this section. For all other filings, the value is zero. g = For annual filings for the CMT basket only... annual filing, the absolute level of a tariff entity's ATS Charge may change. The resulting new ATS...
47 CFR 61.45 - Adjustments to the PCI for Local Exchange Carriers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tariff and the corresponding quarter of the previous year. For all other filings, the value is zero. X... in paragraph (b)(1)(iv) of this section. For all other filings, the value is zero. g = For annual... annual filing, the absolute level of a tariff entity's ATS Charge may change. The resulting new ATS...
47 CFR 61.45 - Adjustments to the PCI for Local Exchange Carriers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tariff and the corresponding quarter of the previous year. For all other filings, the value is zero. X... in paragraph (b)(1)(iv) of this section. For all other filings, the value is zero. g = For annual... annual filing, the absolute level of a tariff entity's ATS Charge may change. The resulting new ATS...
47 CFR 61.45 - Adjustments to the PCI for Local Exchange Carriers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... corresponding quarter of the previous year. For all other filings, the value is zero. X = For the CMT, traffic... this section. For all other filings, the value is zero. g = For annual filings for the CMT basket only... annual filing, the absolute level of a tariff entity's ATS Charge may change. The resulting new ATS...
A tutorial on count regression and zero-altered count models for longitudinal substance use data
Atkins, David C.; Baldwin, Scott A.; Zheng, Cheng; Gallop, Robert J.; Neighbors, Clayton
2012-01-01
Critical research questions in the study of addictive behaviors concern how these behaviors change over time - either as the result of intervention or in naturalistic settings. The combination of count outcomes that are often strongly skewed with many zeroes (e.g., days using, number of total drinks, number of drinking consequences) with repeated assessments (e.g., longitudinal follow-up after intervention or daily diary data) present challenges for data analyses. The current article provides a tutorial on methods for analyzing longitudinal substance use data, focusing on Poisson, zero-inflated, and hurdle mixed models, which are types of hierarchical or multilevel models. Two example datasets are used throughout, focusing on drinking-related consequences following an intervention and daily drinking over the past 30 days, respectively. Both datasets as well as R, SAS, Mplus, Stata, and SPSS code showing how to fit the models are available on a supplemental website. PMID:22905895
Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae
Piazza, Aurèle; Cui, Xiaojie; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Phan, Anh-Tuan; Nicolas, Alain G
2017-01-01
G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids in vitro, but the sequence and structural features dictating their formation and function in vivo remains uncertain. Here we report a structure-function analysis of the complex hCEB1 G4-forming sequence. We isolated four G4 conformations in vitro, all of which bear unusual structural features: Form 1 bears a V-shaped loop and a snapback guanine; Form 2 contains a terminal G-triad; Form 3 bears a zero-nucleotide loop; and Form 4 is a zero-nucleotide loop monomer or an interlocked dimer. In vivo, Form 1 and Form 2 differently account for 2/3rd of the genomic instability of hCEB1 in two G4-stabilizing conditions. Form 3 and an unidentified form contribute to the remaining instability, while Form 4 has no detectable effect. This work underscores the structural polymorphisms originated from a single highly G-rich sequence and demonstrates the existence of non-canonical G4s in cells, thus broadening the definition of G4-forming sequences. DOI: http://dx.doi.org/10.7554/eLife.26884.001 PMID:28661396
NASA Technical Reports Server (NTRS)
Fields, S. F.; Labak, L. J.; Honegger, R. J.
1974-01-01
A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.
The scanning electron microscope as a tool in space biology
NASA Technical Reports Server (NTRS)
Barrett, R. A.
1983-01-01
Normal erythrocytes are disc-shaped and are referred to here descriptively as discocytes. Several morphologically variant forms occur nomally but in rather small amounts, usually less than one percent of total. It has been shown though, that spiculed variant forms referred to as echinocytes are generated in significant amounts at zero g. Normal red cells have been stressed in vitro in an effort to duplicate the observed discocyte-echinocyte transformation at zero g. The significance of this transformation to extended stay in space and some of the plausible reasons for this transformation are discussed.
[Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite].
Serova, L V; Denisova, L A; Apanasenko, Z I; Kuznetsova, M A; Meĭzerov, E S
1982-01-01
Male rats that were flown for 18.5 days on Cosmos-1129 were mated postflight with intact females. The mating 5 days postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects in the mature stage yielded the litter which lagged behind the controls with respect to the growth and development during the first postnatal month. The mating 2.5-3 months postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects at the stem cell stage yielded the litter which did not differ from the control.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Li, Tao; Yuan, Gannan; Li, Wang
2016-01-01
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130
Li, Tao; Yuan, Gannan; Li, Wang
2016-03-15
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.
2007-01-01
In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.
Alpha-Fair Resource Allocation under Incomplete Information and Presence of a Jammer
NASA Astrophysics Data System (ADS)
Altman, Eitan; Avrachenkov, Konstantin; Garnaev, Andrey
In the present work we deal with the concept of alpha-fair resource allocation in the situation where the decision maker (in our case, the base station) does not have complete information about the environment. Namely, we develop a concept of α-fairness under uncertainty to allocate power resource in the presence of a jammer under two types of uncertainty: (a) the decision maker does not have complete knowledge about the parameters of the environment, but knows only their distribution, (b) the jammer can come into the environment with some probability bringing extra background noise. The goal of the decision maker is to maximize the α-fairness utility function with respect to the SNIR (signal to noise-plus-interference ratio). Here we consider a concept of the expected α-fairness utility function (short-term fairness) as well as fairness of expectation (long-term fairness). In the scenario with the unknown parameters of the environment the most adequate approach is a zero-sum game since it can also be viewed as a minimax problem for the decision maker playing against the nature where the decision maker has to apply the best allocation under the worst circumstances. In the scenario with the uncertainty about jamming being in the system the Nash equilibrium concept is employed since the agents have non-zero sum payoffs: the decision maker would like to maximize either the expected fairness or the fairness of expectation while the jammer would like to minimize the fairness if he comes in on the scene. For all the plots the equilibrium strategies in closed form are found. We have shown that for all the scenarios the equilibrium has to be constructed into two steps. In the first step the equilibrium jamming strategy has to be constructed based on a solution of the corresponding modification of the water-filling equation. In the second step the decision maker equilibrium strategy has to be constructed equalizing the induced by jammer background noise.
40 CFR 60.296 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., g/kg. cs=concentration of particulate matter, g/dsm. Qsd=volumetric flow rate, dscm/hr. A=zero... (borosilicate) glass, wool fiberglass, and flat glass. P=glass production rate, kg/hr. (2) Method 5 shall be...
Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J
2018-05-15
In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.
Ball Lightning in Zero Gravity in the Laboratory
NASA Astrophysics Data System (ADS)
Alexeff, Igor; Parameswaran, Sriram; Grace, Michael
2004-11-01
We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.
A Meta System for Generating Software Engineering Environments.
1985-01-01
CI/NR-85-710 UNCLSSIFIED F/ G 9/2 NL 1.0 2-8! j~j~ 1s 3-15 jjll !2 __ L__ ILlh 1121 ,.., - - NATIONAL BUREAU OF STANDARDS MSCRCOPY RESOLUMIN TEST CHART...34 ". " ....-.... .......-... . . - ...-............’. . -...... -.--..-..-.. : 23 H4eta Dt: t-o (Knowled&e Base) Attributed G raoonr form ___ lepresenta tion of a Kethod...implements a programming environment on a relational database. The IDEOSY system 38’ is a graph-oriented language programming environment. I l t . G = o
Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation
NASA Astrophysics Data System (ADS)
Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.
A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.
Kaiyala, Karl J.
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692
Novel, bio-based, photoactive arsenic sorbent: TiO₂-impregnated chitosan bead.
Miller, Sarah M; Zimmerman, Julie B
2010-11-01
A novel sorbent for arsenic, TiO(2)-impregnated chitosan bead (TICB), has been synthesized and successfully tested. Kinetic plots, pH dependence, isotherm data, and bead morphology are reported. Equilibrium is achieved after 185 h in batch experiments with exposure to UV light. The TICB system performs similarly to the mass equivalent of neat TiO(2) nanopowder. The point of zero charge (pzc) for TICB was determined to be 7.25, and as with other TiO(2)-based arsenic removal technologies, the optimal pH range for sorption is below this pH(pzc). Without exposure to UV light, TICB removes 2198 μg As(III)/g TICB and 2050 μg As(V)/g TICB. With exposure to UV light, TICB achieves photo-oxidation of As(III) to As(V), the less toxic and more easily sequestered arsenic form. UV irradiation also results in enhanced arsenic removal, reaching sorption capacities of 6400 μg As/g TICB and 4925 μg As/g TICB, where arsenic is initially added as As(III) and As(V), respectively. Because the TICB system obviates filtration post-treatment, TICB is superior to TiO(2) nanopowder from the perspective of implementation for decentralized water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis-based technology.
Wang, Meng; Xing, Hong-Bo; Jia, Yu-Xiang; Ren, Qing-Chun
2015-12-30
The sharp increase of demand for vanadium makes the treatment of the wastewater generated from its extraction process become an urgent problem. In this study, a hybrid process coupling the electrodialysis with the cooling crystallization is put forward for upgrading the conventional vanadium extraction process to zero discharge. Accordingly, the objective of this work lies in evaluating the feasibility of the proposed scheme on the basis of a systematic study on the influences of membrane types and operating parameters on the electrodialysis performance. The results indicate that the relative importance of osmosis and electro-osmosis to overall water transport is closely related to the applied current density. The increase in the applied current density and the decrease in the mole ratio of water and salt flux will contribute to the concentration degree. Moreover, it is worth noting that a relatively large concentration ratio can result in the remarkable decrease of current efficiency and increase of energy consumption. In general, the reclamation scheme can easily achieve the recovered water with relatively low salt content and the highly concentrated Na2SO4 solution (e.g., 300 g/L) for producing high-purity sodium sulphate crystals. Copyright © 2015. Published by Elsevier B.V.
Analysis of head-down tilt as an analog of weightlessness using a methematical simulation model
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1984-01-01
Antiorthostasis or head down tilt of a moderate degree was used as a ground based analog of weightless space flight to study headward fluid shifts, decreased plasma volume, orthostatic intolerance and muscular skeletal degradation. A mathematical model was used to help interpret these observations. The model proved most valuable for these studies was originally developed as a description of the major circulatory, fluid and electrolyte control systems. Two different experimental studies are employed to validate the model. The first is a 24 hour head down tilt study and the second is a 7 day head down bed rest study. The major issues addressed include the reduction in plasma volume, the dynamic changes of venous pressure and cardiac output, the extent of central hypervolemia during long term zero g exposure, the existence of an early diuresis, the mechanisms which alter the renal regulating hormones during the short term and long term periods, the significance of potassium loss on other zero g responses, and the role of transcapillary filtration in adjusting fluid shifts. The use of mathematical models as an interpretive and analysis technique for experimental research for space life science is illustrated.
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1974-01-01
Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.
The Identification of Scientific Programs to Utilize the Space Environment
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nerem, R. M.
1976-01-01
A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-05
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-01-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244
NASA Astrophysics Data System (ADS)
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
Statistical Fine Structure in Inhomogeneously Broadened Absorption Lines in Solids.
1987-12-22
the inhomogeneously broadened zero-phonon SijSo (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium temperatures. SFS...structure (SFS) in the inhomogeneously broadened zero-phonon S, +- So (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium...tile large multiplicity of local environments. Inhomogeneously broadened absorption lines are usually treated as smooth, Gaussian profiles. In recent
Green Urbanism for the Greener Future of Metropolitan Areas
NASA Astrophysics Data System (ADS)
Zaręba, Anna; Krzemińska, Alicja; Widawski, Krzysztof
2016-10-01
Intensive urbanization is swallowing municipal green areas which causes intensification of erosion, decrease in biodiversity and permanent fragmentation of habitats. In the face of these changes, a risk of irreversible damages to urban ecosystems is growing. That is why planning of solutions within the framework of Green Urbanism in metropolitan areas inhabited by over 55% of the global population is of extraordinary importance. The task of the paper is to present patterns of the Green Urbanism using selected examples of metropolitan areas as case studies. The main goal of the research is to make comparison between GU practices in different countries, in various spatial settings. The principles of triple zero framework: zero fossil-fuel energy use, zero waste, zero emissions (from low-to-no-carbon emissions) introduce not only the contemporary trends in theoretical urban planning but are dictated by practical considerations to create a healthy environment for a healthy society with a minimized environmental footprint. The research results help to identify Green Urbanism techniques used for multiple functions, including ecological, recreational, cultural, aesthetic and other uses and present opportunities for implementation of Green Urbanism solutions in metropolitan areas. To achieve healthier society and environment, highly congested and polluted cities have to be recreated through working with the existing landscape, topography and natural resources particular to the site.
Microgravity Active Vibration Isolation System on Parabolic Flights
NASA Astrophysics Data System (ADS)
Dong, Wenbo; Pletser, Vladimir; Yang, Yang
2016-07-01
The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.
Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander
2013-11-15
Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.
Spin glass formation in La0.9Sr0.1CoO3 catalyst for flameless combustion of methane.
Oliva, C; Forni, L; Vishniakov, A V
2000-02-01
Two samples of composition La0.9M0.1CoO3 (M = Sr, Ce) have been compared as catalysts for the flameless combustion of methane. The former showed a lower activity than the latter and this difference was enhanced at lower temperature. Aiming at understanding the origin of this behaviour, EPR analysis was carried out at temperatures down to 100 K. At T < 245 K a zero-field intense feature appeared with the M = Sr sample only, characterized by opposite phase with respect to the g approximately 2 line. This zero-field line was attributed to microwave absorption by spin glass formed by cobalt- and oxygen-based paramagnetic ions. The tendency to strong interaction among these species could also be a reason of the low oxygen availability for the catalytic methane oxidation at higher temperature.
Dead time corrections using the backward extrapolation method
NASA Astrophysics Data System (ADS)
Gilad, E.; Dubi, C.; Geslot, B.; Blaise, P.; Kolin, A.
2017-05-01
Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1-2%) in restoring the corrected count rate.
Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media
NASA Astrophysics Data System (ADS)
Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele
2018-01-01
Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalski, Casey C.; DiSalvo, Rick; Boylan, John
2013-07-01
DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less
2012-01-01
Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g), although special attention should be paid to the possible effects of the magnetic field (B) itself. Results Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T), intermediate g* (0.1 g* at B = 14.7 T) and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T) plus an internal 1 g* control (B = 16.5 T). The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg) and a Large Diameter Centrifuge (2 g). Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions) have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies. Conclusions A detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software), can detect underlying global-scale responses, which cannot be detected by means of individual gene expression techniques using raw or corrected p values (FDR). A subtle, but consistent, genome-scale response to hypogravity environments was found, which was opposite to the response in a hypergravity environment. PMID:22435851
Creating a zero-order resonator using an optical surface transformation
Sun, Fei; Ge, Xiaochen; He, Sailing
2016-01-01
A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359
NASA Technical Reports Server (NTRS)
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1990-01-01
The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.
Experiments in thrusterless robot locomotion control for space applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jasper, Warren Joseph
1990-01-01
While performing complex assembly tasks or moving about in space, a space robot should minimize the amount of propellant consumed. A study is presented of space robot locomotion and orientation without the use of thrusters. The goal was to design a robot control paradigm that will perform thrusterless locomotion between two points on a structure, and to implement this paradigm on an experimental robot. A two arm free flying robot was constructed which floats on a cushion of air to simulate in 2-D the drag free, zero-g environment of space. The robot can impart momentum to itself by pushing off from an external structure in a coordinated two arm maneuver, and can then reorient itself by activating a momentum wheel. The controller design consists of two parts: a high level strategic controller and a low level dynamic controller. The control paradigm was verified experimentally by commanding the robot to push off from a structure with both arms, rotate 180 degs while translating freely, and then to catch itself on another structure. This method, based on the computed torque, provides a linear feedback law in momentum and its derivatives for a system of rigid bodies.
The development of a Space Shuttle Research Animal Holding Facility
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1980-01-01
The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.
How the Army Meter Data Management System (MDMS) Can Help on the Path to Net Zero
2011-05-10
NY) • Meets DoD cyber-security requirements – Received Authority to Operate from Army NETCOM effective 23 April 2010 – Received Certificate of...How MDMS supports Net Zero Goals (cont) 4. Measure Production/Consumption balance a. Only way to demonstrate position on glide path to Net Zero 5...2010001D To 8 Aug 2010 00 00 En•l’iY f*ttk COnWtnptlon J96S9U81’ WII FillCilftl .. Totol , ......... ~ Metert - Met el\\ r;’l £1Htr1< 1....-J G.n
Seabed gamma-ray spectrometry: applications at IAEA-MEL.
Osvath, I; Povinec, P P
2001-01-01
The technique of underwater gamma-ray spectrometry has been developed to complement or replace the traditional sampling-sample analysis approach for applications with space-time constraints, e.g. large areas of investigation, emergency response or long-term monitoring. IAEA-MEL has used both high-efficiency NaI(Tl) and high-resolution HPGe spectrometry to investigate contamination with anthropogenic radionuclides in a variety of marine environments. Surveys at the South Pacific nuclear test sites of Mururoa and Fangataufa have been used to guide sampling in areas of high contamination around ground zero points. In the Irish Sea offshore from the Sellafield nuclear reprocessing plant, a gamma-ray survey of seabed sediment was carried out to obtain estimates of the distribution and subsequently, for the inventory of 137Cs in the investigated area.
Direction-dependent arm kinematics reveal optimal integration of gravity cues.
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-11-02
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.
Determination of Absolute Zero Using a Computer-Based Laboratory
ERIC Educational Resources Information Center
Amrani, D.
2007-01-01
We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…
ERIC Educational Resources Information Center
Roland, Erling; Midthassel, Unni Vere
2012-01-01
Zero is a schoolwide antibullying program developed by the Centre for Behavioural Research at the University of Stavanger, Norway. It is based on three main principles: a zero vision of bullying, collective commitment among all employees at the school using the program, and continuing work. Based on these principles, the program aims to reduce…
Ball-and-Socket Joint Can Be Disassembled
NASA Technical Reports Server (NTRS)
Totah, R. S.
1982-01-01
Ball-and-socket joint originally developed for construction of large platforms in zero g could be used in such Earth-based temporary structures as scaffolding, camping equipment, tent posts, trade shows and displays. New joint consists of a socket mounted on central hub or union and ball-ended bolt or fitting mounted at end of a column or any structural member. Unit is self-contained, requires no loose hardware and is engaged or disengaged without tools manually, or remotely by a manipulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bomberg, Mark; Gibson, Michael; Zhang, Jian
This article highlights the need for an active role for building physics in the development of near-zero energy buildings while analyzing an example of an integrated system for the upgrade of existing buildings. The science called either Building Physics in Europe or Building Science in North America has so far a passive role in explaining observed failures in construction practice. In its new role, it would be integrating modeling and testing to provide predictive capability, so much needed in the development of near-zero energy buildings. The authors attempt to create a compact package, applicable to different climates with small modificationsmore » of some hygrothermal properties of materials. This universal solution is based on a systems approach that is routine for building physics but in contrast to separately conceived sub-systems that are typical for the design of buildings today. One knows that the building structure, energy efficiency, indoor environmental quality, and moisture management all need to be considered to ensure durability of materials and control cost of near-zero energy buildings. These factors must be addressed through contributions of the whole design team. The same approach must be used for the retrofit of buildings. As this integrated design paradigm resulted from demands of sustainable built environment approach, building physics must drop its passive role and improve two critical domains of analysis: (i) linked, real-time hygrothermal and energy models capable of predicting the performance of existing buildings after renovation and (ii) basic methods of indoor environment and moisture management when the exterior of the building cannot be modified.« less
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.
Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558
NASA Technical Reports Server (NTRS)
Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.
1974-01-01
Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.
Referent group proximity, social norms, and context: alcohol use in a low-use environment.
Cox, Jared M; Bates, Scott C
2011-01-01
The purpose of this study was to investigate the relationship between perceived normative use of alcohol and reported consumption in an environment where relatively little alcohol use occurs. A total of 585 undergraduate students completed an online survey on alcohol use in March 2006. Participants reported personal alcohol use and perceptions of use by "friends," "the average student," and "the average student who drinks." Due to the large number of students reporting zero alcohol use, zero-inflated negative binomial regression was used to analyze the data. Results showed that perceptions of use and beliefs about the acceptability of use by proximal groups were strongly and positively correlated with personal alcohol use. Perceptions of distal groups were either not correlated or were correlated negatively with personal use. These findings suggest that the use of distal referent groups for a social norms campaign in a low-use environment may have paradoxical effects.
Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.
Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D
2018-05-01
Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
SivaRamaiah, G; LakshmanaRao, J
2012-12-01
Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.
TickBot: a novel robotic device for controlling tick populations in the natural environment.
Gaff, Holly D; White, Alexis; Leas, Kyle; Kelman, Pamela; Squire, James C; Livingston, David L; Sullivan, Gerald A; Baker, Elizabeth W; Sonenshine, Daniel E
2015-03-01
A semi-autonomous 4-wheeled robot (TickBot) was fitted with a denim cloth treated with an acaricide (permethrin™) and tested for its ability to control ticks in a tick-infested natural environment in Portsmouth, Virginia. The robot's sensors detect a magnetic field signal from a guide wire encased in 80m polyethylene tubing, enabling the robot to follow the trails, open areas and other terrain where the tubing was located. To attract ticks to the treated area, CO2 was distributed through the same tubing, fitted with evenly spaced pores and flow control valves, which permitted uniform CO2 distribution. Tests were done to determine the optimum frequency for TickBot to traverse the wire-guided treatment site as well as the duration of operation that could be accomplished on a single battery charge. Prior to treatment, dragging was done to determine the natural abundance of ticks in the test site. Controls were done without CO2 and without permethrin. TickBot proved highly effective in reducing the overall tick densities to nearly zero with the treatment that included both carbon dioxide pretreatment and the permethrin treated cloth. Following a 60min traverse of the treatment areas, adult tick numbers, almost entirely Amblyomma americanum, was reduced to zero within 1h and remained at or near zero for 24h. Treatments without CO2 also showed reduction of ticks to near zero within 1h, but the populations were no different than the control sections at 4h. This study demonstrates the efficacy of TickBot as a tick control device to significantly reduce the risk of tick bites and disease transmission to humans and companion animals visiting a previously tick-infested natural environment. Continued deployment of TickBot for additional days or weeks can assure a relatively tick-safe environment for enjoyment by the public. Copyright © 2014 Elsevier GmbH. All rights reserved.
Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
Epolito, William J; Yang, Hanbae; Bottomley, Lawrence A; Pavlostathis, Spyros G
2008-12-30
The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100gL(-1) NaCl) and base (3gL(-1) Na2CO3 and 1gL(-1) NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000mgL(-1), the pseudo first-order rate constant (kobs) was 0.029+/-0.006h(-1), corresponding to a half-life of 24.2h and a ZVI surface area-normalized rate constant (kSA) of 2.9x10(-4)Lm(-2)h(-1). However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720+/-88mgL(-1)h(-1) and a half-saturation constant (K) of 1299+/-273mgL(-1). Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2-5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.
NASA Technical Reports Server (NTRS)
Davis, B. A.; Sipe, B.; Gershan, L. A.; Fiacco, G. J.; Lorenz, T. C.; Jeffrey, J. J.; Partridge, N. C.
1998-01-01
Exposure to zero gravity has been shown to cause a decrease in bone formation. This implicates osteoblasts as the gravity-sensing cell in bone. Osteoblasts also are known to produce neutral proteinases, including collagenase and tissue plasminogen activator (tPA), which are thought to be important in bone development and remodeling. The present study investigated the effects of zero gravity on development of calvariae and their expression of collagenase and tPA. After in utero exposure to zero gravity for 9 days on the NASA STS-70 space shuttle mission, the calvariae of rat pups were examined by immunohistochemistry for the presence and location of these two proteinases. The ages of the pups were from gestational day 20 (G20) to postnatal (PN) day 35. Both collagenase and tPA were found to be present at all ages examined, with the greatest amount of both proteinases present in the PN14 rats. At later ages, high amounts were maintained for tPA but collagenase decreased substantially between ages PN21 to PN35. The location of collagenase was found to be associated with bone-lining cells, osteoblasts, osteocytes, and in the matrix along cement lines. In contrast, tPA was associated with endothelial cells lining the blood vessels entering bone. The presence and developmental expression of these two proteinases appeared to be unaffected by the exposure to zero gravity. The calvarial thickness of the pups was also examined; again the exposure to zero gravity showed little to no effect on the growth of the calvariae. Notably, from G20 to PN14, calvarial thickness increased dramatically, reaching a plateau after this age. It was apparent that elevated collagenase expression correlated with rapid bone growth in the period from G20 to PN14. To conclude, collagenase and tPA are present during the development of rat calvariae. Despite being produced by the same cell in vitro, i.e., the osteoblast, they are located in distinctly different places in bone in vivo. Their presence, developmental expression, and quantity do not seem to be affected by a brief exposure to zero gravity in utero.
Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African American Men
2015-12-01
for generating prostate cancer cell line cybrids was not effective and we have instead used a Rhodamine -6-G procedure. PNT1A cybrid cell lines have...difficulties, we tested multiple alternative approaches including rhodamine -6G (R6G) mediated short-term mitochondrial dysfunction in generating rho zero cells
Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation
NASA Astrophysics Data System (ADS)
Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten
2015-04-01
Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.
Device for Extracting Flavors and Fragrances
NASA Technical Reports Server (NTRS)
Chang, F. R.
1986-01-01
Machine for making coffee and tea in weightless environment may prove even more valuable on Earth as general extraction apparatus. Zero-gravity beverage maker uses piston instead of gravity to move hot water and beverage from one chamber to other and dispense beverage. Machine functions like conventional coffeemaker during part of operating cycle and includes additional features that enable operation not only in zero gravity but also extraction under pressure in presence or absence of gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Michael I.; Hart, Philip R.
2016-02-16
Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Michael I.; Hart, Philip R.
2016-03-01
Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less
Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun
2015-01-01
A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546
1979-12-01
Anthropological analysis of the home concept: some considerations based on the interpretation of children’s drawings. In D.H. Carson (Ed.). Man-Environment...Gary, J., Glick, The Cultural Context of Learning and Thinking: J.A. & Sharp, D.W. (1971) An Exploration in Experimental Anthropology . New York: Basic...Calif.: Dickinson, 1967. Ramsey, C.G., & Sleeper, H. Architectural Graphic Standards (6th ed.). R. (1970) New York: Wi ey , 1970. Rand, G. (1969) Some
Femur-bending properties as influenced by gravity. I - Ultimate load and moment for 3-G rats
NASA Technical Reports Server (NTRS)
Wunder, C. C.; Welch, R. C.; Glade, R.; Fleming, B. P.; Cook, K. M.
1977-01-01
Fresh experimental bones can withstand greater bending forces and moments after 1.0 to 2.5 weeks of 3-G exposure. This appears more attributable to a 50% greater strength of bone material than to effects upon size or shape, and is most measurable for animals of 5 to 8 weeks of age. Experimental bone material seems to grow to its mature level at a younger age rather then there being so marked an effect upon the mature level itself. We simulated 3.1 G by chronic centrifugation of 66 albino rats and compared them to 63 1-G controls. Extrapolation of the simplest mathematical description of the present results to weaker, zero-G bones could be tested by a total of 60 space-based control and experimental animals. A flight of only 15 animals would be necessary for comparison to ground-based control animals. This is consistent with reports of bone demineralization during space-flight. In light of the differences in bone histology, however, extrapolation of these results to humans would be premature and, if at all applicable, are most likely to be so for children rather than adults.
Varma, Sashank; Karl, Stacy R
2013-05-01
Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally. Copyright © 2013 Elsevier Inc. All rights reserved.
Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite.
Fei, Xuening; Cao, Lingyun; Zhou, Lifeng; Gu, Yingchun; Wang, Xiaoyang
2012-01-01
Sepiolite, a natural nano-material, was chosen as a carrier to prepare supported nanoscale zero-valent iron (nZVI). The effects of preparation conditions, including mass ratio of nZVI and activated sepiolite and preparation pH value, on properties of the supported nZVI were investigated. The results showed that the optimal mass ratio of nZVI and sepiolite was 1.12:1 and the optimal pH value was 7. The supported nZVI was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS), and furthermore an analogy model of the supported nZVI was set up. Compared with the nZVI itself, the supported nZVI was more stable in air and possessed better water dispersibility, which were beneficial for the degradation of bromamine acid aqueous solution. The degradation characteristics, such as effects of supported nZVI dosage, initial concentration and initial pH value of the solution on the decolorization efficiency were also investigated. The results showed that in an acidic environment the supported nZVI with a dosage of 2 g/L showed high activity in the degradation of bromamine acid with an initial concentration of 1,000 mg/L, and the degree of decolorization could reach up to 98%.
Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron.
Yu, Xueyuan; Amrhein, Christopher; Deshusses, Marc A; Matsumoto, Mark R
2006-02-15
A series of batch experiments were performed to study the combination of zero-valent iron (ZVI) with perchlorate-reducing microorganisms (PRMs) to remove perchlorate from groundwater. In this method, H2 produced during the process of iron corrosion by water is used by PRMs as an electron donor to reduce perchlorate to chloride. Perchlorate degradation rates followed Monod kinetics, with a normalized maximum utilization rate (rmax) of 9200 microg g(-1) (dry wt) h(-1) and a half-velocity constant (Ks) of 8900 microg L(-1). The overall rate of perchlorate reduction was affected by the biomass density within the system. An increase in the OD600 from 0.025 to 0.08 led to a corresponding 4-fold increase of perchlorate reduction rate. PRM adaptation to the local environment and initiation of perchlorate reduction was rapid under neutral pH conditions. At the initial OD600 of 0.015, perchlorate reduction followed pseudo-first-order reaction rates with constants of 0.059 and 0.033 h(-1) at initial pH 7 and 8, respectively. Once perchlorate reduction was established, the bioreductive process was insensitive to the increases of pH from near neutral to 9.0. In the presence of nitrate, perchlorate reduction rate was reduced, but not inhibited completely.
View of Zero-G training for astronauts and payload specialists
1984-08-27
Paul Scully-Power, 41-G payload specialist, links arms with two others as they experience weightlessness in the KC-135 training aircraft. The trio appears to be flying toward the front of the aircraft while others take photos.
Lithium Battery Power Delivers Electric Vehicles to Market
NASA Technical Reports Server (NTRS)
2008-01-01
Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.
An overview of platforms for cloud based development.
Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I
2016-01-01
This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
NASA Astrophysics Data System (ADS)
Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan
2017-12-01
Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.
Development and Design of Zero-g Liquid Quantity Gauge for Solar Thermal Vehicle
NASA Technical Reports Server (NTRS)
Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.
2002-01-01
The development and design of a cryogenic liquid quantity gauge for zero-gravity (zero-g) applications are described. The gauge, named the compression mass gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of 11 percent of tank volume. The CMG has been selected by NASA's Future-X program for a flight demonstration on the United States Air Force-Boeing Solar Orbit Transfer Vehicle Space Experiment (SOTVSE). This report reviews the design trade studies needed for the CMG to satisfy the SOTVSE limitations on its power, volume, and mass and also describes the mechanical design of the CMG.
Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui
2014-12-16
Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.
NASA Technical Reports Server (NTRS)
Chapman, David K.
1989-01-01
The use of clinostats and centrifuges to explore the hypogravity range between zero and 1 g is described. Different types of clinostat configurations and clinostat-centrifuge combinations are compared. Some examples selected from the literature and current research in gravitational physiology are presented to show plant responses in the simulated hypogravity region of the g-parameter (0 is greater than g is greater than 1). The validation of clinostat simulation is discussed. Examples in which flight data can be compared to clinostat data are presented. The data from 3 different laboratories using 3 different plant species indicate that clinostat simulation in some cases were qualitatively similar to flight data, but that in all cases were quantitatively different. The need to conduct additional tests in weightlessness is emphasized.
Sun, Li; Westerdahl, Dane; Ning, Zhi
2017-08-19
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO₂) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO₂ electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO₂ as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO₂ analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air.
Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Long, W. Russ
1987-01-01
The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.
40 CFR 92.9 - Compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... supporting evidence. Based on this or other information, the Administrator may allow a shorter useful life... or remanufacturer is less than zero, it shall be zero for the purposes of this section. (B) For... the manufacturer or remanufacturer is less than zero, it shall be zero for the purposes of this...
Zero-truncated negative binomial - Erlang distribution
NASA Astrophysics Data System (ADS)
Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana
2017-11-01
The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.
Lotfy, Hayam M; Fayez, Yasmin M; Michael, Adel M; Nessim, Christine K
2016-02-15
Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD(1)) or second derivative (D(2)). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28μg/mL for mebeverine hydrochloride and 1-12μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.
2016-02-01
Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.
An energy balance concept for habitability.
Hoehler, Tori M
2007-12-01
Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.
The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.
Scheuer, Jacob; Weiss, Ori
2011-06-06
We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.
The electrical properties of zero-gravity processed immiscibles
NASA Technical Reports Server (NTRS)
Lacy, L. L.; Otto, G. H.
1974-01-01
When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.
A hydroclimatic model of global fire patterns
NASA Astrophysics Data System (ADS)
Boer, Matthias
2015-04-01
Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F (i.e. F_0.99 ) was explained by two terms of the climatic water balance: i) mean annual actual evapotranspiration (AET), which is a proxy for fuel productivity, and ii) mean annual water deficit (D=PET-AET, where PET is mean annual potential evapotranspiration), which is a measure of fuel drying potential. As expected, F_0.99 was close to zero in environments of low AET (e.g. deserts) or low D (e.g. wet forests), due to strong fuel productivity or fuel dryness constraints, and maximum for environments of intermediate AET and D (e.g. tropical savannas). The topography of the F_0.99 response surface was analysed to explore how the relative importance of fuel productivity and fuel dryness constraints varied with the climatic water balance, and geographically across the continents. Consistent with current understanding of global pyrogeography, the hydroclimatic fire model predicted that fire activity is mostly constrained by fuel productivity in arid environments with grassy fuels and by fuel dryness in humid environments with litter fuels derived from woody shrubs and trees. The model provides a simple, yet biophysically-based, approach to evaluating potential for incremental change in fire activity or transformational change in fire types under future climate conditions.
ERIC Educational Resources Information Center
Li, Yuan H.; Yang, Yu N.; Tompkins, Leroy J.; Modarresi, Shahpar
2005-01-01
The statistical technique, "Zero-One Linear Programming," that has successfully been used to create multiple tests with similar characteristics (e.g., item difficulties, test information and test specifications) in the area of educational measurement, was deemed to be a suitable method for creating multiple sets of matched samples to be…
Basnet, Mohan; Di Tommaso, Caroline; Ghoshal, Subhasis; Tufenkji, Nathalie
2015-01-01
Direct in situ injection of palladium-doped nanosized zero valent iron (Pd-NZVI) particles can contribute to remediation of various environmental contaminants. A major challenge encountered is rapid aggregation of Pd-NZVI and hence very limited mobility. To reduce aggregation and concurrently improve particle mobility, the surface of bare Pd-NZVI can be modified with stabilizing surface modifiers. Selected surface-modified Pd-NZVI has shown dramatically improved stability and transport. However, little is known regarding the effects of aquifer grain geochemical heterogeneity on the transport and deposition behavior of surface-modified Pd-NZVI. Herein, the mobility of surface stabilized Pd-NZVI in two granular matrices representative of model ground water environments (quartz sand and loamy sand) was assessed over a wide range of environmentally relevant ionic strengths (IS). Carboxymethyl cellulose (CMC), soybean flour and rhamnolipid biosurfactant were used as Pd-NZVI surface modifiers. Our results show that, both in quartz sand and loamy sand, an increase in solution IS results in reduced Pd-NZVI transport. Moreover, at a given water chemistry, Pd-NZVI transport is notably attenuated in loamy sand implying that geochemical heterogeneity associated with loamy sand is a key factor influencing Pd-NZVI transport potential. Experiments conducted at a higher Pd-NZVI particle concentration, to be more representative of field conditions, show that rhamnolipid and CMC are effective stabilizing agents even when 1 g/L Pd-NZVI is injected into quartz sand. Overall, this study emphasizes the extent to which variation in groundwater chemistry, coupled with changes in aquifer geochemistry, could dramatically alter the transport potential of Pd-NZVI in the subsurface environment.
Development of Skylab experiment T020 employing a foot controlled maneuvering unit
NASA Technical Reports Server (NTRS)
Hewes, D. E.; Glover, K. E.
1972-01-01
A review of the plans and preparations is presented for Skylab experiment T020, entitled Foot-Controlled Maneuvering Unit (FCMU). The FCMU is an experimental system intended to explore the use of simple astronaut maneuvering devices in the zero-gravity environment of space. This review also includes discussions of the FCMU concept and experiment hardware systems, as well as supporting experiment definition and development research studies conducted with the aid of zero-gravity simulators.
Energy Monitoring and Control Systems Inspection Guidelines.
1982-12-01
When the pressure port is exposed to atmosphere, the transducer will indicate zero PSIG. An absolute pressure transducer measures pressure referenced...Environment. dbm: A measure of absolute power values. Zero dbm equals one milliwatt. Data Transmission Transmission equipment including cables and Media (DTM...the four listed, type "K" is the most linear of the T/C’s and type "E" has the highest voltage per degree farenheit . Some advantages of thermo- couples
Laboratory evaluation of the pointing stability of the ASPS Vernier System
NASA Technical Reports Server (NTRS)
1980-01-01
The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.
Purification of arsenic-contaminated water with K-jarosite filters.
Hott, Rodrigo C; Maia, Luiz F O; Santos, Mayra S; Faria, Márcia C; Oliveira, Luiz C A; Pereira, Márcio C; Bomfeti, Cleide A; Rodrigues, Jairo L
2018-05-01
The high toxicity and potential arsenic accumulation in several environments have encouraged the development of technologies for its removal from contaminated waters. However, the arsenic released into aquatic environment comes mainly from extremely acidic mining effluents, making harder to find stable adsorbents to be used in these conditions. In this work, K-jarosite particles were synthesized as a stable adsorbent in acidic medium for eliminating arsenic from contaminated water. The adsorption capacities of K-jarosite for As 3+ , As 5+ , and monomethylarsonic acid were 9.45, 12.36, and 8.21 mg g -1 , respectively. Most arsenic in water was adsorbed within the first 10 min, suggesting the fast arsenic adsorption kinetics of K-jarosite particles. Because of that, a K-jarosite filter was constructed for purifying water at a constant flow. The K-jarosite filter was highly efficient to treat arsenic-contaminated water from a Brazilian river, reducing the concentration of arsenic in water to near zero. These data suggest the K-jarosite filter can be used as a low-cost technology for purifying arsenic-contaminated water in acidic medium.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.; Linnecke, C. B.
1976-01-01
Organon Diagnostics has developed, under NASA sponsorship, a monitoring system to test the capability of a water recovery system to reject the passage of viruses into the recovered water. In this system, a non-pathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. An engineering preliminary design has been performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings present a preliminary instrument design of a fully functional laboratory prototype capable of zero-G operation.
NASA Technical Reports Server (NTRS)
Fields, S. F.; Labak, L. J.; Honegger, R. J.
1974-01-01
A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
NASA Technical Reports Server (NTRS)
Crawford, Bradley L.
2007-01-01
The angle measurement system (AMS) developed at NASA Langley Research Center (LaRC) is a system for many uses. It was originally developed to check taper fits in the wind tunnel model support system. The system was further developed to measure simultaneous pitch and roll angles using 3 orthogonally mounted accelerometers (3-axis). This 3-axis arrangement is used as a transfer standard from the calibration standard to the wind tunnel facility. It is generally used to establish model pitch and roll zero and performs the in-situ calibration on model attitude devices. The AMS originally used a laptop computer running DOS based software but has recently been upgraded to operate in a windows environment. Other improvements have also been made to the software to enhance its accuracy and add features. This paper will discuss the accuracy and calibration methodologies used in this system and some of the features that have contributed to its popularity.
NASA Net Zero Energy Buildings Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, S.; Scheib, J.; Torcellini, P.
In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less
2007-04-26
KENNEDY SPACE CENTER, FLA. -- The media surround noted wheelchair-bound physicist Stephen Hawking after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. Behind Hawking, at left, are Zero Gravity Corporation founder Peter Diamandis and Space Florida president Steve Kohler. The flight will be aboard a modified Boeing 727 aircraft owned by Zero G, a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett
The response of single human cells to zero gravity
NASA Technical Reports Server (NTRS)
Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Schulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.
1974-01-01
The SO15 experiment was designed to extend observations of the effects of zero-gravity to living human cells during and subsequent to a 59-day flight on Skylab 3. A strain of diploid human embryonic lung cells, WI-38, was chosen for this purpose. The studies were concerned with observations designed to detect the effects of zero-gravity on cell growth rates and on cell structure as observed by light microscopy, transmission and scanning electron microscopy and histochemistry. Studies of the effects of zero-gravity on the cell function and the cell cycle were performed by time lapse motion picture photography and microspectrophotometry. Subsequent study of the returned living cells included karotyping, G- and C-banding, and analyses of the culture media used. Some of the living cells returned were banked by deep freeze techniques for possible future experiments.
NASA Astrophysics Data System (ADS)
Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam
2018-04-01
In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.
Han, Youngji; Kwon, Eun-Young; Yu, Mi Kyeong; Lee, Seon Jeong; Kim, Hye-Jin; Kim, Seong-Bo; Kim, Yang Hee; Choi, Myung-Sook
2018-01-31
d-allulose is a rare sugar with zero energy that can be consumed by obese/overweight individuals. Many studies have suggested that zero-calorie d-allulose has beneficial effects on obesity-related metabolism in mouse models, but only a few studies have been performed on human subjects. Therefore, we performed a preliminary study with 121 Korean subjects (aged 20-40 years, body mass index ≥ 23 kg/m²). A randomized controlled trial involving placebo control (sucralose, 0.012 g × 2 times/day), low d-allulose (d-allulose, 4 g × 2 times/day), and high d-allulose (d-allulose, 7 g × 2 times/day) groups was designed. Parameters for body composition, nutrient intake, computed tomography (CT) scan, and plasma lipid profiles were assessed. Body fat percentage and body fat mass were significantly decreased following d-allulose supplementation. The high d-allulose group revealed a significant decrease in not only body mass index (BMI), but also total abdominal and subcutaneous fat areas measured by CT scans compared to the placebo group. There were no significant differences in nutrient intake, plasma lipid profiles, markers of liver and kidney function, and major inflammation markers among groups. These results provide useful information on the dose-dependent effect of d-allulose for overweight/obese adult humans. Based on these results, the efficacy of d-allulose for body fat reduction needs to be validated using dual energy X-ray absorption.
Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei
2018-05-09
Advances in structural finite element analysis (FEA) and medical imaging have made it possible to investigate the in vivo biomechanics of human organs such as blood vessels, for which organ geometries at the zero-pressure level need to be recovered. Although FEA-based inverse methods are available for zero-pressure geometry estimation, these methods typically require iterative computation, which are time-consuming and may be not suitable for time-sensitive clinical applications. In this study, by using machine learning (ML) techniques, we developed an ML model to estimate the zero-pressure geometry of human thoracic aorta given 2 pressurized geometries of the same patient at 2 different blood pressure levels. For the ML model development, a FEA-based method was used to generate a dataset of aorta geometries of 3125 virtual patients. The ML model, which was trained and tested on the dataset, is capable of recovering zero-pressure geometries consistent with those generated by the FEA-based method. Thus, this study demonstrates the feasibility and great potential of using ML techniques as a fast surrogate of FEA-based inverse methods to recover zero-pressure geometries of human organs. Copyright © 2018 John Wiley & Sons, Ltd.
Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang
2017-10-01
Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Adamo, Giuseppe, E-mail: giuseppe.dadamo@sissa.it; Pelissetto, Andrea, E-mail: andrea.pelissetto@roma1.infn.it; Pierleoni, Carlo, E-mail: carlo.pierleoni@aquila.infn.it
2014-12-28
A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmannmore » inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.« less
Debond Analyses for Stitched Composite Structures
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.
1998-01-01
The effect of stitching on mode I and mode II strain energy release rates for debond configurations is studied using an analysis based on plate finite elements and the virtual crack closure technique. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered with both the compliances and failure loads assumed to be independent. The mode I strain energy release rate, G(sub I), was shown to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds, however, the mode II strain energy release rate, G(sub II), continued to be of significant magnitude over the range of debond lengths considered.
Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun
2017-03-15
In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Jingchun; Qian, Linbo; Gao, Weiguo; Chen, Yun; Ouyang, Da; Chen, Mengfang
2017-02-01
Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g-1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of 98.9% with TOC removal of 78.2% within 30 min under the conditions of 0.10 mmol L-1 TCE, 1.13 g L-1 nZVI/BC and 1.50 mmol L-1 H2O2. Test results from the Electron Spin Resonance (ESR) measurement and coumarin based fluorescent probe technology indicated that •OH radicals were the dominant species responsible for the degradation of TCE within the nZVI/BC-H2O2 system. Activation mechanism of the redox action of Fe2+/Fe3+ generated under both aerobic and anaerobic conditions from nZVI and single electron transfer process from BC surface bound C-OH to H2O2 promoted decomposition of H2O2 into •OH radicals was proposed.
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim
1999-01-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R
1999-08-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
NASA Astrophysics Data System (ADS)
Tagg, Randall
2014-03-01
A versatile laboratory for open innovation has been created in a former auto-shop-instruction building adjacent to Gateway High School in the Aurora Public Schools district in Colorado. We have equipped this 2500 square foot space with resources to support fifty-two technologies, such as mechanical design, electronics, optics, and nanotechnology. Correspondingly, we are developing a web site to provide modular instruction around each of these technologies. The goal is to enable collaborations of secondary school students, university students, teachers, professors, and industry partners in an environment richly supported by both physical and educational resources. An Innovation Academy is currently in progress in the lab with projects such as surgery in zero-G and using music to script the motion of actuator arrays in robots and rehabilitation devices.
Biochar, Tool for Climate Change Mitigation and Soil Management
NASA Astrophysics Data System (ADS)
Shackley, Simon; Sohi, Saran; Ibarrola, Rodrigo; Hammond, Jim; Mašek, Ondřej; Brownsort, Peter; Cross, Andrew; Prendergast-Miller, Miranda; Haszeldine, Stuart
Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller's grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.
Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices
NASA Technical Reports Server (NTRS)
Faghri, Amir; Khrustalev, Dmitry
1996-01-01
Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.
Personalized Messages That Promote Science Learning in Virtual Environments
ERIC Educational Resources Information Center
Moreno, Roxana; Mayer, Richard E.
2004-01-01
College students learned how to design the roots, stem, and leaves of plants to survive in five different virtual reality environments through an agent-based multimedia educational game. For each student, the agent used personalized speech (e.g., including I and you) or nonpersonalized speech (e.g., 3rd-person monologue), and the game was…
Optical Pulse Interactions in Nonlinear Excited State Materials
2008-07-14
described below. 2.5 Overview of Semiconductor Quantum Dot A quantum dot (QD) is a quasi -zero-dimensional object where the carrier movement is...a particle of mass M (e.g., an electron) having a potential energy can be described by a wavefunction that satisfies the following Schrödinger...dot (QD) is a quasi -zero-dimensional object where the carrier movement is restricted in three dimensions. The bulk crystalline structure of the
Zeng, Gan-Ning; Wu, Xiao; Zheng, Lin; Wu, Xi; Tu, Mei-Ling; Wang, Tie-Gan; Ai, Ning
2015-02-01
Nanoscale zero-valent iron supported on Sargassum horneri activated carbon (NZVI/SAC) was synthesized by zinc chloride activation and incipient wetness method, and characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XRD confirmed the existence of nano zero-valent iron, and SEM revealed that the material consisted of mainly 30-150 nm spherical particles aggregated into chains of individual units. The valence state of iron conformed with the nuclear-shell model. The effects of NZVI loading on AC, pH and the initial concentration of Cr(VI) on the removal of Cr(VI) were investigated. The final Cr(VI) removal percentage was up to 100% under the following conditions: 30 degrees C, pH = 2, NZVI/SAC dosage of 2 g x L(-1) and the amounts of NZVI loaded on SAC of 30%. And the equilibrium time was 10 minutes. These results showed that NZVI/SAC could be potentially applied for removal of high concentration Cr(VI). By analyzing the chemical change of NZVI/ SAC, we demonstrated that Cr(VI) was mainly reduced to insoluble Cr (III) compound in the reaction when pH was less than 4, and adsorbed by NZVI and SAC when pH was over 4.
Schure, V; Voigt, M; Schild, R L; Hesse, V; Carstensen, M; Schneider, K T M; Straube, S
2012-01-01
Aim: "Late motherhood" is associated with greater perinatal risks but the term lacks precise definition. We present an approach to determine what "late motherhood" associated with "high risk" is, based on parity and preterm birth rate. Materials and Methods: Using data from the German Perinatal Survey of 1998-2000 we analysed preterm birth rates in women with zero, one, or two previous live births. We compared groups of "late" mothers (with high preterm birth rates) with "control" groups of younger women (with relatively low preterm birth rates). Data of 208 342 women were analysed. For women with zero (one; two) previous live births, the "control" group included women aged 22-26 (27-31; 29-33) years. Women in the "late motherhood" group were aged > 33 (> 35; > 38) years. Results: The "late motherhood" groups defined in this way were also at higher risk of adverse perinatal events other than preterm birth. For women with zero (one; two) previous live births, normal cephalic presentation occurred in 89 % (92.7 %; 93.3 %) in the "control" group, but only in 84.5 % (90 %; 90.4 %) in the "late motherhood" group. The mode of delivery was spontaneous or at most requiring manual help in 71.3 % (83.4 %; 85.8 %) in the "control" group, but only in 51.4 % (72.2 %; 76.4 %) in the "late motherhood" group. Five-minute APGAR scores were likewise worse for neonates of "late" mothers and the proportion with a birth weight ≤ 2499 g was greater. Conclusion: "Late motherhood" that is associated with greater perinatal risks can be defined based on parity and preterm birth rate.
Low gravity synthesis of polymers with controlled molecular configuration
NASA Technical Reports Server (NTRS)
Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.
1975-01-01
Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.
Neutral buoyancy testing of architectural and environmental concepts of space vehicle design
NASA Technical Reports Server (NTRS)
Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.
1972-01-01
Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.
Breadboard development of a fluid infusion system
NASA Technical Reports Server (NTRS)
Thompson, R. W.
1974-01-01
A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.
Cautionary tales for reduced-gravity particle research
NASA Technical Reports Server (NTRS)
Marshall, John R.; Greeley, Ronald; Tucker, D. W.
1987-01-01
Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.
NASA Astrophysics Data System (ADS)
Alqubalee, Abdullah; Abdullatif, Osman; Babalola, Lamidi
2017-04-01
This study is an integral part of multidisciplinary research being carried out on the Late Ordovician Sarah Formation in the Rub' Al-Khali Basin, Saudi Arabia. Sarah Formation proved to be important target for tight gas reservoir in Saudi Arabia. This study integrates lithofacies characteristics and spectral Gamma Ray of core samples so as to identify and differentiate among different depositional environments. Thorium (Th, ppm) and potassium (K, %) are acquired with approximately a reading point per inch using high-resolution Spectral Core Gamma. The cores description and analysis from six exploratory wells revealed four depositional environments ranging from the glaciofluvial, glaciolacustrine delta, subglacial to the nearshore environments. Based on lithofacies and geochemical analysis of the core samples, four groups of lithofacies including sandstone (G1), claystone and/or argillaceous sandstone (G2), calcareous and/or evaporitic sandstone (G3), and diamictites (G4) were recognized in each well. The bivariate plots of Th and K were used to delineate the minerals contents in each core and environment. The results showed that the G1 facies of the nearshore and glaciofluvial environments are characterized by similar distribution patterns of these elements exhibiting lower clay minerals variations than that in the other groups of lithofacies. These patterns consist of two mineral groups, the first one includes illite and montmorillonite clay minerals while the second one includes mica, glauconite, and feldspar. By contrast, G1 and G2 lithofacies of the glaciolacustrine delta environment are characterized by a range of clay minerals. However, G3 of this environment exhibits similar pattern of the nearshore and the glaciofluvial environments This is because the grains of G3 are cemented by anhydrite rather than by clays. Based on the lithological characteristic, matrix-supported and clast-supported diamictites were identified in the subglacial environment. The differences between these two lithofacies were clearly detected using Th/K plot. Both diamictites are characterized by a range of minerals including illite, mixed layer clays, glauconite, and feldspar. The matrix-supported diamictites contain higher proportions of these minerals. This study indicates that the relationship between Th and K can be used to predict the types of lithofacies and clay contents in different glaciogenic depositional environments. In addition, it can be used to predict the relative amounts of the clay minerals in each lithofacies. In turn, identifying the types and the amounts of clay minerals in lithofacies facilitate the prediction of reservoir quality and eventually lead to enhancement of their development and productivity.
CHNO Energetic Polymer Specific Heat Prediction From The Proposed Nominal/Generic (N/G) CP Concept
2007-02-01
HMX can exist in different solid polymorphic forms. At a certain temperature, TT, one form may change to another form if the heat energy of...more than 100 °K for TNT, HNS and HMX and over 200 °K for TETRYL, PETN, and RDX ). So based on the above remarks and similar remarks in References...are very close to (or equal to) the RDX CP values and TNT CP values near absolute zero. In Reference 7, two examples (TNT and HMX ) were selected for